INA310A5IDGKR [TI]

具有比较器的 -4V 至 110V、1.3MHz 超高精度电流检测放大器 | DGK | 8 | -40 to 125;
INA310A5IDGKR
型号: INA310A5IDGKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有比较器的 -4V 至 110V、1.3MHz 超高精度电流检测放大器 | DGK | 8 | -40 to 125

放大器 比较器
文件: 总31页 (文件大小:2022K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
INA310x 具有开漏比较器和基准-4V 110V1.3MHz 超精密电流检测放大器  
1 特性  
3 说明  
• 宽共模电压  
INA310x 是一款超精密电流检测放大器可不依赖于  
具有集成式比较器的电源电压-4V 110V 的宽共  
模范围内测量分流电阻器上的压降。该器件在 20µV  
最大值的低失调电压、0.15%最大值的小增益  
误差和 160dB典型值的高直流 CMRR 等特性的综  
合作用下实现高精度电流测量。INA310x 有  
1.3MHz 的高信号带宽专为高压直流电流测量和快速  
过流保护等高速应用而设计。  
– 工作电压-4 V +110 V  
– 可承受电压-20 V +120 V  
• 高信号带宽1.3 MHz  
• 压摆率2.5 V/µs  
• 出色的共模抑制(CMRR)160 dB  
• 精度  
– 增益误差最大值)  
• 版A0.15%10ppm/°C 漂移  
• 版B0.5%20ppm/°C 漂移  
– 失调电压最大值)  
INA310x 包含一个开漏比较器和提供 0.6V 阈值的内部  
基准。一个外部电阻分压器设定电流跳变点。比较器具  
有锁存功能可通过将 RESET 引脚接地或悬空进  
入透明状态。  
• 版A±20 µV±0.25 µV/°C 漂移  
• 版B±150 µV±1 µV/°C 漂移  
• 板载开漏比较器  
• 内部比较器电压基准0.6V  
• 传播延迟时间1 µs  
• 比较器锁存功能  
INA310x 2.7V 20V 的单电源供电消耗 1.6mA  
的电源电流。INA310x 五个增益选项20V/V、  
50V/V100V/V200V/V 500V/V。这些增益选项  
可以满足宽动态范围电流检测应用。  
INA310x 的额定工作温度范围-40°C +125°C并  
且采用节省空间8 VSSOP 封装。  
• 可用增益:  
INA310A1INA310B120 V/V  
INA310A2INA310B250 V/V  
INA310A3INA310B3100 V/V  
INA310A4INA310B4200 V/V  
INA310A5INA310B5500V/V  
• 封装选项VSSOP-8  
封装信息(1)  
封装尺寸标称值)  
器件型号  
INA310A  
INA310B  
封装  
VSSOP (8)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
2 应用  
2.7V to 20V  
Supply  
Battery  
48V 直流/直流转换器  
48V 电池管理系(BMS)  
测试和测量  
宏远程无线电单(RRU)  
48V 机架式服务器  
VS  
INA310  
IN+  
+
OUT  
IN-  
-
CMPIN  
Controller  
ADC  
+
ADC  
CMPOUT  
GPIO  
48V 商用网络和服务器电(PSU)  
螺线管和传动器  
-
0.6-V  
Reference  
RESET  
GPIO  
GND  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSA86  
 
 
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................17  
8 Application and Implementation..................................21  
8.1 Application Information............................................. 21  
8.2 Typical Application.................................................... 22  
8.3 Power Supply Recommendations.............................25  
8.4 Layout....................................................................... 26  
9 Device and Documentation Support............................27  
9.1 Receiving Notification of Documentation Updates....27  
9.2 支持资源....................................................................27  
9.3 Trademarks...............................................................27  
9.4 静电放电警告............................................................ 27  
9.5 术语表....................................................................... 27  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
Information.................................................................... 27  
4 Revision History  
DATE  
REVISION  
NOTES  
March 2023  
*
Initial release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
VS  
OUT  
1
2
3
4
8
7
6
5
IN+  
IN–  
CMPIN  
GND  
CMPOUT  
RESET  
Not to scale  
5-1. INA310x: DGK Package 8-Pin VSSOP Top View  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
VS  
NO  
1
Power  
Output  
Input  
Power supply, 2.7 V to 20 V  
Output voltage  
OUT  
2
CMPIN  
GND  
3
Comparator input  
Ground  
4
Ground  
Input  
RESET  
CMPOUT  
5
Comparator reset pin, active low (Low: Transparent Mode, High: Latch Mode)  
Comparator output (latch high when RESET = High)  
6
Output  
Shunt resistor negative sense input. For high-side applications, connect to load  
side of sense resistor. For low-side applications, connect to ground side of sense  
resistor.  
7
8
Input  
Input  
IN–  
Shunt resistor positive sense input. For high-side applications, connect to bus-  
voltage side of sense resistor. For low-side applications, connect to load side of  
sense resistor.  
IN+  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
UNIT  
VS  
Supply voltage  
Analog inputs  
22  
V
(2)  
12  
Differential (VIN+) (VIN–  
)
12  
VIN+  
VIN–  
,
V
VIN+, VIN, with respect to GND(2)  
120  
20  
VOUT  
Analog output  
(VS) + 0.3  
V
V
GND 0.3  
GND 0.3  
GND 0.3  
GND 0.3  
Comparator reset pin  
Comparator analog input  
Comparator Output  
Input current into any pin  
Operating temperature  
Junction temperature  
Storage temperature  
(VS) + 0.3  
MIN of 5.5 or VS  
V
22  
5
V
mA  
°C  
°C  
°C  
TA  
150  
150  
150  
55  
65  
65  
TJ  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) VIN+ and VINare the voltages at the IN+ and INpins, respectively.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins((2)) ±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4  
2.7  
NOM  
48  
MAX  
110  
UNIT  
V
VCM  
VS  
Common-mode input range  
Operating supply voltage  
5
20  
V
VSENSE  
TA  
Differential sense input range  
Operating free-air temperature  
0
VS / G  
125  
V
°C  
40  
6.4 Thermal Information  
INA310x  
DGK (VSSOP)  
8 PINS  
172.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
63.5  
93.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
9.8  
92.2  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA86  
4
Submit Document Feedback  
Product Folder Links: INA310A INA310B  
 
 
 
 
 
 
 
 
 
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
at TA = 25°C, VSENSE = VIN+ VIN= 0.5 V / Gain, VS = 5.0 V, VCM = VIN= 48 V, and RPULLUP= 5.1 kΩconnected from  
CMPout to Vs, (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
Common-mode input  
range  
VCM  
110  
V
TA = 40°C to +125°C  
4  
140  
160  
85  
INA310Ax, VIN+ = 4 V to 110 V, TA = 40°C to +125°C  
INA310Ax, f = 50 kHz  
Common-mode  
rejection ratio  
CMRR  
dB  
120  
140  
65  
INA310Bx, VIN+ = 4 V to 110 V, TA = 40°C to +125°C  
INA310Bx, f = 50 kHz  
INA310A1  
±30  
±100  
±15  
±55  
±10  
±30  
±5  
±150  
±500  
±80  
INA310B1  
INA310A2  
INA310B2  
±300  
±50  
INA310A3  
VOS  
Offset voltage, RTI(1)  
µV  
INA310B3  
±250  
±30  
INA310A4  
INA310B4  
±30  
±2  
±200  
±20  
INA310A5  
INA310B5  
±15  
±0.05  
±0.025  
±0.1  
±1  
±150  
±0.5  
TA = 40°C to +125°C, INA310A1, INA310A2, INA310A3  
TA = 40°C to +125°C, INA310A4, INA310A5  
TA = 40°C to +125°C, INA310Bx  
INA310A1, 2.7 V VS 20 V, TA = 40°C to +125°C  
dVOS/dT  
Offset drift, RTI  
±0.25 µV/°C  
±1  
±8  
INA310A2, INA310A3, 2.7 V VS 20 V,  
TA = 40°C to +125°C  
±0.3  
±0.1  
±3  
Power-supply rejection  
ratio, RTI  
PSRR  
µV/V  
±1  
INA310A4, INA310A5, 2.7 V VS 20 V,  
TA = 40°C to +125°C  
±1.5  
20  
±10  
INA310Bx 2.7 V VS 20 V, TA = 40°C to +125°C  
IB  
Input bias current  
IB+, IB-, VSENSE = 0 mV  
10  
30  
µA  
OUTPUT  
INA310A1, INA310B1  
20  
50  
INA310A2, INA310B2  
G
Gain  
INA310A3, INA310B3  
100  
V/V  
INA310A4, INA310B4  
200  
INA310A5, INA310B5  
500  
±0.02%  
±0.07%  
1
±0.15%  
±0.5%  
10  
INA310Ax, GND + 50 mV VOUT VS 200 mV  
INA310Bx, GND + 50 mV VOUT VS 200 mV  
INA310Ax, TA = 40°C to +125°C  
INA310Bx, TA = 40°C to +125°C  
GND + 50 mV VOUT VS 200 mV  
GERR  
Gain error  
ppm/°C  
2
20  
NLERR  
Nonlinearity error  
±0.01  
%
Maximum capacitive  
load  
No sustained oscillation, no isolation resistor  
500  
pF  
VOLTAGE OUTPUT  
Swing to VS (Power-  
supply rail)  
VSP  
VSN  
mV  
mV  
RLOAD = 10 kto GND, TA = 40°C to +125°C  
(VS) 70  
(VS) 150  
RLOAD = 10 kto GND, TA = 40°C to +125°C,  
VSENSE = 0 mV  
Swing to GND  
(VGND) + 5 (VGND) + 20  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
at TA = 25°C, VSENSE = VIN+ VIN= 0.5 V / Gain, VS = 5.0 V, VCM = VIN= 48 V, and RPULLUP= 5.1 kΩconnected from  
CMPout to Vs, (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
INA310A1, INA310B1, CLOAD = 5 pF, VSENSE = 200mV  
INA310A2, INA310B2, CLOAD = 5 pF, VSENSE = 80mV  
INA310A3, INA310B3, CLOAD = 5 pF, VSENSE = 40mV  
INA310A4, INA310B4, CLOAD = 5 pF, VSENSE = 20mV  
INA310A5, INA310B5, CLOAD = 5 pF, VSENSE = 8mV  
Rising edge  
1300  
1300  
1000  
900  
900  
2.5  
10  
BW  
Bandwidth  
kHz  
SR  
tS  
Slew rate  
V/µs  
µs  
VOUT = 4 V ± 0.1 V step, Output settles to 0.5%  
VOUT = 4 V ± 0.1 V step, Output settles to 1%  
VOUT = 4 V ± 0.1 V step, Output settles to 5%  
Settling time  
5
µs  
1
µs  
NOISE  
Ven  
Voltage noise density  
50  
nV/Hz  
COMPARATOR  
TA = 25°C  
585  
580  
600  
615  
620  
mV  
mV  
mV  
Alert threshold  
VTHRESHOLD  
TA = 40°C to +125°C  
TA = 25°C  
Hysteresis  
8
1
Small-signal  
propagation delay  
Comparator input overdrive = 20 mV  
µs  
µs  
tP  
Slew-rate-limited  
propagation delay  
VOUT step = 0.5 V to 4.5 V, VLIMIT ((3)) = 4 V  
1.6  
1
TA = 25°C, VCMPIN = 0.4 V to 1.2 V  
-20  
20  
nA  
nA  
Input bias current,  
CMPin PIN  
IBCMPIN  
250  
TA = 40°C to +125°C, VCMPIN = 0.4 V to 1.2 V  
High-level leakage  
current  
ILKG  
VCMPout = VS  
1
µA  
IOL = 2.35 mA  
300  
350  
mV  
mV  
Low-level output  
voltage  
VOL  
TA = 40°C to +125°C, IOL = 2.35 mA  
RESET High-level  
1.2  
VIH  
input voltage threshold  
V
V
TA = 40°C to +125°C  
(2)  
RESET Low-level  
VIL  
input voltage threshold  
0.4  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
(2)  
Minimum RESET  
pulse width  
100  
250  
200  
ns  
ns  
RESET propagation  
delay  
POWER SUPPLY  
VS  
Supply voltage range  
2.7  
20  
2
V
TA = 40°C to +125°C  
TA = 40°C to +125°C  
1.6  
mA  
mA  
IQ  
Quiescent current  
2.25  
(1) RTI = referred-to-input.  
(2) The RESET input has an internal 2 M(typical) pull-down. Leaving RESET open results in a LOW state, with transparent comparator  
operation.  
(3) VLIMIT is VOUT at the overcurrent threshold set by external resistors.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA86  
6
Submit Document Feedback  
Product Folder Links: INA310A INA310B  
 
 
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = 25°C, VS = 5 V, VSENSE = VIN+ VIN= 0.5 V / Gain, VCM = VIN= 48 V, and RPULLUP= 5.1 kΩ(unless  
otherwise noted).  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
6-2. INA310A2 Input Offset Production  
6-1. INA310A1 Input Offset Production  
Distribution  
Distribution  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
6-3. INA310A3 Input Offset Production  
6-4. INA310A4 Input Offset Production  
Distribution  
Distribution  
16  
8
0
G = 20  
G = 50  
-8  
G = 100  
G = 200  
G = 500  
-16  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
Input Offset Voltage (mV)  
6-6. Input Offset Voltage vs Temperature  
6-5. INA310A5 Input Offset Production  
Distribution  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
20  
10  
0
180  
160  
140  
120  
100  
80  
G = 20  
G = 50  
60  
-10  
G = 100  
G = 200  
G = 500  
40  
20  
-20  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
6-8. Common-Mode Rejection Ratio vs  
6-7. Common-Mode Rejection Ratio vs  
Frequency  
Temperature  
60  
50  
40  
30  
20  
0.10  
0.05  
G = 20  
G = 50  
G = 100  
G = 200  
G = 500  
0.00  
G = 20  
G = 50  
G = 100  
G = 200  
G = 500  
10  
0
-0.05  
-10  
-0.10  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
6-9. Gain vs Frequency  
6-10. INA310A Gain Error vs Temperature  
1.0  
0.8  
140  
120  
100  
80  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
60  
G = 20  
G = 50  
G = 100  
G = 200  
G = 500  
40  
20  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
6-12. Power-Supply Rejection Ratio vs  
6-11. Power-Supply Rejection Ratio vs  
Frequency  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA86  
8
Submit Document Feedback  
Product Folder Links: INA310A INA310B  
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
VS = 2.7 to 20V, VCM = 48V  
VS = 2.7 to 20V, VCM = 120V  
VS = 2.7 to 20V, VCM = -4V  
VS = 0V, VCM = 120V  
VS = 5V  
VS = 20V  
VS = 2.7V  
VS = 0V  
VS = 0V, VCM = -4V  
0
0
VS = 0V and 20V, VCM = -20V  
-5  
-5  
-10  
-20  
-10  
0
20  
40  
Common-Mode Voltage (V)  
60  
80  
100  
120  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
VSENSE = 0 V  
.
6-13. Input Bias Current vs Common-Mode  
6-14. Input Bias Current vs Temperature  
Voltage  
240  
140  
IB+  
IB-  
IB+  
120  
IB-  
200  
IB+, VS = 0V  
160  
IB-, VS = 0V  
120  
IB+, VS = 0V  
IB-, VS = 0V  
100  
80  
60  
80  
40  
40  
20  
0
0
-40  
-80  
-120  
-160  
-20  
-40  
-60  
-80  
0
200  
400  
VSENSE (mV)  
600  
800  
1000  
0
100  
200  
VSENSE (mV)  
300  
400  
6-15. INA310x1 Input Bias Current vs VSENSE  
6-16. INA310x2, INA310x3 Input Bias Current vs  
VSENSE  
100  
VS  
IB+, G=200  
IB+, G=500  
IB-  
25èC  
125èC  
-40èC  
80  
VS - 1  
IB+, VS = 0V  
IB-, VS = 0V  
60  
VS - 2  
40  
20  
0
GND + 2  
GND + 1  
GND  
-20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
Output Current (mA)  
30  
35  
40  
VSENSE (mV)  
.
VS = 2.7 V  
6-17. INA310x4, INA310x5 Input Bias Current vs  
6-18. Output Voltage vs Output Current  
VSENSE  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
VS  
VS - 1  
VS - 2  
VS - 3  
VS  
VS - 1  
VS - 2  
VS - 3  
25èC  
125èC  
-40èC  
25èC  
125èC  
-40èC  
GND + 3  
GND + 2  
GND + 1  
GND  
GND + 3  
GND + 2  
GND + 1  
GND  
0
5
10  
15  
Output Current (mA)  
20  
25  
30  
35  
40  
0
5
10  
15  
Output Current (mA)  
20  
25  
30  
35  
40  
VS = 5 V  
VS = 20 V  
6-19. Output Voltage vs Output Current  
6-20. Output Voltage vs Output Current  
1000  
500  
0.00  
200  
100  
50  
-0.10  
-0.20  
-0.30  
20  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
-0.40  
VS = 5V  
VS = 20V  
VS = 2.7V  
0.02  
0.01  
-0.50  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
6-21. Output Impedance vs Frequency  
6-22. Swing to Supply vs Temperature  
0.020  
100  
VS = 5V  
VS = 20V  
VS = 2.7V  
G = 20  
G = 500  
80  
70  
60  
50  
0.015  
0.010  
0.005  
0.000  
40  
30  
20  
10  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
6-24. Input Referred Noise vs Frequency  
6-23. Swing to GND vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA86  
10  
Submit Document Feedback  
Product Folder Links: INA310A INA310B  
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
50  
40  
30  
20  
10  
0
VS = 5V, Sourcing  
VS = 5V, Sinking  
VS = 20V, Sourcing  
VS = 20V, Sinking  
VS = 2.7V, Sourcing  
VS = 2.7V, Sinking  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Time (1 s/div)  
Temperature (èC)  
6-25. Input Referred Noise  
6-26. Short-Circuit Current vs Temperature  
2.2  
2
2
VS = 5V  
VS = 20V  
VS = 2.7V  
1.8  
1.6  
1.4  
1.2  
1.8  
1.6  
1.4  
1.2  
1
25C  
1
125C  
-40C  
0.8  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Temperature (C)  
Supply Voltage (V)  
6-27. Quiescent Current vs Temperature  
6-28. Quiescent Current vs Supply Voltage  
2
VCM  
VOUT  
VS = 5V  
VS = 20V  
1.8  
1.6  
1.4  
1.2  
1
VS = 2.7V  
0V  
0V  
0.8  
-20  
Time (12.5ms/div)  
0
20  
40  
60  
80  
100  
120  
Common-Mode Voltage (V)  
.
6-29. Quiescent Current vs Common-Mode  
6-30. Common-Mode Voltage Fast Transient  
Voltage  
Pulse  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
Supply Voltage  
Output Voltage  
0V  
0V  
0V  
Time (10 ms/div)  
Time (5 ms/div)  
6-31. INA310x3 Step Response  
6-32. Start-Up Response  
600  
500  
400  
300  
200  
100  
0
Supply Voltage  
Output Voltage  
0V  
Time (50 ms/div)  
0
1
2
3
4
5
6
Isink(mA)  
.
6-34. Comparator VOL vs ISINK  
6-33. Supply Transient Response  
615  
620  
615  
610  
605  
600  
595  
590  
585  
580  
610  
605  
600  
595  
590  
585  
2
4
6
8
10  
12  
14  
16  
18  
20  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Supply Voltage (V)  
Temperature (C)  
6-35. Comparator Trip Point vs Supply Voltage  
6-36. Comparator Trip Point vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
1.2  
1.1  
1
VIH  
VIL  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
50  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
2
4
6
8
10  
12  
14  
16  
18  
20  
Overdrive Voltage (mV)  
Supply Voltage (V)  
6-37. Comparator Propagation Delay vs  
6-38. Comparator Reset Voltage vs Supply  
Overdrive Voltage  
Voltage  
130  
115  
100  
85  
VOD = 20 mV  
Input  
200 mV/div  
Output  
2 V/div  
70  
55  
40  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
2 s/div  
Temperature (C)  
6-40. Comparator Propagation Delay  
6-39. Comparator Propagation Delay vs  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The INA310x is a high or low-side high-speed current-sense amplifier that offers a wide common-mode range,  
precision zero-drift topology, excellent common-mode rejection ratio (CMRR) and fast slew rate. Different gain  
versions are available to optimize the output dynamic range based on the application. The INA310x is designed  
using an architecture that enables low input bias current of 20 µA with a specified common-mode voltage range  
from 4 V to 110 V with signal bandwidths up to 1.3 MHz. The INA310x incorporates an open-drain comparator  
and internal reference providing a 0.6-V threshold. An external resistor divider sets the current trip point. The  
comparator includes a latching capability, that can be made transparent by grounding (or leaving open) the  
RESET pin (see the RESET Function section).  
7.2 Functional Block Diagram  
INA310  
VS  
IN+  
OUT  
Gain  
IN-  
0.6-V  
Reference  
CMPIN  
CMPOUT  
Comparator  
GND  
RESET  
7.3 Feature Description  
7.3.1 Amplifier Input Common-Mode Signal  
The INA310x supports large input common-mode voltages from 4 V to +110 V. The internal topology of the  
INA310x enables the common-mode range to not be restricted by the power-supply voltage (VS). Due to this  
feature, the INA310x can be used for both low-side and high-side current-sensing applications that extend  
beyond the supply range of 2.7 V to 20 V.  
7.3.2 Input-Signal Bandwidth  
The INA310x is available with several gain options, including 20 V/V, 50 V/V, 100 V/V, 200 V/V, and 500 V/V. The  
unique multistage design enables the amplifier to achieve high bandwidth at all gains. This high bandwidth  
provides the throughput and fast response that is required for the rapid detection and processing of overcurrent  
events.  
7.3.3 Low Input Bias Current  
The INA310x inputs draw a 20-µA input bias current per pin at a common-mode voltage as high as 110 V, which  
enables precision current sensing on applications that require lower current leakage. Unlike many high voltage  
current sense amplifiers whose input bias currents are proportional to the common-mode voltage, the input bias  
current of the INA310x remains flat over the entire common-mode voltage range.  
7.3.4 Low VSENSE Operation  
The INA310x features high performance operation across the entire valid VSENSE range. The zero-drift input  
architecture of the INA310x provides the low offset voltage and low offset drift needed to measure low VSENSE  
levels accurately across the wide operating temperature of 40°C to +125°C. Low VSENSE operation is  
particularly beneficial when using low ohmic shunts for high current measurements, as power losses across the  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA86  
14  
Submit Document Feedback  
Product Folder Links: INA310A INA310B  
 
 
 
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
shunt are significantly reduced. VSENSE low level is only limited by the output swing to GND (VSN). The minimum  
VSENSE is limited to VSN divided by Gain.  
7.3.5 Wide Fixed Gain Output  
The INA310x maximum gain error is 0.15% at room temperature, with a maximum drift of 10 ppm/°C over the full  
temperature range of 40°C to +125°C. The INA310x is available in multiple gain options of 20 V/V, 50 V/V, 100  
V/V, 200 V/V, and 500 V/V, which the system designer should select based on their desired signal-to-noise ratio  
and other system requirements, such as the dynamic current range and full-scale output voltage target.  
The INA310x closed-loop gain is set by a precision, low-drift internal resistor network. The ratio of these resistors  
are excellently matched, while the absolute values may vary significantly. TI does not recommend adding  
additional resistance around the INA310x to change the effective grain because of this variation.  
7.3.6 Wide Supply Range  
The INA310x operates with a wide supply range from 2.7 V to 20 V. While the input voltage range of the  
INA310x is independent of the supply voltage, the output voltage is bound by the supply voltage applied to the  
device. The output voltage can range from as low as 20 mV to as high as 200 mV below the supply voltage.  
7.3.7 Integrated Comparator  
The INA310x incorporates an open-drain comparator with an internal reference providing a 0.6-V threshold. The  
comparator input (CMPIN) can take voltage from 0 V up to 5.5 V or equal to power-supply voltage (if it is lower  
than 5.5 V). The comparator has a built-in hysteresis of 8 mV (typical). 7-1 shows the hysteresis, which is the  
difference between the rising-edge threshold and the falling-edge threshold. The hysteresis makes stable  
switching at the comparator output by providing noise immunity at comparator input.  
VTHRESHOLD  
0.592 V  
0.6 V  
Comparator Input Voltage  
Hysteresis = 8 mV  
7-1. The Comparator Threshold and Hysteresis  
The open-drain output of the comparator can be tied to voltage range of 0 to 20 V (independent of power supply)  
through a pullup resistor. When the voltage at the comparator input (CMPIN) exceeds 0.6 V, the output of the  
comparator goes high. When the voltage at the comparator input falls below falling-threshold (0.6 V –  
Hysteresis), the output of the comparator is pulled low by an internal open-drain transistor.  
7.3.8 RESET Function  
The RESET function allows the comparator to work in transparent mode or latching mode. 7-2 shows the two  
modes of the RESET function. When the RESET pin is left open or connected to GND the comparator functions  
in a transparent mode. In transparent mode comparator output (CMPOUT ) responds as a normal comparator.  
When the RESET pin is connected to the supply voltage, the pin operates in latching mode. In the latching mode  
when the comparator is triggered by the comparator input going higher than 0.6 V, the output of the comparator  
stays high irrespective of comparator input after. To release the comparator from the latching mode, the RESET  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
 
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
pin must be pulled to GND or released to open. The RESET pin can take a voltage range from 0 V to the power-  
supply voltage.  
0.6 V  
CMPin  
0 V  
CMPout  
RESET  
7-2. The Comparator RESET Function  
7.3.9 Short Propagation Delay  
The combination of a high-speed current sense amplifier and a fast comparator provides a short total  
propagation delay of 1 µs. The sense voltage (across the shunt resistor) propagates through the output where  
the output is divided down with the resistor divider to the comparator input and then to the comparator output. An  
external resistor divider at VOUT sets overcurrent threshold. The total propagation delay is time taken from when  
the sense voltage (across the shunt resistor) exceeds the overcurrent threshold to when the comparator output  
drives high. The short propagation delay makes the INA310x well suited for overcurrent protection in systems  
sensitive to overcurrent events.  
7.3.10 Comparator Input Bias Current  
The INA310x comparator input has a built-in circuit to protect the input devices in case of large input differential  
voltage. This circuit results in the input bias current (IBCMPIN) curve against input voltage (VCMPIN) as shown in 图  
7-3. The IBCMPIN reduces with VCMPIN from 0 V to 0.4 V, IBCMPIN is under 20 nA at 25°C for VCMPIN range from 0.4  
V to 1.2 V, and IBCMPIN increases with VCMPIN from 1.8 V to 5.5 V. The nature of IBCMPIN does not contribute to  
the inaccuracy of the comparator alert threshold voltage (VTHRESHOLD) significantly because the IBCMPIN goes  
below 20 nA when the input voltage is close to the threshold voltage (0.6 V). Avoid using a high-value resistor for  
the divider network for better VTHRESHOLD accuracy. The sum of the two resistors in the divider network as shown  
in Overcurrent Threshold Connection is recommended to keep lower than 100 kΩ.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA86  
16  
Submit Document Feedback  
Product Folder Links: INA310A INA310B  
 
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
70  
60  
50  
40  
30  
20  
10  
0
-10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCMPIN (V)  
7-3. Comparator IBCMPIN vs VCMPIN  
7.4 Device Functional Modes  
7.4.1 Basic Connections  
7-4 shows a basic circuit connection for INA310x. The INA310x is configurable to allow for unidirectional high-  
side or low-side, current-sensing operation. The input pins (IN+ and IN) must be connected as closely as  
possible with Kelvin connections to the shunt resistor to minimize any resistance in series with the shunt  
resistance. The Layout section provides the layout guidelines and a layout example.  
Power-supply bypass capacitors are required for stability. Applications with noisy or high-impedance power  
supplies may require additional decoupling capacitors to reject power-supply noise. Connect bypass capacitors  
close to the device VS pin. The recommended value of a bypass capacitor is 0.01 μF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
 
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
RSHUNT  
Load Supply  
-4 V to 110 V  
Load  
5-V Supply  
INA310x  
1
2
VS  
RPULL-UP  
5.1 k  
VIN+  
VIN-  
8
7
OUT  
G
R1  
0.6-V  
Reference  
CBYPASS 0.01 µF  
3
CMPIN  
GND  
CMPOUT  
RESET  
6
5
Comparator  
R2  
4
Latch  
Transparent / Reset  
7-4. INA310 Basic Connections  
7.4.1.1 Overcurrent Threshold Connection  
The INA310x comparator in 7-4 is configured to provide overcurrent alert signal when the current through  
RSHUNT exceeds the overcurrent threshold. OUT voltage times R2 divided by R1 and R2 compared to the internal  
reference voltage (0.6 V) sets the overcurrent threshold. 方程1 shows the relation of the overcurrent threshold  
with gain, RSHUNT, R1 and R2.  
0.6 × R + R  
1
2
I
=
(1)  
Sense_Alert_Tresold  
R
× G × R  
2
sunt  
R1 and R2 load OUT, therefore TI recommends to set the sum of these resistors higher than 10k. This helps  
keep the high swing range at the OUT and lower total supply current. The high value of these resistors will  
contribute to inaccuracy in comparator alert threshold voltage (VTHRESHOLD) as mentioned in Comparator Input  
Bias Current. The Design Requirements section shows an example of resistors values to set the overcurrent  
threshold.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA86  
18  
Submit Document Feedback  
Product Folder Links: INA310A INA310B  
 
 
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
7.4.2 High-Side Switch Overcurrent Shutdown  
The INA310x measures differential voltage developed by current flowing through a current-shunt resistor. 7-5  
shows the circuit with INA310x used for turning off the high-side switch in case of overcurrent. When the current  
exceeds overcurrent threshold, the comparator output (CMPOUT) signal goes high. This signal from the  
comparator drives through the Q1 transistor to the gate of the high-side switch, causing the switch to shut down.  
The Q1 transistor helps isolate CMPOUT from the high voltage of the Supply. There are three location options to  
have shunt resistor to measure unidirectional current. Option 1 and Option 2 are high-side current sensing, and  
Option 3 is low-side current sensing. Though both are high-side current sensing, Option 1 accounts for the  
current flowing through the Q1 transistor, and Option 2 does not. The advantages of high-side current sensing  
are that high-side sensing options do not contribute to ground disturbances and that high-side sensing can  
detect load shorts. In high-side current sensing, input common-mode is close to the power supply so a current-  
sensing amplifier with high CMRR and high common-mode is required for high-accuracy measurement. The low-  
side current sensing does not require a high-voltage, current-sensing amplifier as common mode remains very  
close to the ground. The disadvantages of low-side current sensing are that low-side sensing options contribute  
to ground disturbances and that low-side current sensing cannot detect load shorts.  
Shunt  
Shunt  
Option 1  
Option 2  
Supply  
R3  
To VIN+  
To VIN-  
To VIN+  
To VIN-  
R4  
Load  
5 V  
Q1 2N3904  
INA310x  
1
2
VS  
To VIN+  
To VIN-  
Shunt  
Option 3  
VIN+  
VIN-  
8
From  
Shunt Option  
1, 2, or 3  
OUT  
G
7
0.6-V  
Reference  
R1  
3
CMPIN  
GND  
CMPOUT  
RESET  
6
5
Comparator  
R2  
4
RESET  
7-5. High-Side Switch for Overcurrent Shutdown  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
7.4.3 Bidirectional Overcurrent Comparator  
The INA310x can operate only in unidirectional mode, but 7-6 shows that two INA310xs can be configured to  
provide a bidirectional overcurrent alert signal. The polarity of the differential voltage measured across the shunt  
resistor is in reverse for one current sense amplifier. Two INA310x function to cover the opposite current  
directions, and therefore provide bidirectional overcurrent monitor function.  
RSHUNT  
Supply  
5.0 V  
INA310x  
1
VS  
VIN+  
VIN-  
8
7
R5 5.1 k  
OUT  
2
3
G
0.6-V  
Reference  
R3  
CMPIN  
GND  
CMPOUT  
RESET  
6
5
Comparator  
R4  
4
1
2
INA310x  
R6 5.1 k  
VS  
VIN+  
VIN-  
8
7
OUT  
G
0.6-V  
Reference  
R3  
3
CMPIN  
GND  
CMPOUT  
RESET  
6
5
Comparator  
CMPOUT  
R7 200 k  
R4  
4
7-6. Ground Referenced Output  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA86  
20  
Submit Document Feedback  
Product Folder Links: INA310A INA310B  
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The INA310x amplifies the voltage developed across a current-sensing resistor as current flows through the  
resistor to the load. The wide input common-mode voltage range and high common-mode rejection of the  
INA310x make the device usable over a wide range of voltage rails while still maintaining accurate current  
measurement.  
8.1.1 RSENSE and Device Gain Selection  
To maximize the accuracy of a current sense amplifier, TI recommends to choose the largest current sense  
resistor value possible in an application. A larger value sense resistor maximizes the differential input signal for a  
given amount of current flow and reduces the error contribution of the offset voltage. However, there are practical  
limits as to how large the current-sense resistor value can be in a given application because of the physical  
dimensions of the resistor, package construction and maximum power dissipation. 方程式 2 gives the maximum  
value for the current-sense resistor for a given power dissipation budget:  
PDMAX  
RSENSE  
<
2
IMAX  
(2)  
where:  
PDMAX is the maximum allowable power dissipation in RSENSE  
IMAX is the maximum current that will flow through RSENSE  
.
.
An additional limitation on the size of the current sense resistor and device gain is due to the power-supply  
voltage, VS, and device swing-to-rail limitations. To make sure that the current-sense signal is properly passed to  
the output, both positive and negative output swing limitations must be examined. 程式 3 provides the  
maximum values of RSENSE and GAIN to keep the device from exceeding the positive swing limitation.  
IMAX ª RSENSE ª GAIN < VSP  
(3)  
where:  
IMAX is the maximum current that will flow through RSENSE  
GAIN is the gain of the current-sense amplifier.  
.
VSP is the positive output swing as specified in the data sheet.  
To avoid positive output swing limitations when selecting the value of RSENSE, there is always a trade-off  
between the value of the sense resistor and the gain of the device under consideration. If the sense resistor  
selected for the maximum power dissipation is too large, then it is possible to select a lower-gain device to avoid  
positive swing limitations.  
The negative swing limitation places a limit on how small the sense resistor value can be for a given application.  
方程4 provides the limit on the minimum value of the sense resistor.  
IMIN ª RSENSE ª GAIN > VSN  
(4)  
where:  
IMIN is the minimum current that will flow through RSENSE  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
 
 
 
 
 
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
GAIN is the gain of the current-sense amplifier.  
VSN is the negative output swing of the device.  
8-1 shows an example of the different results obtained from using five different gain versions of the INA310x.  
From the table data, the highest gain device allows a smaller current-shunt resistor and decreased power  
dissipation in the element.  
8-1. RSENSE Selection and Power Dissipation(1)  
RESULTS AT VS = 5 V  
PARAMETER  
EQUATION  
A1, B1  
A2, B2  
A3, B3  
A4, B4  
A5, B5  
DEVICES  
DEVICES  
DEVICES  
DEVICES  
DEVICES  
G
Gain  
20 V/V  
250 mV  
25 mΩ  
2.5 W  
50 V/V  
100 mV  
10 mΩ  
1 W  
100 V/V  
50 mV  
5 mΩ  
0.5 W  
200 V/V  
25 mV  
500 V/V  
10mV  
1 mΩ  
0.1 W  
VDIFF  
RSENSE  
PSENSE  
Ideal differential input voltage  
VDIFF = VOUT / G  
Current sense resistor value  
RSENSE = VDIFF / IMAX  
2.5 mΩ  
0.25 W  
Current-sense resistor power dissipation  
RSENSE × IMAX2  
(1) Design example with 10-A full-scale current with maximum output voltage set to 5 V.  
8.2 Typical Application  
The INA310x is a unidirectional, current-sense amplifier capable of measuring currents through a resistive shunt  
with shunt common-mode voltages from 4 V to +110 V.  
8.2.1 Current Sensing in a Solenoid Application  
24 V  
Solenoid  
RSENSE  
ISENSE  
MCU  
ADC  
GND  
5 V  
INA310  
VS  
IN+  
IN-  
OUT  
G
VS  
0.6-V  
Reference  
R1  
R2  
RPull-up  
CMPIN  
CMPOUT  
RESET  
Comparator  
GND  
8-1. Current Sensing in a Solenoid Application  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
 
 
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
8.2.1.1 Design Requirements  
In this example application, the common-mode voltage ranges from 0 V to 24 V. The maximum sense current is  
1.5 A, an alert must be indicated if the current exceeds 1.9 A, and a 5 V supply is available for the INA310x.  
Following the design guidelines from RSENSE and Device Gain Selection, a RSENSE of 50 mΩ and a gain of 50  
V/V are selected to provide good output dynamic range. 8-2 lists the design setup for this application.  
8-2. Design Parameters  
DESIGN PARAMETERS  
Power supply voltage  
Common mode voltage range  
Maximum sense current  
RSENSE resistor  
EXAMPLE VALUE  
5 V  
0 V to 24 V  
1.5 A  
50 mΩ  
Gain option  
50 V/V  
Over-current Threshold  
R1  
1.9 A  
69.15 kΩ  
10 kΩ  
R2  
8.2.1.2 Detailed Design Procedure  
The INA310x is designed to measure current in a typical solenoid application. The INA310x measures current  
across the 50-mΩ shunt that is placed at the output of the half-bridge. The INA310x measures the differential  
voltage across the shunt resistor, and the signal is internally amplified with a gain of 50 V/V. The output of the  
INA310x is connected to the analog-to-digital converter (ADC) of an MCU to digitize the current measurements.  
R2 is fixed as 10 kΩ to avoid loading of OUT as recommended in Overcurrent Threshold Connection. R1 is  
calculated as 69.15 kΩusing 方程1.  
0.6 V × R + 10 kΩ  
1
1.9 A =  
10 kΩ × 50 × 50 mΩ  
R1 (69.15 kΩ) and R2 (10 kΩ) divides down the output which is an input to the comparator. This sets the  
overcurrent alert threshold of 1.9 A.  
Solenoid loads are highly inductive and are often prone to failure. Solenoids are often used for position control,  
precise fluid control, and fluid regulation. Measuring real-time current on the solenoid continuously can indicate  
premature failure of the solenoid, which can lead to a faulty control loop in the system. Measuring high-side  
current also indicates if there are any ground faults on the solenoid or the FETs that can be damaged in an  
application. The INA310x, with high bandwidth and slew rate, can be used to detect fast overcurrent conditions  
to prevent the solenoid damage from short-to-ground faults.  
8.2.1.2.1 Overload Recovery With Negative VSENSE  
The INA310x is a unidirectional current sense amplifier that is meant to operate with a positive differential input  
voltage (VSENSE). If negative VSENSE is applied, the device is placed in an overload or saturated condition and  
requires time to recover after VSENSE returns positive. The required overload recovery time increases with more  
negative VSENSE  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
 
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
8.2.1.3 Application Curve  
8-2 shows the output response of a solenoid.  
6
4
2
0
VCM  
VOUT  
40  
30  
20  
10  
0
Time (50 ms/div)  
8-2. Solenoid Control Current Response  
8.2.2 Low-Side Switch Overcurrent Shutdown  
RSHUNT  
Supply  
To VIN+  
To VIN-  
Load  
5.0 V  
To VIN+  
To VIN-  
Shunt  
Option 2  
INA310x  
R4 2.2 k  
1
2
VS  
VIN+  
VIN-  
8
From  
Shunt Option  
1, 2, or 3  
OUT  
R3 22 k  
G
7
0.6-V  
Reference  
To VIN+  
To VIN-  
R1  
Shunt  
Option 3  
3
CMPIN  
GND  
CMPOUT  
RESET  
6
5
Comparator  
Q1 2N3904  
R2  
4
8-3. Low-Side Switch Overcurrent Shutdown  
8.2.2.1 Design Requirements  
The INA310x measures current through a resistive shunt with current flowing in one direction that enables  
detection of an overcurrent event only when the differential input voltage exceeds the threshold limit. When the  
current reaches the set limit of the divider of R1 and R2, the output of comparator (CMPOUT) transitions high,  
which turns on Q1, pulls the gate of the pass-FET low, and turns off the flow of the current. In this example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA86  
24  
Submit Document Feedback  
Product Folder Links: INA310A INA310B  
 
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
application, the common-mode voltage is set at 5 V. The maximum sense current is 1 A, an alert must be  
indicated if the current exceeds 1.2 A, and a 5 V supply is available for the INA310x. Following the design  
guidelines from RSENSE and Device Gain Selection, a RSHUNT of 100 mΩ and a gain of 20 V/V are selected to  
provide a good output dynamic range. 8-3 lists the design setup for this application.  
8-3. Design Parameters  
DESIGN PARAMETERS  
Power supply voltage  
Common mode voltage range  
Maximum sense current  
RSENSE resistor  
EXAMPLE VALUE  
5 V  
5 V  
1 A  
100 mΩ  
20 V/V  
1.2 A  
Gain option  
Over-current Threshold  
R1  
10.2 kΩ  
3.4 kΩ  
R2  
8.2.2.2 Detailed Design Procedure  
8-3 shows the basic connections to the INA310x. The inputs terminals (IN+ and IN) must be connected to  
the current sense resistor as close as possible to minimize any resistance in series with the shunt resistor. The  
INA310x measures current across the 100-mΩ shunt that is placed in series with load. The INA310x measures  
the differential voltage across the shunt resistor, and the signal is internally amplified with a gain of 20 V/V.  
R1 is fixed as 10.2 kΩ to avoid loading of OUT as recommended in Overcurrent Threshold Connection. R2 is  
calculated as 3.4 kΩusing 方程式 1. R1 (10.2 kΩ) and R2 (3.4 kΩ) divides down the output which is an input to  
the comparator. This sets the overcurrent alert threshold of 1.2 A.  
8.2.2.3 Application Curve  
8-4 shows the output response the current sense amplifier and the comparator in event of overcurrent.  
6
5.4  
4.8  
4.2  
3.6  
3
1
Comparator Input Voltage  
VOUT  
Comparator Output  
0.8  
0.6  
0.4  
0.2  
0
2.4  
1.8  
1.2  
0.6  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.6  
-1.2  
-8E-5  
-7E-5  
-6E-5  
-5E-5  
-4E-5  
-3E-5  
-2E-5  
-1E-5  
0
1E-5  
2E-5  
Time (s)  
8-4. Low-Side Switch Overcurrent Shutdown Response  
8.3 Power Supply Recommendations  
The INA310x makes accurate measurements beyond the connected power-supply voltage (VS) because the  
inputs (IN+ and IN) can operate anywhere between 4 V and 110 V independent of VS. For example, with the  
VS power supply equal to 5 V, the common-mode voltage of the measured shunt can be as high as 110 V.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
 
 
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
8.3.1 Power Supply Decoupling  
Place the power-supply bypass capacitor as close to the power-supply and ground pins as possible. TI  
recommends a bypass capacitor value of 0.1 μF. Additional decoupling capacitance can be added to  
compensate for noisy or high-impedance power supplies.  
8.4 Layout  
8.4.1 Layout Guidelines  
Attention to good layout practices is always recommended.  
Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique  
makes sure that only the current-sensing resistor impedance is detected between the input pins. Poor routing  
of the current-sensing resistor commonly results in additional resistance present between the input pins.  
Given the very low ohmic value of the current resistor, any additional high-current carrying impedance can  
cause significant measurement errors.  
Place the power-supply bypass capacitor as close to the device power-supply and ground pins as possible.  
The recommended value of this bypass capacitor is 0.1 µF. Additional decoupling capacitance can be added  
to compensate for noisy or high-impedance power supplies.  
8.4.2 Layout Example  
Via to Power or Ground Plane  
Via to Internal Layer  
Supply Voltage  
VS  
IN+  
IN-  
RSHUNT  
OUT  
CMPIN  
GND  
R1  
R2  
CBYPASS  
CMPOUT  
RESET  
RPULL-UP  
RESET  
Output Signal  
8-5. INA310xx Recommended Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA86  
26  
Submit Document Feedback  
Product Folder Links: INA310A INA310B  
 
INA310A, INA310B  
ZHCSNY8 MARCH 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
9.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: INA310A INA310B  
English Data Sheet: SBOSA86  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA310A1IDGKR  
INA310A2IDGKR  
INA310A3IDGKR  
INA310A4IDGKR  
INA310A5IDGKR  
INA310B1IDGKR  
INA310B2IDGKR  
INA310B3IDGKR  
INA310B4IDGKR  
INA310B5IDGKR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
8
8
8
8
8
8
8
8
8
8
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2OZB  
2P1B  
2P2B  
2P3B  
2P4B  
2P5B  
2P6B  
2P7B  
2P8B  
2P9B  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2023  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

INA310B

具有比较器的 -4V 至 110V、1.3MHz 高精度电流检测放大器
TI

INA310B1IDGKR

具有比较器的 -4V 至 110V、1.3MHz 高精度电流检测放大器 | DGK | 8 | -40 to 125
TI

INA310B2IDGKR

具有比较器的 -4V 至 110V、1.3MHz 高精度电流检测放大器 | DGK | 8 | -40 to 125
TI

INA310B3IDGKR

具有比较器的 -4V 至 110V、1.3MHz 高精度电流检测放大器 | DGK | 8 | -40 to 125
TI

INA310B4IDGKR

具有比较器的 -4V 至 110V、1.3MHz 高精度电流检测放大器 | DGK | 8 | -40 to 125
TI

INA310B5IDGKR

具有比较器的 -4V 至 110V、1.3MHz 高精度电流检测放大器 | DGK | 8 | -40 to 125
TI

INA317

微功耗 (50µA)、零漂移(75µV 失调电压、0.3µV/°C)、精密 RRO 仪表放大器
TI

INA317IDGKR

微功耗 (50µA)、零漂移(75µV 失调电压、0.3µV/°C)、精密 RRO 仪表放大器 | DGK | 8 | -40 to 125
TI

INA317IDGKT

微功耗 (50µA)、零漂移(75µV 失调电压、0.3µV/°C)、精密 RRO 仪表放大器 | DGK | 8 | -40 to 125
TI

INA321

microPower, Single-Supply, CMOS Instrumentation Amplifier
TI

INA321

microPower, Single-Supply, CMOS Instrumentation Amplifier
BB

INA321E/250

microPower, Single-Supply, CMOS Instrumentation Amplifier
TI