INA381A3IDGSR [TI]

具有集成过流比较器的 26V、350kHz 电流检测放大器 | DGS | 10 | -40 to 125;
INA381A3IDGSR
型号: INA381A3IDGSR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成过流比较器的 26V、350kHz 电流检测放大器 | DGS | 10 | -40 to 125

放大器 比较器
文件: 总44页 (文件大小:2877K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
具有集成比较器的 INA381 26V 高速电流感应放大器  
1 特性  
3 说明  
1
共模输入范围:–0.2V +26V  
高精度放大器:  
INA381 包含 26V 共模电流感应放大器和高速比较  
器。该器件通过测量分流电阻器两侧的电压并将该电压  
与用户定义的阈值限值(通过比较器基准引脚进行设  
置)作比较来检测过流情况。该电流分流监控器可在独  
立于电源电压的 –0.2V 26V 共模电压范围内测量差  
动电压信号。  
TA = 25°C 时的失调电压  
VCM = 12V 时为 500µV(最大值)  
VCM = 0V 时为 150µV(最大值)  
失调电压漂移:1µV/°C(最大值)  
增益误差:25°C 时为 1%(最大值)  
增益误差漂移:20ppm/°C(最大值)  
开漏极警报输出可配置为在两种模式下运行:透明或锁  
存。在透明模式下,输出状态与输入状态保持一致。在  
锁存模式下,警报输出仅在锁存复位时清除。独立比较  
器大信号警报响应时间小于 2µs,能够快速检测过流事  
件。由 INA381 提供的总系统过电流保护响应时间小于  
10µs。  
可用放大器增益:  
INA381A120V/V  
INA381A250V/V  
INA381A3100V/V  
INA381A4200V/V  
该器件由 2.7V 5.5V 单电源供电,消耗取最大电源  
电流为 350µA。该器件具有–40°C +125°C 的工作  
温度范围,并采用 8 引脚和 10 引脚 VSSOP 封装。  
开漏比较器:  
迟滞:50mV  
传播延迟:400ns(典型值)  
通过外部基准电压设置警报阈值  
支持透明和锁存模式  
器件信息(1)  
器件型号  
INA381  
封装  
VSSOP (10)  
WSON (8)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
2.00mm × 2.00mm  
封装:VSSOP-10 WSON-8  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
商用网络和服务器 PSU  
商用直流/直流转换器  
直流输入 BLDC 电机驱动器  
无线电动工具  
耳麦、耳机和耳塞  
典型应用  
VS+  
2.7 V to 5.5 V  
0 V to 26 V  
INA381  
10 kW  
RPULL-UP  
Microcontroller  
ADC  
IN+  
+
VOUT  
G = 20, 50,  
100, 200  
RSENSE  
INœ  
œ
CMPIN  
ALERT  
+
-
GPIO  
Load  
GPIO  
GND  
RESET  
CMPREF  
5 V R1  
R2  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS848  
 
 
 
 
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 17  
Applications and Implementation ...................... 19  
8.1 Application Information............................................ 19  
8.2 Typical Applications ................................................ 25  
Power Supply Recommendations...................... 29  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 14  
8
9
10 Layout................................................................... 30  
10.1 Layout Guidelines ................................................. 30  
10.2 Layout Example .................................................... 30  
11 器件和文档支持 ..................................................... 31  
11.1 文档支持................................................................ 31  
11.2 接收文档更新通知 ................................................. 31  
11.3 支持资源................................................................ 31  
11.4 ....................................................................... 31  
11.5 静电放电警告......................................................... 31  
11.6 Glossary................................................................ 31  
12 机械、封装和可订购信息....................................... 31  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (April 2018) to Revision B  
Page  
已添加 在数据表中添加了 DGS (VSSOP-8) 封装和相关内................................................................................................. 1  
已添加 失调电压和增益误差特性列表项中添加了 额定 温度................................................................................................... 1  
已更改 将响应时间 特性 列表项 500ns 更改成了传播延迟 400ns .......................................................................................... 1  
已更改 在 新项目中添加了应用列表项 .................................................................................................................................... 1  
Added plus-minus symbol to TYP and MAX values of comparator offset voltage................................................................. 5  
已更改 Figure 54 to remove reset connection to supply ...................................................................................................... 30  
Changes from Original (December 2017) to Revision A  
Page  
已发布至生产 .......................................................................................................................................................................... 1  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
5 Pin Configuration and Functions  
DGS Package  
10-Pin VSSOP  
Top View  
DSG Package  
8-Pin WSON  
Top View  
IN+  
VS+  
1
2
3
4
5
10  
9
INœ  
IN+  
VS+  
1
2
3
4
8
7
6
5
INœ  
VOUT  
CMPIN  
CMPREF  
NC  
VOUT  
CMPIN  
CMPREF  
Thermal Pad  
ALERT  
RESET  
GND  
8
ALERT  
RESET  
7
6
Not to scale  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
DGS  
DSG  
ALERT  
3
8
7
3
6
5
Digital output  
Analog input  
Analog input  
Overlimit alert, active low, open-drain output  
Signal input to the comparator  
CMPIN  
CMPREF  
Input reference to the comparator  
Device ground. Connect the thermal pad to the system ground. See the layout  
example in 54.  
GND  
5
Ground  
IN–  
IN+  
10  
1
8
1
Analog input  
Analog input  
Connect this pin to the load side of the shunt resistor  
Connect this pin to the supply side of the shunt resistor  
Not internal connection to device. This pin can be left floating, grounded, or  
connected to the supply.  
NC  
6
4
4
Transparent or latch mode selection input. See the Alert Modes section for a  
detailed description on pin connections.  
RESET  
Digital input  
VOUT  
VS+  
9
2
7
2
Analog output Current-sense amplifier output voltage  
Supply  
Power supply: 2.7 V to 5.5 V  
Thermal  
Pad  
Thermal  
Pad  
Ground reference for the device that is also the thermal pad used to conduct heat  
from the device. Tie this pad externally to ground.  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
6
UNIT  
VS  
Supply voltage  
V
(2)  
Differential (VIN+) – (VIN–  
)
–26  
GND – 0.3  
GND – 0.3  
GND – 0.3  
GND – 0.3  
GND – 0.3  
GND – 0.3  
26  
VIN+,VIN– Analog inputs (IN+, IN–)  
V
V
(3)  
Common-mode  
26  
CMPIN  
CMPREF  
OUT  
(VS) + 0.3  
(VS) + 0.3  
(VS) + 0.3  
(VS) + 0.3  
6
VI  
Analog input  
VO  
Analog output  
V
V
Digital input  
RESET  
ALERT  
Digital output  
V
TJ  
Junction temperature  
Storage temperature  
150  
°C  
°C  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VIN+ and VIN– are the voltages at the IN+ and IN– pins, respectively.  
(3) Input voltage may exceed the voltage shown without causing damage to the device if the current at that terminal is limited to 5 mA.  
6.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.2  
2.7  
NOM  
12  
MAX  
26  
UNIT  
VCM  
VS  
Common-mode input voltage  
Operating supply voltage  
V
V
5
5.5  
TA  
Operating free-air temperature  
–40  
125  
°C  
6.4 Thermal Information  
INA381  
THERMAL METRIC(1)  
DGS (VSSOP)  
10 PINS  
188.6  
DSG (WSON)  
UNIT  
8 PINS  
77  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
78.1  
96.5  
43.4  
5.4  
111.0  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
17.5  
ΨJB  
109.2  
43.6  
18.8  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
6.5 Electrical Characteristics  
at TA = 25°C, VSENSE = VIN+ – VIN– = 10 mV, VS = 5 V, VIN+ = 12 V, and CMPREF = 2 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
CMRR  
Common-mode rejection ratio, RTI(1)  
Offset voltage, RTI(1)  
VIN+ = 0 V to 26 V, TA= –40ºC to +125ºC  
VIN+ = 12 V, VIN– = 12 V  
84  
100  
±100  
±25  
0.1  
dB  
±500  
±150  
1
VOS  
μV  
VIN+ = 0 V, VIN– = 0 V  
dVOS/dT  
PSRR  
IB  
Offset voltage drift, RTI(1)  
Power-supply rejection ratio  
Input bias current  
TA= –40ºC to +125ºC  
μV/°C  
μV/V  
μA  
VS = 2.7 V to 5.5 V, TA= –40ºC to +125ºC  
VSENSE = 0 mV, IB+, IB–  
±8  
±40  
80  
IOS  
Input offset current  
VSENSE = 0 mV  
±0.05  
μA  
OUTPUT  
INA381A1  
20  
50  
INA381A2  
G
Gain  
V/V  
INA381A3  
100  
INA381A4  
200  
EG  
Gain error  
VOUT = 0.5 V to VS – 0.5 V  
TA= –40ºC to +125ºC  
VOUT= 0.5 V to VS – 0.5 V  
No sustained oscillation  
±0.1%  
1.5  
±1%  
20  
Gain error drift  
ppm/°C  
nF  
Nonlinearity error  
Maximum capacitive load  
±0.01%  
1
VOLTAGE OUTPUT  
Swing to VS power-supply rail  
RL = 10 kΩ to GND, TA= –40ºC to +125ºC  
RL = 10 kΩ to GND, TA= –40ºC to +125ºC  
VS – 0.02  
VS – 0.05  
V
V
VGND  
+
VGND +  
0.005  
Swing to GND(2)  
0.0005  
FREQUENCY RESPONSE  
INA381A1  
INA381A2  
INA381A3  
INA381A4  
350  
210  
150  
105  
2
BW  
Bandwidth  
kHz  
SR  
Slew rate  
V/µs  
NOISE  
Voltage noise density  
40  
nV/Hz  
COMPARATOR  
Propagation delay time, comparator only  
CMPIN Input overdrive = 20 mV  
0.4  
0.4  
1
2
Large-signal propagation  
delay, comparator only  
CMPIN step = 0.5 V to 4.5, VCMPREF = 4 V  
tp  
µs  
Small-signal total alert propogation delay,  
comparator and amplifier  
Input overdrive = 1 mV  
2
3
5
Slew rate limited total alert propagation  
delay, comparator and amplifier  
VOUT = 0.5 V to 4.5, VCMPREF = 4 V  
10  
±5  
VOS  
HYS  
VIH  
Comparator offset voltage  
Hysteresis  
±1  
50  
mV  
mV  
V
High-level input voltage  
Low-level input voltage  
Alert low-level output voltage  
ALERT pin leakage input current  
Digital leakage input current  
1.4  
0
6
0.4  
300  
1
VIL  
V
VOL  
IOL = 3 mA  
VOH = 3.3 V  
0 VIN VS  
70  
0.1  
1
mV  
μA  
μA  
POWER SUPPLY  
VSENSE = 10 mV, TA = +25ºC  
TA = –40ºC to +125ºC  
250  
350  
450  
IQ  
Quiescent current  
μA  
(1) RTI = referred-to-input.  
(2) Swing specifications are tested with an overdriven input condition.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = 25°C, VS = 5 V, VIN+ = 12 V, and alert pullup resistor = 10 kΩ (unless otherwise noted)  
D002  
D001  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
VIN+ = 0 V  
VIN+ = 0 V  
2. Input Offset Voltage Production Distribution  
1. Input Offset Voltage Production Distribution  
(INA381A2)  
(INA381A1)  
D003  
D004  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
VIN+ = 0 V  
VIN+ = 0 V  
3. Input Offset Voltage Production Distribution  
4. Input Offset Voltage Production Distribution  
(INA381A3)  
(INA381A4)  
100  
50  
A1  
A2  
A3  
A4  
0
-50  
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
D006  
Temperature (èC)  
Common-Mode Rejection Ratio (mV/V)  
D005  
VIN+ = 0 V  
5. Offset Voltage vs Temperature  
6. Common-Mode Rejection Production Distribution  
(INA381A1)  
6
版权 © 2017–2019, Texas Instruments Incorporated  
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VIN+ = 12 V, and alert pullup resistor = 10 kΩ (unless otherwise noted)  
D007  
D008  
Common-Mode Rejection Ratio (mV/V)  
Common-Mode Rejection Ratio (mV/V)  
7. Common-Mode Rejection Production Distribution  
8. Common-Mode Rejection Production Distribution  
(INA381A2)  
(INA381A3)  
10  
A1  
A2  
A3  
A4  
8
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
D009  
Temperature (èC)  
Common-Mode Rejection Ratio (mV/V)  
D010  
9. Common-Mode Rejection Production Distribution  
10. Common-Mode Rejection Ratio vs Temperature  
(INA381A4)  
D011  
D012  
Gain Error (%)  
Gain Error (%)  
12. Gain Error Production Distribution (INA381A2)  
11. Gain Error Production Distribution (INA381A1)  
版权 © 2017–2019, Texas Instruments Incorporated  
7
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VIN+ = 12 V, and alert pullup resistor = 10 kΩ (unless otherwise noted)  
D013  
D014  
Gain Error (%)  
Gain Error (%)  
13. Gain Error Production Distribution (INA381A3)  
14. Gain Error Production Distribution (INA381A4)  
50  
40  
30  
20  
10  
0
0.4  
A1  
A2  
A3  
A4  
A1  
A2  
A3  
A4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-10  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
Temperature (èC)  
D015  
D016  
15. Gain Error vs Temperature  
16. Gain vs Frequency  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
A1  
A2  
A3  
A4  
60  
40  
20  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
D017  
D018  
17. Power-Supply Rejection Ratio vs Frequency  
18. Common-Mode Rejection Ratio vs Frequency  
8
版权 © 2017–2019, Texas Instruments Incorporated  
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VIN+ = 12 V, and alert pullup resistor = 10 kΩ (unless otherwise noted)  
VS  
VS – 1  
VS – 2  
120  
100  
80  
60  
40  
20  
0
–40°C  
25°C  
125°C  
GND + 2  
GND + 1  
GND  
-20  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Output Current (mA)  
-5  
0
5
10  
15  
Common-Mode Voltage (V)  
20  
25  
30  
D019  
D020  
Supply voltage = 5 V  
19. Output Voltage Swing vs Output Current  
20. Input Bias Current vs Common-Mode Voltage  
120  
100  
80  
60  
40  
20  
0
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
-20  
-5  
0
5
10  
Common-Mode Voltage (V)  
15  
20  
25  
30  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D021  
D022  
Supply voltage = 0 V  
21. Input Bias Current vs Common-Mode Voltage (Both  
22. Input Bias Current vs Temperature  
Inputs, Shutdown)  
260  
255  
250  
245  
240  
235  
450  
400  
350  
300  
250  
200  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
-5  
0
5
Common-Mode Voltage (V)  
10  
15  
20  
25  
30  
Temperature (èC)  
D023  
D025  
23. Quiescent Current vs Temperature  
24. Quiescent Current vs Common-Mode Voltage  
版权 © 2017–2019, Texas Instruments Incorporated  
9
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VIN+ = 12 V, and alert pullup resistor = 10 kΩ (unless otherwise noted)  
100  
80  
70  
60  
50  
40  
30  
20  
10  
10  
Time (1 s/div)  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
D025  
D024  
26. 0.1-Hz to 10-Hz Voltage Noise (Referred-to-Input)  
25. Input-Referred Voltage Noise vs Frequency  
(INA381A3 Devices)  
VCM  
VOUT  
Time (10 ms/div)  
Time (25 ms/div)  
D026  
D027  
80-mVPP input step  
27. Step Response  
28. Common-Mode Voltage Transient Response  
Inverting Input  
Output  
Noninverting Input  
Output  
0 V  
0 V  
Time (250 ms/div)  
Time (250 ms/div)  
D028  
D029  
29. Inverting Differential Input Overload  
30. Noninverting Differential Input Overload  
10  
版权 © 2017–2019, Texas Instruments Incorporated  
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VIN+ = 12 V, and alert pullup resistor = 10 kΩ (unless otherwise noted)  
Supply Voltage  
Output Voltage  
VS  
ALERT  
VOUT  
0 V  
Time (5 ms/div)  
Time (100 ms/div)  
D033  
D032  
31. Start-Up Response  
32. Brownout Recovery  
VSENSE  
ALERT  
CMPREF  
VOUT  
CMPIN  
ALERT  
CMPREF  
Time (100 ns)  
Time (1 ms/div)  
D036  
D037  
33. Comparator Propagation Delay  
34. VSENSE Voltage Response  
280  
270  
260  
250  
240  
230  
220  
2.5  
2.4  
2.3  
2.2  
2.1  
2
A1  
A2  
A3  
A4  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (èC)  
Temperature (èC)  
D038  
D039  
35. Comparator Propagation Delay vs Temperature  
36. Total Propagation Delay vs Temperature  
版权 © 2017–2019, Texas Instruments Incorporated  
11  
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VIN+ = 12 V, and alert pullup resistor = 10 kΩ (unless otherwise noted)  
140  
120  
100  
80  
49.8  
49.5  
49.2  
48.9  
48.6  
48.3  
48  
60  
47.7  
47.4  
47.1  
46.8  
40  
20  
0
0
1
2
3
4
5
6
7
Low-Level Output Current (mA)  
8
9
10  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (èC)  
D040  
D041  
37. Low-Level Output Voltage vs Low-Level Output  
38. Hysteresis vs Temperature  
Current  
RESET  
ALERT  
Time (5 ms/div)  
D042  
39. Reset and Alert Voltage Response  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
7 Detailed Description  
7.1 Overview  
The INA381 is a zero-drift topology, current-sensing amplifier with an integrated comparator that can be used in  
both low-side and high-side current-sensing and protection applications. This specially designed, current-sensing  
amplifier accurately measures voltages developed across current-sensing resistors (also known as current-shunt  
resistors) on common-mode voltages that far exceed the supply voltage powering the device. Current can be  
measured on input voltage rails as high as 26 V, and the device can be powered from supply voltages as low as  
2.7 V. The device can also withstand the full 26-V common-mode voltage at the input pins when the supply  
voltage is removed without causing damage.  
The zero-drift topology enables high-precision measurements with maximum input offset voltages as low as  
150 µV, and a temperature contribution of only 1 µV/°C over the full temperature range of –40°C to +125°C. The  
low total offset voltage of the INA381 enables the use of smaller current-sense resistor values, and allows for  
more efficient system operation without sacrificing measurement accuracy due to the smaller input signal.  
The device uses a reference input that simplifies setting the corresponding current threshold level to use for out-  
of-range comparison. Combining the precision measurement of the current-sense amplifier and the onboard  
comparator enables an all-in-one overcurrent detection device. This combination creates a highly-accurate  
design that quickly detects out-of-range conditions, and allows the system to take corrective actions to prevent  
potential component or system-wide damage.  
7.2 Functional Block Diagram  
VS+  
2.7 V to 5.5 V  
0 V to 26 V  
INA381  
10 kW  
RPULL-UP  
Microcontroller  
IN+  
+
VOUT  
G = 20, 50,  
100, 200  
ADC  
RSENSE  
INœ  
œ
CMPIN  
ALERT  
+
GPIO  
GPIO  
œ
Load  
GND  
RESET  
CMPREF  
5 V R1  
R2  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Wide Input Common-Mode Voltage Range  
The INA381 supports input common-mode voltages from –0.2 V to +26 V. As a result of the internal topology, the  
common-mode range is not restricted by the power-supply voltage (VS) as long as VS stays within the operational  
range of 2.7 V to 5.5 V. As 40 shows, the ability to operate with common-mode voltages greater or less than  
VS allows the INA381 to be used in high-side, as well as low-side, current-sensing applications.  
œ0.2 V to +26 V  
Power Supply  
IN+  
High-side sensing  
common-mode voltage (VCM  
is bus-voltage dependent.  
RSENSE  
)
INœ  
Load  
IN+  
Low-side sensing  
common-mode voltage (VCM  
is always near ground and is  
isolated from bus-voltage spikes.  
)
RSENSE  
INœ  
GND  
40. High-Side and Low-Side Current Sensing  
7.3.2 Precise Low-Side Current Sensing  
When used in low-side current-sensing applications, the offset voltage of the INA381 is less than 150 µV. The  
low offset performance of the device has several benefits. First, the low offset allows the device to be used in  
applications that must measure current over a wide dynamic range. In this case, the low offset voltage improves  
accuracy when the sense currents are on the low end of the measurement range. Another advantage of low  
offset voltage is the ability to sense lower voltage drops across the sense resistor accurately, thus allowing for a  
lower-value shunt resistor. Lower-value shunt resistors reduce power loss in the current-sense circuit, and help  
improve the power efficiency of the end application.  
The gain error of the INA381 is specified to be within 1% of the actual value. As the sensed voltage becomes  
much larger than the offset voltage, this gain error becomes the dominant source of error in the current-sense  
measurement.  
7.3.3 High Bandwidth and Slew Rate  
The INA381 supports small-signal bandwidths as high as 350 kHz, and large-signal slew rates of 2 V/µs. The  
ability to detect rapid changes in the sensed current, as well as the ability to quickly slew the output, makes the  
INA381 a good choice for applications that require a quick response to input current changes. One application  
that requires high bandwidth and slew rate is low-side motor control, where the ability to follow rapid changing  
current in the motor allows for more accurate control over a wider operating range. Another application that  
requires higher bandwidth and slew rates is system fault detection. The integrated comparator within the INA381  
is designed to quickly detect when the sense current is out-of-range, and provide a digital output on the ALERT  
pin for quicker and faster responses.  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
 
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
Feature Description (接下页)  
7.3.4 Alert Output  
The ALERT pin is an active-low, open-drain output pulls low when the input conditions are out-of-range. This  
open-drain output pin is recommended to include a 10-kΩ pullup resistor to the supply voltage. This open-drain  
pin can be pulled up to a voltage beyond the supply voltage, VS, but must not exceed 5.5 V.  
41 shows the alert output response of the internal comparator. When the output voltage of the amplifier is less  
than the reference voltage set on CMPREF, the comparator output is in the default high state. When the amplifier  
output voltage exceeds the reference voltage set at the CMPREF pin, the comparator output becomes active and  
pulls low. This active low output indicates that the measured signal at the amplifier input has exceeded the  
programmed threshold level, indicating an overcurrent or out-of-range condition has occurred. See the Alert  
Modes section for more information about how to set the alert output behavior.  
6
ALERT  
VOUT  
5
CMPREF  
4
3
2
1
0
-1  
Time (2ms/div)  
41. Overcurrent Alert Response  
7.3.5 Adjustable Overcurrent Threshold  
The VOUT voltage is the amplified voltage developed across the current-sensing resistor. The signal developed  
at the VOUT pin is the input voltage across the IN+ and IN– pins multiplied by the gain of the amplifier. The  
INA381 has four gain options, as shown in 42: 20 V/V, 50 V/V, 100 V/V, and 200 V/V. If additional hysteresis  
is not required, directly connect the VOUT pin to the CMPIN pin.  
VS+  
2.7 V to 5.5 V  
INA381  
10 kW  
RPULL-UP  
Microcontroller  
+
G = 20, 50,  
VOUT  
ADC  
100, 200  
œ
CMPIN  
+
GPIO  
œ
ALERT  
RESET  
GPIO  
CMPREF  
GND  
5 V R1  
R2  
42. Resistor Divider Voltage  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
 
 
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
The device determines if an overcurrent event is present by comparing the voltage on the CMPIN pin to the  
corresponding signal developed at the CMPREF pin. The threshold voltage for the CMPREF pin can be set with  
a resistive divider, or by connecting an external voltage source (such as a reference generator device). 43  
depicts the REF3140 used as an external reference source.  
VS+  
2.7 V to 5.5 V  
INA381  
10 kW  
RPULL-UP  
CMPIN, VOUT  
+
4 V  
Vs  
VOUT  
G = 20, 50,  
100, 200  
œ
ALERT  
CMPIN  
ALERT  
+
œ
VS+  
4 V  
CMPREF  
RESET  
CMPREF  
GND  
4 V  
0.2% , 15ppm/°C  
REF3140  
5 V  
43. External Reference Voltage  
7.3.6 Comparator Hysteresis  
The onboard comparator in the INA381 is designed to reduce the possibility of oscillations in the alert output  
when the measured signal level is near the overlimit threshold level as a result of noise. When the voltage  
(VCMPIN) exceeds the voltage developed at the CMPREF pin, the ALERT pin asserts and pulls low. The output  
voltage must drop to less than the CMPREF pin threshold voltage, as shown in 44, by the hysteresis level of  
50 mV so that the ALERT pin deasserts and returns to the nominal high state. The INA381 is designed with a  
hysteresis of 50 mV.  
ALERT  
Alert  
Output  
VCMPIN  
VCMPREF  
VCMPREF œ 50 mV  
44. Typical Comparator Hysteresis  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
7.4 Device Functional Modes  
7.4.1 Alert Modes  
The device has two output operating modes, transparent and latched, that are selected based on the RESET pin  
setting. These modes change how the ALERT pin responds after an alert when the overcurrent condition is  
removed.  
7.4.1.1 Transparent Output Mode  
The device is set to transparent mode when the RESET pin is pulled low, allowing the output alert state to  
change and follow the input signal with respect to the programmed alert threshold. For example, when the  
differential input signal exceeds the alert threshold, the alert output pin is pulled low. When the differential input  
signal drops to less than the alert threshold, the output returns to the default high-output state. A common  
implementation using the device in transparent mode is to connect the ALERT pin to a hardware interrupt input  
on a microcontroller. When an overcurrent condition is detected and the ALERT pin is pulled low, the controller  
interrupt pin detects the output state change and begins making changes to the system operation required to  
address the overcurrent condition. Under this configuration, the ALERT pin high-to-low transition is captured by  
the microcontroller, and the output returns to the default high state when the overcurrent event is removed.  
7.4.1.2 Latch Output Mode  
Some applications cannot continuously monitor the state of the output ALERT pin to detect an overcurrent  
condition, as described in the Transparent Output Mode section. A typical example of this type of application is a  
system that only periodically polls the ALERT pin state to determine if the system is functioning correctly. If the  
device is set to transparent mode in this type of application, the state change of the ALERT pin can be missed  
when ALERT is pulled low if the out-of-range condition does not appear during one of these periodic polling  
events. Latch output mode is specifically intended to accommodate these applications.  
As shown in 1, the device is placed into the corresponding output mode based on the signal connected to  
RESET. The difference between latch mode and transparent mode is how the alert output responds when an  
overcurrent event ends. In transparent mode (RESET = low), when the differential input signal drops below the  
limit threshold level after the ALERT pin asserts because of an overcurrent event, the state of the ALERT pin  
returns to the default high setting to indicate that the overcurrent event is complete.  
1. Output Mode Settings  
OUTPUT MODE  
Transparent  
Latch  
RESET PIN SETTING  
RESET = low  
RESET = high  
In latch mode (RESET = high), when an overlimit condition is detected and the ALERT pin is pulled low, the  
ALERT pin does not return to the default high state when the differential input signal drops to less than the alert  
threshold level. To clear the alert, the RESET pin must be pulled low for at least 100 ns. If the differential input  
signal is less than the alert threshold, pull the RESET pin low to return ALERT to the default high level. If the  
input signal exceeds the threshold limit when the RESET pin is pulled low, the ALERT pin remains low. When the  
alert condition is detected by the system controller, set the RESET pin back to high to place the device back in  
latch mode.  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
 
 
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
45 shows the latch and transparent modes. In 45, when VIN drops to less than the VLIMIT threshold for the  
first time, the RESET pin pulls high. With the RESET pin pulled high, the device is set to latch mode so that the  
alert output state does not return high when the input signal drops to less than the VLIMIT threshold. Only when  
the RESET pin is pulled low does the ALERT pin return to the default high level, thus indicating that the input  
signal is below the limit threshold. When the input signal drops to less than the limit threshold for the second  
time, the RESET pin is already pulled low. The device is set to transparent mode at this point, and the ALERT  
pin is pulled back high when the input signal drops below the alert threshold.  
VCPMPREF  
VOUT  
(VIN+ œ VINœ) × GAIN  
0 V  
Latch Mode  
RESET  
Transparent Mode  
Alert Clears  
ALERT1  
Alert Does Not Clear  
45. Transparent Mode Versus Latch Mode  
18  
版权 © 2017–2019, Texas Instruments Incorporated  
 
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
8 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The INA381 is designed to enable easy configuration for detecting overcurrent conditions in an application. This  
device is individually targeted towards unidirectional overcurrent detection of a single threshold. However, this  
device can also be paired with additional devices and circuitry to create more complex monitoring functional  
blocks.  
8.1.1 Select a Current-Sensing Resistor  
The device measures the differential voltage developed across a resistor when current flows through the  
component to determine if the current being monitored exceeds a defined limit. This resistor is commonly  
referred to as a current-sensing resistor or a current-shunt resistor, with each term commonly used  
interchangeably. The flexible design of the device allows for measuring a wide differential input signal range  
across this current-sensing resistor.  
Selecting the value of this current-sensing resistor is based primarily on two factors: the required accuracy of the  
current measurement and the allowable power dissipation across the current-sensing resistor. Larger voltages  
developed across this resistor allow for more accurate measurements to be made. Amplifiers have fixed internal  
errors that are largely dominated by the inherent input offset voltage. When the input signal decreases, these  
fixed internal amplifier errors become a larger portion of the measurement and increase the uncertainty in the  
measurement accuracy. When the input signal increases, the measurement uncertainty is reduced because the  
fixed errors are a smaller percentage of the signal being measured. Therefore, the use of larger-value, current-  
sensing resistors inherently improves measurement accuracy.  
However, a system design trade-off must be evaluated through use of larger input signals for improving the  
measurement accuracy. Increasing the current-sense resistor value results in increased power dissipation across  
the current-sensing resistor. Increasing the value of the current-shunt resistor increases the differential voltage  
developed across the resistor when current passes through the component. This increase in voltage across the  
resistor increases the power that the resistor must be able to dissipate. Decreasing the value of the current-shunt  
resistor value reduces the power dissipation requirements of the resistor, but increases the measurement errors  
resulting from the decreased input signal. Selecting the optimal value for the shunt resistor requires factoring  
both the accuracy requirement for the specific application and the allowable power dissipation of this component.  
An increasing number of very low ohmic-value resistors are becoming more widely available with values reaching  
down as low as 1 mΩ or lower with power dissipations of up to 5 W that enable large currents to be accurately  
monitored with sensing resistors.  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Application Information (接下页)  
8.1.1.1 Select a Current-Sensing Resistor: Example  
In this example, the trade-offs involved in selecting a current-sensing resistor are discussed. This example  
requires 5% accuracy for detecting a 10-A overcurrent event under 20 µs where only 250 mW is allowable for the  
dissipation across the current-sensing resistor at the full-scale current level. Although the maximum power  
dissipation is defined as 250 mW, a lower dissipation is preferred to improve system efficiency. Given the total  
error budget of 5%, the INA381 total error is less than 1%. The INA381 is well suited for this application because  
up to 1% of error is available to be attributed to the measurement error of the device under these conditions.  
As shown in 2, the maximum value calculated for the current-sensing resistor with these requirements is 2.5  
mΩ. Although this value satisfies the maximum power dissipation requirement of 250 mW, headroom is available  
from the 2.5% maximum total overcurrent detection error to reduce the value of the current-sensing resistor and  
reduce the power dissipation further. Selecting a 1.5-mΩ, current-sensing resistor value offers a good tradeoff for  
reducing the power dissipation in this scenario by approximately 40% and still remaining within the accuracy  
region.  
2. Calculating the Current-Sensing Resistor (RSENSE  
)
PARAMETER  
EQUATION  
VALUE  
10  
UNIT  
A
IMAX  
Maximum current  
PD_MAX  
RSENSE_MAX  
VOS  
Maximum allowable power dissipation  
Maximum allowable RSENSE  
Offset voltage, VCM = 12 V  
Initial offset voltage error  
250  
2.5  
mW  
mΩ  
µV  
2
PD_MAX / IMAX  
500  
2%  
VOS_ERROR  
EG  
(VOS / (RSENSE_MAX × IMAX ) × 100  
Gain error  
1%  
(VOS_ERROR2 + EG  
)
2.23%  
5%  
2
ERRORTOTAL  
Total measurement error  
Allowable current threshold accuracy  
Total system overcurrent response time  
Allowable overcurrent response  
tp  
10  
µs  
µs  
20  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
 
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
8.1.2 Increase Comparator Hysteresis  
The onboard comparator of the device is designed with a hysteresis of 50 mV. The INA381 is designed for the  
user to change the hysteresis from a preset value of 50 mV by connecting an external resistor between VOUT  
and CMPIN. 46 shows a detailed block diagram of adding additional hysteresis.  
VS+  
2.7 V to 5.5 V  
0 V to 26 V  
INA381  
10 kW  
RPULL-UP  
IN+  
+
VOUT  
RHYS  
G = 20, 50,  
100, 200  
RSENSE  
VS+  
INœ  
4 µA  
œ
12.5 k  
Internal  
Hysteresis  
Control  
CMPIN  
ALERT  
+
Load  
œ
RESET  
CMPREF  
R2  
GND  
5 V  
R1  
46. Increase Hysteresis to the Comparator  
The default hysteresis is 50 mV. Internal to the comparator, the INA381 has a current source of 4 µA in series  
with 12.5 kΩ. The internal current source and hysteresis of the comparator is set by the internal hysteresis  
control circuit that is enabled only after ALERT is asserted low. ALERT is asserted low during an overcurrent  
condition when the voltage on VOUT exceeds the threshold set on the CMPREF pin. The internal 4-µA  
hysteresis circuits are triggered only after ALERT is asserted low.  
To increase hysteresis to greater than the default 50 mV, the RHYS resistor must be connected between the  
VOUT and CMPIN pins. 公式 1 describes the internal configuration to set the external hysteresis resistor.  
VHYS - 4 mA ì12500 W  
(
)
RHYS  
=
4 mA  
where  
VHYS is the desired hysteresis voltage  
RHYS is the external resistor on the input of the CMPIN pin  
(1)  
3 lists the external resistors required at the input of the CMPIN pin to set the hysteresis.  
3. Hysteresis Resistor Selection  
HYSTERESIS VOLTAGE  
50 mV  
EXTERNAL RESISTOR AT THE CMPIN PIN  
0 Ω  
75 mV  
6.25 kΩ  
12.5 kΩ  
18.75 kΩ  
25 kΩ  
100 mV  
125 mV  
150 mV  
200 mV  
37.5 kΩ  
50 kΩ  
250 mV  
300 mV  
62.5 kΩ  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
 
 
 
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
8.1.3 Operation With Common-Mode Transients Greater Than 26 V  
With a small amount of additional circuitry, the INA381 can be used in circuits subject to transients greater than  
26 V. Use only Zener diodes or Zener-type transient absorbers (sometimes referred to as transorbs)—any other  
type of transient absorber has an unacceptable time delay. Start by adding a pair of resistors as shown in 47  
as a working impedance for the Zener diode. Keep these resistors as small as possible; most often  
approximately 10 . Larger values can be used with an effect on gain that is discussed in the Input Filtering  
section. This circuit limits only short-term transients and, therefore, many applications are satisfied with a 10-Ω  
resistor along with conventional Zener diodes of the lowest acceptable power rating. This combination uses the  
least amount of board space. These diodes can be found in packages as small as SOT-523 or SOD-523.  
VS+  
2.7 V to 5.5 V  
0 V to 26 V  
INA381  
10 kW  
RPULL-UP  
< 10  
< 10 ꢀ  
IN+  
+
VOUT  
G = 20, 50,  
100, 200  
RSENSE  
INœ  
œ
CMPIN  
+
Load  
œ
ALERT  
RESET  
GND  
5 V R1  
CMPREF  
R2  
47. Transient Protection  
In the event that low-power Zener diodes do not have sufficient transient absorption capability, use a higher-  
power transorb. 47 shows that the most package-efficient solution involves using a single transorb and back-  
to-back diodes between the device inputs. The most space-efficient solutions are dual, series-connected diodes  
in a single SOT-523 or SOD-523 package. In either of the examples provided in 47 and 48, the total board  
area required by the INA381 with all protective components is less than that of an SOIC-8 package, and only  
slightly greater than that of a VSSOP-8 package.  
VS+  
2.7 V to 5.5 V  
œ0.2 V to 26 V  
INA381  
10 kW  
RPULL-UP  
< 10  
IN+  
+
G = 20, 50,  
VOUT  
RSENSE  
100, 200  
< 10 ꢀ  
INœ  
œ
CMPIN  
+
Load  
œ
ALERT  
RESET  
GND  
5 V R1  
CMPREF  
R2  
48. Transient Protection Using a Single Transorb and Input Clamps  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
8.1.4 Input Filtering  
If the INA381 output is connected to a high-impedance input, the device output is the best location to filter, using  
a simple RC network from VOUT to GND. Filtering at the output attenuates high-frequency disturbances in the  
common-mode voltage, differential input signal, and INA381 power-supply voltage. If filtering at the output is not  
possible, or if only the differential input signal needs filtering, a filter can be applied at the input pins of the  
device.  
External filtering helps reduce the amount of noise that reaches the comparator, and thereby reduces the  
likelihood of a false alert. The tradeoff to adding this noise filter is that the alert response time is increased  
because both the input signal and noise are filtered. 49 shows the implementation of an input filter for the  
device.  
VS+  
2.7 V œ 5.5 V  
0 V to 26 V  
INA381  
10 kW  
RPULL-UP  
< 10  
IN+  
+
VOUT  
G = 20, 50,  
100, 200  
CFILTER  
RSENSE  
INœ  
œ
CMPIN  
ALERT  
< 10 ꢀ  
+
œ
Load  
GND  
RESET  
CMPREF  
5 V R1  
R2  
49. Input Filter  
The addition of external series resistance creates an additional error in the measurement; therefore, the value of  
these series resistors must be kept to 10 Ω (or less, if possible) to reduce impact to accuracy. As shown in 49,  
the internal bias network present at the input pins creates a mismatch in input bias currents when a differential  
voltage is applied between the input pins. If additional external series filter resistors are added to the circuit, the  
mismatch in bias currents results in a mismatch of voltage drops across the filter resistors. This mismatch  
creates a differential error voltage that subtracts from the voltage developed across the shunt resistor. This error  
results in a voltage at the device input pins that is different than the voltage developed across the shunt resistor.  
Without the additional series resistance, the mismatch in input bias currents has negligible effect on device  
operation. 公式 2 is used to calculate the gain error factor that is used with 公式 3 to calculate the percentage  
gain error when using external filter resistors.  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
 
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
公式 2 shows that the amount of variance in the differential voltage present at the device input relative to the  
voltage developed at the shunt resistor is based both on the external series resistance (RF) value as well as  
internal input resistor RINT. The reduction of the shunt voltage reaching the device input pins appears as a gain  
error when comparing the output voltage relative to the voltage across the shunt resistor. Use 公式 2 to calculate  
the expected deviation from the shunt voltage to what is measured at the device input pins:  
1250ìRINT  
(1250ìRF ) + (1250ìRINT ) + (RF ìRINT  
Gain Error Factor =  
)
where:  
RINT is the internal input resistor  
RF is the external series resistance  
(2)  
The adjustment factor from 公式 2 including the device internal input resistance shown in 4 varies with each  
gain version. 5 lists each individual device gain error factor.  
4. Input Resistance  
PRODUCT  
INA381A1  
INA381A2  
INA381A3  
INA381A4  
GAIN  
20  
RINT (kΩ)  
25  
10  
5
50  
100  
200  
2.5  
5. Device Gain Error Factor  
PRODUCT  
SIMPLIFIED GAIN ERROR FACTOR  
25000  
INA381A1  
(21ìRF ) + 25000  
10000  
INA381A2  
INA381A3  
INA381A4  
(9ìRF ) +10000  
1000  
RF +1000  
2500  
(3ìRF ) + 2500  
Use 公式 3 to then calculate the gain error that can be expected from the addition of the external series resistors:  
Gain Error (%) = 100 - (100 ´ Gain Error Factor)  
(3)  
For example, using an INA381A2 and the corresponding gain error equation from 5, a series resistance of  
10 Ω results in a gain error factor of 0.991. The corresponding gain error is then calculated using 公式 3,  
resulting in an additional gain error of approximately 0.89% solely because of the external 10-Ω series resistors.  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
8.2 Typical Applications  
8.2.1 Bidirectional Window Comparator  
VS+  
2.7 V to 5.5 V  
INA381  
VS  
10 kW  
RPULL-UP  
IN+  
+
VOUT  
G = 20, 50,  
100, 200  
œ
INœ  
CMPIN  
+
œ0.2 V to +26 V  
œ
ALERT  
RESET  
CMPREF  
R1  
R2  
RSENSE  
5 V  
VS+  
2.7 V to 5.5 V  
Load  
INA381  
10 kW  
RPULL-UP  
IN+  
+
G = 20, 50,  
VOUT  
INœ 100, 200  
œ
CMPIN  
ALERT  
+
œ
RESET  
CMPREF  
R3  
R4  
5 V  
50. Bidirectional Window Comparator  
8.2.1.1 Design Requirements  
6 lists the parameters for a design example of a high-side INA381 measuring in the forward direction, and one  
low-side INA381 measuring in the reverse direction. This example designs for maximum accuracy and also uses  
the alert function of both devices.  
6. Design Parameters  
DESIGN PARAMETER  
RSENSE  
EXAMPLE VALUE  
12 mΩ  
5 V  
Power-supply voltage  
Common-mode voltage  
Maximum sense current  
Small-signal bandwidth  
Alert current threshold  
20 V  
20 A  
> 120 kHz  
19 A  
版权 © 2017–2019, Texas Instruments Incorporated  
25  
 
 
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
Although the device is only able to measure current through a current-sensing resistor flowing in one direction, a  
second INA381 can be used to create a bidirectional monitor. With the input pins of a second device reversed  
across the same current-sensing resistor, the second device is now able to detect current flowing in the other  
direction relative to the first device; see 50. The outputs of each device connect to an AND gate to detect if  
either of the limit threshold levels are exceeded. As shown in 7, the output of the AND gate is high if neither  
overcurrent limit thresholds are exceeded. A low output state of the AND gate indicates that the positive  
overcurrent limit or the negative overcurrent limit has been exceeded.  
7. Bidirectional Overcurrent Output Status  
OCP STATUS  
OCP+  
OUTPUT  
0
0
1
OCP–  
No OCP  
In this scenario, the maximum current expected through the shunt resistor is 20 A in either the forward or reverse  
direction. Maximum accuracy is desired; therefore, the shunt resistor is maximized by taking the maximum output  
swing divided by the smallest gain and divided by the maximum current. The design parameters used in 6  
yield a shunt value of 12.3 m. The closest standard 1% and 0.1% device is 12 m, and this value is used by  
both INA381 devices.  
Because corrective action must be taken when the current exceeds ±19 A, the comparators require a value of  
4.56 V (19 A × 0.012 × 20 V/V). In this instance, a voltage divider consisting of two 4.53-kresistors (R1 and  
R3) and two 5-kresistors (R2 and R4) off the 5-V rail supply a voltage close to this value. To be certain that  
both device alert functions can trigger a single GPIO pin on a microcontroller, both comparator outputs feed into  
an AND gate.  
8.2.1.3 Application Curve  
Positive Limit  
0V  
Negtive Limit  
Time (5 ms/div)  
51. Bidirectional Operation  
26  
版权 © 2017–2019, Texas Instruments Incorporated  
 
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
8.2.2 Solenoid Low-Side Current Sensing  
12 V  
90 V  
Boost  
Converter  
VS+  
5 V  
5 V  
Gate  
Driver  
Enable, Disable  
INA381  
10 kΩ  
RPULL-UP  
IN+  
+
VOUT  
5 m  
G = 200  
INœ  
œ
CMPIN  
+
-
ALERT  
RESET  
GND  
CMPREF  
R2  
R1  
5 V  
2.5 kΩ 10 kΩ  
52. Solenoid Low-Side Current-Sensing  
8.2.2.1 Design Requirements  
8 lists the parameters of an application design using the INA381 and ALERT functionality to create a low-side  
current-sense amplifier with less than a 20-µs system shutdown.  
8. Design Parameters  
DESIGN PARAMETERS  
Power-supply voltage  
Low-side current sensing  
Mode of operation  
EXAMPLE VALUE  
5 V  
VCM = 0 V  
Unidirectional  
4.0 A  
Maximum current sense threshold  
ALERT response time  
ALERT pin mode  
< 20 µs  
Transparent  
5 mΩ  
RSENSE resistor  
Gain option  
200 V/V  
版权 © 2017–2019, Texas Instruments Incorporated  
27  
 
 
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
8.2.2.2 Detailed Design Procedure  
The INA381 can measure current across a shunt resistor with common-mode voltage ranges from –0.3 V to  
+26 V. The INA381 is capable of measuring low-side current sensing allowing enough margin below ground to  
accurately measure current through the load. One common application for low-side current sensing is a solenoid  
control application. As described in 52, a typical high-voltage solenoid application consists of a high-voltage  
NMOS transistor, a low-ohmic shunt resistor connected to the source of the NMOS transistor, and a solenoid. A  
solenoid is often used for applications that control a relay that triggers an on-off state. As current flows through  
the solenoid, the current flowing through the copper windings generate a magnetic field around the iron that can  
be used to open or close a relay. Industrial valves, electromechanical relays, and PLC control relays are often  
built of solenoids, and the driver circuitry for solenoids are designed discretely, as shown in 52.  
A microcontroller unit is often used to control the duty cycle of the NMOS switch to control the position of the  
solenoid. By controlling the duty cycle of the solenoid driver, the current flowing through the solenoid can be  
controlled, which in turn can be used to perform position control. However, for applications that need two states,  
on and off, a microcontroller can be expensive and overkill. If a solenoid is located remotely in specific  
application, the routing of the current-sense amplifier signal back to the microcontroller can create additional  
overhead and often increase the cost of the application. The INA381 has a built-in comparator that can be  
programmed to assert an ALERT when the CMPIN signal exceeds the CMPREF threshold signal. The ALERT  
signal can be used to feed the ALERT signal back to the gate driver circuitry of the NMOS, which can disable the  
NMOS switch to turn the circuit off to protect from damage. Effective impedance of a solenoid is an inductor in  
series with a resistance. If the solenoid is prone to damage, the inductor can lose inductance and behave as a  
shorted resistor. If not protected, high current can flow through the solenoid and damage the system, causing  
permanent failure. The INA381, with an ALERT pin that responds in as fast as 10 µs, can be directly connected  
to the NMOS driver to remove power from the solenoid in the event of an overcurrent condition. When the load  
current decreases to less than the safe operating limit, the ALERT clears and enables safe operation of the  
solenoid. This design example can be used as a guideline to implement the INA381 for a solenoid application.  
Based on 公式 4, the design example for the CMPREF voltage is 4 V. The threshold voltage is set using simple  
resistor dividers R1 and R2. R1 is set with 2.5 kΩ, and R2 is set with 10 kΩ. This 4-V threshold is set at the  
CMPREF pin. When the current exceeds 4 A, voltage on VOUT exceeds 4 V, and the ALERT pin asserts a low  
signal indicating a fault detection. The device is configured in transparent mode by connecting the RESET pin to  
ground. Because of this configuration, when the current signal falls below 4 A of current, the ALERT pin is pulled  
high and resets the fault detection, maintaining safe operation of the solenoid. This example explains a  
methodology where a solenoid can be self-protected and triggered based on a set, safe-operating, current  
threshold.  
In this application, 4 A and higher are considered overcurrent conditions and some corrective action must be  
taken to prevent the current from destroying the system. The INA381 offers corrective action through an ALERT  
pin that can be tailored for a specific overcurrent condition through the CMPREF pin. To set the proper CMPREF  
value, a gain option and an RSENSE value must first be determined. This design example uses a gain of 200 V/V  
and an RSENSE value of 5 mΩ. CMPREF is calculated according to 公式 4 in this particular case. This value is  
calculated to be approximately 4 V. This value can be achieved through either a voltage divider or LDO. In this  
particular instance, the voltage divider was chosen.  
CMPREF (V) = [Alert Threshold (A) × Shunt Resistor (Ω) + VOS (V)] × Gain  
(4)  
28  
版权 © 2017–2019, Texas Instruments Incorporated  
 
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
8.2.2.3 Application Curve  
6
5
ALERT  
VOUT  
CMPREF  
4
3
2
1
0
-1  
Time (2ms/div)  
53. Low-Side Sensing Application Curve  
9 Power Supply Recommendations  
The device input circuitry accurately measures signals on common-mode voltages beyond the power-supply  
voltage, VS. For example, the voltage applied to the VS+ power-supply pin can be 5 V, whereas the load power-  
supply voltage being monitored (VCM) can be as high as 26 V. The device can withstand the full –0.2-V to +26-V  
range at the input pins, regardless of whether the device has power applied or not.  
Power-supply bypass capacitors are required for stability and must be placed as closely as possible to the supply  
and ground pins of the device. A typical value for this supply bypass capacitor is 0.1 µF. Applications with noisy  
or high-impedance power supplies can require additional decoupling capacitors to reject power-supply noise.  
版权 © 2017–2019, Texas Instruments Incorporated  
29  
INA381  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Place the power-supply bypass capacitor as closely as possible to the supply and ground pins. The  
recommended value of this bypass capacitor is 0.1 µF. Add decoupling capacitance to compensate for noisy  
or high-impedance power supplies.  
Make sure that the thermal pad and GND are connected to a solid ground plane of the PCB.  
Pull up the open-drain output pin to the supply voltage rail through a 10-kΩ pullup resistor.  
10.2 Layout Example  
RSHUNT  
Power Supply  
Load  
VIA to  
Ground  
Plane  
VIA to  
Ground  
Plane  
10  
9
1
2
3
4
IN+  
VS+  
INœ  
CBYPASS  
VOUT  
CMPIN  
CMPREF  
8
ALERT  
RESET  
VIA to  
Power  
Supply  
7
54. Recommended Layout for DSG Package  
RSHUNT  
Power Supply  
Load  
VIA to  
Ground  
Plane  
10  
9
1
2
3
4
IN+  
VS+  
INœ  
CBYPASS  
VOUT  
CMPIN  
CMPREF  
N.C.  
INA381DGS  
8
ALERT  
RESET  
GND  
VIA to  
Power  
Supply  
7
6
5
VIA to Ground  
Plane  
55. Recommended Layout for DGS Package  
30  
版权 © 2017–2019, Texas Instruments Incorporated  
INA381  
www.ti.com.cn  
ZHCSHT3B DECEMBER 2017REVISED OCTOBER 2019  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)REF31xx 15ppm/°C 最大值、100μASOT-23 系列电压基准》数据表  
德州仪器 (TI)INA381EVM 用户指南》  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA381A1IDGSR  
INA381A1IDGST  
INA381A1IDSGR  
INA381A1IDSGT  
INA381A2IDGSR  
INA381A2IDGST  
INA381A2IDSGR  
INA381A2IDSGT  
INA381A3IDGSR  
INA381A3IDGST  
INA381A3IDSGR  
INA381A3IDSGT  
INA381A4IDGSR  
INA381A4IDGST  
INA381A4IDSGR  
INA381A4IDSGT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
DGS  
DGS  
DSG  
DSG  
DGS  
DGS  
DSG  
DSG  
DGS  
DGS  
DSG  
DSG  
DGS  
DGS  
DSG  
DSG  
10  
10  
8
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1XM6  
1XM6  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAUAG | SN  
NIPDAU  
1HWY  
1HWY  
1XN6  
1XN6  
1HXY  
1HXY  
1XO6  
1XO6  
1HZY  
1HZY  
1XP6  
1XP6  
1I1Y  
8
NIPDAU  
10  
10  
8
NIPDAUAG | SN  
NIPDAUAG | SN  
NIPDAU  
8
NIPDAU  
10  
10  
8
NIPDAUAG | SN  
NIPDAUAG | SN  
NIPDAU  
8
NIPDAU  
10  
10  
8
NIPDAUAG | SN  
NIPDAUAG | SN  
NIPDAU  
8
NIPDAU  
1I1Y  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jun-2023  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF INA381 :  
Automotive : INA381-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA381A1IDGSR  
INA381A1IDGST  
INA381A1IDSGR  
INA381A1IDSGT  
INA381A2IDGSR  
INA381A2IDGST  
INA381A2IDSGR  
INA381A2IDSGT  
INA381A3IDGSR  
INA381A3IDGST  
INA381A3IDSGR  
INA381A3IDSGT  
INA381A4IDGSR  
INA381A4IDGSR  
INA381A4IDGST  
INA381A4IDGST  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGS  
DGS  
DSG  
DSG  
DGS  
DGS  
DSG  
DSG  
DGS  
DGS  
DSG  
DSG  
DGS  
DGS  
DGS  
DGS  
10  
10  
8
2500  
250  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
8.4  
5.3  
5.3  
2.3  
2.3  
5.3  
5.3  
2.3  
2.3  
5.3  
5.3  
2.3  
2.3  
5.3  
5.3  
5.3  
5.3  
3.4  
3.4  
2.3  
2.3  
3.4  
3.4  
2.3  
2.3  
3.4  
3.4  
2.3  
2.3  
3.4  
3.4  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q1  
Q1  
3000  
250  
1.15  
1.15  
1.4  
8
8.4  
8.0  
10  
10  
8
2500  
250  
12.4  
12.4  
8.4  
12.0  
12.0  
8.0  
1.4  
3000  
250  
1.15  
1.15  
1.4  
8
8.4  
8.0  
10  
10  
8
2500  
250  
12.4  
12.4  
8.4  
12.0  
12.0  
8.0  
1.4  
3000  
250  
1.15  
1.15  
1.4  
8
8.4  
8.0  
10  
10  
10  
10  
2500  
2500  
250  
12.4  
12.4  
12.4  
12.4  
12.0  
12.0  
12.0  
12.0  
1.4  
1.4  
250  
1.4  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jun-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA381A4IDSGR  
INA381A4IDSGT  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA381A1IDGSR  
INA381A1IDGST  
INA381A1IDSGR  
INA381A1IDSGT  
INA381A2IDGSR  
INA381A2IDGST  
INA381A2IDSGR  
INA381A2IDSGT  
INA381A3IDGSR  
INA381A3IDGST  
INA381A3IDSGR  
INA381A3IDSGT  
INA381A4IDGSR  
INA381A4IDGSR  
INA381A4IDGST  
INA381A4IDGST  
INA381A4IDSGR  
INA381A4IDSGT  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
WSON  
WSON  
DGS  
DGS  
DSG  
DSG  
DGS  
DGS  
DSG  
DSG  
DGS  
DGS  
DSG  
DSG  
DGS  
DGS  
DGS  
DGS  
DSG  
DSG  
10  
10  
8
2500  
250  
366.0  
366.0  
210.0  
210.0  
366.0  
366.0  
210.0  
210.0  
366.0  
366.0  
210.0  
210.0  
366.0  
366.0  
366.0  
366.0  
210.0  
210.0  
364.0  
364.0  
185.0  
185.0  
364.0  
364.0  
185.0  
185.0  
364.0  
364.0  
185.0  
185.0  
364.0  
364.0  
364.0  
364.0  
185.0  
185.0  
50.0  
50.0  
35.0  
35.0  
50.0  
50.0  
35.0  
35.0  
50.0  
50.0  
35.0  
35.0  
50.0  
50.0  
50.0  
50.0  
35.0  
35.0  
3000  
250  
8
10  
10  
8
2500  
250  
3000  
250  
8
10  
10  
8
2500  
250  
3000  
250  
8
10  
10  
10  
10  
8
2500  
2500  
250  
250  
3000  
250  
8
Pack Materials-Page 3  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY