INA4290A3IRGVR [TI]

INAx290 2.7-V to 120-V, 1.1-MHz, Ultra-Precise, Current-Sense Amplifier;
INA4290A3IRGVR
型号: INA4290A3IRGVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

INAx290 2.7-V to 120-V, 1.1-MHz, Ultra-Precise, Current-Sense Amplifier

文件: 总37页 (文件大小:2270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
INAx290 2.7-V to 120-V, 1.1-MHz, Ultra-Precise, Current-Sense Amplifier  
1 Features  
3 Description  
Wide common-mode voltage:  
– Operational voltage: 2.7 V to 120 V  
– Survival voltage: −20 V to +122 V  
Excellent CMRR:  
– 160-dB DC  
– 85-dB AC at 50 kHz  
Accuracy  
The INAx290 is an ultra-precise, current-sense  
amplifier that can measure voltage drops across shunt  
resistors over a wide common-mode range from 2.7  
V to 120 V. The ultra-precise current measurement  
accuracy is achieved thanks to the combination of an  
ultra-low offset voltage of ±12 µV (maximum), a small  
gain error of ±0.1% (maximum), and a high DC CMRR  
of 160 dB (typical). The INAx290 is not only designed  
for DC current measurement, but also for high-speed  
applications (such as fast overcurrent protection, for  
example) with a high bandwidth of 1.1 MHz (at gain of  
20 V/V) and an 85-dB AC CMRR (at 50 kHz).  
– Gain:  
Gain error: ±0.1% (maximum)  
Gain drift: ±5 ppm/°C (maximum)  
– Offset:  
Offset voltage: ±12 µV (maximum)  
Offset drift: ±0.2 µV/°C (maximum)  
The INAx290 provides the capability to make ultra-  
precise current measurements by sensing the voltage  
drop across a shunt resistor over a wide common-  
mode range from 2.7 V to 120 V. The INAx290  
devices come in highly space-efficient packages.  
The single-channel INA290 device is featured in the  
SC-70 package, the dual-channel INA2290 device  
is available in the MSOP-8 package, and the quad-  
channel INA4290 device is available in the 4 mm x 4  
mm QFN package.  
Available gains:  
– A1 devices: 20 V/V  
– A2 devices: 50 V/V  
– A3 devices: 100 V/V  
– A4 devices: 200 V/V  
– A5 devices: 500 V/V  
High bandwidth: 1.1 MHz  
Slew rate: 2 V/µs  
Quiescent current: 370 µA (per channel)  
The INAx290 operates from a single 2.7-V to 20-V  
supply with the single channel device only drawing  
370-µA supply current per channel (typical). The  
devices are available with five gain options: 20 V/V,  
50 V/V, 100 V/V, 200 V/V, and 500 V/V. The low offset  
of the zero-drift architecture enables current sensing  
with low ohmic shunts as specified over the extended  
operating temperature range (−40°C to +125°C).  
2 Applications  
Active antenna system mMIMO (AAS)  
Macro remote radio unit (RRU)  
48-V rack server  
48-V merchant network & server power supply  
Test and measurement  
VS  
Device Information(1)  
INA4290 (quad channel)  
VCM  
INA2290 (dual channel)  
INA290 (single channel)  
PART NUMBER  
INA290  
PACKAGE  
BODY SIZE (NOM)  
2.00 mm × 1.25 mm  
3.00 mm × 3.00 mm  
4.00 mm × 4.00 mm  
SC-70 (5)  
ISENSE  
R1  
IN+  
œ
INA2290  
INA4290  
VSSOP (8)  
QFN (16)  
Current  
Feedback  
RSENSE  
Bias  
R1  
+
OUT  
INœ  
Buffer  
SAR  
ADC  
(1) For all available packages, see the package option  
addendum at the end of the data sheet.  
Load  
RL  
GND  
Typical Application  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions ..................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................15  
7.1 Overview...................................................................15  
7.2 Functional Block Diagram.........................................15  
7.3 Feature Description...................................................16  
7.4 Device Functional Modes..........................................18  
8 Application and Implementation..................................19  
8.1 Application Information............................................. 19  
8.2 Typical Application.................................................... 21  
9 Power Supply Recommendations................................23  
10 Layout...........................................................................23  
10.1 Layout Guidelines................................................... 23  
10.2 Layout Examples.................................................... 23  
11 Device and Documentation Support..........................26  
11.1 Documentation Support.......................................... 26  
11.2 Receiving Notification of Documentation Updates..26  
11.3 Support Resources................................................. 26  
11.4 Trademarks............................................................. 26  
11.5 Electrostatic Discharge Caution..............................26  
11.6 Glossary..................................................................26  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 26  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (December 2020) to Revision C (June 2021)  
Page  
Added INA4290 device information to the document......................................................................................... 1  
Changes from Revision A (September 2020) to Revision B (December 2020)  
Page  
Changed the INA2290 device status from Advanced Information to Production Data....................................... 1  
Added Channel Separation vs. Frequency, Multichannel Devices .................................................................... 7  
Changes from Revision * (June 2020) to Revision A (August 2020)  
Page  
Changed the data sheet status from Production Data to Production Mixed.......................................................1  
Added INA2290 advanced information to the document.................................................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: INA290 INA2290 INA4290  
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
5 Pin Configuration and Functions  
OUT  
GND  
VS  
1
2
3
5
INœ  
4
IN+  
Not to scale  
Figure 5-1. INA290: DCK Package 5-Pin SC-70 Top View  
Table 5-1. Pin Functions: INA290 (Single Channel)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
GND  
IN–  
2
5
4
1
Ground  
Input  
Ground  
Connect to load side of shunt resistor.  
Connect to supply side of shunt resistor.  
Output voltage  
IN+  
Input  
OUT  
Output  
VS  
3
Power  
Power supply  
IN+1  
VS  
IN-1  
OUT1  
IN+2  
IN-2  
OUT2  
GND  
Figure 5-2. INA2290: DGK Package 8-Pin VSSOP Top View  
Table 5-2. Pin Functions: INA2290 (Dual Channel)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
GND  
5
Ground  
Input  
Ground  
Current-sense amplifier negative input for channel 1. Connect to load side of channel 1  
sense resistor.  
IN–1  
IN+1  
IN–2  
IN+2  
2
1
4
3
Current-sense amplifier positive input for channel 1. Connect to bus-voltage side of  
channel 1 sense resistor.  
Input  
Input  
Input  
Current-sense amplifier negative input for channel 2. Connect to load side of channel 2  
sense resistor.  
Current-sense amplifier positive input for channel 2. Connect to bus-voltage side of  
channel 2 sense resistor.  
OUT1  
OUT2  
7
6
8
Output  
Output  
Power  
Channel 1 output voltage  
Channel 2 output voltage  
Power supply  
VS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: INA290 INA2290 INA4290  
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
IN+1  
IN–1  
IN+2  
IN–2  
1
2
3
4
12  
11  
10  
9
IN+3  
IN–3  
IN+4  
IN–4  
Thermal  
Pad  
Not to scale  
A. Thermal Pad can be left floating or connected to GND.  
Figure 5-3. INA4290: RGV Package 16-Pin QFN Top View  
Table 5-3. Pin Functions: INA4290 (Quad Channel)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
GND  
6, 7  
Ground  
Input  
Ground  
Current-sense amplifier negative input for channel 1. Connect to load side of channel-1  
sense resistor.  
IN–1  
IN+1  
IN–2  
IN+2  
IN–3  
IN+3  
IN–4  
IN+4  
2
1
Current-sense amplifier positive input for channel 1. Connect to bus-voltage side of  
channel-1 sense resistor.  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Current-sense amplifier negative input for channel 2. Connect to load side of channel-2  
sense resistor.  
4
Current-sense amplifier positive input for channel 2. Connect to bus-voltage side of  
channel-2 sense resistor.  
3
Current-sense amplifier negative input for channel 3. Connect to load side of channel-3  
sense resistor.  
11  
12  
9
Current-sense amplifier positive input for channel 3. Connect to bus-voltage side of  
channel-3 sense resistor.  
Current-sense amplifier negative input for channel 4. Connect to load side of channel-4  
sense resistor.  
Current-sense amplifier positive input for channel 4. Connect to bus-voltage side of  
channel-4 sense resistor.  
10  
OUT1  
OUT2  
OUT3  
OUT4  
VS  
16  
5
Output  
Output  
Output  
Output  
Power  
Channel 1 output voltage  
Channel 2 output voltage  
Channel 3 output voltage  
Channel 4 output voltage  
Power supply  
13  
8
14, 15  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: INA290 INA2290 INA4290  
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
22  
UNIT  
Vs  
Supply voltage  
V
Analog inputs, differential (VIN+) – (VIN–  
)
–30  
30  
(2)  
VIN+, VIN–  
V
Analog inputs, common mode (VIN+ or VIN-  
Analog outputs, output voltage  
Operating temperature  
)
–20  
122  
VOUTx  
TA  
GND – 0.3  
–55  
Vs + 0.3  
150  
V
°C  
°C  
°C  
TJ  
Junction temperature  
150  
Tstg  
Storage temperature  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) VIN+ and VIN– are the voltages at the VIN+ and VIN– pins, respectively.  
6.2 ESD Ratings  
VALUE  
UNIT  
V
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
±1000  
V(ESD) Electrostatic discharge  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
VS  
NOM  
48  
MAX  
120  
20  
UNIT  
VCM  
VS  
Common-mode input range(1)  
Operating supply range  
Ambient temperature  
V
V
2.7  
–40  
5
TA  
125  
°C  
(1) Common-mode voltage can go below VS under certain conditions. See Figure 7-1 for additional information on operating range.  
6.4 Thermal Information  
INA4290  
RGV (QFN)  
16 PINS  
45.9  
INA2290  
DGK (VSSOP)  
8 PINS  
169.3  
INA290  
DCK (SC-70)  
5 PINS  
191.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
41.6  
60.1  
144.4  
21.0  
91.3  
69.2  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.0  
8.3  
46.2  
ΨJB  
21.0  
89.7  
69.0  
RθJC(bot)  
6.4  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: INA290 INA2290 INA4290  
 
 
 
 
 
 
 
 
 
 
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
6.5 Electrical Characteristics  
at TA = 25 °C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, VCM = VIN– = 48 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT  
VCM = 2.7 V to 120 V, TA = –40°C to +125°C  
f = 50 kHz  
140  
160  
85  
6
CMRR  
Common-mode rejection ratio  
dB  
µV  
A1 devices, INA290, INA2290  
A1 devices, INA4290  
A2 devices  
±25  
±32  
±20  
±15  
±12  
6
Vos  
Offset voltage, input referred  
3
A3 devices  
3
A4, A5 devices  
2
dVos/dT Offset voltage drift  
TA = –40°C to +125°C  
0.2 µV/  
Power supply rejection ratio,  
input referred  
PSRR  
VS = 2.7 V to 20 V, TA = –40°C to +125°C  
0.05  
±0.5  
µV/V  
IB+, VSENSE = 0 mV  
IB–, VSENSE = 0 mV  
10  
10  
20  
20  
30  
30  
IB  
Input bias current  
µA  
OUTPUT  
A1 devices  
A2 devices  
A3 devices  
A4 devices  
A5 devices  
20  
50  
G
Gain  
100  
200  
500  
V/V  
%
A1, A2, A3 devices,  
GND + 50 mV ≤ VOUT ≤ VS – 200 mV  
0.02  
0.02  
±0.1  
Gain error  
A4, A5 devices,  
GND + 50 mV ≤ VOUT ≤ VS – 200 mV  
±0.15  
5
Gain error drift  
TA = –40°C to +125°C  
1.5  
0.01  
500  
ppm/°C  
%
Nonlinearity error  
Maximum capacitive load  
No sustained oscillations, no isolation resistor  
pF  
VOLTAGE OUTPUT  
Swing to VS power supply rail RLOAD = 10 kΩ, TA = –40°C to +125°C  
VS – 0.07  
0.005  
VS – 0.2  
0.025  
V
V
RLOAD = 10 kΩ, VSENSE = 0 V, TA = –40°C to  
Swing to ground  
+125°C  
FREQUENCY RESPONSE  
A1 devices, CLOAD = 5 pF, VSENSE = 200 mV  
A2 devices, CLOAD = 5 pF, VSENSE = 80 mV  
A3 devices, CLOAD = 5 pF, VSENSE = 40 mV  
A4 devices, CLOAD = 5 pF, VSENSE = 20 mV  
A5 devices, CLOAD = 5 pF, VSENSE = 8 mV  
1100  
1100  
900  
850  
800  
2
BW  
SR  
Bandwidth  
kHz  
Slew rate  
V/µs  
µs  
VOUT = 4 V ± 0.1 V step, output settles to 0.5%  
VOUT = 4 V ± 0.1 V step, output settles to 1%  
9
Settling time  
5
NOISE  
Ven  
Voltage noise density  
50  
nV/√Hz  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: INA290 INA2290 INA4290  
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
at TA = 25 °C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, VCM = VIN– = 48 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
VS  
IQ  
Supply voltage  
TA = –40°C to+125°C  
2.7  
20  
500  
V
370  
680  
Quiescent current, INA290  
µA  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
600  
900  
IQ  
Quiescent current, INA2290  
Quiescent current, INA4290  
µA  
µA  
1200  
1600  
1800  
1250  
IQ  
6.6 Typical Characteristics  
al specifications at TA = 25°C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, and VCM = VIN– = 48 V (unless otherwise noted).  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
Figure 6-1. Input Offset Production Distribution,  
A1 Devices  
Figure 6-2. Input Offset Production Distribution,  
A2 Devices  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
Figure 6-3. Input Offset Production Distribution,  
A3 Devices  
Figure 6-4. Input Offset Production Distribution,  
A4 Devices  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: INA290 INA2290 INA4290  
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
al specifications at TA = 25°C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, and VCM = VIN– = 48 V (unless otherwise noted).  
Input Offset Voltage (mV)  
Figure 6-6. Input Offset Production Distribution,  
Figure 6-5. Input Offset Production Distribution,  
A1 Devices (INA4290)  
A5 Devices  
8
4
20  
10  
0
0
G = 20  
G = 50  
G = 20  
G = 50  
-10  
-4  
G = 100  
G = 200  
G = 500  
G = 100  
G = 200  
G = 500  
-20  
-8  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
Temperature (èC)  
Figure 6-7. Input Offset Voltage vs. Temperature  
180  
Figure 6-8. Common-Mode Rejection Ratio vs. Temperature  
60  
50  
40  
30  
20  
160  
140  
120  
100  
80  
G = 20  
G = 50  
G = 100  
G = 200  
G = 500  
10  
0
60  
40  
-10  
20  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
VSENSE = 4 V / Gain  
Figure 6-10. Gain vs. Frequency  
SPACE  
Figure 6-9. Common-Mode Rejection Ratio vs. Frequency  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: INA290 INA2290 INA4290  
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
al specifications at TA = 25°C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, and VCM = VIN– = 48 V (unless otherwise noted).  
0.10  
0.05  
75  
60  
45  
30  
15  
0
G = 20  
G = 50  
G = 100  
G = 200  
G = 500  
G = 20  
G = 50  
G = 100  
G = 200  
G = 500  
0.00  
-15  
-30  
-45  
-0.05  
-0.10  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
Temperature (èC)  
Figure 6-12. Power-Supply Rejection Ratio vs. Temperature  
Figure 6-11. Gain Error vs. Temperature  
160  
140  
120  
100  
80  
25  
20  
15  
VS = 5V  
VS = 20V  
VS = 2.7V  
VS = 0V  
10  
5
60  
0
40  
20  
-5  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
-20  
0
20  
40  
60  
Common-Mode Voltage (V)  
80  
100  
120  
SPACE  
VSENSE = 0 V  
Figure 6-13. Power-Supply Rejection Ratio vs. Frequency  
Figure 6-14. Input Bias Current vs. Common-Mode Voltage  
240  
25  
IB+  
IB-  
200  
20  
IB+, VS = 0V  
160  
IB-, VS = 0V  
120  
VS = 2.7 to 20V, VCM = 48V  
VS = 2.7 to 20V, VCM = 120V  
VS = 2.7 to 5V, VCM = 2.7V  
VS = 20V, VCM = 7V  
VS = 2.7 to 20V, VCM = 0V  
15  
80  
40  
10  
0
VS = 0V, VCM = 48V  
VS = 0V, VCM = 120V  
VS = 0 to 20V, VCM = -20V  
5
-40  
-80  
-120  
-160  
0
-5  
0
200  
400  
VSENSE (mV)  
600  
800  
1000  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
Figure 6-16. Input Bias Current vs. VSENSE  
A1 Devices  
,
Figure 6-15. Input Bias Current vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: INA290 INA2290 INA4290  
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
al specifications at TA = 25°C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, and VCM = VIN– = 48 V (unless otherwise noted).  
140  
120  
100  
80  
100  
80  
60  
40  
20  
0
IB+  
IB-  
IB+, G=200  
IB+, G=500  
IB-  
IB+, VS = 0V  
IB-, VS = 0V  
IB+, VS = 0V  
IB-, VS = 0V  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-20  
0
100  
200  
VSENSE (mV)  
300  
400  
0
20  
40  
60  
80  
100  
VSENSE (mV)  
Figure 6-17. Input Bias Current vs. VSENSE  
A2 and A3 Devices  
,
Figure 6-18. Input Bias Current vs. VSENSE  
A4 and A5 Devices  
,
VS  
VS  
25èC  
125èC  
-40èC  
25èC  
125èC  
-40èC  
VS - 1  
VS - 2  
VS - 3  
VS - 1  
VS - 2  
GND + 3  
GND + 2  
GND + 1  
GND  
GND + 2  
GND + 1  
GND  
0
5
10  
15  
Output Current (mA)  
20  
25  
30  
35  
40  
0
5
10  
15  
Output Current (mA)  
20  
25  
30  
35  
40  
VS = 2.7 V  
VS = 5 V  
Figure 6-20. Output Voltage vs. Output Current  
Figure 6-19. Output Voltage vs. Output Current  
VS  
VS - 1  
VS - 2  
VS - 3  
50  
25èC  
125èC  
-40èC  
VS = 5V, Sourcing  
VS = 5V, Sinking  
VS = 20V, Sourcing  
VS = 20V, Sinking  
VS = 2.7V, Sourcing  
VS = 2.7V, Sinking  
40  
30  
20  
10  
0
GND + 3  
GND + 2  
GND + 1  
GND  
0
5
10  
15  
20  
25  
Output Current (mA)  
30  
35  
40  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
VS = 20 V  
SPACE  
Figure 6-22. Short-Circuit Current vs. Temperature  
Figure 6-21. Output Voltage vs. Output Current  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: INA290 INA2290 INA4290  
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
al specifications at TA = 25°C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, and VCM = VIN– = 48 V (unless otherwise noted).  
1000  
500  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
200  
100  
50  
20  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
VS = 5V  
VS = 20V  
VS = 2.7V  
0.02  
0.01  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
SPACE  
Figure 6-23. Output Impedance vs. Frequency  
RL = 10 kΩ  
Figure 6-24. Swing to Supply vs. Temperature  
0.020  
0.015  
0.010  
0.005  
0.000  
100  
VS = 5V  
VS = 20V  
VS = 2.7V  
G = 20  
G = 500  
80  
70  
60  
50  
40  
30  
20  
10  
10  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
Temperature (èC)  
RL = 10 kΩ  
SPACE  
Figure 6-26. Input-Referred Noise vs. Frequency  
400  
Figure 6-25. Swing to GND vs. Temperature  
375  
350  
325  
300  
275  
250  
225  
200  
175  
VS = 5V  
VS = 20V  
VS = 2.7V  
0
2.5  
5
7.5  
10  
12.5  
Output Voltage (V)  
15  
17.5  
20  
Time (1 s/div)  
Figure 6-28. Quiescent Current vs. Output Voltage,  
INA290  
Figure 6-27. Input-Referred Noise  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: INA290 INA2290 INA4290  
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
al specifications at TA = 25°C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, and VCM = VIN– = 48 V (unless otherwise noted).  
Figure 6-29. Quiescent Current vs. Output Voltage,  
INA2290  
Figure 6-30. Quiescent Current vs. Output Voltage,  
INA4290  
425  
750  
700  
650  
600  
400  
375  
350  
325  
300  
550  
VS = 5V  
VS = 20V  
VS = 2.7V  
VS = 5V  
VS = 20V  
VS = 2.7V  
500  
-75 -50 -25  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
0
25  
50  
Temperature (°C)  
75 100 125 150 175  
Temperature (èC)  
Figure 6-31. Quiescent Current vs. Temperature,  
INA290  
Figure 6-32. Quiescent Current vs. Temperature,  
INA2290  
425  
400  
375  
350  
325  
300  
25èC  
125èC  
-40èC  
0
2
4
6
8
10  
12  
Supply Voltage (V)  
14  
16  
18  
20  
Figure 6-34. Quiescent Current vs. Supply Voltage,  
INA290  
Figure 6-33. Quiescent Current vs. Temperature,  
INA4290  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: INA290 INA2290 INA4290  
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
al specifications at TA = 25°C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, and VCM = VIN– = 48 V (unless otherwise noted).  
800  
750  
700  
650  
600  
25°C  
125°C  
-40°C  
550  
0
2
4
6
8
10  
12  
Supply Voltage (V)  
14  
16  
18  
20  
Figure 6-36. Quiescent Current vs. Supply Voltage, INA4290  
Figure 6-35. Quiescent Current vs. Supply Voltage,  
INA2290  
425  
VS = 5V  
VS = 20V  
VS = 2.7V  
400  
375  
350  
325  
300  
-20  
0
20  
40  
60  
Common-Mode Voltage (V)  
80  
100  
120  
Figure 6-37. Quiescent Current vs. Common-Mode Voltage,  
INA290  
Figure 6-38. Quiescent Current vs. Common-Mode Voltage,  
INA2290  
VCM  
VOUT  
2.7V  
2.5V  
Time (12.5ms/div)  
RL = 10 kΩ  
VSENSE = 5 mV  
Figure 6-40. Common-Mode Voltage Fast Transient Pulse,  
A5 Devices  
Figure 6-39. Quiescent Current vs. Common-Mode Voltage,  
INA4290  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: INA290 INA2290 INA4290  
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
al specifications at TA = 25°C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, and VCM = VIN– = 48 V (unless otherwise noted).  
Supply Voltage  
Output Voltage  
0V  
0V  
0V  
Time (5 ms/div)  
Time (10 ms/div)  
VSENSE = 0 mV  
Figure 6-42. Start-Up Response  
SPACE  
Figure 6-41. Step Response,  
A3 Devices  
160  
140  
120  
100  
80  
0V  
Supply Voltage  
Output Voltage  
60  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
Time (25 ms/div)  
Any channel to any other channel  
VSENSE = 5 mV  
Figure 6-44. Channel Separation vs. Frequency, Multichannel  
Devices  
Figure 6-43. Supply Transient Response,  
A5 Devices  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: INA290 INA2290 INA4290  
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The INAx290 is a high-side only current-sense amplifier that offers a wide common-mode range, precision  
zero-drift topology, excellent common-mode rejection ratio (CMRR), high bandwidth, and fast slew rate. Different  
gain versions are available to optimize the output dynamic range based on the application. The INAx290 is  
designed using a transconductance architecture with a current-feedback amplifier that enables low bias currents  
of 20 µA and a common-mode voltage of 120 V.  
7.2 Functional Block Diagram  
VS  
INA4290 (quad channel)  
VCM  
INA2290 (dual channel)  
INA290 (single channel)  
ISENSE  
R1  
IN+  
œ
Current  
Feedback  
RSENSE  
Bias  
R1  
+
OUT  
INœ  
Buffer  
SAR  
ADC  
Load  
RL  
GND  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: INA290 INA2290 INA4290  
 
 
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
7.3 Feature Description  
7.3.1 Amplifier Input Common-Mode Range  
The INAx290 supports large input common-mode voltages from 2.7 V to 120 V and features a high DC CMRR  
of 160 dB (typical) and a 85-dB AC CMRR at 50 kHz. The minimum common-mode voltage as shown in Figure  
7-1 is restricted by the supply voltage. The topology of the internal amplifiers INAx290 restricts operation to  
high-side, current-sensing applications.  
8
7
6
5
4
3
2
VCM = 2.7V  
1
0
0
2.5  
5
7.5  
10  
12.5  
Supply Voltage (V)  
15  
17.5  
20  
Figure 7-1. Minimum Common-Mode Voltage vs Supply  
7.3.2 Input-Signal Bandwidth  
Gain vs. Frequency shows the INAx290 –3-dB bandwidth is gain-dependent with gain options of 20 V/V, 50 V/V,  
100 V/V, 200 V/V, and 500 V/V. The unique multistage design enables the amplifier to achieve high bandwidth  
at all gains. This high bandwidth provides the throughput and fast response required for rapid detection and  
processing of overcurrent events.  
The device bandwidth also depends on the applied VSENSE voltage. Figure 7-2 shows the bandwidth  
performance profile of the device over frequency as output voltage increases for each gain variation. As shown  
in Figure 7-2, the device exhibits the highest bandwidth with higher VSENSE voltages, and the bandwidth is  
higher with lower device gain options. Individual requirements determine the acceptable limits of error for  
high-frequency, current-sensing applications. Testing and evaluation in the end application or circuit is required  
to determine the acceptance criteria and validate whether or not the performance levels meet the system  
specifications.  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
G = 20  
G = 50  
G = 100  
G = 200  
G = 500  
0
0.5  
1
1.5  
2
2.5  
Output Voltage (V)  
3
3.5  
4
Figure 7-2. Bandwidth vs Output Voltage  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: INA290 INA2290 INA4290  
 
 
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
7.3.3 Low Input Bias Current  
The INAx290 input bias current draws 20 μA (typical) even with common-mode voltages as high as 120 V. This  
current enables precision current sensing in applications where the sensed current is small or in applications that  
require lower input leakage current.  
7.3.4 Low VSENSE Operation  
The INAx290 enables accurate current measurement across the entire valid VSENSE range. The zero-drift input  
architecture of the INAx290 provides the low offset voltage and low offset drift required to measure low VSENSE  
levels accurately across the wide operating temperature of –40°C to +125°C. The capability to measure low  
sense voltages enables accurate measurements at lower load currents, and also allows reduction of the sense  
resistor value for a given operating current, which minimizes the power loss in the current-sensing element.  
For multichannel devices, the offset voltage and offset drift characteristics can vary from channel to channel;  
however, all channels meet the maximum values specified in Electrical Characteristics.  
7.3.5 Wide Fixed-Gain Output  
The INAx290 gain error is < 0.1% at room temperature for most gain options, with a maximum drift of 5 ppm/°C  
over the full temperature range of –40°C to +125°C. The INAx290 is available in multiple gain options of 20 V/V,  
50 V/V, 100 V/V, 200 V/V, and 500 V/V, which is selected based on the desired signal-to-noise ratio and other  
system requirements of the design.  
The INAx290 closed-loop gain is set by a precision, low-drift internal resistor network. The ratio of these resistors  
are excellently matched, although the absolute values can vary significantly. TI does not recommend adding  
additional resistance around the INAx290 to change the effective gain because of this variation. Table 7-1  
describes the typical values of the internal gain resistors seen in the functional diagram above.  
Table 7-1. Fixed Gain Resistor  
GAIN  
R1  
RL  
20 (V/V)  
50 (V/V)  
100 (V/V)  
200 (V/V)  
500 (V/V)  
25 kΩ  
10 kΩ  
10 kΩ  
5 kΩ  
500 kΩ  
500 kΩ  
1000 kΩ  
1000 kΩ  
1000 kΩ  
2 kΩ  
7.3.6 Wide Supply Range  
The INAx290 operates with a wide supply range from a 2.7 V to 20 V. The output stage supports a full-  
scale output voltage range of up to VS. A wide output range can enable very-wide dynamic range current  
measurements. For a gain of 20 V/V, the maximum acceptable differential input is 1 V.  
The INAx290A1 gain offset is ±25 µV and this device is capable of measuring a wide dynamic range of current  
up to 92 dB.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: INA290 INA2290 INA4290  
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Unidirectional Operation  
The INAx290 measures the differential voltage developed by current flowing through a resistor that is commonly  
referred to as a current-sensing resistor or a current-shunt resistor. Figure 7-3 shows that the INAx290 operates  
in unidirectional mode only, meaning the device only senses current sourced from a power supply to a system  
load.  
5 V  
48-V  
Supply  
ISENSE  
R1  
IN+  
+
Current  
Feedback  
RSENSE  
Bias  
R1  
œ
OUT  
INœ  
Buffer  
RL  
Load  
GND  
Figure 7-3. Unidirectional Application (Single-Channel Device)  
The linear range of the output stage is limited to how close the output voltage can approach ground under  
zero-input conditions. The zero current output voltage of the INAx290 is very small, with a maximum of GND +  
25 mV. Apply a sense voltage of (25 mV / Gain) or greater to keep the INAx290 output in the linear region of  
operation.  
7.4.2 High Signal Throughput  
With a bandwidth of 1.1 MHz at a gain of 20 V/V and a slew rate of 2 V/µs, the INAx290 is specifically designed  
for detecting and protecting applications from fast inrush currents. As shown in Table 7-2, the INAx290 responds  
in less than 2 µs for a system measuring a 75-A threshold on a 2-mΩ shunt.  
Table 7-2. Response Time  
INAx290  
PARAMETER  
Gain  
EQUATION  
AT VS = 5 V  
20 V/V  
100 A  
75 A  
G
IMAX  
Maximum current  
IThreshold  
RSENSE  
VOUT_MAX  
VOUT_THR  
SR  
Threshold current  
Current sense resistor value  
Output voltage at maximum current  
Output voltage at threshold current  
Slew rate  
2 mΩ  
VOUT = IMAX × RSENSE × G  
4 V  
VOUT_THR = ITHR × RSENSE × G  
3 V  
2 V/µs  
< 2 µs  
Output response time  
Tresponse = VOUT_THR / SR  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: INA290 INA2290 INA4290  
 
 
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The INAx290 amplifies the voltage developed across a current-sensing resistor as current flows through the  
resistor to the load. The wide input common-mode voltage range and high common-mode rejection of the  
INAx290 allows use over a wide range of voltage rails while still maintaining an accurate current measurement.  
8.1.1 RSENSE and Device Gain Selection  
The accuracy of any current-sense amplifier is maximized by choosing the current-sense resistor to be as large  
as possible. A large sense resistor maximizes the differential input signal for a given amount of current flow  
and reduces the error contribution of the offset voltage. However, there are practical limits as to how large the  
current-sense resistor can be in a given application because of the resistor size and maximum allowable power  
dissipation. Equation 1 gives the maximum value for the current-sense resistor for a given power dissipation  
budget:  
PDMAX  
RSENSE  
<
2
IMAX  
(1)  
where:  
PDMAX is the maximum allowable power dissipation in RSENSE  
IMAX is the maximum current that flows through RSENSE  
.
.
An additional limitation on the size of the current-sense resistor and device gain results from the power-supply  
voltage, VS, and device swing-to-rail limitations. To ensure that the current-sense signal is properly passed to the  
output, both positive and negative output swing limitations must be examined. Equation 2 provides the maximum  
values of RSENSE and GAIN to keep the device from exceeding the positive swing limitation.  
IMAX ª RSENSE ª GAIN < VSP  
(2)  
where:  
IMAX is the maximum current that flows through RSENSE  
GAIN is the gain of the current-sense amplifier.  
VSP is the positive output swing as specified in this data sheet.  
.
To avoid positive output swing limitations when selecting the value of RSENSE, there is always a trade-off  
between the value of the sense resistor and the gain of the device under consideration. If the sense resistor  
selected for the maximum power dissipation is too large, then selecting a lower gain device is possible to avoid  
positive swing limitations.  
The negative swing limitation places a limit on how small the sense resistor value can be for a given application.  
Equation 3 provides the limit on the minimum value of the sense resistor.  
IMIN ª RSENSE ª GAIN > VSN  
(3)  
where:  
IMIN is the minimum current that flows through RSENSE  
GAIN is the gain of the current-sense amplifier.  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: INA290 INA2290 INA4290  
 
 
 
 
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
VSN is the negative output swing of the device.  
Table 8-1 shows an example of the different results obtained from using five different gain versions of the  
INAx290. From the table data, the highest gain device allows a smaller current-shunt resistor and decreased  
power dissipation in the element.  
Table 8-1. RSENSE Selection and Power Dissipation  
RESULTS AT VS = 5 V  
PARAMETER(1)  
EQUATION  
INAx290A1 INAx290A2 INAx290A3 INAx290A4 INAx290A5  
G
Gain  
20 V/V  
50 V/V  
100 V/V  
200 V/V  
500 V/V  
Ideal differential input voltage (Ignores  
swing limitation and power-supply  
variation.)  
VSENSE  
VSENSE = VOUT / G  
250 mV  
100 mV  
50 mV  
25 mV  
10 mV  
RSENSE  
PSENSE  
Current-sense resistor value  
RSENSE = VSENSE / IMAX  
25 mΩ  
2.5 W  
10 mΩ  
1 W  
5 mΩ  
0.5W  
2.5 mΩ  
0.25 W  
1 mΩ  
0.1 W  
Current-sense resistor power dissipation  
RSENSE x IMAX2  
(1) Design example with 10-A, full-scale current with maximum output voltage set to 5 V.  
8.1.2 Input Filtering  
Note  
Input filters are not required for accurate measurements using the INAx290, and use of filters in this  
location is not recommended. If filter components are used on the input of the amplifier, follow the  
guidelines in this section to minimize the effects on performance.  
Based strictly on user design requirements, external filtering of the current signal may be desired. The initial  
location that can be considered for the filter is at the output of the current-sense amplifier. Although placing the  
filter at the output satisfies the filtering requirements, this location changes the low output impedance measured  
by any circuitry connected to the output voltage pin. The other location for filter placement is at the current-sense  
amplifier input pins. This location also satisfies the filtering requirement, but the components must be carefully  
selected to minimally impact device performance. Figure 8-1 shows a filter placed at the input pins.  
VS  
VCM  
1
f3dB  
=
4ŒRINCIN  
ISENSE  
RIN  
R1  
R1  
IN+  
+
CIN  
Current  
RSENSE  
Bias  
Feedback  
RIN  
OUT  
-
INœ  
Buffer  
Load  
RL  
GND  
Figure 8-1. Filter at Input Pins (Single Channel Shown for Simplicity)  
External series resistance provides a source of additional measurement error, so keep the value of these  
series resistors to 10 Ω or less to reduce loss of accuracy. The internal bias network shown in Figure 8-1  
creates a mismatch in input bias currents (see Figure 6-16, Figure 6-17, and Figure 6-18) when a differential  
voltage is applied between the input pins. If additional external series filter resistors are added to the circuit, a  
mismatch is created in the voltage drop across the filter resistors. This voltage is a differential error voltage in the  
shunt resistor voltage. In addition to the absolute resistor value, mismatch resulting from resistor tolerance can  
significantly impact the error because this value is calculated based on the actual measured resistance.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: INA290 INA2290 INA4290  
 
 
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
Use Equation 4 to calculate the measurement error expected from the additional external filter resistors, and use  
Equation 5 to calculate the gain error factor.  
Gain Error (%) = 100 x (Gain Error Factor Þ 1)  
(4)  
RB × R1  
Gain Error Factor =  
(RB × R1) + (RB × RIN) + (2 × RIN × R1)  
(5)  
Where:  
RIN is the external filter resistance value.  
R1 is the INAx290 input resistance value specified in Table 7-1.  
RB in the internal bias resistance, which is 6600 Ω ± 20%.  
The gain error factor, shown in Equation 4, can be calculated to determine the gain error introduced by the  
additional external series resistance. Equation 4 calculates the deviation of the shunt voltage, resulting from  
the attenuation and imbalance created by the added external filter resistance. Table 8-2 provides the gain error  
factor and gain error for several resistor values.  
Table 8-2. Example Gain Error Factor and Gain Error for 10-Ω External Filter Input Resistors  
DEVICE (GAIN)  
A1 devices (20)  
A2 devices (50)  
A3 devices (100)  
A4 devices (200)  
A5 devices (500)  
GAIN ERROR FACTOR  
GAIN ERROR (%)  
0.99658  
–0.34185  
0.99598  
–0.40141  
0.99598  
–0.40141  
0.99499  
–0.50051  
0.99203  
–0.79663  
8.2 Typical Application  
The INAx290 is a unidirectional, current-sense amplifier capable of measuring currents through a resistive shunt  
with shunt common-mode voltages from 2.7 V to 120 V. Figure 8-2 shows the circuit configuration for monitoring  
current in a high-side radio frequency (RF) power amplifier (PA) application.  
54 V  
+
INAx290  
ADC  
œ
RF  
Out  
GND  
Microprocessor  
RF  
DAC  
GND  
Figure 8-2. Current Sensing in a PA Application (Single-Channel Device)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: INA290 INA2290 INA4290  
 
 
 
 
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
8.2.1 Design Requirements  
VSUPPLY is set to 5 V and the common-mode voltage set to 54 V. Table 8-3 lists the design setup for this  
application.  
Table 8-3. Design Parameters  
DESIGN PARAMETERS  
INAx290 supply voltage  
High-side supply voltage  
Maximum sense current (IMAX  
Gain option  
EXAMPLE VALUE  
5 V  
5 V  
)
5 A  
50 V/V  
8.2.2 Detailed Design Procedure  
The maximum value of the current-sense resistor is calculated based on the choice of gain, value of the  
maximum current to be sensed (IMAX), and the power-supply voltage (VS). When operating at the maximum  
current, the output voltage must not exceed the positive output swing specification, VSP. Under the given design  
parameters, Equation 6 calculates the maximum value for RSENSE as 19.2 mΩ.  
VSP  
RSENSE  
<
IMAX ìGAIN  
(6)  
Although 15 mΩ is less than the maximum value calculated, 15 mΩ is selected for this design example because  
this value is still large enough to provide an adequate signal at the current-sense amplifier output.  
8.2.2.1 Overload Recovery With Negative VSENSE  
The INAx290 is a unidirectional current-sense amplifier that is meant to operate with a positive differential input  
voltage (VSENSE). If negative VSENSE is applied, the device is placed in an overload condition and requires time  
to recover when VSENSE returns positive. The required overload recovery time increases with more negative  
VSENSE  
.
8.2.3 Application Curve  
Figure 8-3 shows the output response of the device to a high-frequency sinusoidal current.  
VSENSE (20 mV/div)  
INA290A2 VOUT (1 V/div)  
Time (10ms/div)  
Figure 8-3. INAx290 Output Response  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: INA290 INA2290 INA4290  
 
 
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
9 Power Supply Recommendations  
The input circuitry of the INAx290 can accurately measure beyond the power-supply voltage. The power supply  
can be 20 V, whereas the load power-supply voltage at IN+ and IN– can go up to 120 V. The output voltage  
range of the OUT pin is limited by the voltage on the VS pin and the device swing to the supply specification.  
10 Layout  
10.1 Layout Guidelines  
TI always recommends to follow good layout practices:  
Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique  
makes sure that only the current-sensing resistor impedance is detected between the input pins. Poor routing  
of the current-sensing resistor commonly results in additional resistance present between the input pins.  
Given the very low ohmic value of the current resistor, any additional high-current carrying impedance can  
cause significant measurement errors.  
Place the power-supply bypass capacitor as close to the device power supply and ground pins as possible.  
The recommended value of this bypass capacitor is 0.1 µF. Additional decoupling capacitance can be added  
to compensate for noisy or high-impedance power supplies.  
When routing the connections from the current-sense resistor to the device, keep the trace lengths as short  
as possible.  
10.2 Layout Examples  
Load  
RSENSE  
TI Device  
Current Sense  
Output  
1
2
3
5
INœ  
OUT  
GND  
VS  
Direction of  
Current Flow  
Power Supply, VS  
(2.7 V to 20 V)  
4 IN+  
CBYPASS  
VIA to Ground  
Plane  
Bus Voltage  
Figure 10-1. Recommended Layout for the INA290  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: INA290 INA2290 INA4290  
 
 
 
 
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
Direction of  
Current Flow  
RSHUNT1  
Load 1  
Bus Voltage1  
CBYPASS  
Power Supply, VS:  
2.7 V to 20 V  
5
4
3
2
1
IN+1  
VS  
INœ1 6  
Current Sense Output 1  
Current Sense Output 2  
OUT1  
OUT2  
GND  
7
8
IN+2  
IN-2  
VIA to Ground  
Plane  
Load 2  
Bus Voltage2  
RSHUNT2  
Direction of  
Current Flow  
Figure 10-2. Recommended Layout for the INA2290  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: INA290 INA2290 INA4290  
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
Bus Voltage1  
Bus Voltage3  
Direction  
of Current  
Flow  
Direction  
of Current  
Flow  
RSHUNT1  
RSHUNT3  
Load 1  
Load 3  
VIA to  
Ground  
Plane  
Power Supply, VS:  
2.7 V to 20 V  
CBYPASS  
Current  
Sense  
Current  
Sense  
Output 1  
Output 3  
IN+1  
IN+3  
IN–3  
IN+4  
IN–4  
IN–1  
IN+2  
IN–2  
VIA to  
Ground  
Plane  
Current  
Sense  
Current  
Sense  
Output 2  
Output 4  
Bus Voltage2  
Bus Voltage4  
RSHUNT4  
RSHUNT2  
Direction  
of Current  
Flow  
Direction  
of Current  
Flow  
LOAD2  
LOAD4  
Figure 10-3. Recommended Layout for the INA4290  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: INA290 INA2290 INA4290  
INA290, INA2290, INA4290  
SBOS961C – JUNE 2020 – REVISED JUNE 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, INA290EVM User's Guide (SBOU230)  
Texas Instruments, INA2290EVM User's Guide (SBOU243)  
Texas Instruments, INA4290EVM User's Guide (SBOU258)  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: INA290 INA2290 INA4290  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA2290A1IDGKR  
INA2290A1IDGKT  
INA2290A2IDGKR  
INA2290A2IDGKT  
INA2290A3IDGKR  
INA2290A3IDGKT  
INA2290A4IDGKR  
INA2290A4IDGKT  
INA2290A5IDGKR  
INA2290A5IDGKT  
INA290A1IDCKR  
INA290A1IDCKT  
INA290A2IDCKR  
INA290A2IDCKT  
INA290A3IDCKR  
INA290A3IDCKT  
INA290A4IDCKR  
INA290A4IDCKT  
INA290A5IDCKR  
INA290A5IDCKT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SC70  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
8
8
8
8
8
8
8
8
8
8
5
5
5
5
5
5
5
5
5
5
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2FAQ  
2FAQ  
2FBQ  
2FBQ  
2FCQ  
2FCQ  
2FDQ  
2FDQ  
2FEQ  
2FEQ  
1FQ  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SC70  
1FQ  
SC70  
1FR  
SC70  
1FR  
SC70  
1FS  
SC70  
1FS  
SC70  
1FT  
SC70  
1FT  
SC70  
1FU  
SC70  
250  
RoHS & Green  
1FU  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jul-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA4290A1IRGVR  
INA4290A1IRGVT  
INA4290A2IRGVR  
INA4290A2IRGVT  
INA4290A3IRGVR  
INA4290A3IRGVT  
INA4290A4IRGVR  
INA4290A4IRGVT  
INA4290A5IRGVR  
INA4290A5IRGVT  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
INA  
4290A1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
INA  
4290A1  
INA  
4290A2  
INA  
4290A2  
INA  
4290A3  
INA  
4290A3  
INA  
4290A4  
INA  
4290A4  
INA  
4290A5  
INA  
4290A5  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jul-2021  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF INA290 :  
Automotive : INA290-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jul-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA2290A1IDGKR  
INA2290A1IDGKT  
INA2290A2IDGKR  
INA2290A2IDGKT  
INA2290A3IDGKR  
INA2290A3IDGKT  
INA2290A4IDGKR  
INA2290A4IDGKT  
INA2290A5IDGKR  
INA2290A5IDGKT  
INA290A1IDCKR  
INA290A1IDCKT  
INA290A2IDCKR  
INA290A2IDCKT  
INA290A3IDCKR  
INA290A3IDCKT  
INA290A4IDCKR  
INA290A4IDCKT  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SC70  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
8
8
8
8
8
8
8
8
8
8
5
5
5
5
5
5
5
5
2500  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
8.4  
5.3  
5.3  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
1.4  
1.4  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
2500  
250  
5.3  
1.4  
5.3  
1.4  
2500  
250  
5.3  
1.4  
5.3  
1.4  
2500  
250  
5.3  
1.4  
5.3  
1.4  
2500  
250  
5.3  
1.4  
5.3  
1.4  
3000  
250  
2.47  
2.47  
2.47  
2.47  
2.47  
2.47  
2.47  
2.47  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
SC70  
8.4  
8.0  
SC70  
3000  
250  
8.4  
8.0  
SC70  
8.4  
8.0  
SC70  
3000  
250  
8.4  
8.0  
SC70  
8.4  
8.0  
SC70  
3000  
250  
8.4  
8.0  
SC70  
8.4  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jul-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA290A5IDCKR  
INA290A5IDCKT  
INA4290A1IRGVR  
INA4290A1IRGVT  
INA4290A2IRGVR  
INA4290A2IRGVT  
INA4290A3IRGVR  
INA4290A3IRGVT  
INA4290A4IRGVR  
INA4290A4IRGVT  
INA4290A5IRGVR  
INA4290A5IRGVT  
SC70  
SC70  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
DCK  
DCK  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
5
3000  
250  
180.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
8.4  
2.47  
2.47  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
2.3  
1.25  
1.25  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
5
8.4  
2.3  
8.0  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2500  
250  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
2500  
250  
2500  
250  
2500  
250  
2500  
250  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA2290A1IDGKR  
INA2290A1IDGKT  
INA2290A2IDGKR  
INA2290A2IDGKT  
INA2290A3IDGKR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
DGK  
DGK  
8
8
8
8
8
2500  
250  
366.0  
366.0  
366.0  
366.0  
366.0  
364.0  
364.0  
364.0  
364.0  
364.0  
50.0  
50.0  
50.0  
50.0  
50.0  
2500  
250  
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jul-2021  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA2290A3IDGKT  
INA2290A4IDGKR  
INA2290A4IDGKT  
INA2290A5IDGKR  
INA2290A5IDGKT  
INA290A1IDCKR  
INA290A1IDCKT  
INA290A2IDCKR  
INA290A2IDCKT  
INA290A3IDCKR  
INA290A3IDCKT  
INA290A4IDCKR  
INA290A4IDCKT  
INA290A5IDCKR  
INA290A5IDCKT  
INA4290A1IRGVR  
INA4290A1IRGVT  
INA4290A2IRGVR  
INA4290A2IRGVT  
INA4290A3IRGVR  
INA4290A3IRGVT  
INA4290A4IRGVR  
INA4290A4IRGVT  
INA4290A5IRGVR  
INA4290A5IRGVT  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SC70  
DGK  
DGK  
DGK  
DGK  
DGK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
RGV  
8
8
250  
2500  
250  
366.0  
366.0  
366.0  
366.0  
366.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
364.0  
364.0  
364.0  
364.0  
364.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
50.0  
50.0  
50.0  
50.0  
50.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
8
8
2500  
250  
8
5
3000  
250  
SC70  
5
SC70  
5
3000  
250  
SC70  
5
SC70  
5
3000  
250  
SC70  
5
SC70  
5
3000  
250  
SC70  
5
SC70  
5
3000  
250  
SC70  
5
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2500  
250  
2500  
250  
2500  
250  
2500  
250  
2500  
250  
Pack Materials-Page 3  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY