INA818 [TI]

2MHz、35μV 失调电压、8nV/√Hz 噪声、350µA 功耗、精密(增益引脚 1、8)仪表放大器;
INA818
型号: INA818
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2MHz、35μV 失调电压、8nV/√Hz 噪声、350µA 功耗、精密(增益引脚 1、8)仪表放大器

放大器 仪表 仪表放大器
文件: 总43页 (文件大小:1585K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
INA818 35µV 失调电压、8nV/Hz 噪声、低功耗、精密仪表放大器  
1 特性  
3 说明  
1
低失调电压:10µV(典型值)、35µV(最大值)  
INA818 是一款高精度仪表放大器,此放大器提供低功  
耗并且可在极宽的单电源或双电源电压范围内工作。可  
通过单个外部电阻器在 1 10000 范围内设置增益。  
由于采用超 β 输入晶体管(这些晶体管可提供极低的  
输入失调电压、失调电压漂移、输入偏置电流、输入电  
压和电流噪声),该器件可提供出色的精度。附加电路  
可以为输入提供高达 ±60V 的过压保护。  
增益漂移:5ppm/°C (G = 1)、  
35ppm/°C (G > 1)(最大值)  
噪声:8nV/Hz  
带宽:2MHz (G = 1)270kHz (G = 100)  
采用 1nF 容性负载时保持稳定  
输入保护电压高达 ±60V  
共模抑制:110dBG = 10(最小值)  
电源抑制:100dBG = 1(最小值)  
电源电流:385µA(最大值)  
电源电压范围:  
INA818 经过优化,可提供较高的共模抑制比。当 G =  
1 时,整个输入共模范围内共模抑制比超过 90dB。根  
据设计,此器件采用低电压运行,由 4.5V 单电源和高  
±18V 的双电源供电。  
单电源:4.5V 36V  
INA818 采用 8 引脚 SOIC 封装,且额定工作温度范围  
–40°C +125°C。  
双电源:±2.25V ±18V  
额定温度范围:–40°C +125°C  
封装:8 引脚 SOIC  
器件信息(1)  
器件型号  
INA818  
封装  
SOIC (8)  
封装尺寸(标称值)  
2 应用  
4.90mm × 3.91mm  
工业监控器  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
流量变送器  
电池测试设备  
多参数患者监视器  
模拟输入模块  
半导体测试设备  
便携式仪表  
INA818 简化内部原理图  
输入阶段失调电压漂移的典型分布  
+VS  
25%  
22.5%  
20%  
17.5%  
15%  
12.5%  
10%  
7.5%  
5%  
Over-  
Voltage  
40 k  
+
40 kꢀ  
-IN  
Protection  
œ
RG  
œ
25 kꢀ  
25 kꢀ  
RG  
OUT  
REF  
+
RG  
+IN  
œ
Over-  
Voltage  
+
40 kꢀ  
40 kꢀ  
Protection  
2.5%  
0
-VS  
50 kW  
RG  
G = 1+  
VO = G V+IN - V-IN + V  
(
)
REF  
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
Input Stage Offset Voltage Drift (mV/èC)  
D002  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS894  
 
 
 
 
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 20  
8.4 Device Functional Modes........................................ 26  
Application and Implementation ........................ 26  
9.1 Application Information............................................ 26  
9.2 Typical Applications ................................................ 29  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Typical Characteristics: Table of Graphs.................. 8  
7.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 19  
8.1 Overview ................................................................. 19  
8.2 Functional Block Diagram ....................................... 19  
9
10 Power Supply Recommendations ..................... 32  
11 Layout................................................................... 32  
11.1 Layout Guidelines ................................................. 32  
11.2 Layout Example .................................................... 33  
12 器件和文档支持 ..................................................... 34  
12.1 文档支持................................................................ 34  
12.2 接收文档更新通知 ................................................. 34  
12.3 社区资源................................................................ 34  
12.4 ....................................................................... 34  
12.5 静电放电警告......................................................... 34  
12.6 Glossary................................................................ 34  
13 机械、封装和可订购信息....................................... 34  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (April 2019) to Revision A  
Page  
已更改 将文档状态从预告信息更改成了生产数据” .............................................................................................................. 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
5 Device Comparison Table  
DEVICE  
DESCRIPTION  
GAIN EQUATION  
RG PINS AT PIN  
35-µV Offset, 0.4 µV/°C VOS Drift, 8-nV/Hz Noise, Low-Power,  
Precision Instrumentation Amplifier  
INA818  
INA819  
INA821  
INA828  
INA333  
PGA280  
G = 1 + 50 kΩ / RG  
1, 8  
35-µV Offset, 0.4 µV/°C VOS Drift, 8-nV/Hz Noise, Low-Power,  
Precision Instrumentation Amplifier  
G = 1 + 50 kΩ / RG  
G = 1 + 49.4 kΩ / RG  
G = 1 + 50 kΩ / RG  
G = 1 + 100 kΩ / RG  
Digital programmable  
2, 3  
2, 3  
1, 8  
1, 8  
N/A  
35-µV Offset, 0.4 µV/°C VOS Drift, 7-nV/Hz Noise, High-  
Bandwidth, Precision Instrumentation Amplifier  
50-µV Offset, 0.5 µV/°C VOS Drift, 7-nV/Hz Noise, Low-Power,  
Precision Instrumentation Amplifier  
25-µV VOS, 0.1 µV/°C VOS Drift, 1.8-V to 5-V, RRO, 50-µA IQ,  
Chopper-Stabilized INA  
20-mV to ±10-V Programmable Gain IA With 3-V or 5-V  
Differential Output; Analog Supply up to ±18 V  
G = 0.2 V Differential Amplifier for ±10-V to 3-V and 5-V  
Conversion  
INA159  
G = 0.2 V/V  
N/A  
N/A  
PGA112  
Precision Programmable Gain Op Amp With SPI  
Digital programmable  
Copyright © 2019, Texas Instruments Incorporated  
3
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
RG  
œIN  
1
2
3
4
8
7
6
5
RG  
+VS  
OUT  
REF  
+IN  
œVS  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN  
NO.  
2
I
Negative (inverting) input  
+IN  
3
I
Positive (noninverting) input  
Output  
OUT  
REF  
RG  
6
O
I
5
Reference input. This pin must be driven by a low-impedance source.  
Gain setting pin. Place a gain resistor between pin 1 and pin 8.  
Negative supply  
1, 8  
4
–VS  
+VS  
7
Positive supply  
4
Copyright © 2019, Texas Instruments Incorporated  
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage dual supply, VS = (V+) – (V–)  
Supply voltage single supply, VS = (V+) – (V–)  
±20  
V
40, (single  
supply)  
V
Signal input pins  
–60  
–20  
60  
20  
V
V
VREF pin  
Signal output pins maximum voltage  
Signal output pins maximum current  
Output short-circuit(2)  
(-Vs) - 0.5  
-50  
(+Vs) + 0.5  
50  
V
mA  
Continuous  
Operating Temperature, TA  
Junction Temperature, TJ  
Storage Temperature, Tstg  
–50  
150  
175  
150  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to VS / 2.  
7.2 ESD Ratings  
VALUE  
±1500  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
36  
UNIT  
Single-supply  
Supply voltage VS  
V
Dual-supply  
±2.25  
–40  
±18  
125  
Specified temperature  
Specified temperature  
°C  
7.4 Thermal Information  
INA818  
D (SOIC)  
8 PINS  
119.6  
66.3  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
61.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
20.5  
ψJB  
61.4  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2019, Texas Instruments Incorporated  
5
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
7.5 Electrical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
10  
35  
75  
µV  
µV  
Input stage offset  
voltage(1)(2)  
VOSI  
TA = –40°C to 125°C(3)  
drift vs temperature, TA = –40°C to 125°C  
0.4  
300  
800  
5
µV/°C  
µV  
50  
Output stage offset  
voltage(1)(2)  
VOSO  
TA = –40°C to 125°C(3)  
drift vs temperature, TA = –40°C to 125°C  
G = 1, RTI  
µV  
µV/°C  
110  
114  
130  
136  
120  
130  
G = 10, RTI  
Power-supply rejection  
ratio  
PSRR  
dB  
G = 100, RTI  
135  
G = 1000, RTI  
140  
zid  
zic  
Differential impedance  
100 || 1  
100 || 4  
32  
GΩ || pF  
G|| pF  
MHz  
Common-mode impedance  
RFI filter, –3-dB frequency  
(V–) + 2  
(V+) – 2  
±60  
VCM  
Operating input range(4)  
Input overvoltage range  
V
V
VS = ±2.25 V to ±18 V, TA = –40°C to 125°C  
TA = –40°C to 125°C(3)  
See 51 to 54  
At DC to 60 Hz, RTI, VCM = (V–) + 2 V to (V+) – 2 V,  
G = 1  
90  
110  
130  
140  
105  
125  
145  
150  
At DC to 60 Hz, RTI, VCM = (V–) + 2 V to (V+) – 2 V,  
G = 10  
Common-mode rejection  
ratio  
CMRR  
dB  
At DC to 60 Hz, RTI, VCM = (V–) + 2 V to (V+) – 2 V,  
G = 100  
At DC to 60 Hz, RTI, VCM = (V–) + 2 V to (V+) – 2 V,  
G = 1000  
BIAS CURRENT  
VCM = VS / 2  
0.15  
0.15  
0.5  
2
IB  
Input bias current  
nA  
nA  
TA = –40°C to 125°C  
VCM = VS / 2  
0.5  
2
IOS  
Input offset current  
TA = –40°C to 125°C  
NOISE VOLTAGE  
f = 1 kHz, G = 100, RS = 0 Ω  
fB = 0.1 Hz to 10 Hz, G = 100, RS = 0 Ω  
f = 1 kHz, RS = 0 Ω  
8
0.19  
80  
nV/Hz  
µVPP  
Input stage voltage  
eNI  
noise(5)  
nV/Hz  
µVPP  
Output stage voltage  
noise(5)  
eNO  
fB = 0.1 Hz to 10 Hz, RS = 0 Ω  
f = 1 kHz  
2.6  
130  
4.7  
fA/Hz  
pAPP  
In  
Noise current  
fB = 0.1 Hz to 10 Hz, G = 100  
GAIN  
Gain equation  
Gain  
1 + (50 k/ RG)  
V/V  
V/V  
G
1
1000  
±0.025%  
±0.15%  
±0.15%  
G = 1, VO = ±10 V  
±0.005%  
±0.025%  
±0.025%  
±0.05%  
G = 10, VO = ±10 V  
GE  
Gain error  
G = 100, VO = ±10 V  
G = 1000, VO = ±10 V  
G = 1, TA = –40°C to 125°C, VO = ±10 V  
G > 1, TA = –40°C to 125°C, VO = ±10 V  
±5  
Gain error drift(6)  
ppm/°C  
±35  
(1) Total offset, referred-to-input (RTI): VOS = (VOSI) + (VOSO / G).  
(2) Offset drifts are uncorrelated. Input-referred offset drift is calculated using: ΔVOS(RTI) = [ΔVOSI2 + (ΔVOSO / G)2]  
(3) Specified by characterization.  
(4) Input voltage range of the INA818 input stage. The input range depends on the common-mode voltage, differential voltage, gain, and  
reference voltage. See Typical Characteristic curves 51 through 54 for more information.  
(5) Total RTI voltage noise is equal to: eN(RTI) = [eNI2 + (eNO / G)2]  
(6) The values specified for G > 1 do not include the effects of the external gain-setting resistor, RG.  
6
Copyright © 2019, Texas Instruments Incorporated  
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
Electrical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
G = 1 to 10, VO = –10 V to 10 V, RL = 10 kΩ  
G = 100, VO = –10 V to 10 V, RL = 10 kΩ  
G = 1000, VO = –10 V to 10 V, RL = 10 kΩ  
G = 1 to 100, VO = –10 V to 10 V, RL = 2 kΩ  
MIN  
TYP  
MAX  
10  
UNIT  
1
15  
Gain nonlinearity  
ppm  
10  
30  
OUTPUT  
Voltage swing  
(V–) + 0.15  
(V+) – 0.15  
V
Load capacitance stability  
1000  
5.0  
pF  
Closed-loop output  
impedance  
ZO  
ISC  
f = 10 kHz  
Short-circuit current  
Continuous to VS / 2  
±20  
mA  
FREQUENCY RESPONSE  
G = 1  
2.0  
890  
270  
30  
MHz  
kHz  
G = 10  
BW  
SR  
tS  
Bandwidth, –3 dB  
Slew rate  
G = 100  
G = 1000  
G = 1, VO = ±10 V  
0.9  
12  
V/µs  
0.01%, G = 1 to 100, VSTEP = 10 V  
0.01%, G = 1000, VSTEP = 10 V  
0.001%, G = 1 to 100, VSTEP = 10 V  
0.001%, G = 1000, VSTEP = 10 V  
40  
Settling time  
µs  
16  
60  
REFERENCE INPUT  
RIN Input impedance  
40  
kΩ  
V
Voltage range  
(V–)  
(V+)  
Gain to output  
1
V/V  
Reference gain error  
0.01%  
POWER SUPPLY  
VIN = 0 V  
350  
385  
520  
IQ Quiescent current  
µA  
VIN = 0 V, TA = –40°C to 125°C  
版权 © 2019, Texas Instruments Incorporated  
7
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
7.6 Typical Characteristics: Table of Graphs  
1. Table of Graphs  
DESCRIPTION  
Typical Distribution of Input Stage Offset Voltage  
Typical Distribution of Input Stage Offset Voltage Drift  
Typical Distribution of Output Stage Offset Voltage  
Typical Distribution of Output Stage Offset Voltage Drift  
Input Stage Offset Voltage vs Temperature  
Output Stage Offset Voltage vs Temperature  
Typical Distribution of Input Bias Current TA = 25°C  
Typical Distribution of Input Bias Current TA = 90°C  
Typical Distribution of Input Offset Current  
Input Bias Current vs Temperature  
FIGURE  
1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
28  
29  
27  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
Input Offset Current vs Temperature  
Typical CMRR Distribution G = 1  
Typical CMRR Distribution G = 10  
CMRR vs Temperature G = 1  
CMRR vs Temperature G = 10  
Input Current vs Input Overvoltage  
CMRR vs Frequency (RTI)  
CMRR vs Frequency (RTI, 1-kΩ source imbalance)  
Positive PSRR vs Frequency (RTI)  
Negative PSRR vs Frequency (RTI)  
Gain vs Frequency  
Voltage Noise Spectral Density vs Frequency (RTI)  
Current Noise Spectral Density vs Frequency (RTI)  
0.1-Hz to 10-Hz RTI Voltage Noise G = 1  
0.1-Hz to 10-Hz RTI Voltage Noise G = 1000  
0.1-Hz to 10-Hz RTI Current Noise  
Typical Distribution of Gain Error G = 1  
Typical Distribution of Gain Error G = 10  
Input Bias Current vs Common-Mode Voltage  
Gain Error vs Temperature G = 1  
Gain Error vs Temperature G = 10  
.Supply Current vs Temperature  
Gain Nonlinearity G = 1  
Gain Nonlinearity G = 10  
Offset Voltage vs Negative Common-Mode Voltage  
Offset Voltage vs Positive Common-Mode Voltage  
Positive Output Voltage Swing vs Output Current  
Negative Output Voltage Swing vs Output Current  
Short Circuit Current vs Temperature  
Large-Signal Frequency Response  
THD+N vs Frequency  
Overshoot vs Capacitive Loads  
Small-Signal Response G = 1  
Small-Signal Response G = 10  
Small-Signal Response G = 100  
Small-Signal Response G = 1000  
8
版权 © 2019, Texas Instruments Incorporated  
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
Typical Characteristics: Table of Graphs (接下页)  
1. Table of Graphs (接下页)  
DESCRIPTION  
FIGURE  
47  
48  
49  
50  
51  
52  
53  
54  
Large Signal Step Response  
Closed-Loop Output Impedance  
Differential-Mode EMI Rejection Ratio  
Common-Mode EMI Rejection Ratio  
Input Common-Mode Voltage vs Output Voltage G = 1, VS = 5 V  
Input Common-Mode Voltage vs Output Voltage G = 100, VS = 5 V  
Input Common-Mode Voltage vs Output Voltage VS =±5 V  
Input Common-Mode Voltage vs Output Voltage VS =±15 V  
版权 © 2019, Texas Instruments Incorporated  
9
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
7.7 Typical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
20%  
15%  
10%  
5%  
25%  
22.5%  
20%  
17.5%  
15%  
12.5%  
10%  
7.5%  
5%  
2.5%  
0
0
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
Input Stage Offset Voltage (mV)  
Input Stage Offset Voltage Drift (mV/èC)  
D001  
D002  
N = 1555  
Mean = 4.71 µV  
Std. Dev. = 7.12 µV  
N = 45  
Mean = 0.0357 µV/°C  
Std. Dev. = 0.099 µV/°C  
1. Typical Distribution of Input Stage Offset Voltage  
2. Typical Distribution of Input Stage Offset Voltage Drift  
0.15  
30%  
25%  
20%  
15%  
10%  
5%  
0.1  
0.05  
0
0
-200 -150 -100  
-50  
0
50  
100  
150  
200  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
Output Stage Offset Voltage (mV)  
Output Stage Offset Voltage Drift (mV/èC)  
D003  
D004  
N = 1555  
Mean = –3.18 µV  
Std. Dev. = 41.26 µV  
N = 45  
Mean = –1.49 µV/°C  
Std. Dev. = 0.89 µV/°C  
3. Typical Distribution of Output Stage Offset Voltage  
4. Typical Distribution of Output Stage Offset Voltage  
Drift  
100  
80  
60  
40  
20  
0
500  
Mean  
+3s  
-3s  
400  
300  
200  
100  
0
-20  
-40  
-100  
-200  
-300  
-400  
-500  
-60  
Mean  
+3s  
-3s  
-80  
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
D005  
D051  
45 units, 1 wafer lot  
45 units, 1 wafer lots  
5. Input Stage Offset Voltage vs Temperature  
6. Output Stage Offset Voltage vs Temperature  
版权 © 2019, Texas Instruments Incorporated  
10  
 
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
0.25  
0.2  
0.15  
0.1  
0.05  
0
25%  
20%  
15%  
10%  
5%  
0
-300  
-200  
-100  
0
100  
200  
300  
-250 -200 -150 -100 -50  
0
50 100 150 200 250  
Input Bias Current (pA)  
Input Bias Current (pA)  
D006  
D007  
N = 94  
Mean = 37.13 pA  
Std. Dev. = 57.65 pA  
N = 94  
TA = 90°C  
Mean = –27.65 pA  
Std. Dev. = 52.58 pA  
TA = 25°C  
7. Typical Distribution of Input Bias Current  
8. Typical Distribution of Input Bias Current  
25%  
20%  
15%  
10%  
5%  
500  
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
Avg  
+3s  
-3s  
0
-300  
-200  
-100  
0
100  
200  
300  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Input Offset Current (pA)  
Temperature (èC)  
D008  
D009  
N = 94  
G = 1  
N = 94  
Mean = –38.82 pA  
Std. Dev. = 47.24 pA  
9. Typical Distribution of Input Offset Current  
10. Input Bias Current vs Temperature  
300  
250  
200  
150  
100  
50  
20%  
15%  
10%  
5%  
0
0
-50  
-100  
-150  
-200  
-250  
-300  
Avg  
+3s  
-3s  
-50 -30 -10 10  
30  
50  
70  
90 110 130 150  
-20 -16 -12  
-8  
-4  
0
4
8
12  
16  
20  
Temperature (èC)  
Common-Mode Rejection Ratio (mV/V)  
D010  
D011  
N = 94  
G = 1  
N = 94  
G = 1  
Mean = 3.23 µV/V  
Std. Dev. = 5.38 µV/V  
11. Input Offset Current vs Temperature  
12. Typical CMRR Distribution  
版权 © 2019, Texas Instruments Incorporated  
11  
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
25%  
20%  
15%  
10%  
5%  
150  
125  
100  
75  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
0
50  
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Common-Mode Rejection Ratio (mV/V)  
Temperature (èC)  
D012  
D013  
N = 94  
G = 10  
Mean = 0.34 µV/V Std. Dev. = 0.54 µV/V  
5 typical units  
G = 1  
13. Typical CMRR Distribution  
14. CMRR vs Temperature  
175  
10  
8
20  
16  
12  
8
150  
125  
100  
75  
6
4
2
4
0
0
-2  
-4  
-6  
-8  
-10  
-4  
-8  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
-12  
-16  
-20  
Input Current  
Output Voltage  
50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
Temperature (èC)  
Input Voltage (V)  
D014  
D015  
5 typical units  
VS = 36 V  
G = 10  
15. CMRR vs Temperature  
16. Input Current vs Input Overvoltage  
160  
140  
120  
100  
80  
150  
125  
100  
75  
1
10  
100  
1000  
1
10  
100  
1000  
60  
50  
40  
25  
20  
0
0
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
D016  
D017  
1-kΩ source imbalance  
17. CMRR vs Frequency (RTI)  
18. CMRR vs Frequency (RTI)  
12  
版权 © 2019, Texas Instruments Incorporated  
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
170  
140  
110  
80  
160  
140  
120  
100  
80  
60  
50  
40  
20  
20  
G = 1  
G = 1  
0
G = 10  
G = 100  
G = 1000  
G = 10  
G = 100  
G = 1000  
-10  
-40  
-20  
-40  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
D018  
D019  
19. Positive PSRR vs Frequency (RTI)  
20. Negative PSRR vs Frequency (RTI)  
80  
60  
40  
20  
0
1000  
500  
G = 1  
G = 100  
300  
200  
100  
50  
30  
20  
10  
-20  
-40  
-60  
G = 1  
5
G = 10  
G = 100  
G = 1000  
3
2
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100m  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
D020  
D021  
21. Gain vs Frequency  
22. Voltage Noise Spectral Density vs Frequency (RTI)  
3
1000  
700  
500  
2
1
0
300  
200  
100  
70  
50  
-1  
30  
20  
-2  
-3  
10  
100m  
1
10  
100  
1k  
10k  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (Hz)  
Time (s/div)  
D022  
D023  
G = 1  
23. Current Noise Spectral Density vs Frequency (RTI)  
版权 © 2019, Texas Instruments Incorporated  
24. 0.1-Hz to 10-Hz RTI Voltage Noise  
13  
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
100  
2
1.5  
1
80  
60  
40  
0.5  
0
20  
0
-20  
-40  
-60  
-80  
-100  
-0.5  
-1  
-1.5  
-2  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
Time (1 s/div)  
Time (1 s/div)  
D024  
D025  
G = 1000  
25. 0.1-Hz to 10-Hz RTI Voltage Noise  
26. 0.1-Hz to 10-Hz RTI Current Noise  
20%  
17.5%  
15%  
12.5%  
10%  
7.5%  
5%  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-45 èC  
2.5%  
0
25 èC  
125 èC  
-15 -12  
-9  
-6  
-3  
0
3
6
9
12  
15  
-250 -200 -150 -100 -50  
0
50 100 150 200 250  
Common Mode Voltage (V)  
Gain Error (ppm)  
D026  
D027  
VS = ±15 V  
N = 94  
G = 1  
Mean = –48 ppm  
Std. Dev. = 58 ppm  
27. Input Bias Current vs Common-Mode Voltage  
28. Typical Distribution of Gain Error G = 1  
20%  
-20  
-30  
-40  
-50  
-60  
-70  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
0
-80  
-50  
-300 -150  
0
150  
300  
450  
600  
750  
900  
-25  
0
25  
50  
75  
100  
125  
150  
Gain Error (ppm)  
Temperature (èC)  
D028  
D029  
N = 94  
G = 10  
Mean = 286 ppm  
Std. Dev. = 204 ppm  
G = 1  
29. Typical Distribution of Gain Error G = 10  
30. Gain Error vs Temperature  
14  
版权 © 2019, Texas Instruments Incorporated  
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.5  
0.45  
0.4  
0.35  
0.3  
VS = ê 15 V  
VS = ê 2.25 V  
0
0.25  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-60  
-30  
0
30  
60  
90  
120  
150  
Temperature (èC)  
Temperature (èC)  
D030  
D031  
G = 10  
31. Gain Error vs Temperature  
32. Supply Current vs Temperature  
5
4
1
0.8  
0.6  
0.4  
0.2  
0
EP  
LREG  
EP  
LREG  
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
Output Voltage (V)  
Output Voltage (V)  
D032  
D033  
G = 1  
G = 10  
33. Gain Nonlinearity  
34. Gain Nonlinearity  
175  
150  
125  
100  
75  
150  
125  
100  
75  
-40 èC  
25 èC  
-40 èC  
25 èC  
85 èC  
85 èC  
125 èC  
125 èC  
50  
50  
25  
25  
0
0
-25  
-50  
-75  
-25  
-50  
-15  
-14.6 -14.2 -13.8 -13.4  
-13  
-12.6 -12.2 -11.8  
12  
12.4  
12.8  
13.2  
13.6  
14  
14.4  
14.8  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D034  
D035  
35. Offset Voltage vs Negative Common-Mode Voltage  
36. Offset Voltage vs Positive Common-Mode Voltage  
版权 © 2019, Texas Instruments Incorporated  
15  
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
15  
14.9  
14.8  
14.7  
14.6  
14.5  
14.4  
14.3  
14.2  
14.1  
14  
-14  
-14.1  
-14.2  
-14.3  
-14.4  
-14.5  
-14.6  
-14.7  
-14.8  
-14.9  
-15  
-40èC  
25èC  
85èC  
125èC  
-40èC  
25èC  
85èC  
125èC  
0
4
8
12  
16  
0
2
4
6
8
10  
12  
14  
16  
Output Current (mA)  
Output Current (mA)  
D036  
D037  
37. Positive Output Voltage Swing vs Output Current  
40  
38. Negative Output Voltage Swing vs Output Current  
20  
ISC, Source  
ISC, Sink  
VS = ê15 V  
VS = ê5 V  
30  
20  
18  
16  
14  
12  
10  
8
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
6
4
2
0
-50 -30 -10 10  
30  
50  
70  
90 110 130 150  
100  
1k  
10k  
100k  
1M  
10M  
Temperature (èC)  
Frequency (Hz)  
D038  
D039  
39. Short Circuit Current vs Temperature  
40. Large-Signal Frequency Response  
1
0.1  
-40  
-60  
-80  
-100  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
G = 1  
G = 10  
G = 100  
0.01  
Positive  
Negative  
0.001  
0
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
Frequency (Hz)  
Cload (pF)  
D040  
D041  
500-kHz measurement bandwidth  
1-VRMS output voltage 100-kΩ load  
41. THD+N vs Frequency  
42. Overshoot vs Capacitive Loads  
16  
版权 © 2019, Texas Instruments Incorporated  
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
100  
100  
80  
80  
60  
60  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
-5  
-2.5  
0
2.5  
5
7.5  
10  
12.5  
15  
-5  
-2.5  
0
2.5  
5
7.5  
10  
12.5  
15  
Time (ms)  
Time (ms)  
D042  
D043  
G = 1  
RL = 10 kΩ  
CL = 100 pF  
G = 10  
RL = 10 kΩ  
CL = 100 pF  
43. Small-Signal Response  
44. Small-Signal Response  
100  
100  
80  
60  
80  
60  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
-5  
-2.5  
0
2.5  
5
7.5  
10  
12.5  
CL = 100 pF  
45. Small-Signal Response  
15  
-25 -12.5  
0
12.5 25 37.5 50 62.5 75 87.5 100  
Time (ms)  
Time (ms)  
D044  
D045  
G = 100  
RL = 10 kΩ  
G = 1000  
RL = 10 kΩ  
CL = 100 pF  
46. Small-Signal Response  
Output  
Input  
1k  
100  
10  
1
0.1  
Time (10 µs/div)  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
D046  
C0xx  
48. Closed-Loop Output Impedance  
47. Large Signal Step Response  
版权 © 2019, Texas Instruments Incorporated  
17  
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
60  
40  
20  
10M  
100M  
Frequency (Hz)  
1G  
10G  
10M  
100M  
Frequency (Hz)  
1G  
10G  
D047  
D048  
49. Differential-Mode EMI Rejection Ratio  
50. Common-Mode EMI Rejection Ratio  
5
5
VREF = 0 V  
VREF = 0 V  
VREF = 2.5 V  
VREF = 2.5 V  
4
3
2
1
0
4
3
2
1
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Voltage (V)  
G = 1  
Output Voltage (V)  
C006  
C006  
VS = 5 V  
VS = 5 V  
G = 100  
51. Input Common-Mode Voltage vs Output Voltage  
52. Input Common-Mode Voltage vs Output Voltage  
5
4
15  
10  
5
3
2
1
0
0
-5  
-1  
-2  
-3  
-10  
-15  
G = 1  
G = 1  
-4  
G = 100  
-20  
G = 100  
-5  
0
10  
20  
0
2
4
±
20  
10  
±±  
±4  
±2  
Output Voltage (V)  
Output Voltage (V)  
C006  
C00±  
VS = ±5 V  
VREF = 0 V  
VS = ±15 V  
VREF = 0 V  
53. Input Common-Mode Voltage vs Output Voltage  
54. Input Common-Mode Voltage vs Output Voltage  
18  
版权 © 2019, Texas Instruments Incorporated  
 
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
8 Detailed Description  
8.1 Overview  
The INA818 is a monolithic, precision instrumentation amplifier incorporating a current-feedback input stage and  
a four-resistor difference amplifier output stage. The functional block diagram in the next section shows how the  
differential input voltage is buffered by transistors Q1 and Q2 and is forced across resistor RG, which causes a  
signal current to flow through resistors RG, R1, and R2. The output difference amplifier, A3, removes the common-  
mode component of the input signal and refers the output signal to the REF pin. The VBE and voltage drop  
across R1 and R2 produce output voltages on A1 and A2 that are approximately 0.8 V lower than the input  
voltages.  
Each input is protected by two field-effect transistors (FETs) that provide a low series resistance under normal  
signal conditions, and preserve excellent noise performance. When excessive voltage is applied, these  
transistors limit input current to approximately 8 mA.  
8.2 Functional Block Diagram  
+VS  
VB  
RB  
RB  
IB Cancellation  
IB Cancellation  
40 k  
-VS +VS  
40 kꢀ  
œ
A1  
A2  
A3  
+
OUT  
REF  
40 kꢀ  
40 kꢀ  
+VS  
+VS  
-VS +VS  
Q2  
Q1  
Super-ꢁ  
Super-ꢁ  
-IN  
+IN  
NPN  
NPN  
Overvoltage  
Protection  
+VS  
+VS  
Overvoltage  
Protection  
R2  
25 kꢀ  
R1  
25 kꢀ  
RG  
(External)  
-VS  
-VS  
RG  
RG  
-VS  
-VS  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2019, Texas Instruments Incorporated  
19  
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Setting the Gain  
55 shows that the gain of the INA818 is set by a single external resistor (RG) connected between the RG pins  
(pins 1 and 8).  
V+  
+VS  
Overvoltage  
Protection  
40 k  
+
40 kꢀ  
-IN  
œ
RG  
œ
50 kW  
RG  
25 kꢀ  
25 kꢀ  
OUT  
REF  
G = 1+  
RG  
+
VO = G V+IN - V-IN + V  
(
)
REF  
RG  
+IN  
œ
Overvoltage  
Protection  
+
40 kꢀ  
40 kꢀ  
-VS  
Copyright © 2017, Texas Instruments Incorporated  
V-  
55. Simplified Diagram of the INA818 With Gain and Output Equations  
The value of RG is selected according to 公式 1:  
50 kW  
RG  
G = 1+  
(1)  
2 lists several commonly-used gains and resistor values. The 50-kΩ term in 公式 1 comes from the sum of the  
two internal 25-kΩ feedback resistors. These on-chip resistors are laser-trimmed to accurate absolute values.  
The accuracy and temperature coefficients of these resistors are included in the gain accuracy and drift  
specifications of the INA818. As shown in 55 and explained in more details in the Layout section, make sure  
to connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground that are placed as  
close to the device as possible.  
2. Commonly-Used Gains and Resistor Values  
DESIRED GAIN  
RG (Ω)  
NC  
NEAREST 1% RG (Ω)  
1
2
NC  
49.9 k  
12.4 k  
5.49 k  
2.61 k  
1.02 k  
511  
50 k  
5
12.5 k  
5.556 k  
2.632 k  
1.02 k  
505.1  
251.3  
100.2  
50.05  
10  
20  
50  
100  
200  
500  
1000  
249  
100  
49.9  
20  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
8.3.1.1 Gain Drift  
The stability and temperature drift of the external gain setting resistor (RG ) also affects gain. The contribution of  
RG to gain accuracy and drift is determined from 公式 1.  
The best gain drift of 5 ppm/(maximum) is achieved when the INA818 uses G = 1 without RG connected. In  
this case, gain drift is limited by the mismatch of the temperature coefficient of the integrated 40-kΩ resistors in  
the differential amplifier (A3). At gains greater than 1, gain drift increases as a result of the individual drift of the  
25-kΩ resistors in the feedback of A1 and A2, relative to the drift of the external gain resistor (RG.) The low  
temperature coefficient of the internal feedback resistors improves the overall temperature stability of applications  
using gains greater than 1 V/V over alternate solutions.  
Low resistor values required for high gain make wiring resistance an important consideration. Sockets add to the  
wiring resistance and contribute additional gain error (such as a possible unstable gain error) at gains of  
approximately 100 or greater. To maintain stability, avoid parasitic capacitance of more than a few picofarads at  
RG connections. Careful matching of any parasitics on the RG pins maintains optimal CMRR over frequency.  
8.3.2 EMI Rejection  
Texas Instruments developed a method to accurately measure the immunity of an amplifier over a broad  
frequency spectrum extending from 10 MHz to 6 GHz. This method uses an EMI rejection ratio (EMIRR) to  
quantify the ability of the INA818 to reject EMI. The offset resulting from an input EMI signal is calculated using  
公式 2:  
EMIRR (dB)  
2
÷
-
VRF_PEAK  
100 mVP  
«
÷
20  
DVOS  
=
10  
«
÷
where  
VRF_PEAK is the peak amplitude of the input EMI signal.  
(2)  
56 and 57 show the INA818 EMIRR graphs for differential and common-mode EMI rejection across this  
frequency range. 3 lists the EMIRR values for the INA818 at frequencies commonly encountered in real-world  
applications. Applications listed in 3 are centered on or operated near the frequency shown. Depending on the  
end-system requirements, additional EMI filters may be required near the signal inputs of the system.  
Incorporating known good practices, such as using short traces, low-pass filters, and damping resistors  
combined with parallel and shielded signal routing may also be required.  
140  
120  
100  
80  
100  
80  
60  
40  
20  
0
60  
40  
20  
10M  
100M  
Frequency (Hz)  
1G  
10G  
10M  
100M  
Frequency (Hz)  
1G  
10G  
D048  
D047  
56. Common-Mode EMIRR Testing  
57. Differential Mode EMIRR Testing  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
3. INA818 EMIRR for Frequencies of Interest  
DIFFERENTIAL  
EMIRR  
COMMON-MODE  
EMIRR  
FREQUENCY  
400 MHz  
APPLICATION OR ALLOCATION  
Mobile radio, mobile satellite, space operation, weather, radar, ultrahigh-frequency (UHF)  
applications  
52 dB  
55 dB  
58 dB  
80 dB  
71 dB  
73 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (up to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
GSM applications, mobile personal communications, broadband, satellite,  
L-band (1 GHz to 2 GHz)  
1.8 GHz  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific  
and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
2.4 GHz  
3.6 GHz  
5 GHz  
59 dB  
78 dB  
70 dB  
95 dB  
96 dB  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and  
satellite operation, C-band (4 GHz to 8 GHz)  
100 dB  
8.3.3 Input Common-Mode Range  
The linear input voltage range of the INA818 input circuitry extends within 1.5 V (typical) of both power supplies  
and maintains excellent common-mode rejection throughout this range. The common-mode range for the most  
common operating conditions are shown in 58, 53, and 54. The common-mode range for other  
operating conditions is best calculated using the Common-Mode Input Range Calculator for Instrumentation  
Amplifiers.  
5
4
3
2
1
0
5
4
3
2
1
0
VREF = 0 V  
VREF = 0 V  
VREF = 2.5 V  
VREF = 2.5 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Voltage (V)  
Output Voltage (V)  
C006  
C006  
VS = 5 V  
G = 1  
VS = 5 V  
G = 100  
58. Input Common-Mode Voltage vs Output Voltage  
59. Input Common-Mode Voltage vs Output Voltage  
15  
5
4
10  
5
3
2
1
0
0
-5  
-1  
-2  
-3  
-10  
-15  
-20  
G = 1  
G = 1  
-4  
G = 100  
G = 100  
-5  
0
10  
20  
0
2
4
±
20  
10  
±±  
±4  
±2  
Output Voltage (V)  
Output Voltage (V)  
C006  
C00±  
VS = ±5 V  
VREF = 0 V  
VS = ±15 V  
VREF = 0 V  
60. Input Common-Mode Voltage vs Output Voltage  
61. Input Common-Mode Voltage vs Output Voltage  
版权 © 2019, Texas Instruments Incorporated  
22  
 
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
8.3.4 Input Protection  
The inputs of the INA818 device are individually protected for voltages up to ±60 V. For example, a condition of  
–60 V on one input and +60 V on the other input does not cause damage. Internal circuitry on each input  
provides low series impedance under normal signal conditions. If the input is overloaded, the protection circuitry  
limits the input current to a value of approximately 8 mA.  
+V  
ZD1  
+VS  
IN  
Overvoltage  
Protection  
Input Voltage  
Source  
+
Input Transistor  
œ
-VS  
ZD2  
-V  
62. Input Current Path During an Overvoltage Condition  
During an input overvoltage condition, current flows through the input protection diodes into the power supplies;  
see 62. If the power supplies are unable to sink current, then Zener diode clamps (ZD1 and ZD2 in 62)  
must be placed on the power supplies to provide a current pathway to ground. 63 shows the input current for  
input voltages from –50 V to +50 V when the INA818 is powered by ±15-V supplies.  
10  
8
20  
16  
12  
8
6
4
2
4
0
0
-2  
-4  
-6  
-8  
-10  
-4  
-8  
-12  
-16  
-20  
Input Current  
Output Voltage  
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
Input Voltage (V)  
D015  
63. Input Current vs Input Overvoltage  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
8.3.5 Operating Voltage  
The INA818 operates over a power-supply range of 4.5 V to 36 V (±2.25 V to ±18 V).  
CAUTION  
Supply voltages higher than 40 V (±20 V) can permanently damage the device.  
Parameters that vary over supply voltage or temperature are shown in Typical  
Characteristics .  
8.3.6 Error Sources  
Most modern signal-conditioning systems calibrate errors at room temperature. However, calibration of errors  
that result from a change in temperature is normally difficult and costly. Therefore, minimize these errors by  
choosing high-precision components, such as the INA818, that have improved specifications in critical areas that  
impact the precision of the overall system. 64 shows an example application.  
+15 V  
C2  
RS+  
1 k  
RG  
VOUT  
1 V  
VDIFF = VOUT / G  
INA  
RG  
5.49 kꢀ  
RSœ  
0.99 kꢀ  
VCM  
10 V  
C1  
œ15 V  
64. Example Application With G = 10 V/V and 1-V Output Voltage  
Resistor-adjustable devices (such as the INA818) show the lowest gain error in G = 1 because of the inherently  
well-matched drift of the internal resistors of the differential amplifier. At gains greater than 1 (for instance, G =  
10 V/V or G = 100 V/V), the gain error becomes a significant error source because of the contribution of the  
resistor drift of the 25-kΩ feedback resistors in conjunction with the external gain resistor. Except for very high  
gain applications, the gain drift is by far the largest error contributor compared to other drift errors, such as offset  
drift.  
The INA818 offers excellent gain error over temperature for both G > 1 and G = 1 (no external gain resistor). 5  
summarizes the major error sources in common INA applications and compares the three cases of G = 1 (no  
external resistor) and G = 10 (5.49-kΩ external resistor) and G = 100 (511-Ω external resistor). All calculations  
are assuming an output voltage of VOUT = 1 V. Thus, the input signal VDIFF (given by VDIFF= VOUT / G) exhibits  
smaller and smaller amplitudes with increasing gain G. VDIFF = 1 mV at G = 1000 in this example. All calculations  
refer the error to the input for easy comparison and system evaluation. As 5 shows, errors generated by the  
input stage (such as input offset voltage) are more dominant at higher gain, while the effects of output stage are  
suppressed because they are divided by the gain when referring them back to the input. The gain error and gain  
drift error are much more significant for gains greater than 1 because of the contribution of the resistor drift of the  
25-kΩ feedback resistors in conjunction with the external gain resistor. In most applications, static errors  
(absolute accuracy errors) can readily be removed during calibration in production, while the drift errors are the  
key factors limiting overall system performance.  
24  
版权 © 2019, Texas Instruments Incorporated  
 
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
4. System Specifications for Error Calculation  
QUANTITY  
VALUE  
1
UNIT  
VOUT  
V
VCM  
10  
V
VS  
1
V
Ω
RS+  
RS–  
1000  
999  
0.01  
10  
Ω
RG tolerance  
RG drift  
%
ppm/°C  
°C  
Temperature range upper limit  
105  
5. Error Calculation  
INA818 VALUES  
G = 1  
G = 100  
ERROR  
(ppm)  
G = 1000  
ERROR  
(ppm)  
ERROR SOURCE  
ERROR CALCULATION  
SPECIFICATION  
UNIT  
ERROR  
(ppm)  
ABSOLUTE ACCURACY AT 25°C  
Input offset voltage  
VOSI / VDIFF  
35  
300  
0.5  
µV  
µV  
nA  
35  
300  
1
350  
300  
5
3500  
300  
50  
Output offset voltage  
VOSO / (G × VDIFF)  
Input offset current  
IOS × maximum (RS+, RS–) / VDIFF  
90 (G = 1),  
110 (G = 10),  
130 (G = 100)  
VCM / (10CMRR/20 × VDIFF  
)
CMRR (min)  
PSRR (min)  
dB  
dB  
316  
3
316  
20  
316  
32  
110 (G = 1),  
114 (G = 10),  
130 (G = 100)  
(VCC -VS)/ (10PSRR/20 × VDIFF  
)
0.02 (G = 1),  
0.15 (G = 10, 100)  
GE(%) × 104  
GE(%) × 104  
sum of all errors  
Gain error from INA (max)  
%
%
200  
100  
955  
1500  
100  
1500  
100  
Gain error from external resistor RG (max)  
0.01  
Total absolute accuracy error (ppm) at 25°C,  
worst case  
2591  
5798  
Total absolute accuracy error (ppm) at 25°C,  
average  
rms sum of all errors  
GTC × (TA – 25)  
491  
1604  
3835  
DRIFT TO 105°C  
5 (G = 1),  
35 (G = 10, 100)  
Gain drift from INA (max)  
ppm/°C  
400  
2800  
2800  
Gain drift from external resistor RG (max)  
Input offset voltage drift (max)  
Output offset voltage drift  
GTC × (TA – 25)  
10  
0.4  
5
ppm/°C  
µV/°C  
µV/°C  
800  
32  
800  
320  
400  
800  
3200  
400  
(VOSI_TC / VDIFF) × (TA – 25)  
[VOSO_TC / ( G × VDIFF)] × (TA – 25)  
400  
IOS_TC × maximum (RS+, RS–) ×  
(TA – 25) / VDIFF  
Offset current drift  
20  
pA/°C  
2
16  
160  
Total drift error to 105°C (ppm), worst case  
Total drift error to 105°C (ppm), typical  
RESOLUTION  
sum of all errors  
1634  
980  
4336  
2957  
7360  
4348  
rms sum of all errors  
10 (G = 1, 10),  
15 (G = 100)  
Gain nonlinearity  
ppm of FS  
µVPP  
10  
1204  
0.3  
10  
1070  
2
15  
3941  
11  
2
eNO  
6
eNI = 8,  
eNO = 90  
2
(eNI  
+
´
´
BW  
Voltage noise (at 1 kHz)  
G
VDIFF  
IN × maximum (RS+, RS–) × BW /  
Current noise (at 1kHz)  
0.13  
pA/Hz  
VDIFF  
Total resolution error (ppm), worst case  
Total resolution error (ppm), typical  
TOTAL ERROR  
sum of all errors  
1214  
1204  
1080  
1070  
3956  
3941  
rms sum of all errors  
Total error (ppm), worst case  
Total error (ppm), typical  
sum of all errors  
3802  
1628  
8007  
3530  
17113  
7010  
rms sum of all errors  
版权 © 2019, Texas Instruments Incorporated  
25  
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
8.4 Device Functional Modes  
The INA818 has a single functional mode and operates when the power-supply voltage is greater than 4.5 V  
(±2.25 V). The maximum power-supply voltage for the INA818 is 36 V (±18 V.)  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Reference Pin  
The output voltage of the INA818 is developed with respect to the voltage on the reference pin, REF. In dual-  
supply operation, REF (pin 6) is connected to the low-impedance system ground. In single-supply operation,  
offsetting the output signal to a precise midsupply level is useful (for example, 2.5 V in a 5-V supply  
environment). To accomplish this level shift, a voltage source must be connected to the REF pin to level-shift the  
output so that the INA818 drives a single-supply ADC.  
The voltage source applied to the reference pin must have a low output impedance. As shown in 65, any  
resistance at the reference pin (shown as RREF in 65) is in series with an internal 40-kΩ resistor.  
V+  
+VS  
Overvoltage  
Protection  
40 k  
+
40 kꢀ  
-IN  
œ
RG  
œ
25 kꢀ  
25 kꢀ  
RG  
OUT  
REF  
+
RG  
+IN  
œ
Overvoltage  
Protection  
+
RREF  
40 kꢀ  
40 kꢀ  
-VS  
V-  
65. Parasitic Resistance Shown at the Reference Pin  
26  
版权 © 2019, Texas Instruments Incorporated  
 
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
Application Information (接下页)  
The parasitic resistance at the reference pin (RREF) creates an imbalance in the four resistors of the internal  
difference amplifier, which degrades the common-mode rejection ratio (CMRR). 66 shows the degradation in  
CMRR of the INA818 as a result of increased resistance at the reference pin. For the best performance, keep the  
source impedance to the REF pin (RREF) below 5 Ω.  
120  
100  
80  
60  
0 Ω  
40  
5 Ω  
10 Ω  
20  
15 Ω  
20 Ω  
0
10  
100  
1k  
Frequency (Hz)  
10k  
66. The Effect of Increasing Resistance at the Reference Pin  
Voltage-reference devices are a suitable option for providing a low-impedance voltage source for the reference  
pin. However, if a resistor voltage divider generates a reference voltage, the divider must be buffered by an op  
amp, as 67 shows, in order to avoid CMRR degradation.  
5 V  
+IN  
RG  
RG  
INA818  
OUT  
RG  
œIN  
5 V  
5 V  
100 k  
+
OPA191  
1 F  
œ
100 kꢀ  
67. Using an Op Amp to Buffer Reference Voltages  
版权 © 2019, Texas Instruments Incorporated  
27  
 
 
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
Application Information (接下页)  
9.1.2 Input Bias Current Return Path  
The input impedance of the INA818 is extremely high—approximately 100 GΩ. However, a path must be  
provided for the input bias current of both inputs. This input bias current is typically 150 pA. High input  
impedance means that this input bias current changes very little with varying input voltage.  
For proper operation, input circuitry must provide a path for input bias current. 68 shows various provisions for  
an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the common-  
mode range of the INA818, and the input amplifiers saturate. If the differential source resistance is low, the bias  
current return path can connect to one input (as shown in the thermocouple example in 68). With a higher  
source impedance, using two equal resistors provides a balanced input with possible advantages of a lower input  
offset voltage as a result of bias current and better high-frequency common-mode rejection.  
Microphone,  
Hydrophone,  
and So Forth  
TI Device  
47 kW  
47 kW  
Thermocouple  
TI Device  
10 kW  
TI Device  
Center tap provides  
bias current return.  
Copyright © 2017, Texas Instruments Incorporated  
68. Providing an Input Common-Mode Current Path  
28  
版权 © 2019, Texas Instruments Incorporated  
 
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
9.2 Typical Applications  
9.2.1 Three-Pin Programmable Logic Controller (PLC)  
69 shows a three-pin programmable-logic controller (PLC) design for the INA818. This PLC reference design  
accepts inputs of ±10 V or ±20 mA. The output is a single-ended voltage of 2.5 V ±2.3 V (or 200 mV to 4.8 V).  
Many PLCs typically have these input and output ranges.  
±10 V  
15 V  
REF5025  
R
= 100 kΩ  
= 4.17 kΩ  
1
VOUT  
GND  
VIN  
NR  
1 F  
1 F  
1 F  
15 V  
R
2
±20 mA  
-IN  
+VS  
INA818  
-VS  
RG  
REF  
R
=
V
2.5 V ± 2.3 V  
OUT  
3
R
= 10.5 kΩ  
OUT  
G
20 Ω  
RG  
+IN  
-15 V  
Copyright © 2017, Texas Instruments Incorporated  
69. PLC Input (±10 V, 4 mA to 20 mA)  
9.2.1.1 Design Requirements  
For this application, the design requirements are as follows:  
4-mA to 20-mA input with less than 20-Ω burden  
±20-mA input with less than 20-Ω burden  
±10-V input with impedance of approximately 100 kΩ  
Maximum 4-mA to 20-mA or ±20-mA burden voltage equal to ±0.4 V  
Output range within 0 V to 5 V  
9.2.1.2 Detailed Design Procedure  
There are two modes of operation for the circuit shown in 69: current input and voltage input. This design  
requires R1 >> R2 >> R3. Given this relationship, 公式 3 calculates the current input mode transfer function.  
VOUT-I = VD ´ G + VREF = -(IIN ´ R3) ´ G + VREF  
where  
G represents the gain of the instrumentation amplifier  
VD represents the differential voltage at the INA818 inputs  
VREF is the voltage at the INA818 REF pin  
IIN is the input current  
(3)  
公式 4 shows the transfer function for the voltage input mode.  
R2  
VOUT-V = VD ´ G + VREF = - VIN  
´
´ G + VREF  
R1 + R2  
where  
VIN is the input voltage  
(4)  
29  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
Typical Applications (接下页)  
R1 sets the input impedance of the voltage input mode. The minimum typical input impedance is 100 kΩ. 100 kΩ  
is selected for R1 because increasing the R1 value also increases noise. The value of R3 must be extremely  
small compared to R1 and R2. 20 Ω for R3 is selected because that resistance value is much smaller than R1 and  
yields an input voltage of ±400 mV when operated in current mode (±20 mA).  
Use 公式 5 to calculate R2 given VD = ±400 mV, VIN = ±10 V, and R1 = 100 kΩ.  
R2  
R1 ´ VD  
VD = VIN ´  
® R2 =  
= 4.167 kW  
R1 + R2  
VIN - VD  
(5)  
The value obtained from 公式 5 is not a standard 0.1% value, so 4.17 kΩ is selected. R1 and R2 also use 0.1%  
tolerance resistors to minimize error.  
Use 公式 6 to calculate the ideal gain of the instrumentation amplifier.  
V
OUT - VREF  
V
4.8 V - 2.5 V  
G =  
=
= 5.75  
V
VD  
400 mV  
(6)  
(7)  
公式 7 calculates the gain-setting resistor value using the INA818 gain equation, 公式 1.  
50 kW 50 kW  
RG  
=
=
= 10.5 kW  
G -1 5.75 -1  
10.5 kΩ is a standard 0.1% resistor value that can be used in this design.  
9.2.1.3 Application Curves  
70 and 71 show typical characteristic curves for the circuit in 69.  
C001  
5
5
4
4
3
3
2
2
1
1
0
0
-10  
-5  
0
5
10  
-20  
-10  
0
10  
20  
Input Voltage (V)  
Input Current (mA)  
C001  
70. PLC Output Voltage vs Input Voltage  
71. PLC Output Voltage vs Input Current  
30  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
Typical Applications (接下页)  
9.2.2 Resistance Temperature Detector Interface  
72 illustrates a 3-wire interface circuit for resistance temperature detectors (RTDs). The circuit incorporates  
analog linearization and has an output voltage range from 0 V to 5 V. The linearization technique employed is  
described in the Analog linearization of resistance temperature detectors analog application journal. Series and  
parallel combinations of standard 1% resistor values are used to achieve less than 0.02°C of error over a 200°C  
temperature span.  
15 V  
REF5050  
VOUT  
GND  
VIN  
NR  
4.99  
k  
4.99  
kꢀ  
-IN  
RG  
VOUT  
1.13  
kꢀ  
100  
kꢀ  
2.87  
kꢀ  
0 V at 0°C  
5 V at 200°C  
25 mV/°C  
100 ꢀ  
INA818  
OUT  
RG  
+IN  
Pt100 RTD  
100 ꢀ  
-15 V  
105 k1.18 kꢀ  
Copyright © 2017, Texas Instruments Incorporated  
72. A 3-Wire Interface for RTDs With Analog Linearization  
5
4.5  
4
0.018  
0.016  
0.014  
0.012  
0.01  
3.5  
3
2.5  
2
0.008  
0.006  
0.004  
0.002  
0
1.5  
1
0.5  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Temperature (°C)  
Temperature (°C)  
C001  
73. Transfer Function of a 3-Wire RTD Interface  
74. Temperature Error Over the Full Temperature Range  
版权 © 2019, Texas Instruments Incorporated  
31  
 
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
The nominal performance of the INA818 is specified with a supply voltage of ±15 V and midsupply reference  
voltage. The device can also be operated using power supplies from ±2.25 V (4.5 V) to ±18 V (36 V) and non-  
midsupply reference voltages with excellent performance. Parameters that can vary significantly with operating  
voltage and reference voltage are shown in the Typical Characteristics section.  
11 Layout  
11.1 Layout Guidelines  
Attention to good layout practices is always recommended. For best operational performance of the device, use  
good PCB layout practices, including:  
Take care to make sure that both input paths are well-matched for source impedance and capacitance to  
avoid converting common-mode signals into differential signals. Even slight mismatch in parasitic capacitance  
at the gain setting pins can degrade CMRR over frequency. For example, in applications that implement gain  
switching using switches or PhotoMOS® relays to change the value of RG, select the component so that the  
switch capacitance is as small as possible and most importantly so that capacitance mismatch between the  
RG pins is minimized.  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of the device  
itself. Bypass capacitors reduce the coupled noise by providing low-impedance power sources local to the  
analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better than in  
parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in 75, keeping RG close to  
the pins minimizes parasitic capacitance.  
Keep the traces as short as possible.  
32  
版权 © 2019, Texas Instruments Incorporated  
INA818  
www.ti.com.cn  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
11.2 Layout Example  
+V  
C2  
R2  
+IN  
-IN  
RG  
INA818  
RG  
R3  
OUT  
R1  
C1  
Ground plane  
removed at gain  
-V  
resistor to minimize  
parasitic capacitance  
Use ground pours for  
shielding the input  
signal pairs  
R3  
+V  
GND  
R1  
C2  
8
1
2
3
4
RG  
RG  
œIN  
+IN  
œIN  
+IN  
-VS  
+VS  
OUT  
REF  
7
6
5
Input traces routed  
adjacent to each other  
OUT  
R2  
Low-impedance  
connection for  
reference terminal  
GND  
C1  
Place bypass  
capacitors as close to  
IC as possible  
-V  
Copyright © 2017, Texas Instruments Incorporated  
75. Example Schematic and Associated PCB Layout  
版权 © 2019, Texas Instruments Incorporated  
33  
INA818  
ZHCSJM1A APRIL 2019REVISED JUNE 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《通用仪表放大器 EVM用户指南  
德州仪器 (TI)《仪表放大器的综合误差计算》应用手册  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
PhotoMOS is a registered trademark of Panasonic Electric Works Europe AG.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
34  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA818ID  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
INA818  
INA818  
INA818IDR  
2500 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA818IDR  
SOIC  
D
8
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
INA818IDR  
D
8
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
INA818ID  
D
8
75  
506.6  
8
3940  
4.32  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY