INA592_V01 [TI]

INA592 High-Precision, Wide-Bandwidth e-trim™ Difference Amplifier;
INA592_V01
型号: INA592_V01
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

INA592 High-Precision, Wide-Bandwidth e-trim™ Difference Amplifier

文件: 总44页 (文件大小:2807K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA592  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
INA592 High-Precision, Wide-Bandwidth e-trim™ Difference Amplifier  
1 Features  
3 Description  
G = 1/2 amplifier  
G = 2 amplifier  
The INA592 device is a low-power, wide bandwidth  
difference amplifier consisting of precision  
a
operational amplifier (op amp) and a precision resistor  
network. Excellent tracking of resistors (TCR)  
maintains gain accuracy and common-mode rejection  
over temperature. Unique features such as low offset  
40 μV (maximum), low offset drift (2 μV/°C maximum)  
high slew rate (18 V/μs), and high capacitive load  
drive of up to 500 pF make the INA592 a robust, high-  
performance difference amplifier for high-voltage  
industrial applications. The common-mode range of  
the internal op amp extends to the negative supply,  
enabling the device to operate in single-supply  
applications. The device operates on single (4.5 V to  
36 V) or dual supplies (±2.25 V to ±18 V).  
Low offset voltage: 40 μV (maximum)  
Low offset voltage drift: ±2 μV/°C (maximum)  
Low noise: 18 nV/√Hz at 1 kHz  
Low gain error: ±0.03% (maximum)  
High common-mode rejection: 88 dB (minimum)  
Wide bandwidth: 2 MHz GBW  
Low quiescent current: 1.1 mA per amplifier  
High slew rate: 18 V/μs  
High capacitive load drive capability: 500 pF  
Wide supply range:  
– Single supply: 4.5 V to 36 V  
– Dual supply: ±2.25 V to ±18 V  
Specified temperature range:  
–40°C to +125°C  
The difference amplifier is the foundation of many  
commonly used circuits. The INA592 provides this  
circuit function without using an expensive precision  
resistor network.  
Packages: 8-Pin MSOP, SOIC and 10-pin VSON  
packages (Preview)  
Device Information  
2 Applications  
PART NUMBER  
PACKAGE(1)  
SOIC (8) (Preview)  
VSSOP (8)  
BODY SIZE (NOM)  
4.90 mm × 3.91 mm  
3.00 mm × 3.00 mm  
AC drive position feedback  
Servo drive position feedback  
Condition monitoring module (voltage, current)  
Power supply module  
INA592  
VSON (10) (Preview) 3.00 mm × 3.00 mm  
(1) For all available packages, see the package option  
addendum at the end of the data sheet.  
Semiconductor test  
VCC  
20%  
15%  
10%  
5%  
INA592  
V+  
SENSE  
œIN  
12 k  
12 kꢀ  
6 kꢀ  
œ
ADC  
16 Bits Out  
AIN  
OUT  
REF  
+
6 kꢀ  
+IN  
Vœ  
0
1
2
-40 -32 -24 -16  
-8  
0
8
16  
24  
32  
40  
V
=
ì
-
(V+IN V-IN  
)
OUT  
Offset Voltage (mV)  
Typical Distribution of Offset Voltage (RTO)  
G = 1/2, VS = ±18 V  
INA592D/DGK in a Differential Input Data  
Acquisition Application  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics: G = 1/2 ..............................6  
6.6 Electrical Characteristics: G = 2 .................................7  
6.7 Typical Characteristics................................................9  
7 Detailed Description......................................................24  
7.1 Overview...................................................................24  
7.2 Functional Block Diagram.........................................24  
7.3 Feature Description...................................................24  
7.4 Device Functional Modes..........................................24  
8 Application and Implementation..................................25  
8.1 Application Information............................................. 25  
8.2 Typical Application.................................................... 25  
9 Power Supply Recommendations................................31  
10 Layout...........................................................................31  
10.1 Layout Guidelines................................................... 31  
10.2 Layout Example...................................................... 32  
11 Device and Documentation Support..........................34  
11.1 Receiving Notification of Documentation Updates..34  
11.2 Support Resources................................................. 34  
11.3 Trademarks............................................................. 34  
11.4 Electrostatic Discharge Caution..............................34  
11.5 Glossary..................................................................34  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 34  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (November 2020) to Revision D (December 2020)  
Page  
Added DRC advanced information (preview) package and associated content.................................................1  
Changes from Revision B (February 2020) to Revision C (November 2020)  
Page  
Added D (SOIC-8) advanced information (preview) package and associated content.......................................1  
Deleted input voltage to Absolute Maximum Ratings......................................................................................... 5  
Added input current to Absolute Maximum Ratings............................................................................................5  
Changed common-mode voltage show correct equation .................................................................................. 6  
Added input impedance value for differential and common-mode......................................................................6  
Changed common-mode voltage show correct equation................................................................................... 7  
Added input impedance for differential and common-mode............................................................................... 7  
Changed Fig. 6-39, Positive Output Voltage vs Output Current (sourcing) G = ½, Y-axis unit from µV to V......9  
Changes from Revision A (December 2018) to Revision B (February 2020)  
Page  
Changed Figure 79, Pseudoground Generator, output on pin 6 from (V+) / 2 to (V+) / 3.................................28  
Changes from Revision * (October 2018) to Revision A (December 2018)  
Page  
First release of production-data data sheet ....................................................................................................... 1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: INA592  
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
Device Comparison Table  
DEVICE  
DESCRIPTION  
GAIN EQUATION  
G = 0.5 V/V or 2 V/V  
G = 0.2 V/V  
INA592 High-precision, wide-bandwidth e-trim™ difference amplifier  
INA159 G = 0.2 V differential amplifier for ±10-V to 3-V and 5-V conversion  
INA137 Audio differential line receiver ±6 dB (G = 1/2 or 2)  
INA132 Low power, single-supply difference amplifier  
G = 0.5 V/V or 2 V/V  
G = 1 V/V  
INA819 35-µV offset, 0.4 µV/°C VOS drift, 8-nV/√ Hz noise, low-power, precision instrumentation amplifier  
G = 1 + 50 kΩ / RG  
INA821 35-µV offset, 0.4 µV/°C VOS drift, 7-nV/√ Hz noise, high-bandwidth, precision instrumentation amplifier G = 1 + 49.4 kΩ / RG  
INA333 25-µV VOS, 0.1 µV/°C VOS drift, 1.8-V to 5-V, RRO, 50-µA IQ, chopper-stabilized INA  
PGA280 20-mV to ±10-V programmable gain IA with 3-V or 5-V differential output; analog supply up to ±18 V  
PGA112 Precision programmable gain op amp with SPI  
G = 1 + 100 kΩ / RG  
Digital programmable  
Digital programmable  
5 Pin Configuration and Functions  
REF  
1
8
7
6
NC  
V+  
œ
œIN  
2
+
+IN  
3
4
OUT  
Vœ  
5
SENSE  
NC = No Connection  
Figure 5-1. D (SOIC-8, Preview) and DGK (VSSOP-8) Packages, Top View  
–INOP  
REF  
+INOP  
NC  
1
2
3
4
5
10  
9
V+  
Thermal pad  
–IN  
8
OUT  
+IN  
V–  
7
SENSE  
6
NC= No Connection  
Figure 5-2. DRC Package 10-Pin VSON With Thermal Pad Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
DGK, D  
(VSSOP, SOIC)  
NAME  
+IN  
DRC (VSON)  
12-kΩ resistor to non-inverting terminal of op amp. Used as positive input in G =  
½ configuration. Used as reference pin in G = 2 configuration.  
3
2
4
3
I
I
12-kΩ resistor to inverting terminal of op amp. Used as negative input in G = ½  
configuration. Connect to output in G = 2 configuration.  
–IN  
+INOP  
–INOP  
OUT  
6
10  
1
I
I
Direct connection to non-inverting terminal of op amp  
Direct connection to inverting terminal of op amp  
Output  
7
O
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: INA592  
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
DGK, D  
(VSSOP, SOIC)  
NAME  
REF  
DRC (VSON)  
6-kΩ resistor to non-inverting terminal of op amp. Used as reference pin in G =  
½ configuration. Used as positive input in G = 2 configuration.  
1
5
2
6
I
I
6-kΩ resistor to inverting terminal of op amp. Connect to output in G = ½  
configuration. Used as negative input in G = 2 configuration.  
SENSE  
V+  
V–  
NC  
7
4
8
8
5
9
Positive (highest) power supply  
Negative (lowest) power supply  
No internal connection (can be left floating)  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: INA592  
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
36  
UNIT  
V
Single supply, (V+) to (V–)  
V±  
Dual supply, (V+) – (V–)  
±18  
10  
IIN  
IS  
Input current  
mA  
Output short circuit (to ground)  
Operating temperature  
Junction temperature  
Storage temperature  
Continuous  
–55  
TA  
125  
125  
150  
°C  
°C  
°C  
TJ  
–55  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Section 6.3.  
Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability.  
6.2 ESD Ratings  
VALUE  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
36  
UNIT  
V
Single supply, VS = (V+)  
V±  
TA  
Supply voltage  
Dual supply, VS = (V+) – (V–)  
±2.25  
–40  
±18  
125  
Specified temperature  
°C  
6.4 Thermal Information  
INA592  
THERMAL METRIC  
DGK  
8 PINS  
158  
DRC  
10 PINS  
47.4  
D
UNIT  
8 PINS  
115  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
48.6  
78.7  
3.9  
49.6  
52.4  
59.2  
9.5  
21.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ψJB  
77.3  
N/A  
20.9  
58.3  
N/A  
RθJC(bot)  
5.3  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: INA592  
 
 
 
 
 
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.5 Electrical Characteristics: G = 1/2  
at TA = 25°C, VS = ±2.25 V to ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ connected to ground, and REF pin connected to  
ground (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OFFSET VOLTAGE (RTO)(1)  
RTO, VS = ±2.25 V to ±3 V, VCM = –3 V  
RTO, VS = ±3 V to ±18 V  
±14  
±14  
±40  
µV  
±40  
VOS  
Input offset voltage  
Input offset voltage  
drift  
dVOS/dT  
PSRR  
±0.7  
±0.5  
±2.0 µV/°C  
±5 µV/V  
Power-supply  
rejection ratio  
VS = ±3 V to ±18 V  
INPUT VOLTAGE  
Common-mode  
voltage  
3[(V–)+0.1]  
–2VREF  
VCM  
VO = 0 V  
3(V+)–2VREF  
V
88  
82  
88  
72  
100  
90  
RTO, 3 [(V−) – 0.1 V)]  
≤ VCM ≤ 3 [(V+) – 3 V]  
TA = –40°C to  
+125°C  
Common-mode  
rejection ratio  
CMRR  
dB  
100  
90  
RTO, 3 [(V+) – 1.5 V)]  
≤ VCM ≤ 3 [(V+))]  
TA = –40°C to  
+125°C  
INPUT IMPEDANCE(2)  
zid  
Differential  
VO = 0 V  
24  
9
kΩ  
kΩ  
zic  
Common-mode  
GAIN  
G
Initial  
1/2  
±0.01  
±0.2  
1
V/V  
%
GE  
Gain error  
Gain drift(3)  
Gain nonlinearity  
VO = –10 V to +10 V, VS = ±15 V  
VO = –10 V to +10 V, VS = ±15 V  
±0.03  
±0.5 ppm/°C  
ppm  
OUTPUT  
Positive rail  
Negative rail  
(V+) – 170  
(V−) + 190  
(V+) – 220  
(V−) + 220  
Output votlage  
swing  
VO  
mV  
mA  
Short-circuit  
current  
ISC  
±65  
NOISE  
En  
Output voltage  
noise  
f = 0.1 Hz to 10 Hz, RTO  
f = 1 kHz, RTO  
3
μVpp  
Output voltage  
noise density  
en  
18  
nV/√Hz  
FREQUENCY RESPONSE  
Small-signal –3  
BW  
2.0  
MHz  
V/µs  
dB- bandwidth  
SR  
tS  
Slew rate  
18  
1
To 0.1% of final value, VO = 10-V step  
To 0.01% of final value, VO = 10-V step  
Settling time  
µs  
1.3  
Total harmonic  
distortion + noise  
THD+N  
tDR  
f = 1 kHz, VO = 2.8 VRMS  
0.00038  
–116  
%
dB  
ns  
Noise floor, RTO  
80-kHz bandwidth, VO = 3.5 VRMS  
Overload recovery  
time  
200  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: INA592  
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.5 Electrical Characteristics: G = 1/2 (continued)  
at TA = 25°C, VS = ±2.25 V to ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ connected to ground, and REF pin connected to  
ground (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
1.1  
1.2  
1.5  
mA  
mA  
IQ  
Quiescent current IO = 0 mA  
TA = –40°C to  
+125°C  
(1) Includes effects of input bias and offset currents of amplifier.  
(2) Resistors are ratio matched but have ±20% absolute value.  
(3) Specified by wafer test to 95% confidence level.  
6.6 Electrical Characteristics: G = 2  
at TA = 25°C, VS = ±2.25 V to ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ connected to ground, and REF pin connected to  
ground (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OFFSET VOLTAGE (RTO)(1)  
VS = ±2.25 V to ±3 V,  
VCM = –1.5 V  
±28  
±28  
±80  
µV  
VOS  
Input offset voltage  
VS = ±3 V to ±18 V  
±80  
Input offset voltage  
drift  
dVOS/dT  
PSRR  
±1.4  
±4 µV/°C  
Power-supply  
rejection ratio  
±1  
±5 µV/V  
INPUT VOLTAGE  
Common-mode  
voltage  
1/2[3(V–)  
+0.1]–VREF  
VCM  
VO = 0 V  
1/2[3(V+)–VREF  
]
V
82  
80  
82  
65  
94  
84  
94  
84  
RTO, 1.5 [(V−) – 0.1 V)]  
≤ VCM ≤ 1.5 [(V+) – 3 V]  
TA = –40°C to  
+125°C  
Common-mode  
rejection ratio  
CMRR  
dB  
RTO, 1.5 [(V+) – 1.5 V)]  
≤ VCM ≤ 1.5 (V+)  
TA = –40°C to  
+125°C  
INPUT IMPEDANCE(2)  
zid  
Differential  
VO = 0 V  
12  
9
kΩ  
kΩ  
zic  
Common-mode  
GAIN  
G
Initial  
2
±0.01  
±0.25  
1
V/V  
%
GE  
Gain error  
Gain drift(3)  
Gain nonlinearity  
VO = –10 V to +10 V, VS = ±15 V  
VO = –10 V to +10 V, VS = ±15 V  
±0.03  
±0.5 ppm/°C  
ppm  
OUTPUT  
Positive rail  
Negative rail  
(V+ ) – 130  
(V−) + 140  
±65  
(V+ ) – 180  
(V−) + 180  
Output voltage  
swing  
VO  
mV  
mA  
ISC  
Short-circuit current  
NOISE  
Output voltage  
noise  
En  
en  
f = 0.1 Hz to 10 Hz, RTO  
f = 1 kHz, RTO  
6
μVpp  
Output voltage  
noise density  
36  
nV/√Hz  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: INA592  
 
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.6 Electrical Characteristics: G = 2 (continued)  
at TA = 25°C, VS = ±2.25 V to ±18 V, VCM = VOUT = VS / 2, RL = 10 kΩ connected to ground, and REF pin connected to  
ground (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
FREQUENCY RESPONSE  
Small-signal –3 dB-  
bandwidth  
BW  
0.8  
MHz  
V/µs  
SR  
tS  
Slew rate  
18  
1.0  
1.7  
To 0.1% of final value, VO = 10-V step  
To 0.01% of final value, VO = 10-V step  
Settling time  
µs  
Total harmonic  
distortion + noise  
THD+N  
f = 1 kHz, VO = 2.8 VRMS  
0.00066  
–110  
%
dB  
ns  
Noise floor, RTO  
80-kHz bandwidth, VO = 3.5 VRMS  
Overload recovery  
time  
tDR  
200  
POWER SUPPLY  
1.1  
1.2  
IQ  
Quiescent current  
IO = 0 mA  
mA  
1.5  
TA = –40°C to  
+125°C  
(1) Includes effects of input bias and offset currents of amplifier.  
(2) Resistors are ratio matched but have ±20% absolute value.  
(3) Specified by wafer test to 95% confidence level.  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
Table 6-1. Table of Graphs  
DESCRIPTION  
Typical Distribution of Offset Voltage (RTO) G= 1/2, VS = ±2.25 V  
Typical Distribution of Offset Voltage (RTO) G= 2, , VS = ±2.25 V  
Typical Distribution of Offset Voltage (RTO) G= 1/2, , VS = ±18 V  
Typical Distribution of Offset Voltage (RTO) G= 2, VS = ±18 V  
Typical Distribution of Offset Voltage Drift (RTO) G = 1/2  
Typical Distribution of Offset Voltage Drift (RTO) G = 2  
Output Offset Voltage vs Temperature G = 1/2  
Output Offset Voltage vs Temperature G = 2  
FIGURE  
Figure 6-1  
Figure 6-2  
Figure 6-3  
Figure 6-4  
Figure 6-5  
Figure 6-6  
Figure 6-7  
Figure 6-8  
Figure 6-9  
Figure 6-10  
Figure 6-11  
Figure 6-12  
Figure 6-13  
Figure 6-14  
Figure 6-15  
Figure 6-16  
Figure 6-17  
Figure 6-18  
Figure 6-19  
Figure 6-20  
Figure 6-21  
Figure 6-22  
Figure 6-23  
Figure 6-24  
Figure 6-25  
Figure 6-26  
Figure 6-27  
Figure 6-28  
Figure 6-29  
Figure 6-30  
Figure 6-31  
Figure 6-32  
Figure 6-33  
Figure 6-34  
Figure 6-35  
Figure 6-36  
Figure 6-37  
Figure 6-38  
Figure 6-39  
Figure 6-40  
Figure 6-41  
Figure 6-42  
Offset Voltage vs Common-Mode Voltage G = 1/2  
Offset Voltage vs Common-Mode Voltage G = 2  
Input Bias Current vs Temperature G = 1/2 and G = 2  
Input Offset Current vs Temperature  
Input Bias Current vs Common Mode Voltage G = 1/2  
Input Bias Current vs Common Mode Voltage G = 2  
Typical CMRR Distribution G = 1/2, VS = ±2.25 V  
Typical CMRR Distribution G = 2, VS = ±2.25 V  
Typical CMRR Distribution G = 1/2, VS = ±18 V  
Typical CMRR Distribution G = 2, VS = ±18 V  
CMRR vs Temperature G = 1/2  
CMRR vs Temperature G = 2  
Common-Mode Rejection Ratio vs Frequency (RTI) G = 1/2 and 2  
Maximum Output Voltage vs Frequency  
PSRR vs Temperature G = 1/2  
PSRR vs Temperature G = 2  
PSRR vs Frequency (RTI) G = 1/2  
PSRR vs Frequency (RTI) G = 2  
Typical Distribution of Gain Error G = 1/2, Vs = ±2.25V  
Typical Distribution of Gain Error G = 2, Vs = ±2.25V  
Gain Error vs Temperature G = 1 /2  
Gain Error vs Temperature G = 2  
Closed-Loop Gain vs Frequency G = 1/2  
Closed-Loop Gain vs Frequency G = 2  
Voltage Noise Spectral Density vs Frequency (RTI) G = 1/2  
Voltage Noise Spectral Density vs Frequency (RTI) G = 2  
0.1-Hz to 10-Hz RTI Voltage Noise G = 1/2  
0.1-Hz to 10-Hz RTI Voltage Noise G = 2  
Integrated Output Voltage Noise vs Noise Bandwidth G = 1/2  
Integrated Output Voltage Noise vs Noise Bandwidth G = 2  
Positive Output Voltage vs Output Current (sourcing) G = 1/2  
Positive Output Voltage vs Output Current (sourcing) G = 2  
Negative Output Voltage vs Output Current (sinking) G = 1/2  
Negative Output Voltage vs Output Current (sinking) G = 2  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: INA592  
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
Table 6-1. Table of Graphs (continued)  
DESCRIPTION  
FIGURE  
Settling Time G = 1/2  
Settling Time G = 2  
Figure 6-43  
Figure 6-44  
Figure 6-45  
Figure 6-46  
Figure 6-47  
Figure 6-48  
Figure 6-49  
Figure 6-50  
Figure 6-51  
Figure 6-52  
Figure 6-53  
Figure 6-54  
Figure 6-55  
Figure 6-56  
Figure 6-57  
Figure 6-58  
Figure 6-59  
Figure 6-60  
Figure 6-61  
Figure 6-62  
Figure 6-63  
Figure 6-64  
Figure 6-65  
Figure 6-66  
Figure 6-67  
Figure 6-68  
Figure 6-69  
Figure 6-70  
Figure 6-71  
Figure 6-72  
Figure 6-73  
Large Signal Step Response G = 1/2  
Large Signal Step Response G =2  
Slew Rate over Temperature  
Overload Recovery (Normalized to 0V)  
Small-Signal Overshoot vs Capacitive Load G = 1/2  
Small-Signal Overshoot vs Capacitive Load G = 2  
Small-Signal Step Response G = 1/2  
Small-Signal Step Response G = 2  
THD+N vs Frequency G = 1/2  
THD+N vs Frequency G = 2  
THD+N Ratio vs Output Amplitude G = 1/2  
THD+N Ratio vs Output Amplitude G = 2  
Supply Current vs Temperature G = 1/2  
Supply Current vs Temperature G = 2  
Supply Current vs Supply Voltage G = 1/2  
Supply Current vs Supply Voltage G = 2  
Short Circuit Current vs Temperature G = 1/2  
Short Circuit Current vs Temperature G = 2  
Differential-Mode EMI Rejection Ratio G = 1/2  
Differential-Mode EMI Rejection Ratio G = 2  
Common-Mode EMI Rejection Ratio G = 1/2  
Common-Mode EMI Rejection Ratio G = 2  
Input Common-Mode Voltage vs Output Voltage G = 1/2, Bipolar Supply  
Input Common-Mode Voltage vs Output Voltage G= 2, Bipolar Supply  
Input Common-Mode Voltage vs Output Voltage G = 1/2, 5-V Supply  
Input Common-Mode Voltage vs Output Voltage G = 2, 5-V Supply  
Input Common-Mode Voltage vs Output Voltage G = 1/2, 36-V Supply  
Input Common-Mode Voltage vs Output Voltage G = 2, 36-V Supply  
Closed-Loop Output Impedance vs Frequency  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: INA592  
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
50%  
40%  
30%  
20%  
10%  
0
50%  
40%  
30%  
20%  
10%  
0
-40 -32 -24 -16  
-8  
0
8
16  
24  
32  
40  
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
Offset Voltage (mV)  
Offset Voltage (mV)  
N = 470  
Mean = 0.82 μV Std. Dev. = 2.91 μV  
N = 470  
Mean = 1.64 μV Std. Dev. = 5.82 μV  
Figure 6-1. Typical Distribution of Offset Voltage (RTO)  
G = 1/2, VS = ±2.25 V, VCM = –3 V  
Figure 6-2. Typical Distribution of Offset Voltage (RTO)  
G = 2, VS = ±2.25 V, VCM = –3 V  
20%  
15%  
10%  
5%  
20%  
15%  
10%  
5%  
0
0
-40 -32 -24 -16  
-8  
0
8
16  
24  
32  
40  
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
Offset Voltage (mV)  
Offset Voltage (mV)  
N = 470  
Mean = –5.22 μV Std. Dev. = 8.38 μV  
N = 470  
Mean = –10.43 μV Std. Dev. = 16.77 μV  
Figure 6-3. Typical Distribution of Offset Voltage (RTO)  
G = 1/2, VS = ±18 V  
Figure 6-4. Typical Distribution of Offset Voltage (RTO)  
G = 2, VS = ±18 V  
30%  
25%  
20%  
15%  
10%  
5%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
0
0
-2 -1.6 -1.2 -0.8 -0.4  
0
0.4 0.8 1.2 1.6  
2
-4 -3.2 -2.4 -1.6 -0.8  
0
0.8 1.6 2.4 3.2  
4
Offset Voltage Drift (mV/èC)  
Offset Voltage Drift (mV/èC)  
N = 30  
Mean = –0.075 μV/°C Std. Dev. = 0.502 μV/°C  
N = 30  
Mean = –0.325 μV/°C Std. Dev. = 0.887 μV/°C  
Figure 6-5. Typical Distribution of Offset Voltage Drift (RTO)  
G = 1/2  
Figure 6-6. Typical Distribution of Offset Voltage Drift (RTO)  
G = 2  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
100  
75  
150  
100  
50  
50  
25  
0
0
-50  
-25  
-50  
-75  
-100  
-125  
-150  
-100  
-150  
-200  
-250  
-300  
-40  
-20  
0
20  
40  
Temperature ( C )  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
Temperature ( C )  
60  
80  
100 120 140  
VS = ±18 V  
30 Units  
VS = ±18 V  
30 Units  
Figure 6-7. Output Offset Voltage vs Temperature G = 1/2  
Figure 6-8. Output Offset Voltage vs Temperature G = 2  
1500  
800  
600  
1000  
500  
400  
200  
0
0
-200  
-400  
-600  
-800  
-1000  
-500  
-1000  
-1500  
-60  
-40  
-20  
0
VCM ( V )  
20  
40  
60  
-30 -25 -20 -15 -10 -5  
0
VCM ( V )  
5
10 15 20 25 30  
VS = ±18 V  
12 Units  
VS = ±18 V  
12 Units  
Figure 6-9. Offset Voltage vs Common-Mode Voltage G = 1/2  
Figure 6-10. Offset Voltage vs Common-Mode Voltage G = 2  
1200  
50  
0
1000  
800  
600  
400  
200  
0
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-450  
-500  
-550  
-200  
-40 -20  
0
20  
40  
60  
Temperature ( C )  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
Temperature ( C )  
80  
100 120 140  
VS = ±18 V  
Figure 6-12. Input Offset Current vs Temperature  
Figure 6-11. Input Bias Current vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: INA592  
 
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3500  
3000  
2500  
2000  
1500  
1000  
500  
-40èC  
25èC  
125 èC  
-40èC  
25èC  
125èC  
0
0
-500  
-1000  
-1500  
-500  
-1000  
-1500  
-60  
-40  
-20  
0
VCM ( V )  
20  
40  
60  
-30 -25 -20 -15 -10 -5  
0
VCM ( V )  
5
10 15 20 25 30  
VS = ±18 V  
VS = ±18 V  
Figure 6-13. Input Bias Current vs Common Mode Voltage  
G = 1/2  
Figure 6-14. Input Bias Current vs Common Mode Voltage  
G = 2  
30%  
25%  
20%  
15%  
10%  
5%  
30%  
25%  
20%  
15%  
10%  
5%  
0
0
-40 -32 -24 -16 -8  
0
8
16  
24  
32  
40  
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
Common-mode Rejection Ratio (mV/V)  
Common-mode Rejection Ratio (mV/V)  
N = 470  
Mean = 6.01 μV/V  
Std. Dev. = 4.85 μV/V  
N = 470 Mean = –6.22 μV/V  
Std. Dev. = 10.74 μV/V  
Figure 6-15. Typical CMRR Distribution G = 1/2, VS = ±2.25 V  
Figure 6-16. Typical CMRR Distribution G = 2, VS = ±2.25 V  
40%  
30%  
25%  
20%  
15%  
10%  
5%  
30%  
20%  
10%  
0
0
-40 -32 -24 -16  
-8  
0
8
16  
24  
32  
40  
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
Common-mode Rejection Ratio (mV/V)  
Common-mode Rejection Ratio (mV/V)  
N = 470  
Mean = 4.86 μV/V Std. Dev. = 4.75 μV/V  
N = 470  
Mean = –8.64 μV/V  
Std. Dev. = 9.70 μV/V  
Figure 6-17. Typical CMRR Distribution G = 1/2, VS = ±18 V  
Figure 6-18. Typical CMRR Distribution G = 2, VS = ±18 V  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
-5  
-7.5  
-10  
35  
30  
25  
20  
15  
10  
5
-12.5  
-15  
-17.5  
-20  
0
-22.5  
-25  
-5  
-10  
-15  
-27.5  
-30  
-40 -20  
0
20  
40  
60  
Temperature ( C )  
80  
100 120 140  
-40 -20  
0
20  
40  
60  
Temperature ( C )  
80  
100 120 140  
VS = ±18 V  
24 Units  
VS = ±18 V  
24 Units  
Figure 6-20. CMRR vs Temperature G = 2  
Figure 6-19. CMRR vs Temperature G = 1/2  
120  
100  
80  
40  
35  
30  
25  
20  
15  
10  
5
G=1/2  
G=2  
Vs=ê18 V  
Vs=ê4 V  
60  
40  
20  
100m  
0
1
10  
100  
1k  
Frequency (Hz)  
10k 100k  
1M  
10M  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
D001  
G = 1/2 and G = 2  
VS = ±18 V  
Figure 6-21. Common-Mode Rejection Ratio vs Frequency,  
Referred to Input  
Figure 6-22. Maximum Output Voltage vs Frequency  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
Temperature ( C )  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
Temperature ( C )  
60  
80  
100 120 140  
VS = ±18 V  
24 Units  
VS = ±18 V  
24 Units  
Figure 6-23. PSRR vs Temperature G = 1/2  
Figure 6-24. PSRR vs Temperature G = 2  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
140  
120  
100  
80  
140  
120  
100  
80  
PSRR+  
PSRR-  
PSRR+  
PSRR-  
60  
60  
40  
40  
20  
20  
0
0
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
Figure 6-25. PSRR vs Frequency (RTI) G = 1/2  
Figure 6-26. PSRR vs Frequency (RTI) G = 2  
50%  
40%  
30%  
20%  
10%  
0
50%  
40%  
30%  
20%  
10%  
0
-0.03  
-0.025  
-0.02  
-0.015  
Gain Error (%)  
-0.01  
-0.005  
0
0
0.005  
0.01  
0.015  
Gain Error (%)  
0.02  
0.025  
0.03  
N = 470 Mean = –0.0076%  
Std. Dev. = 0.0015 %  
N = 470  
Mean = 0.0085%  
Std. Dev. = 0.0014%  
Figure 6-28. Typical Distribution of Gain Error G = 2  
Figure 6-27. Typical Distribution of Gain Error G = 1/2  
0.0095  
0.009  
-0.002  
-0.0025  
-0.003  
-0.0035  
-0.004  
-0.0045  
-0.005  
-0.0055  
-0.006  
-0.0065  
-0.007  
-0.0075  
-0.008  
-0.0085  
-0.009  
-0.0095  
-0.01  
0.0085  
0.008  
0.0075  
0.007  
0.0065  
0.006  
0.0055  
0.005  
0.0045  
0.004  
0.0035  
0.003  
0.0025  
0.002  
-40 -20  
0
20  
40  
60  
Temperature ( C )  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
Temperature ( C )  
80  
100 120 140  
VS = ±18 V  
30 Units  
VS = ±18 V  
30 Units  
Figure 6-30. Gain Error vs Temperature G = 2  
Figure 6-29. Gain Error vs Temperature G = 1 /2  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
10  
20  
10  
0
CLOAD = 20 pF  
CLOAD = 100 pF  
CLOAD = 20 pF  
CLOAD = 100 pF  
0
-10  
-20  
-30  
-10  
-20  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
VS = ±18 V  
VS = ±18 V  
Figure 6-31. Closed-Loop Gain vs Frequency G = 1/2  
Figure 6-32. Closed-Loop Gain vs Frequency G = 2  
1000  
1000  
100  
10  
1
100  
10  
1
100m  
1
10  
100  
Frequency (Hz)  
1k  
10k  
100k  
100m  
1
10  
100  
Frequency (Hz)  
1k  
10k  
100k  
VS = ±18 V  
VS = ±18 V  
Figure 6-33. Voltage Noise Spectral Density vs Frequency (RTI) Figure 6-34. Voltage Noise Spectral Density vs Frequency (RTI)  
G = 1/2  
G = 2  
Time (1 s/div)  
Time (1 s/div)  
VS = ±18 V  
VS = ±18 V  
Figure 6-35. 0.1-Hz to 10-Hz RTI Voltage Noise G = 1/2  
Figure 6-36. 0.1-Hz to 10-Hz RTI Voltage Noise G = 2  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
100  
10  
1
100  
10  
1
0.1  
0.1  
1
10  
100 1k  
Frequency (Hz)  
10k  
100k  
1
10  
100 1k  
Frequency (Hz)  
10k  
100k  
VS = ±18 V  
VS = ±18 V  
Figure 6-37. Integrated Output Voltage Noise vs Noise  
Bandwidth G = 1/2  
Figure 6-38. Integrated Output Voltage Noise vs Noise  
Bandwidth G = 2  
18  
18  
-40èC  
-40èC  
25èC  
85èC  
125èC  
17.5  
17.5  
17  
25èC  
17  
85èC  
125èC  
16.5  
16.5  
16  
16  
15.5  
15  
15.5  
15  
14.5  
14  
14.5  
14  
13.5  
13  
13.5  
13  
12.5  
12  
12.5  
12  
11.5  
11.5  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
ILoad (mA)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
ILoad ( mA )  
VS = ±18 V  
VS = ±18 V  
Figure 6-39. Positive Output Voltage vs Output Current  
(sourcing) G = 1/2  
Figure 6-40. Positive Output Voltage vs Output Current  
(sourcing) G = 2  
-14  
-14  
-14.25  
-14.5  
-14.75  
-15  
-40èC  
25èC  
85èC  
125èC  
-14.25  
-14.5  
-14.75  
-15  
-40èC  
25èC  
85èC  
125èC  
-15.25  
-15.5  
-15.75  
-16  
-15.25  
-15.5  
-15.75  
-16  
-16.25  
-16.5  
-16.75  
-17  
-16.25  
-16.5  
-16.75  
-17  
-17.25  
-17.5  
-17.75  
-18  
-17.25  
-17.5  
-17.75  
-18  
-5  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
ILoad ( mA )  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
ILoad ( mA )  
VS = ±18 V  
VS = ±18 V  
Figure 6-41. Negative Output Voltage vs Output Current  
(sinking) G = 1/2  
Figure 6-42. Negative Output Voltage vs Output Current  
(sinking) G = 2  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
Falling  
Rising  
Falling  
Rising  
Time (1 ms/div)  
Time (1 ms/div)  
VS = ±18 V  
VS = ±18 V  
Figure 6-43. Settling Time G = 1/2  
Figure 6-44. Settling Time G = 2  
VIN-  
VIN+  
VOUT  
VIN-  
VIN+  
VOUT  
Time (1 ms/div)  
Time (1 ms/div)  
VS = ±18 V  
VS = ±18 V  
Figure 6-46. Large Signal Step Response G = 2  
Figure 6-45. Large Signal Step Response G = 1/2  
30  
24  
18  
12  
Negative  
Positive  
Rising  
Falling  
-60  
-35  
-10  
15  
40  
65  
90  
115  
140  
Time (200 ns/div)  
Temperature (èC)  
VS = ±18 V  
VS = ±18 V  
Figure 6-47. Slew Rate over Temperature  
Figure 6-48. Overload Recovery (Normalized to 0 V)  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
RISO = 0  
RISO = 25  
RISO = 50  
RISO = 0  
RISO = 25  
RISO = 50  
10  
100  
Capactiance (pF)  
1000  
10  
100  
Capactiance (pF)  
1000  
VS = ±18 V  
VS = ±18 V  
Figure 6-49. Small-Signal Overshoot vs Capacitive Load G = 1/2 Figure 6-50. Small-Signal Overshoot vs Capacitive Load G = 2  
VIN-  
VIN+  
VOUT  
VIN-  
VIN+  
VOUT  
Time (1 ms/div)  
Time (1 ms/div)  
VS = ±18 V  
Figure 6-51. Small-Signal Step Response G = 1/2  
VS = ±18 V  
Figure 6-52. Small-Signal Step Response G = 2  
1
-40  
1
-40  
RLoad = 10k W  
RLoad = 2k W  
RLoad = 600 W  
RLoad = 10k W  
RLoad = 2k W  
RLoad = 600 W  
0.1  
-60  
0.1  
-60  
0.01  
-80  
0.01  
-80  
0.001  
0.0001  
-100  
-120  
0.001  
0.0001  
-100  
-120  
100  
1k  
Frequency (Hz)  
10k  
100  
1k  
Frequency (Hz)  
10k  
VS = ±18 V  
VOUT = 3.5 Vrms  
VS = ±18 V  
Vout = 3.5 Vrms  
Figure 6-53. THD+N vs Frequency G = 1/2  
Figure 6-54. THD+N vs Frequency G = 2  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
1
-40  
1
-40  
RLoad = 10K W  
RLoad = 2k W  
RLoad = 600 W  
RLoad = 10K W  
RLoad = 2k W  
RLoad = 600 W  
0.1  
-60  
0.1  
-60  
0.01  
-80  
0.01  
-80  
0.001  
-100  
-120  
0.001  
-100  
-120  
0.0001  
0.0001  
10m  
100m  
Output Amplitude (V  
1
10  
10m  
100m  
Output Amplitude (V  
1
)
RMS  
10  
)
RMS  
VS = ±18 V  
VS = ±18 V  
Figure 6-55. THD+N Ratio vs Output Amplitude G = 1/2  
Figure 6-56. THD+N Ratio vs Output Amplitude G = 2  
1.1  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
1.01  
1
1.08  
1.06  
1.04  
1.02  
1
0.99  
0.98  
0.97  
0.96  
0.98  
-40 -20  
0
20  
40  
Temperature ( C )  
60  
80  
100 120 140  
-40 -20  
0
20  
40  
Temperature ( C )  
60  
80  
100 120 140  
VS = ±18 V  
30 Units  
VS = ±18 V  
30 Units  
Figure 6-57. Supply Current vs Temperature G = 1/2  
Figure 6-58. Supply Current vs Temperature G = 2  
5
4.5  
4
5
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
0
5
10  
15  
20  
25  
Total Supply ( V )  
30  
35  
40  
0
5
10  
15  
20  
25  
Total Supply ( V )  
30  
35  
40  
VS = ±18 V  
30 Units  
VS = ±18 V  
30 Units  
Figure 6-60. Supply Current vs Supply Voltage G = 2  
Figure 6-59. Supply Current vs Supply Voltage G = 1/2  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
100  
80  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
-40 -20  
0
20  
40  
Temperature ( C )  
60  
80  
100 120 140  
-40 -20  
0
20  
40  
Temperature ( C )  
60  
80  
100 120 140  
VS = ±18 V  
30 Units  
VS = ±18 V  
30 Units  
Figure 6-61. Short Circuit Current vs Temperature G = 1/2  
Figure 6-62. Short Circuit Current vs Temperature G = 2  
150  
160  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
60  
10M  
100M  
Frequency (Hz)  
1G  
10G  
10M  
100M  
Frequency (Hz)  
1G  
10G  
VS = ±18 V  
VS = ±18 V  
Figure 6-63. Differential-Mode EMI Rejection Ratio G = 1/2  
Figure 6-64. Differential-Mode EMI Rejection Ratio G = 2  
180  
140  
130  
120  
110  
100  
90  
160  
140  
120  
100  
80  
80  
60  
70  
10M  
100M  
Frequency (Hz)  
1G  
10G  
10M  
100M  
Frequency (Hz)  
1G  
10G  
VS = ±18 V  
VS = ±18 V  
Figure 6-65. Common-Mode EMI Rejection Ratio G = 1/2  
Figure 6-66. Common-Mode EMI Rejection Ratio G = 2  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
80  
60  
40  
30  
Vs = ±2.25V  
Vs = ±18V  
Vs = ±2.25V  
Vs = ±18V  
40  
20  
20  
10  
0
0
-20  
-40  
-60  
-80  
-10  
-20  
-30  
-40  
-20 -16 -12 -8  
-4  
0
4
8
12 16 20  
-20 -16 -12 -8  
-4  
0
4
8
12 16 20  
Vout (V)  
Vout (V)  
Vref = 0 V  
Vref = 0 V  
Figure 6-67. Input Common-Mode Voltage vs Output Voltage  
G = 1/2, Bipolar Supply  
Figure 6-68. Input Common-Mode Voltage vs Output Voltage  
G = 2, Bipolar Supply  
10  
7.5  
5
20  
15  
10  
5
2.5  
0
0
-5  
-2.5  
-5  
-10  
-1.25  
0
1.25  
2.5  
3.75  
5
6.25  
-1.25  
0
1.25  
2.5  
3.75  
5
6.25  
Vout (V)  
Vout (V)  
Vref = 0 V  
Vref = 0 V  
Figure 6-70. Input Common-Mode Voltage vs Output Voltage  
G = 2, 5-V Supply  
Figure 6-69. Input Common-Mode Voltage vs Output Voltage  
G = 1/2, 5-V Supply  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
-10  
-20  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
Vout (V)  
Vout (V)  
Vref = 0 V  
Vref = 0 V  
Figure 6-71. Input Common-Mode Voltage vs Output Voltage  
G = 1/2, 36-V Supply  
Figure 6-72. Input Common-Mode Voltage vs Output Voltage  
G = 2, 36-V Supply  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM =VOUT = VS / 2, RL = 10 kΩ, REF pin connected to ground, and G = 1/2 (unless otherwise  
noted)  
1000  
100  
10  
1
0.1  
0.01  
0.001  
0.0001  
G = 2  
G = 0.5  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
VS = ±18 V  
Figure 6-73. Closed-Loop Output Impedance vs Frequency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: INA592  
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
7 Detailed Description  
7.1 Overview  
The INA592 consists of a high precision, e-trimop amp and four trimmed resistors. These resistors can be  
connected to make a wide variety of amplifier configurations, including difference, noninverting, and inverting  
configurations. Using the on-chip resistors of the INA592 provides the designer with several advantages over a  
discrete design. The INA59 also includes internal compensation capacitors, as shown in Section 7.2.  
7.2 Functional Block Diagram  
V+  
INA592  
12 k  
6 kꢀ  
œIN  
SENSE  
16 pF  
œ
OUT  
+
16 pF  
Vœ  
12 kꢀ  
6 kꢀ  
+IN  
REF  
Vœ  
7.3 Feature Description  
Much of the dc performance of op amp circuits depends on the accuracy of the surrounding resistors. The  
resistors on the INA592 are laid out to be tightly matched. The resistors of each part are matched on-chip and  
tested for their matching accuracy. As a result of this trimming and testing, the INA592 provides high accuracy  
for specifications such as gain drift, common-mode rejection, and gain error.  
7.4 Device Functional Modes  
The INA592 can measure voltages beyond the rails. For the G = ½ and G = 2 difference amplifier configurations,  
see the input voltage range in Section 6.5 and Section 6.6 for details. The INA592 can be configured in several  
ways; see Figure 8-4 to Figure 8-8. These configurations rely on the internal, matched resistors,; therefore all of  
these configurations have excellent gain accuracy and gain drift.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: INA592  
 
 
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
Figure 8-1 shows the basic connections required for operation of the INA592. Connect power supply bypass  
capacitors close to the device pins.  
The differential input signal is connected to pins 2 and 3 as shown. The source impedances connected to the  
inputs must be nearly equal to provide good common-mode rejection. An 8-Ω mismatch in source impedance  
degrades the common-mode rejection of a typical device to approximately 80 dB. Gain accuracy is also slightly  
affected. If the source has a known impedance mismatch, use an additional resistor in series with one input to  
preserve good common-mode rejection.  
As shown in the figure, sense measurements at the load.  
8.2 Typical Application  
V–  
V+  
1 µF  
1 µF  
4
7
INA592  
R1  
R2  
2
3
5
6
V2  
12 kW  
6 kW  
R3  
V3  
RL  
12 kW  
R4  
6 kW  
VOUT = V3 – V2  
1
Ref  
Copyright © 2018, Texas Instruments Incorporated  
Figure 8-1. Basic Power Supply and Signal Connections  
8.2.1 Design Requirements  
For the application shown in Figure 8-1, the design requirements are:  
• Gain of G = ½  
• Offset of output voltage VoutOS = 0 V  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: INA592  
 
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
8.2.2 Detailed Design Procedure  
8.2.2.1 Operating Voltage  
The INA592 operates from single (4.5 V to 36 V) or dual (±2.25 V to ±18 V) supplies with excellent performance.  
Specifications are production tested with 5-V and ±15-V supplies. Most behavior remains unchanged throughout  
the full operating voltage range. Parameters that vary significantly with operating voltage are shown in the  
Section 6.7. The internal op amp in the INA592 is a single-supply design. This design allows linear operation  
with the op amp common-mode voltage equal to, or slightly less than V– (or single-supply ground). Although  
input voltages on pins 2 and 3 that are bless than the negative supply voltage do not damage the device,  
operation in this region is not recommended. Transient conditions at the inverting input terminal less than the  
negative supply can cause a positive feedback condition that could lock the device output to the negative rail.  
The INA592 can accurately measure differential signals that are greater than the positive power supply. For  
example in G = ½, the linear common-mode range extends to nearly three times the positive power-supply  
voltage; see the Typical Characteristics as well as Section 8.2.2.3.  
8.2.2.2 Offset Voltage Trim  
The INA592 is production trimmed for low offset voltage and drift. Most applications require no external offset  
adjustment. Figure 8-2 shows an optional circuit for trimming the output offset voltage. The output is referred to  
the output reference terminal (pin 1), which is normally grounded. A voltage applied to the REF pin is summed  
with the output signal. This summing operation can be used to null offset voltage. To maintain good common-  
mode rejection, the source impedance of a signal applied to the REF pin must be less than 8 Ω. For low  
impedance at the REF pin, the trim voltage can be buffered with an op amp, such as the OPA177.  
INA592  
R1  
R2  
2
5
6
V2  
VO  
8 W  
R3  
3
V3  
R4  
+15 V  
1
Ref  
R = 237 kW  
VO = V3 – V2  
1ꢀꢀ kW  
Offset Adjustment  
Range = 5ꢀꢀ ꢁV  
8 W  
–15 V  
NOTE: For 75ꢀ ꢁV rangeꢂ R = 158 kW.  
Copyright © 2ꢀ17ꢂ Texas Instruments Incorporated  
Figure 8-2. Offset Adjustment  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: INA592  
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
8.2.2.3 Input Voltage Range  
The INA592 is able to measure input voltages beyond the supply rails. The internal resistors divide down the  
voltage before the voltage reaches the internal op amp, and provide protection to the op amp inputs. Figure 8-3  
shows an example of how the voltage division works in a difference-amplifier configuration. For the INA592 to  
measure correctly, the input voltages at the input nodes of the internal op amp must stay less than 0.1 V of the  
positive supply rail, and can exceed the negative supply rail by 0.1 V. See Section 9 for more details.  
R2  
-INOP =  
*V+IN  
R1+R2  
R3  
R4  
V-IN  
SENSE  
œ
OUT  
+
V-  
R1  
R2  
V+IN  
REF  
R2  
+INOP =  
*V+IN  
R1+R2  
Figure 8-3. Voltage Division in the Difference Amplifier Configuration  
The INA592 has integrated ESD diodes at the inputs that provide overvoltage protection. This feature simplifies  
system design by eliminating the need for additional external protection circuitry, and enables a more robust  
system. The voltages at any of the inputs of the devices in G = ½ configuration with ±18-V supplies can safely  
range from +VS − 54 V up to −VS + 54 V. For example, on ±10-V supplies, input voltages can go as high as  
±30 V.  
8.2.2.4 Capacitive Load Drive Capability  
The INA592 can drive large capacitive loads, even at low supplies. The device is stable with a 500-pF load; see  
Section 6.7.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: INA592  
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
8.2.2.5 Other Examples for Difference Amplifier Configurations  
The INA592 can be combined with op amps to form a complete instrumentation amplifier with specialized  
performance characteristics, as shown in Figure 8-4.  
V1  
INA592  
–In  
A1  
2
5
R2  
6
R1  
VO  
R2  
1
3
A2  
V2  
+In  
VO = (1 + 2R2/R1) (V2 –V1)  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-4. Precision Instrumentation Amplifier  
Texas Instruments offers many complete high-performance instrumentation amplifiers (IAs). See Table 8-1 for  
some of the products with related performance.  
Table 8-1. Recommended Products to Use With the INA592  
A1, A2  
FEATURE  
SIMILAR TI IA  
OPA27  
Low noise  
INA103  
OPA129  
OPA177  
OPA2130  
OPA2234  
OPA2237  
Ultra-low bias current (fA)  
Low offset drift, low noise  
Low power, FET-input (pA)  
Single supply, precision, low power  
SIngle supply, low power, 8-pin MSOP  
INA116  
INA114, INA128  
INA111  
INA122. INA118  
INA122, INA126  
BUF634 inside feedback  
INA592  
loop contributes no error.  
2
5
6
–In  
BUF634  
VO  
RL  
1
3
(Low IQ mode)  
+In  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-5. Low Power, High-Output Current Precision Difference Amplifier  
V+  
V+  
3
INA592  
2
5
7
6
(V+) / 3  
1
4
Ground  
Ground  
Figure 8-6. Pseudoground Generator  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
+5 V  
7
INA592  
2
5
6
1
–In  
12 Bits  
Out  
ADS7806  
0 V - 4 V  
Input  
3
+In  
4
VCM = 0 V to 8 V  
tS = 45 µs (4 V Step to 0.01%)  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-7. Differential Input Data Acquisition  
V+  
12.5 k  
50 kꢀ  
1 kꢀ  
0V to 10V  
in  
7
œ
Set R1 = R2  
6 kꢀ  
12 kꢀ  
5
2
6
+15V  
+
R1  
R2  
œ
-IN  
R1  
50.1 ꢀ  
OPA192  
2
REF10  
4
2N3904  
INA592  
+
Vout  
6
R3  
R4  
R2  
1
3
10V  
50.1 ꢀ  
+IN  
Vref  
6 kꢀ  
12 kꢀ  
For 4-20mA applications,  
The REF10 sets the 4 mA  
low-scale output for 0 V input.  
4
RL  
Iout = 4 to 20mA  
«
÷
1
1
Iout = 2*  
-
VIN+ VIN-  
+
(
)
40kW R2  
Figure 8-8. Precision Voltage-to-Current Conversion  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: INA592  
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
The difference amplifier is a highly versatile building block that is useful in a wide variety of applications. See the  
INA105 data sheet for additional applications ideas, including:  
Current Receiver with Compliance to Rails  
Precision Unity-Gain Inverting Amplifier  
±10-V Precision Voltage Reference  
±5-V Precision Voltage Reference  
Precision Unity-Gain Buffer  
Precision Average Value Amplifier  
Precision G = 2 Amplifier  
Precision Summing Amplifier  
Precision G = 1/2 Amplifier  
Precision Bipolar Offsetting  
Precision Summing Amplifier with Gain  
Instrumentation Amplifier Guard Drive Generator  
Precision Summing Instrumentation Amplifier  
Precision Absolute Value Buffer  
Precision Voltage-to-Current Converter with Differential Inputs  
Differential Input Voltage-to-Current Converter for Low IOUT  
Isolating Current Source  
Differential Output Difference Amplifier  
Isolating Current Source with Buffering Amplifier for Greater Accuracy  
Window Comparator with Window Span and Window Center Inputs  
Precision Voltage-Controlled Current Source with Buffered Differential Inputs and Gain  
Digitally Controlled Gain of ±1 Amplifier  
8.2.3 Application Curve  
The interaction between the output stage of an operational amplifier (op amp) and capacitive loads can impact  
the stability of the circuit. Throughout the industry, op-amp output-stage requirements have changed greatly  
since their original creation. Classic output stages with the class-AB, common-emitter, bipolar-junction transistor  
(BJT) have now been replaced with common-collector BJT and common-drain, complementary metal-oxide  
semiconductor (CMOS) devices. Both of these technologies enable rail-to-rail output voltages for single-supply  
and battery-powered applications. A result of changing these output-stage structures is that the op-amp open-  
loop output impedance (ZO) changed from the largely resistive behavior of early BJT op amps to a frequency-  
dependent ZO that features capacitive, resistive, and inductive portions. Proper understanding of ZO over  
frequency, and also the resulting closed-loop output impedance over frequency, is crucial for the understanding  
of loop-gain, bandwidth, and stability analysis. Figure 8-9 shows how the INA592 closed-loop output impedance  
varies over frequency.  
1000  
100  
10  
1
0.1  
0.01  
0.001  
0.0001  
G = 2  
G = 0.5  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
VS = ±18 V  
Figure 8-9. Closed-Loop Output Impedance vs Frequency  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: INA592  
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
9 Power Supply Recommendations  
The nominal performance of the INA592 is specified with a supply voltage of ±15 V and midsupply reference  
voltage. The device operates using power supplies from ±2.25 V (4.5 V) to ±18 V (36 V) and non midsupply  
reference voltages with excellent performance. Parameters that can vary significantly with operating voltage and  
reference voltage are shown in Section 6.7.  
10 Layout  
10.1 Layout Guidelines  
Attention to good layout practices is always recommended. For best operational performance of the device, use  
good PCB layout practices, including:  
Make sure that both input paths are well-matched for source impedance and capacitance to avoid converting  
common-mode signals into differential signals.  
Noise propagates into analog circuitry through the power pins of the circuit as a whole and of the device.  
Bypass capacitors reduce the coupled noise by providing low-impedance power sources local to the analog  
circuitry.  
– Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better than in  
parallel with the noisy trace.  
Place the external components as close to the device as possible.  
Keep the traces as short as possible.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: INA592  
 
 
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
10.2 Layout Example  
V-  
V+  
1F  
1F  
C1  
C2  
4
7
12 kꢀ  
6 kꢀ  
2
3
5
-IN  
SENSE  
R1  
R2  
œ
6
Vout  
+
OUT  
RL  
R3  
R4  
1
+IN  
Vref = GND  
REF  
12 kꢀ  
6 kꢀ  
1*  
2
Vout=  
-
)
(V+IN V-IN  
+V  
Low-impedance  
connection for  
reference terminal  
GND  
C2  
Use ground pours for  
shielding the input  
signal pairs  
INA592  
1
NC  
8
REF  
œ
œIN  
V+  
2
7
6
œIN  
+
+IN  
3
OUT  
SENSE  
+IN  
Vout  
Vœ  
4
5
C1  
GND  
RL  
Place bypass  
capacitors as close to  
IC as possible  
GND  
-V  
Figure 10-1. Example Schematic and Associated PCB Layout  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: INA592  
 
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
Vœ  
V+  
1 F  
1 F  
C1  
C2  
5
8
12 kꢀ  
6 kꢀ  
3
6
VœIN  
SENSE  
œIN  
R1  
R2  
œ
1
-INOP  
+INOP  
7
VOUT  
+
10  
OUT  
RL  
R3  
R4  
4
2
V+IN  
VREF = GND  
REF  
+IN  
12 kꢀ  
6 kꢀ  
1
=
VOUT  
V+IN - V-IN  
(
)
2
Low-impedance  
connection for  
reference terminal  
INA597  
1
2
GND  
Þ INOP  
+INOP  
10  
REF  
NC  
V+  
9
8
œ
œIN  
œIN  
3
4
5
+
C2  
+IN  
+IN  
OUT  
7
6
+INOP  
Vœ  
SENSE  
GND  
NC= No Connection  
RL  
C1  
Use ground pours  
for shielding  
the input  
Place bypass capacitors  
as close to IC as  
possible  
signal pairs  
œV  
Figure 10-2. Example Schematic and Associated PCB Layout with VSON Package  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: INA592  
INA592  
www.ti.com  
SBOS914D – OCTOBER 2018 – REVISED DECEMBER 2020  
11 Device and Documentation Support  
11.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.2 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.3 Trademarks  
e-trimand TI E2Eare trademarks of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: INA592  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA592ID  
PREVIEW  
SOIC  
D
8
75  
RoHS (In work)  
& Non-Green  
Call TI  
Call TI  
-40 to 125  
INA592IDGKR  
INA592IDGKT  
INA592IDR  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
2500 RoHS & Green  
NIPDAUAG  
NIPDAUAG  
Call TI  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
1OK6  
1OK6  
250 RoHS & Green  
PREVIEW  
2500 RoHS (In work)  
& Non-Green  
PINA592IDR  
ACTIVE  
SOIC  
D
8
2500 RoHS (In work)  
& Non-Green  
Call TI  
Call TI  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Dec-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA592IDGKR  
INA592IDGKT  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
250  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Dec-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA592IDGKR  
INA592IDGKT  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
250  
366.0  
366.0  
364.0  
364.0  
50.0  
50.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY