INA317IDGKT [TI]

微功耗 (50µA)、零漂移(75µV 失调电压、0.3µV/°C)、精密 RRO 仪表放大器 | DGK | 8 | -40 to 125;
INA317IDGKT
型号: INA317IDGKT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

微功耗 (50µA)、零漂移(75µV 失调电压、0.3µV/°C)、精密 RRO 仪表放大器 | DGK | 8 | -40 to 125

放大器 仪表 光电二极管 仪表放大器
文件: 总32页 (文件大小:956K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA317  
ZHCSH47 NOVEMBER 2017  
INA317 微功耗 (50µA)、零漂移、轨至轨输出仪表放大器  
1 特性  
3 说明  
1
低失调电压:75µV(最大值),G 100  
低温漂:0.3µV/°CG 100  
INA317 是一款具备出色精度的低功耗精密仪表放大  
器。INA317 采用 3 种多功能运算放大器设计,尺寸小  
巧,功耗较低,适用于各种便携式 应用。  
低噪声:50nV/HzG 100  
高共模抑制比 (CMRR)100dB(最小值),G ≥  
10  
单个外部电阻器可根据行业标准增益等式 G = 1 +  
(100 k/ RG) 的定义,设置 1 1000 范围内的任意  
增益。  
低输入偏置电流:200pA(最大值)  
电源范围:1.8V 5.5V  
该仪表放大器提供低失调电压(75µVG 100)、出  
色的失调电压漂移  
输入电压:(V–) 0.1V (V+) –0.1V  
电压范围:(V–) 0.05V (V+) –0.05V  
低静态电流:50µA  
0.3 µV/°CG 100)和高共模抑制(G 10 时为  
100dB)。INA317 采用低至 1.8V (±0.9V) 电压和  
50µA 静态电流的电源供电,因而该器件适用于电池供  
电系统。INA317 器件采用自动校准技术确保广泛工业  
温度范围内的精度,可提供可扩展到直流的低噪声密度  
(50nV/Hz)。  
工作温度范围:-40°C +125°C  
已过滤射频干扰 (RFI) 的输入  
8 引脚 VSSOP 封装  
2 应用  
桥式放大器  
INA317 采用 8 引脚 VSSOP 表面贴装式封装,额定温  
度范围为 TA = –40°C +125°C。  
心电图 (ECG) 放大器  
压力传感器  
器件信息(1)  
医疗仪表  
器件型号  
INA317  
封装  
VSSOP (8)  
封装尺寸(标称值)  
便携式仪表  
3.00mm × 3.00mm  
衡器  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
热电偶放大器  
电阻式温度检测器 (RTD) 传感器放大器  
数据采集  
简化原理图  
V+  
7
2
VIN-  
RFI Filtered Inputs  
150 kΩ  
150 kΩ  
A1  
RFI Filtered Inputs  
1
50 kΩ  
6
5
VOUT  
A3  
RG  
50 kΩ  
8
3
RFI Filtered Inputs  
RFI Filtered Inputs  
150 kΩ  
150 kΩ  
REF  
A2  
VIN+  
INA317  
4
100 kΩ  
V-  
G = 1 +  
RG  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS896  
 
 
 
INA317  
ZHCSH47 NOVEMBER 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application ................................................. 14  
Power Supply Recommendations...................... 19  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information ................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 13  
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................. 20  
10.2 Layout Example .................................................... 21  
11 器件和文档支持 ..................................................... 22  
11.1 器件支持................................................................ 22  
11.2 文档支持................................................................ 23  
11.3 ....................................................................... 23  
11.4 静电放电警告......................................................... 24  
11.5 Glossary................................................................ 24  
12 机械、封装和可订购信息....................................... 25  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2017 11 月  
*
初始发行版  
2
Copyright © 2017, Texas Instruments Incorporated  
 
INA317  
www.ti.com.cn  
ZHCSH47 NOVEMBER 2017  
5 Pin Configuration and Functions  
DGK Package  
8-Pin VSSOP  
Top View  
RG  
VIN-  
VIN+  
V-  
RG  
1
2
3
4
8
7
6
5
V+  
VOUT  
REF  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
REF  
RG  
NO.  
5
I
Reference input. This pin must be driven by low impedance or connected to ground.  
1, 8  
7
I
Gain setting pins. For gains greater than 1, place a gain resistor between pins 1 and 8.  
V+  
Positive supply  
Negative supply  
Positive input  
Negative input  
Output  
V–  
4
VIN+  
VIN–  
VOUT  
3
2
I
6
O
Copyright © 2017, Texas Instruments Incorporated  
3
INA317  
ZHCSH47 NOVEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
7
MAX  
UNIT  
Supply voltage  
V
Analog input voltage(2)  
Output short-circuit(3)  
Operating temperature, TA  
Junction temperature, TJ  
Storage temperature, Tstg  
(V–) – 0.3  
(V+) + 0.3  
V
Continuous  
–40  
150  
150  
150  
°C  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to ground.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
±200  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Machine model (MM)  
V(ESD) Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
5.5  
UNIT  
VS  
Supply voltage  
1.8  
V
Specified temperature  
–40  
125  
°C  
6.4 Thermal Information  
INA317  
DGK (VSSOP)  
8 PINS  
169.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
62.7  
90.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.6  
ψJB  
88.7  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
INA317  
www.ti.com.cn  
ZHCSH47 NOVEMBER 2017  
6.5 Electrical Characteristics  
for VS = 1.8 V to 5.5 V at TA = 25°C, RL = 10 k, VREF = VS / 2, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT(1)  
VOSI  
Offset voltage, RTI(2)  
±10 ±25 / G  
±75 ±75 / G  
±0.3 ±0.5 / G  
±5 ±15 / G  
μV  
vs temperature, TA = –40°C to 125°C  
vs power supply,1.8 V VS 5.5 V  
Long-term stability  
μV/°C  
μV/V  
PSR  
±1 ±5 / G  
(3)  
See  
Turnon time to specified VOSI  
Impedance  
TA = –40°C to 125°C  
See Typical Characteristics  
ZIN  
Differential  
100 || 3  
100 || 3  
GΩ || pF  
GΩ || pF  
V
ZIN  
Common-mode  
VCM  
Common-mode voltage range  
VO = 0 V  
(V–) + 0.1  
(V+) – 0.1  
DC to 60 Hz  
VCM = (V–) + 0.1 V  
to (V+) – 0.1 V, G = 1  
80  
90  
110  
115  
115  
dB  
dB  
dB  
dB  
VCM = (V–) + 0.1 V  
to (V+) – 0.1 V, G = 10  
100  
100  
100  
CMR  
Common-mode rejection  
VCM = (V–) + 0.1 V  
to (V+) – 0.1 V, G = 100,  
VCM = (V–) + 0.1 V  
to (V+) – 0.1 V, G = 1000  
INPUT BIAS CURRENT  
Input bias current  
±70  
±50  
±200  
±200  
pA  
pA/°C  
pA  
IB  
vs temperature  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
See 26  
See 28  
Input offset current  
IOS  
vs temperature  
pA/°C  
INPUT VOLTAGE NOISE  
G = 100, RS = 0 Ω, f = 10 Hz  
G = 100, RS = 0 Ω, f = 100 Hz  
G = 100, RS = 0 Ω, f = 1 kHz  
G = 100, RS = 0 Ω, f = 0.1 Hz to 10 Hz  
f = 10 Hz  
50  
50  
50  
1
nV/Hz  
nV/Hz  
nV/Hz  
μVPP  
eNI  
Input voltage noise  
Input current noise  
100  
2
fA/Hz  
pAPP  
iN  
f = 0.1 Hz to 10 Hz  
GAIN  
G
Gain equation  
Range of gain  
1 + (100 kΩ / RG)  
V/V  
V/V  
1
1000  
VS = 5.5 V, (V–) + 100 mV  
VO (V+) – 100 mV  
G = 1  
±0.01%  
±0.05%  
±0.07%  
±0.25%  
±1  
±0.1%  
±0.25%  
±0.25%  
±0.5%  
±5  
Gain error  
G = 10  
G = 100  
G = 1000  
Gain vs temperature, G = 1  
Gain vs temperature, G > 1(4)  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
ppm/°C  
ppm/°C  
±15  
±50  
VS = 5.5 V, (V–) + 100 mV  
VO (V+) – 100 mV  
Gain nonlinearity  
Gain nonlinearity, G = 1 to 1000  
RL = 10 kΩ  
10  
ppm  
OUTPUT  
Output voltage swing from rail  
Capacitive load drive  
VS = 5.5 V  
RL = 10 kΩ  
See 29  
50  
mV  
pF  
500  
(1) Total VOS, referred-to-input = (VOSI) + (VOSO / G)  
(2) RTI = Referred-to-input  
(3) 300-hour life test at 150°C demonstrated randomly distributed variation of approximately 1 μV  
(4) Does not include effects of external resistor RG  
Copyright © 2017, Texas Instruments Incorporated  
5
INA317  
ZHCSH47 NOVEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
for VS = 1.8 V to 5.5 V at TA = 25°C, RL = 10 k, VREF = VS / 2, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISC  
Short-circuit current  
Continuous to common  
–40, 5  
mA  
FREQUENCY RESPONSE  
G = 1  
150  
35  
kHz  
kHz  
kHz  
Hz  
G = 10  
Bandwidth, –3 dB  
G = 100  
3.5  
350  
0.16  
0.05  
50  
G = 1000  
VS = 5 V, VO = 4-V step, G = 1  
VS = 5 V, VO = 4-V step, G = 100  
VSTEP = 4 V, G = 1  
VSTEP = 4 V, G = 100  
VSTEP = 4 V, G = 1  
VSTEP = 4 V, G = 100  
50% overdrive  
V/μs  
V/μs  
μs  
SR  
tS  
Slew rate  
Settling time to 0.01%  
400  
60  
μs  
μs  
tS  
Settling time to 0.001%  
Overload recovery  
500  
75  
μs  
μs  
REFERENCE INPUT  
RIN  
300  
kΩ  
Voltage range  
POWER SUPPLY  
V–  
V+  
V
Single voltage range  
Dual voltage range  
VIN = VS / 2  
1.8  
5.5  
±2.75  
75  
V
V
Voltage range  
±0.9  
50  
μA  
μA  
IQ  
Quiescent current vs temperature  
TA = –40°C to 125°C  
80  
TEMPERATURE RANGE  
Specified temperature range  
Operating temperature range  
–40  
–40  
125  
150  
°C  
°C  
6
版权 © 2017, Texas Instruments Incorporated  
INA317  
www.ti.com.cn  
ZHCSH47 NOVEMBER 2017  
6.6 Typical Characteristics  
at TA = 25°C, VS = 5 V, RL = 10 kΩ, VREF = midsupply, and G = 1, (unless otherwise noted)  
Input Offset Voltage (µV)  
Input Voltage Offset Drift (µV/°C)  
VS = 5.5 V  
VS = 5.5 V  
TA = –40°C to +125°C  
1. Input Offset Voltage  
2. Input Voltage Offset Drift  
Output Offset Voltage (µV)  
Output Voltage Offset Drift (µV/°C)  
VS = 5.5 V  
VS = 5.5 V  
TA = –40°C to +125°C  
3. Output Offset Voltage  
4. Output Voltage Offset Drift  
0
-5  
VS = 1.8 V  
VS = 5 V  
-10  
-15  
-20  
-25  
Time (1 s/div)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VCM (V)  
Gain = 1  
6. 0.1-Hz to 10-Hz Noise  
5. Offset Voltage vs Common-Mode Voltage  
版权 © 2017, Texas Instruments Incorporated  
7
 
INA317  
ZHCSH47 NOVEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, RL = 10 kΩ, VREF = midsupply, and G = 1, (unless otherwise noted)  
1000  
1000  
100  
Output Noise  
100  
Current Noise  
Input Noise  
10  
1
10  
2
(Output Noise)  
G
Total Input-Referred Noise =  
(Input Noise)2  
+
1
0.1  
1
10  
100  
1k  
10k  
Time (1 s/div)  
Frequency (Hz)  
Gain = 100  
8. Spectral Noise Density  
7. 0.1-Hz to 10-Hz Noise  
0.012  
0.008  
0.004  
0
G = 1000  
G = 100  
G = 10  
G = 1  
-0.004  
-0.008  
-0.012  
Time (25 µs/div)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Gain = 1  
VOUT (V)  
VS = ±2.75 V  
10. Large Signal Response  
9. Nonlinearity Error  
Time (100 µs/div)  
Time (10 µs/div)  
Gain = 100  
Gain = 1  
11. Large-Signal Step Response  
12. Small-Signal Step Response  
8
版权 © 2017, Texas Instruments Incorporated  
 
INA317  
www.ti.com.cn  
ZHCSH47 NOVEMBER 2017  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, RL = 10 kΩ, VREF = midsupply, and G = 1, (unless otherwise noted)  
10000  
1000  
0.001%  
100  
0.01%  
10  
0.1%  
1
10  
100  
1000  
Time (100 µs/div)  
Gain (V/V)  
Gain = 100  
14. Settling Time vs Gain  
13. Small-Signal Step Response  
80  
60  
G = 1000  
Supply  
G = 100  
G = 10  
40  
VOUT  
20  
G = 1  
0
-20  
-40  
-60  
Time (50 µs/div)  
10  
100  
1k  
10k  
100k  
1M  
Gain = 1  
Frequency (Hz)  
15. Start-Up Settling Time  
16. Gain vs Frequency  
10  
8
VS  
VS  
=
=
2.75 V  
0.ꢀ V  
G = 1  
6
4
G = 10  
2
0
-2  
-4  
-6  
-8  
-10  
G = 100,  
G = 1000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
CMRR (µV/V)  
VS = 5.5 V  
17. Common-Mode Rejection Ratio  
18. Common-Mode Rejection Ratio vs Temperature  
版权 © 2017, Texas Instruments Incorporated  
9
INA317  
ZHCSH47 NOVEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, RL = 10 kΩ, VREF = midsupply, and G = 1, (unless otherwise noted)  
160  
140  
120  
100  
80  
2.5  
2.0  
G = 1000  
G = 100  
1.0  
0
60  
G = 1  
-1.0  
40  
G = 10  
20  
-2.0  
2.5  
0
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
-2.5 -2.0  
-1.0  
0
1.0  
2.0 2.5  
Output Voltage (V)  
VREF = 0  
VS = ±2.5 V  
All gains  
19. Common-Mode Rejection Ratio vs Frequency  
20. Typical Common-Mode Range vs Output Voltage  
5
0.9  
0.7  
0.5  
4
3
2
1
0
0.3  
0.1  
-0.1  
-0.3  
-0.5  
-0.7  
-0.9  
0
1
2
3
4
5
-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3  
Output Voltage (V)  
0.5  
0.7  
0.9  
Output Voltage (V)  
VS = 5 V  
VREF = 0  
All gains  
VS = ±0.9 V  
VREF = 0  
All gains  
21. Typical Common-Mode Range vs Output Voltage  
22. Typical Common-Mode Range vs Output Voltage  
1.8  
160  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
140  
G = 1000  
120  
100  
G = 100  
80  
60  
G = 10  
40  
20  
G = 1  
0
0
0.2  
0.4  
0.5  
0.8  
1.0 1.2  
1.4  
1.6  
1.8  
1
10  
1k  
10k  
100k  
1M  
100  
Output Voltage (V)  
Frequency (Hz)  
VS = 1.8 V  
VREF = 0  
23. Typical Common-Mode Range vs Output Voltage  
24. Positive Power-Supply Rejection Ratio  
10  
版权 © 2017, Texas Instruments Incorporated  
 
 
INA317  
www.ti.com.cn  
ZHCSH47 NOVEMBER 2017  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, RL = 10 kΩ, VREF = midsupply, and G = 1, (unless otherwise noted)  
160  
140  
120  
100  
80  
1200  
1000  
800  
600  
400  
200  
0
+IB  
-IB  
G = 100  
G = 1000  
G = 10  
60  
V
=
0ꢀ ꢁ V  
V
= 2ꢀ75 V  
S
S
40  
G = 1  
20  
0
-200  
-20  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Frequency (Hz)  
Temperature (°C)  
VS = 5 V  
25. Negative Power-Supply Rejection Ratio  
26. Input Bias Current vs Temperature  
250  
200  
150  
100  
50  
200  
180  
160  
140  
120  
100  
80  
V
V
=
=
2ꢀ75 V  
0ꢀ. V  
S
60  
0
S
40  
-50  
-100  
20  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Temperature (°C)  
VCM (V)  
VS = 5 V  
VS = 1.8 V  
28. Input Offset Current vs Temperature  
27. Input Bias Current vs Common-Mode Voltage  
80  
70  
60  
50  
40  
30  
20  
10  
0
(V+)  
VS  
VS  
=
=
2.75 V  
0.ꢀ V  
(V+) - 0.25  
(V+) - 0.50  
(V+) - 0.75  
(V+) - 1.00  
(V+) - 1.25  
(V+) - 1.50  
(V+) - 1.75  
VS = 5 V  
(V-) + 1.75  
(V-) + 1.50  
(V-) + 1.25  
(V-) + 1.00  
(V-) + 0.75  
(V-) + 0.50  
(V-) + 0.25  
(V-)  
VS = 1.8 V  
125°C  
25°C  
-40°C  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
IOUT (mA)  
Temperature (°C)  
30. Quiescent Current vs Temperature  
29. Output Voltage Swing vs Output Current  
版权 © 2017, Texas Instruments Incorporated  
11  
 
INA317  
ZHCSH47 NOVEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, RL = 10 kΩ, VREF = midsupply, and G = 1, (unless otherwise noted)  
80  
70  
VS = 5 V  
60  
50  
40  
VS = 1.8 V  
30  
20  
10  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
VCM (V)  
31. Quiescent Current vs Common-Mode Voltage  
12  
版权 © 2017, Texas Instruments Incorporated  
INA317  
www.ti.com.cn  
ZHCSH47 NOVEMBER 2017  
7 Detailed Description  
7.1 Overview  
The INA317 is a monolithic instrumentation amplifier (INA) based on the precision zero-drift OPA333 (operational  
amplifier) core. The INA317 integrates laser-trimmed resistors to ensure excellent common-mode rejection and  
low gain error. The combination of the zero-drift amplifier core and the precision resistors allows this device to  
achieve outstanding DC precision and is designed for 3.3-V and 5-V industrial applications.  
7.2 Functional Block Diagram  
V+  
7
2
VIN-  
RFI Filtered Inputs  
150 kΩ  
150 kΩ  
A1  
RFI Filtered Inputs  
1
50 kΩ  
6
5
VOUT  
A3  
RG  
50 kΩ  
8
3
RFI Filtered Inputs  
RFI Filtered Inputs  
150 kΩ  
150 kΩ  
REF  
A2  
VIN+  
INA317  
4
100 kΩ  
V-  
G = 1 +  
RG  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
The INA317 is a low-power, zero-drift instrumentation amplifier that offers accuracy. The versatile three-  
operational-amplifier design and small size makes the amplifier designed for a wide range of applications. Zero-  
drift chopper circuitry provides DC specifications. A single external resistor sets any gain from 1 to 10,000. The  
INA317 is laser trimmed for high common-mode rejection (100 dB at G 100). Typically, the INA317 operates  
with power supplies as low as 1.8 V and quiescent current of 50 µA.  
7.4 Device Functional Modes  
7.4.1 Internal Offset Correction  
INA317 internal operational amplifiers use an autocalibration technique with a time-continuous 350-kHz  
operational amplifier in the signal path. The amplifier is zero-corrected every 8 µs using a proprietary technique.  
Upon power up, the amplifier requires approximately 100 µs to achieve specified VOS accuracy. This design has  
no aliasing or flicker noise.  
7.4.2 Input Common-Mode Range  
The linear input voltage range of the input circuitry of the INA317 is from approximately 0.1 V below the positive  
supply voltage to 0.1 V above the negative supply. However, as a differential input voltage causes the output  
voltage to increase, the output voltage swing of amplifiers A1 and A2 limits the linear input range. As a result, the  
linear common-mode input range is related to the output voltage of the complete amplifier. This behavior  
depends on supply voltage; see 20.  
Input overload conditions can produce an output voltage that appears normal. For example, if an input overload  
condition drives the input amplifiers to the respective positive output swing limit, the difference voltage measured  
by the output amplifier is approximately zero. The output of the INA317 is approximately 0 V even though the  
inputs are overloaded.  
版权 © 2017, Texas Instruments Incorporated  
13  
INA317  
ZHCSH47 NOVEMBER 2017  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The INA317 measures small differential voltage with high common-mode voltage that develops between the  
noninverting and inverting input. The high input impedance makes the INA317 designed for a wide range of  
applications. The ability to set the reference pin to adjust the functionality of the output signal offers additional  
flexibility that is practical for multiple configurations.  
8.2 Typical Application  
32 shows the basic connections required for operation of the INA317 device. Good layout practice mandates  
the use of bypass capacitors placed close to the device pins as shown.  
The output of the INA317 device is referred to the output reference (REF) pin, which is normally grounded. This  
connection must be low-impedance to ensure good common-mode rejection. Although 15 or less of stray  
resistance is tolerated while maintaining specified CMRR, small stray resistances of tens of ohms in series with  
the REF pin causes noticeable degradation in CMRR.  
V+  
0.1 mF  
7
2
RFI Filter  
RFI Filter  
VIN-  
150 kΩ  
150 kΩ  
A1  
VO = G ´ (VIN+ - VIN-  
)
1
100 kΩ  
G = 1 +  
RG  
50 kΩ  
6
5
RG  
A3  
50 kΩ  
+
8
3
VO  
Load  
-
RFI Filter  
RFI Filter  
150 kΩ  
150 kΩ  
A2  
VIN+  
Ref  
INA317  
4
0.1 mF  
V-  
Also drawn in simplified form:  
VIN-  
RG  
VO  
INA317  
Ref  
VIN+  
Copyright © 2017, Texas Instruments Incorporated  
32. Basic Connections  
14  
版权 © 2017, Texas Instruments Incorporated  
 
INA317  
www.ti.com.cn  
ZHCSH47 NOVEMBER 2017  
Typical Application (接下页)  
8.2.1 Design Requirements  
The device is configured to monitor the input differential voltage when the gain of the external resistor RG sets  
the input signal. The output signal references to the REF pin. The most common application is where the output  
is referenced to ground when no input signal is present by connecting the REF pin to ground. When the input  
signal increases, the output voltage at the OUT pin increases.  
8.2.2 Detailed Design Procedure  
8.2.2.1 Setting the Gain  
A single external resistor (RG) that is connected between pins 1 and 8 sets the gain of the INA317. The value of  
RG is selected according to 公式 1:  
G = 1 + (100 kΩ / RG)  
(1)  
1 lists several commonly-used gains and resistor values. The 100 kΩ in 公式 1 is a result of the sum of the  
two internal feedback resistors (A1 and A2.) These on-chip resistors are laser trimmed to accurate absolute  
values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift  
specifications of the INA317 device.  
The stability and temperature drift of the external gain setting resistor (RG) also affects gain. The contribution of  
RG to gain accuracy and drift is inferred from the gain in公式 1. Low resistor values required for high gain make  
wiring resistance important. Sockets add to the wiring resistance and contribute additional gain error (possibly an  
unstable gain error) in gains of approximately 100 or greater. To ensure stability, avoid parasitic capacitance of  
more than a few picofarads at the RG connections. Careful matching of any parasitics on RG pins maintains  
optimal CMRR over frequency.  
1. Commonly-Used Gains and Resistor Values  
DESIRED GAIN  
RG ()  
NC(1)  
100 k  
25 k  
NEAREST 1% RG (Ω)  
1
2
NC  
100 k  
24.9 k  
11 k  
5.23 k  
2.05  
1 k  
5
10  
11.1 k  
5.26 k  
2.04 k  
1.01 k  
502.5  
200.4  
100.1  
20  
50  
100  
200  
500  
1000  
499  
200  
100  
(1) NC denotes no connection. When using the SPICE model, the simulation does not converge unless a  
resistor is connected to the RG pins; use a large resistor value.  
8.2.2.2 Internal Offset Correction  
The INA317 device internal operational amplifiers use an autocalibration technique with a time-continuous 350-  
kHz operational amplifier in the signal path. The amplifier is zero-corrected every 8 µs using a proprietary  
technique. At power-up, the amplifier requires approximately 100 µs to achieve specified VOS accuracy. This  
design has no aliasing or flicker noise.  
8.2.2.3 Offset Trimming  
Most applications require no external offset adjustment. However, apply a voltage to the REF pin to make  
adjustments if necessary. 33 shows an optional circuit for trimming the output offset voltage. The voltage  
applied to REF pin is added at the output. The operational amplifier buffer provides low impedance at the REF  
pin to preserve good common-mode rejection.  
版权 © 2017, Texas Instruments Incorporated  
15  
 
 
INA317  
ZHCSH47 NOVEMBER 2017  
www.ti.com.cn  
VIN-  
V+  
RG  
VO  
INA317  
Ref  
100 mA  
½ REF200  
VIN+  
100  
100 ꢀ  
OPA333  
±10 mV  
Adjustment Range  
10 kꢀ  
100 mA  
½ REF200  
V-  
Copyright © 2017, Texas Instruments Incorporated  
33. Optional Trimming of Output Offset Voltage  
8.2.2.4 Noise Performance  
The autocalibration technique used by the INA317 device results in reduced low-frequency noise, typically only  
50 nV/Hz (G = 100). The spectral noise density is shown in 8. Low-frequency noise of the INA317 device is  
approximately 1 µVPP measured from 0.1 Hz to 10 Hz (G = 100).  
8.2.2.5 Input Bias Current Return Path  
The input impedance of the INA317 device is extremely high(approximately 100 GΩ.) However, a path must be  
provided for the input bias current of the inputs. This input bias current is typically ±70 pA. High-input impedance  
means that this input bias current changes very little with varying input voltage.  
For proper operation, input circuitry must provide a path for the input bias current. 34 shows various  
provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds  
the common-mode range of the INA317 device, and the input amplifiers saturate. If the differential source  
resistance is low, the bias current return path connects to one input (see the thermocouple example in 34).  
With higher source impedance, using two equal resistors provides a balanced input with possible advantages of  
lower input offset voltage as a result of bias current and better high-frequency common-mode rejection.  
16  
版权 © 2017, Texas Instruments Incorporated  
INA317  
www.ti.com.cn  
ZHCSH47 NOVEMBER 2017  
Microphone,  
Hydrophone,  
and more  
INA317  
47 kΩ  
47 kΩ  
Thermocouple  
INA317  
10 kΩ  
INA317  
Copyright © 2017, Texas Instruments Incorporated  
34. Providing an Input Common-Mode Current Path  
8.2.2.6 Input Common-Mode Range  
The linear input voltage range of the input circuitry of the INA317 device is from approximately 0.1 V below the  
positive supply voltage to 0.1 V above the negative supply. As a differential input voltage causes the output  
voltage to increase, however, the linear input range is limited by the output voltage swing of amplifiers A1 and A2.  
The linear common-mode input range is related to the output voltage of the complete amplifier. This behavior  
depends on supply voltage(see 20 to 23 in the Typical Characteristics section.)  
Input overload conditions can produce an output voltage that appears normal. For example, if an input overload  
condition drives both input amplifiers to the respective positive output swing limit, the difference voltage  
measured by the output amplifier is near zero. The output of the INA317 is near 0 V even though both inputs are  
overloaded.  
8.2.2.7 Operating Voltage  
The INA317 operates over a power-supply range of 1.8 V to 5.5 V (±0.9 V to ±2.75 V). Supply voltages higher  
than 7 V (absolute maximum) can permanently damage the device. Parameters that vary over supply voltage or  
temperature are shown in the Typical Characteristics section of this data sheet.  
8.2.2.8 Low Voltage Operation  
The INA317 device operates on power supplies as low as ±0.9 V. Most parameters vary only slightly throughout  
this supply voltage range; see the Typical Characteristics section. Operation at very low supply voltage requires  
careful attention to ensure that the input voltages remain within the linear range. Voltage swing requirements of  
internal nodes limit the input common-mode range with low power supply voltage. 20 to 23 show the range  
of linear operation for various supply voltages and gains.  
8.2.2.9 Single-Supply Operation  
The INA317 device can be used on single power supplies of 1.8 V to 5.5 V. 35 shows a basic single-supply  
circuit. The output REF pin is connected to midsupply. Zero differential input voltage demands an output voltage  
of midsupply. Actual output voltage swing is limited to approximately 50 mV more than ground when the load is  
referred to ground as shown. 29 shows how the output voltage swing varies with output current.  
版权 © 2017, Texas Instruments Incorporated  
17  
 
INA317  
ZHCSH47 NOVEMBER 2017  
www.ti.com.cn  
With single-supply operation, VIN+ and VIN– must be 0.1 V more than ground for linear operation. For instance,  
the inverting input cannot connect to ground to measure a voltage that is connected to the noninverting input.  
To show the issues affecting low voltage operation, see 35. 35 shows the INA317 device operating from a  
single 3-V supply. A resistor in series with the low side of the bridge ensures that the bridge output voltage is  
within the common-mode range of the amplifier inputs.  
+3 V  
3 V  
2 V - DV  
RG  
VO  
INA317  
300 Ω  
Ref  
1.5 V  
2 V + DV  
150 Ω  
(1)  
R1  
Copyright © 2017, Texas Instruments Incorporated  
(1) R1 creates proper common-mode voltage only for low-voltage operation; see Single-Supply Operation.  
35. Single-Supply Bridge Amplifier  
8.2.2.10 Input Protection  
The input pins of the INA317 device are protected with internal diodes that are connected to the power-supply  
rails. These diodes clamp the applied signal to prevent the signal from damaging the input circuitry. If the input  
signal voltage exceeds the power supplies by more than 0.3 V, the input signal current must be limited to less  
than 10 mA to protect the internal clamp diodes. Limit the current with a series input resistor. Some signal  
sources are inherently current limited and do not require limiting resistors.  
18  
版权 © 2017, Texas Instruments Incorporated  
 
INA317  
www.ti.com.cn  
ZHCSH47 NOVEMBER 2017  
8.2.3 Application Curves  
Time (25 µs/div)  
Time (100 µs/div)  
Gain = 1  
Gain = 100  
36. Large Signal Response  
37. Large-Signal Step Response  
Time (10 µs/div)  
Time (100 µs/div)  
Gain = 1  
Gain = 100  
38. Small-Signal Step Response  
39. Small-Signal Step Response  
9 Power Supply Recommendations  
The minimum power supply voltage for INA317 is 1.8 V and the maximum power supply voltage is 5.5 V. For  
optimum performance, 3.3 V to 5 V is recommended. TI recommends adding a bypass capacitor at the input to  
compensate for the layout and power supply source impedance.  
版权 © 2017, Texas Instruments Incorporated  
19  
INA317  
ZHCSH47 NOVEMBER 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
TI recommends paying attention to good layout practices. Keep traces short and use a printed-circuit-board  
(PCB) ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1-  
µF bypass capacitor as close as possible the supply pins. Apply these guidelines throughout the analog circuit to  
improve performance and reduce electromagnetic interference (EMI) susceptibility.  
Instrumentation amplifiers vary in the susceptibility to radio-frequency interference (RFI). RFI is identified as a  
variation in offset voltage or DC signal levels with changes in the interfering RF signal. The INA317 device is  
designed to minimize susceptibility to RFI by incorporating passive RC filters with an 8-MHz corner frequency at  
the VIN+ and VIN– inputs. As a result, the INA317 device demonstrates low sensitivity compared to previous  
generation devices. However, strong RF fields can cause varied offset levels and may require additional  
shielding.  
20  
版权 © 2017, Texas Instruments Incorporated  
INA317  
www.ti.com.cn  
ZHCSH47 NOVEMBER 2017  
10.2 Layout Example  
+V  
C2  
R2  
+IN  
-IN  
RG  
INA317  
RG  
R3  
OUT  
R1  
C1  
Ground plane  
removed at gain  
-V  
resistor to minimize  
parasitic capacitance  
Use ground pours for  
shielding the input  
signal pairs  
R3  
+V  
GND  
R1  
C2  
1
2
3
4
RG  
RG  
8
7
6
5
œIN  
+IN  
œIN  
+IN  
-VS  
+VS  
OUT  
REF  
Input traces routed  
adjacent to each other  
OUT  
R2  
Low-impedance  
connection for  
reference terminal  
GND  
C1  
Place bypass  
capacitors as close to  
IC as possible  
-V  
Copyright © 2017, Texas Instruments Incorporated  
40. INA317 Layout  
版权 © 2017, Texas Instruments Incorporated  
21  
INA317  
ZHCSH47 NOVEMBER 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI(免费下载软件)  
针对 INA317 使用基于 SPICE TINA-TI 模拟仿真程序  
TINA 是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。TINA-TI TINA 软件的一款  
免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。它提供所有传统的  
SPICE 直流 (DC)、瞬态和频域分析以及其他设计功能。  
TINA-TI 可从 Analog eLab Design Center(模拟电子实验室设计中心)免费下载,它提供全面的后续处理能力,  
使得用户能够以多种方式形成结果。  
虚拟仪器为用户提供选择输入波形和探测电路节点、电压和波形的功能,从而创建一个动态的快速入门工具。  
41 42 给出了适用于 INA317 器件的 TINA-TI 电路示例,可用于开发、修改和评估特定 应用的电路设  
计。。下面给出了这些仿真文件的下载链接。  
必须安装 TINA 软件(从 DesignSoft)或者 TINA-TI 软件后才能使用这些文件。请从 TINA-  
TI 文件夹中下载免费的 TINA-TI 软件。  
VoA1  
Half of matched  
monolithic dual  
NPN transistors  
(example: MMDT3904)  
Vout  
2
_
4
U1INA317  
3
1
V-  
RG  
2
-
-
R8 10k  
Vdiff  
+
1
8
Out  
6
V
+
Input I10n  
4
Ref  
5
+
+
VM1  
+
RG  
+
7
V+  
5
U1 OPA335  
U5 OPA369  
3
Optional buffer for driving  
SAR converters with  
sampling systems of ³ 33 kHz.  
Half of matched  
monolithic dual  
NPN transistors  
(example: MMDT3904)  
VoA2  
V1 5  
Rset 2.5M  
uCVref/2 2.5  
3
1
2
-
+
4
+
5
U6 OPA369  
Copyright © 2017, Texas Instruments Incorporated  
(1) 如下链接会打开 TI 对数放大器网页:对数放大器产品主页  
(2) 未显示对数晶体管的温度补偿。  
(3) 对于单片对数放大器(例如 LOG112 LOG114),请参阅注 1 中的链接。  
41. 便携式电池供电类系统的低功耗对数函数电路  
(例如血糖仪)  
要下载包含此电路 TINA-TI 仿真文件的压缩文件,请点击如下链接:对数电路。  
22  
版权 © 2017, Texas Instruments Incorporated  
 
INA317  
www.ti.com.cn  
ZHCSH47 NOVEMBER 2017  
器件支持 (接下页)  
3V  
R1  
2 kꢀ  
RWa  
3 ꢀ  
EMU21 RTD3  
Pt100 RTD  
-
U2  
OPA333  
RWb  
3 ꢀ  
+
+
2
VT+  
RTD+  
_
4
U1 INA317  
Out  
VT 25  
3 V  
V-  
RG  
VT-  
RTD-  
VDIFF  
1
8
MSP430  
PGA112  
RGAIN  
Mon+ Mon-  
Ref  
100 kꢀ  
6
RG  
+
V+  
RWc  
4 ꢀ  
5
RZERO  
3
7
Temp (°C)  
(Volts = °C)  
100 kꢀ  
+
V
VREF+  
3 V  
VRTD  
RWd  
3 ꢀ  
RTD Resistance  
(Volts = Ohms)  
+
+
IREF1  
IREF2  
A
A
3 V  
VREF  
3 V  
VREF  
VREF  
U1 REF3212  
Use BF861A  
T3 BF256A  
S
3 V  
Use BF861A  
EN  
OUTF  
OUTS  
In  
+
-
+
+
-
T1 BF256A  
G
+
OPA3331 OPA333  
GNDF GNDS  
U3  
OPA333  
3 V  
C
470 n7F  
V4 3  
RSET2  
RSET1  
2.5 k  
2.5 kꢀ  
Copyright © 2017, Texas Instruments Incorporated  
RWaRWbRWc RWd 用于仿真线电阻。包含这些电阻以展示 4 线感应技术对线路失配的抗扰性。这种方法假定使用 4 线 RTD。  
42. 带有可编程增益采集系统的适用于 PT100 RTD 4 线、3V 调节器  
要下载包含此电路 TINA-TI 仿真文件的压缩文件,请点击如下链接:PT100 RTD。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
精密、低噪声、轨至轨输出,36V,零漂移运算放大器  
50µV VOS0.25µV/°C35µA CMOS 运算放大器零漂移系列  
4ppm/°C100µASOT23-6 系列电压基准  
《电路板布局布线技巧》  
11.3 商标  
All trademarks are the property of their respective owners.  
版权 © 2017, Texas Instruments Incorporated  
23  
INA317  
ZHCSH47 NOVEMBER 2017  
www.ti.com.cn  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
24  
版权 © 2017, Texas Instruments Incorporated  
INA317  
www.ti.com.cn  
ZHCSH47 NOVEMBER 2017  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA317IDGKR  
INA317IDGKT  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
I317  
I317  
Samples  
Samples  
NIPDAUAG | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA317IDGKR  
INA317IDGKR  
INA317IDGKT  
INA317IDGKT  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
DGK  
8
8
8
8
2500  
2500  
250  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
3.4  
3.4  
3.4  
3.4  
1.4  
1.4  
1.4  
1.4  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA317IDGKR  
INA317IDGKR  
INA317IDGKT  
INA317IDGKT  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
DGK  
8
8
8
8
2500  
2500  
250  
366.0  
366.0  
366.0  
366.0  
364.0  
364.0  
364.0  
364.0  
50.0  
50.0  
50.0  
50.0  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY