INA819ID [TI]

2MHz、35μV 失调电压、8nV/√Hz 噪声、350µA 功耗、精密(增益引脚 2、3)仪表放大器 | D | 8 | -40 to 125;
INA819ID
型号: INA819ID
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2MHz、35μV 失调电压、8nV/√Hz 噪声、350µA 功耗、精密(增益引脚 2、3)仪表放大器 | D | 8 | -40 to 125

放大器 仪表 仪表放大器
文件: 总51页 (文件大小:2724K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA819  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
INA819 35 μV 失调电压、8 nV/√Hz 噪声、低功耗、精密仪表放大器  
1 特性  
3 说明  
• 低失调电压10 µV典型值),35 µV最大值)  
INA819 是一款高精度仪表放大器可提供低功耗并且  
可在极宽的单电源或双电源电压范围内工作。可通过单  
个外部电阻器在 1 10,000 范围内设置任意增益。由  
于采用超 β 输入晶体管这些晶体管可提供极低的输  
入失调电压、失调电压漂移、输入偏置电流、输入电压  
和电流噪声),该器件可提供出色的精度。附加电路可  
以为输入提供高±60V 的过压保护。  
• 增益漂移5 ppm/°C (G = 1)、  
35 ppm/°C (G > 1)最大值)  
• 噪声8 nV/Hz  
• 带宽2 MHz (G = 1)270 kHz (G = 100)  
1 nF 容性负载下保持稳定  
• 输入保护电压高±60V  
• 共模抑制110 dBG = 10最小值)  
• 电源抑制110 dBG = 1最小值)  
• 电源电流385 µA最大值)  
• 电源电压范围:  
INA819 经过优化可提供较高的共模抑制比。当 G =  
1 整个输入共模范围内的共模抑制比超过 90 dB。  
根据设计此器件在低电压下运行4.5V 单电源和  
±18V 的双电源供电。  
– 单电源4.5V 36V  
– 双电源±2.25V ±18V  
• 额定温度范围40°C +125°C  
• 封装8 SOICVSSOPWSON  
INA819 采用 8 引脚 SOICVSSOP WSON 封装,  
并且额定工作温度范围40°C +125°C。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
SOIC (8)  
2 应用  
4.90mm × 3.91mm  
3.00mm × 3.00mm  
3.00mm × 3.00mm  
模拟输入模块  
流量发送器  
电池测试  
LCD 测试  
INA819  
VSSOP (8)  
WSON (8)  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
心电(ECG)  
外科手术设备  
过程分析pH、气体、浓度、力和湿度)  
+VS  
25%  
22.5%  
20%  
17.5%  
15%  
12.5%  
10%  
7.5%  
5%  
Overvoltage  
40 k  
+
40 k  
–IN  
RG  
RG  
Protection  
+
25 k  
25 k  
OUT  
REF  
RG  
+IN  
+
Overvoltage  
Protection  
40 k  
40 k  
2.5%  
0
–VS  
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
50 k  
G = 1 +  
VO = G(V+IN – V–IN) + VREF  
Input Stage Offset Voltage Drift (mV/èC)  
D002  
RG  
输入阶段失调电压漂移的典型分布  
INA819 简化版内部原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS959  
 
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
Table of Contents  
9 Application and Implementation..................................27  
9.1 Application Information............................................. 27  
9.2 Typical Applications.................................................. 30  
10 Power Supply Recommendations..............................33  
11 Layout...........................................................................33  
11.1 Layout Guidelines................................................... 33  
11.2 Layout Example...................................................... 34  
12 Device and Documentation Support..........................35  
12.1 Device Support....................................................... 35  
12.2 Documentation Support.......................................... 35  
12.3 接收文档更新通知................................................... 35  
12.4 支持资源..................................................................35  
12.5 Trademarks.............................................................35  
12.6 Electrostatic Discharge Caution..............................36  
12.7 术语表..................................................................... 36  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................6  
7.6 Typical Characteristics................................................8  
8 Detailed Description......................................................19  
8.1 Overview...................................................................19  
8.2 Functional Block Diagram.........................................19  
8.3 Feature Description...................................................20  
8.4 Device Functional Modes..........................................27  
Information.................................................................... 36  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (June 2020) to Revision D (April 2022)  
Page  
Changed input stage offset voltage specification for INA819DRG from 10 µV typical to 6 µV typical, and from  
35 µV maximum to 30 µV maximum, in Typical Characteristics ........................................................................6  
Changed maximum input stage offset voltage vs temperature specification for INA819DRG from 0.4 µV/°C to  
0.35 µV/°C in Typical Characteristics .................................................................................................................6  
Changed Figures 7-10 and 7-11 to correct units from nA to pA......................................................................... 8  
Changed input common-mode range calculator link from outdated Common-Mode Input Range Calculator for  
Instrumentation Amplifiers to Analog Engineers Calculator..............................................................................22  
Changes from Revision B (July 2019) to Revision C (June 2020)  
Page  
• 向数据表添加DRG (WSON) 封装和相关内容.................................................................................................1  
Added row for thermal pad to Pin Functions table .............................................................................................4  
Added bullet regarding exposed thermal pad to end of Layout Guidelines section .........................................33  
Changes from Revision A (May 2019) to Revision B (July 2019)  
Page  
DGK (VSSOP) 封装从预告信息预发布更改为量产数据正在供货.....................................................1  
Changes from Revision * (December 2018) to Revision A (April 2019)  
Page  
• 向数据表添加8 DGK (VSSOP) 封装预告信息和相关内容...................................................................... 1  
• 更改了要点..................................................................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: INA819  
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
5 Device Comparison Table  
DEVICE  
DESCRIPTION  
GAIN EQUATION  
RG PINS AT PIN  
35-µV Offset, 0.4-µV/°C VOS Drift, 8-nV/Hz Noise, Low-Power,  
Precision Instrumentation Amplifier  
INA819  
INA818  
INA821  
INA828  
INA333  
PGA280  
2, 3  
G = 1 + 50 kΩ/ RG  
35-µV Offset, 0.4-µV/°C VOS Drift, 8-nV/Hz Noise, Low-Power,  
Precision Instrumentation Amplifier  
1, 8  
2, 3  
1, 8  
1, 8  
N/A  
G = 1 + 50 kΩ/ RG  
G = 1 + 49.4 kΩ/ RG  
35-µV Offset, 0.4-µV/°C VOS Drift, 7-nV/Hz Noise, High-  
Bandwidth, Precision Instrumentation Amplifier  
50-µV Offset, 0.5-µV/°C VOS Drift, 7-nV/Hz Noise, Low-Power,  
Precision Instrumentation Amplifier  
G = 1 + 50 kΩ/ RG  
G = 1 + 100 kΩ/ RG  
Digital programmable  
25-µV VOS, 0.1-µV/°C VOS Drift, 1.8-V to 5-V, RRO, 50-µA IQ,  
Chopper-Stabilized INA  
20-mV to ±10-V Programmable Gain IA With 3-V or 5-V Differential  
Output; Analog Supply up to ±18 V  
G = 0.2 V Differential Amplifier for ±10-V to 3-V and 5-V  
Conversion  
INA159  
G = 0.2 V/V  
N/A  
N/A  
PGA112  
Precision Programmable Gain Op Amp With SPI  
Digital programmable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: INA819  
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
6 Pin Configuration and Functions  
œIN  
RG  
RG  
+IN  
1
2
3
4
8
7
6
5
+VS  
OUT  
REF  
œVS  
œIN  
RG  
RG  
+IN  
1
2
3
4
8
7
6
5
+VS  
OUT  
REF  
œVS  
Thermal  
Pad  
Not to scale  
Not to scale  
6-1. D (8-Pin SOIC) and DGK (8-Pin VSSOP)  
Packages, Top View  
6-2. DRG Package, 8-Pin WSON, Top View  
6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
IN  
NO.  
1
Input  
Input  
Negative (inverting) input  
Positive (noninverting) input  
Output  
+IN  
4
OUT  
7
Output  
RG  
2, 3  
6
Gain setting pin. Place a gain resistor between pin 2 and pin 3.  
Reference input. This pin must be driven by a low impedance source.  
Negative supply  
REF  
Input  
5
VS  
+VS  
8
Positive supply  
Thermal pad  
Thermal pad internally connected to VS. Connect externally to VS or leave floating.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: INA819  
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
±20  
Supply voltage dual supply, VS = (V+) (V)  
Supply voltage single supply, VS = (V+) (V)  
Signal input pins  
40  
V
60  
20  
V
60  
20  
VREF pin  
V
Signal output pins maximum voltage  
Signal output pins maximum current  
Output short-circuit(2)  
(+Vs) + 0.5  
50  
V
(Vs) 0.5  
50  
mA  
Continuous  
Operating Temperature, TA  
Junction Temperature, TJ  
150  
175  
150  
°C  
°C  
°C  
50  
65  
Storage Temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Short-circuit to VS / 2.  
7.2 ESD Ratings  
VALUE  
±1500  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
36  
UNIT  
Single-supply  
Supply voltage, VS  
V
Dual-supply  
±2.25  
40  
±18  
125  
Specified temperature, TA  
Specified temperature  
°C  
7.4 Thermal Information  
INA819  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
119.6  
66.3  
DGK (VSSOP) DRG (WSON)  
UNIT  
8 PINS  
215.4  
66.3  
8 PINS  
55.6  
57.9  
28.6  
1.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
61.9  
97.8  
20.5  
10.5  
ψJT  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
61.4  
96.1  
28.6  
12.1  
ψJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: INA819  
 
 
 
 
 
 
 
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7.5 Electrical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10  
6
MAX  
UNIT  
INPUT  
INA819ID  
35  
40  
30  
INA819IDGK  
INA819IDRG  
µV  
INA819ID,  
INA819DRG  
Input stage offset  
voltage(1) (3)  
75  
80  
VOSI  
TA = 40°C to +125°C(2)  
INA819IDGK  
INA819D,  
INA819DGK  
0.4  
vs temperature,  
TA = 40°C to +125°C  
µV/°C  
INA819DRG  
0.35  
300  
800  
5
50  
µV  
Output stage offset  
voltage(1) (3)  
VOSO  
TA = 40°C to +125°C(2)  
vs temperature, TA = 40°C to +125°C  
G = 1, RTI  
µV/°C  
110  
114  
130  
136  
120  
130  
G = 10, RTI  
Power-supply rejection  
ratio  
PSRR  
dB  
G = 100, RTI  
135  
G = 1000, RTI  
140  
zid  
zic  
Differential impedance  
100 || 1  
GΩ|| pF  
G|| pF  
Common-mode  
impedance  
100 || 4  
32  
RFI filter, 3-dB  
frequency  
MHz  
(V) + 2  
(V+) 2  
VCM  
Operating input range(4)  
Input overvoltage range  
V
V
VS = ±2.25 V to ±18 V, TA = 40°C to +125°C  
TA = 40°C to +125°C(2)  
See 7-51 through 7-54  
±60  
At DC to 60 Hz, RTI, VCM = (V) + 2 V to (V+) 2 V,  
G = 1  
90  
110  
130  
140  
105  
125  
145  
150  
At DC to 60 Hz, RTI, VCM = (V) + 2 V to (V+) 2 V,  
G = 10  
Common-mode rejection  
ratio  
CMRR  
dB  
At DC to 60 Hz, RTI, VCM = (V) + 2 V to (V+) 2 V,  
G = 100  
At DC to 60 Hz, RTI, VCM = (V) + 2 V to (V+) 2 V,  
G = 1000  
BIAS CURRENT  
VCM = VS / 2  
0.15  
0.15  
0.5  
2
IB  
Input bias current  
nA  
nA  
TA = 40°C to +125°C  
VCM = VS / 2  
0.5  
2
IOS  
Input offset current  
TA = 40°C to +125°C  
NOISE VOLTAGE  
8
0.19  
80  
f = 1 kHz, G = 100, RS = 0 Ω  
fB = 0.1 Hz to 10 Hz, G = 100, RS = 0 Ω  
f = 1 kHz, RS = 0 Ω  
nV/Hz  
µVPP  
Input stage voltage  
eNI  
eNO  
In  
noise(6)  
nV/Hz  
µVPP  
Output stage voltage  
noise(6)  
2.6  
fB = 0.1 Hz to 10 Hz, RS = 0 Ω  
f = 1 kHz  
130  
4.7  
fA/Hz  
Noise current  
fB = 0.1 Hz to 10 Hz, G = 100  
pAPP  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: INA819  
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7.5 Electrical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GAIN  
Gain equation  
Gain  
V/V  
V/V  
1 + (50 k/ RG)  
G
1
10000  
±0.025%  
±0.15%  
±0.15%  
G = 1, VO = ±10 V  
G = 10, VO = ±10 V  
G = 100, VO = ±10 V  
±0.005%  
±0.025%  
±0.025%  
±0.05%  
GE  
Gain error  
G = 1000, VO = ±10 V  
±5  
±35  
10  
G = 1, TA = 40°C to +125°C  
Gain vs temperature(5)  
ppm/°C  
ppm  
G > 1, TA = 40°C to +125°C  
1
G = 1 to 10, VO = 10 V to +10 V, RL = 10 kΩ  
G = 100, VO = 10 V to +10 V, RL = 10 kΩ  
G = 1000, VO = 10 V to +10 V, RL = 10 kΩ  
G = 1 to 100, VO = 10 V to +10 V, RL = 2 kΩ  
15  
Gain nonlinearity  
10  
30  
OUTPUT  
(V) +  
0.15  
Voltage swing  
V
(V+) 0.15  
Load capacitance stability  
1000  
5.0  
pF  
Closed-loop output  
impedance  
ZO  
f = 10 kHz  
ISC  
Short-circuit current  
Continuous to VS / 2  
±20  
mA  
FREQUENCY RESPONSE  
G = 1  
2.0  
890  
270  
30  
MHz  
kHz  
G = 10  
BW  
SR  
tS  
Bandwidth, 3 dB  
Slew rate  
G = 100  
G = 1000  
G = 1, VO = ±10 V  
0.9  
12  
V/µs  
0.01%, G = 1 to 100, VSTEP = 10 V  
0.01%, G = 1000, VSTEP = 10 V  
0.001%, G = 1 to 100, VSTEP = 10 V  
0.001%, G = 1000, VSTEP = 10 V  
40  
Settling time  
µs  
16  
60  
REFERENCE INPUT  
RIN Input impedance  
40  
kΩ  
V
Voltage range  
(V+)  
(V)  
Gain to output  
1
V/V  
Reference gain error  
0.01%  
POWER SUPPLY  
VIN = 0 V  
350  
385  
520  
IQ Quiescent current  
µA  
vs temperature, TA = 40°C to +125°C  
(1) Total offset, referred-to-input (RTI): VOS = (VOSI) + (VOSO / G).  
(2) Specified by characterization.  
(3) Offset drifts are uncorrelated. Input-referred offset drift is calculated using: ΔVOS(RTI) = [ΔVOSI 2 + (ΔVOSO / G)2].  
(4) Input voltage range of the Instrumentation Amplifier input stage. The input range depends on the common-mode voltage, differential  
voltage, gain, and reference voltage.  
(5) The values specified for G > 1 do not include the effects of the external gain-setting resistor, RG.  
(6) Total RTI voltage noise is equal to: eN(RTI) = [eNI 2 + (eNO / G)2].  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: INA819  
 
 
 
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7.6 Typical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
7-1. Table of Graphs  
DESCRIPTION  
FIGURE  
7-1  
Typical Distribution of Input Stage Offset Voltage  
Typical Distribution of Input Stage Offset Voltage Drift  
Typical Distribution of Output Stage Offset Voltage  
Typical Distribution of Output Stage Offset Voltage Drift  
Input Stage Offset Voltage vs Temperature  
Output Stage Offset Voltage vs Temperature  
Typical Distribution of Input Bias Current, TA = 25°C  
Typical Distribution of Input Bias Current, TA = 90°C  
Typical Distribution of Input Offset Current  
Input Bias Current vs Temperature  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
7-10  
7-11  
7-12  
7-13  
7-14  
7-15  
7-16  
7-17  
7-18  
7-19  
7-20  
7-21  
7-22  
7-23  
7-24  
7-25  
7-26  
7-27  
7-28  
7-29  
7-30  
7-31  
7-32  
7-33  
7-34  
7-35  
7-36  
7-37  
7-38  
7-39  
7-40  
Input Offset Current vs Temperature  
Typical CMRR Distribution, G = 1  
Typical CMRR Distribution, G = 10  
CMRR vs Temperature, G = 1  
CMRR vs Temperature, G = 10  
Input Current vs Input Overvoltage  
CMRR vs Frequency (RTI)  
CMRR vs Frequency (RTI, 1-kΩsource imbalance)  
Positive PSRR vs Frequency (RTI)  
Negative PSRR vs Frequency (RTI)  
Gain vs Frequency  
Voltage Noise Spectral Density vs Frequency (RTI)  
Current Noise Spectral Density vs Frequency (RTI)  
0.1-Hz to 10-Hz RTI Voltage Noise, G = 1  
0.1-Hz to 10-Hz RTI Voltage Noise, G = 1000  
0.1-Hz to 10-Hz RTI Current Noise  
Input Bias Current vs Common-Mode Voltage  
Typical Distribution of Gain Error, G = 1  
Typical Distribution of Gain Error, G = 10  
Gain Error vs Temperature, G = 1  
Gain Error vs Temperature, G = 10  
Supply Current vs Temperature  
Gain Nonlinearity, G = 1  
Gain Nonlinearity, G = 10  
Offset Voltage vs Negative Common-Mode Voltage  
Offset Voltage vs Positive Common-Mode Voltage  
Positive Output Voltage Swing vs Output Current  
Negative Output Voltage Swing vs Output Current  
Short Circuit Current vs Temperature  
Large-Signal Frequency Response  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: INA819  
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7.6 Typical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
7-1. Table of Graphs (continued)  
DESCRIPTION  
FIGURE  
7-41  
7-42  
7-43  
7-44  
7-45  
7-46  
7-47  
7-48  
7-49  
7-50  
7-51  
7-52  
7-53  
7-54  
THD+N vs Frequency  
Overshoot vs Capacitive Loads  
Small-Signal Response, G = 1  
Small-Signal Response, G = 10  
Small-Signal Response, G = 100  
Small-Signal Response, G = 1000  
Large Signal Step Response  
Closed-Loop Output Impedance  
Differential-Mode EMI Rejection Ratio  
Common-Mode EMI Rejection Ratio  
Input Common-Mode Voltage vs Output Voltage, G = 1, VS = 5 V  
Input Common-Mode Voltage vs Output Voltage, G = 100, VS = 5 V  
Input Common-Mode Voltage vs Output Voltage, VS =±5 V  
Input Common-Mode Voltage vs Output Voltage, VS =±15 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: INA819  
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7.6 Typical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
20%  
15%  
10%  
5%  
25%  
22.5%  
20%  
17.5%  
15%  
12.5%  
10%  
7.5%  
5%  
2.5%  
0
0
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
Input Stage Offset Voltage (mV)  
Input Stage Offset Voltage Drift (mV/èC)  
D001  
D002  
N = 1555  
Mean = 4.71 µV  
Std. Dev. = 7.12 µV  
N = 45  
Mean = 0.0357 µV/°C Std. Dev. = 0.099 µV/°C  
7-1. Typical Distribution of Input Stage Offset Voltage  
7-2. Typical Distribution of Input Stage Offset Voltage Drift  
0.15  
30%  
25%  
20%  
15%  
10%  
5%  
0.1  
0.05  
0
0
-200 -150 -100  
-50  
0
50  
100  
150  
200  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
Output Stage Offset Voltage (mV)  
Output Stage Offset Voltage Drift (mV/èC)  
D003  
D004  
N = 1555  
Std. Dev. = 41.26 µV  
N = 45  
Std. Dev. = 0.89 µV/°C  
Mean = 1.49 µV/°C  
Mean = 3.18 µV  
7-3. Typical Distribution of Output Stage Offset Voltage  
7-4. Typical Distribution of Output Stage Offset Voltage Drift  
100  
80  
60  
40  
20  
0
500  
Mean  
+3s  
-3s  
400  
300  
200  
100  
0
-20  
-40  
-100  
-200  
-300  
-400  
-500  
-60  
Mean  
+3s  
-3s  
-80  
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
D005  
D051  
45 units, 1 wafer lot  
45 units, 1 wafer lots  
7-5. Input Stage Offset Voltage vs Temperature  
7-6. Output Stage Offset Voltage vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: INA819  
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
0.25  
0.2  
0.15  
0.1  
0.05  
0
25%  
20%  
15%  
10%  
5%  
0
-250 -200 -150 -100 -50  
-300  
-200  
-100  
Input Bias Current (pA)  
0
100  
200  
300  
0
Input Bias Current (pA)  
50 100 150 200 250  
D006  
D007  
N = 94  
TA = 25°C  
7-7. Typical Distribution of Input Bias Current  
Mean = 37.13 pA Std. Dev. = 57.65 pA  
Mean = 27.65  
N = 94  
Std. Dev. = 52.58 pA  
pA  
TA = 90°C  
7-8. Typical Distribution of Input Bias Current  
25%  
500  
Avg  
3  
3  
400  
300  
200  
100  
0
20%  
15%  
10%  
5%  
-100  
-200  
-300  
-400  
-500  
0
-300  
-200  
-100  
Input Offset Current (pA)  
0
100  
200  
300  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (C)  
D008  
N = 94  
G = 1  
Mean = 38.82  
N = 94  
Std. Dev. = 47.24 pA  
pA  
7-10. Input Bias Current vs Temperature  
7-9. Typical Distribution of Input Offset Current  
300  
250  
200  
150  
100  
50  
20%  
15%  
10%  
5%  
0
-50  
-100  
-150  
Avg  
3  
3  
-200  
-250  
-300  
0
-50 -30 -10 10  
30  
50  
70  
90 110 130 150  
-20 -16 -12  
-8  
-4  
0
4
8
12  
16  
20  
Temperature (C)  
Common-Mode Rejection Ratio (mV/V)  
D011  
N = 94  
G = 1  
N = 94  
G = 1  
Mean = 3.23 µV/V Std. Dev. = 5.38 µV/V  
7-11. Input Offset Current vs Temperature  
7-12. Typical CMRR Distribution  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: INA819  
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
25%  
20%  
15%  
10%  
5%  
150  
125  
100  
75  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
0
50  
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Common-Mode Rejection Ratio (mV/V)  
Temperature (èC)  
D012  
D013  
N = 94  
Mean = 0.34 µV/V Std. Dev. = 0.54 µV/V  
5 typical units  
G = 1  
G = 10  
7-13. Typical CMRR Distribution  
7-14. CMRR vs Temperature  
175  
150  
125  
100  
75  
10  
20  
16  
12  
8
8
6
4
2
4
0
0
-2  
-4  
-6  
-8  
-10  
-4  
-8  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
-12  
-16  
-20  
Input Current  
Output Voltage  
50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50 -40 -30 -20 -10  
0
Input Voltage (V)  
10  
20  
30  
40  
50  
Temperature (èC)  
D014  
D015  
5 typical units  
G = 10  
VS = 36 V  
7-15. CMRR vs Temperature  
7-16. Input Current vs Input Overvoltage  
160  
140  
120  
100  
80  
150  
1
10  
100  
1000  
1
10  
100  
1000  
125  
100  
75  
50  
25  
0
60  
40  
20  
0
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
D016  
D017  
1-kΩsource imbalance  
7-18. CMRR vs Frequency (RTI)  
7-17. CMRR vs Frequency (RTI)  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: INA819  
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
170  
140  
110  
80  
160  
140  
120  
100  
80  
60  
50  
40  
20  
20  
G = 1  
G = 1  
0
G = 10  
G = 100  
G = 1000  
G = 10  
G = 100  
G = 1000  
-10  
-40  
-20  
-40  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
1
10  
100 1k  
Frequency (Hz)  
10k  
100k  
D018  
D019  
7-19. Positive PSRR vs Frequency (RTI)  
7-20. Negative PSRR vs Frequency (RTI)  
80  
60  
40  
20  
0
1000  
500  
G = 1  
G = 100  
300  
200  
100  
50  
30  
20  
10  
-20  
-40  
-60  
G = 1  
5
G = 10  
G = 100  
G = 1000  
3
2
1
100m  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
1
10  
100  
Frequency (Hz)  
1k  
10k  
100k  
D020  
D021  
7-21. Gain vs Frequency  
7-22. Voltage Noise Spectral Density vs Frequency (RTI)  
1000  
700  
3
500  
2
1
300  
200  
100  
70  
0
50  
-1  
-2  
-3  
30  
20  
10  
100m  
1
10 100  
Frequency (Hz)  
1k  
10k  
0
1
2
3
4
5
Time (s/div)  
6
7
8
9
10  
D022  
D023  
G = 1  
7-23. Current Noise Spectral Density vs Frequency (RTI)  
7-24. 0.1-Hz to 10-Hz RTI Voltage Noise  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: INA819  
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
100  
80  
2
1.5  
1
60  
40  
0.5  
0
20  
0
-20  
-40  
-60  
-80  
-100  
-0.5  
-1  
-1.5  
-2  
-5  
-4  
-3  
-2  
-1  
Time (1 s/div)  
0
1
2
3
4
5
-5  
-4  
-3  
-2  
-1  
Time (1 s/div)  
0
1
2
3
4
5
D024  
D025  
G = 1000  
7-25. 0.1-Hz to 10-Hz RTI Voltage Noise  
7-26. 0.1-Hz to 10-Hz RTI Current Noise  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20%  
17.5%  
15%  
12.5%  
10%  
7.5%  
5%  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-45 èC  
25 èC  
125 èC  
2.5%  
0
-15 -12  
-9  
-6  
-3  
0
3
6
Common Mode Voltage (V)  
9
12  
15  
-250 -200 -150 -100 -50  
0
Gain Error (ppm)  
50 100 150 200 250  
D026  
D027  
VS = ±15 V  
N = 94  
G = 1  
Std. Dev. = 58 ppm  
Mean = 48 ppm  
7-27. Input Bias Current vs Common-Mode Voltage  
7-28. Typical Distribution of Gain Error,  
G = 1  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
6%  
4%  
2%  
0
-300 -150  
0
150  
300  
Gain Error (ppm)  
450  
600  
750  
900  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D028  
D029  
N = 94  
G = 10  
Mean = 286 ppm  
Std. Dev. = 204 ppm  
G = 1  
7-29. Typical Distribution of Gain Error,  
7-30. Gain Error vs Temperature  
G = 10  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: INA819  
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.5  
0.45  
0.4  
0.35  
0.3  
VS = ê 15 V  
VS = ê 2.25 V  
0
0.25  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-60  
-30  
0
30  
60  
90  
120  
150  
Temperature (èC)  
Temperature (èC)  
D030  
D031  
G = 10  
7-31. Gain Error vs Temperature  
7-32. Supply Current vs Temperature  
1
0.8  
0.6  
0.4  
0.2  
0
5
4
EP  
LREG  
EP  
LREG  
3
2
1
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1  
-2  
-3  
-4  
-5  
-10  
-8  
-6  
-4  
-2  
Output Voltage (V)  
0
2
4
6
8
10  
-10  
-8  
-6  
-4  
-2  
Output Voltage (V)  
0
2
4
6
8
10  
D032  
D033  
G = 1  
G = 10  
7-33. Gain Nonlinearity  
7-34. Gain Nonlinearity  
175  
150  
125  
100  
75  
150  
125  
100  
75  
-40 èC  
25 èC  
-40 èC  
25 èC  
85 èC  
85 èC  
125 èC  
125 èC  
50  
50  
25  
25  
0
0
-25  
-50  
-75  
-25  
-50  
-15  
-14.6 -14.2 -13.8 -13.4  
-13  
Input Common-Mode Voltage (V)  
-12.6 -12.2 -11.8  
12  
12.4  
12.8  
13.2  
13.6  
Input Common-Mode Voltage (V)  
14  
14.4  
14.8  
D034  
D035  
7-35. Offset Voltage vs Negative Common-Mode Voltage  
7-36. Offset Voltage vs Positive Common-Mode Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: INA819  
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
15  
14.9  
14.8  
14.7  
14.6  
14.5  
14.4  
14.3  
14.2  
14.1  
14  
-14  
-14.1  
-14.2  
-14.3  
-14.4  
-14.5  
-14.6  
-14.7  
-14.8  
-14.9  
-15  
-40èC  
25èC  
85èC  
125èC  
-40èC  
25èC  
85èC  
125èC  
0
4
8
Output Current (mA)  
12  
16  
0
2
4
6
8
Output Current (mA)  
10  
12  
14  
16  
D036  
D037  
7-37. Positive Output Voltage Swing vs Output Current  
7-38. Negative Output Voltage Swing vs Output Current  
40  
20  
ISC, Source  
ISC, Sink  
VS = ê15 V  
VS = ê5 V  
30  
18  
20  
10  
16  
14  
12  
10  
8
0
-10  
-20  
-30  
-40  
-50  
-60  
6
4
2
0
-50 -30 -10 10  
30  
50  
70  
90 110 130 150  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
Temperature (èC)  
D038  
D039  
7-39. Short Circuit Current vs Temperature  
7-40. Large-Signal Frequency Response  
1
-40  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
G = 1  
G = 10  
G = 100  
0.1  
-60  
0.01  
-80  
Positive  
Negative  
0.001  
-100  
100k  
0
1
10  
100  
1k  
Frequency (Hz)  
10k  
10  
100  
1k  
Cload (pF)  
D040  
D041  
500-kHz measurement bandwidth  
1-VRMS output voltage  
7-41. THD+N vs Frequency  
100-kΩload  
7-42. Overshoot vs Capacitive Loads  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: INA819  
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
100  
80  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
-5  
-2.5  
0
2.5  
5
7.5  
10  
12.5  
15  
-5  
-2.5  
0
2.5  
5
7.5  
10  
12.5  
15  
Time (ms)  
Time (ms)  
D042  
D043  
G = 1  
CL = 100 pF  
G = 10  
CL = 100 pF  
RL = 10 kΩ  
RL = 10 kΩ  
7-43. Small-Signal Response  
7-44. Small-Signal Response  
100  
80  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
-5  
-2.5  
0
2.5  
5
7.5  
10  
12.5  
15  
-25 -12.5  
0
12.5 25 37.5 50 62.5 75 87.5 100  
Time (ms)  
Time (ms)  
D044  
D045  
G = 100  
CL = 100 pF  
G = 1000  
CL = 100 pF  
RL = 10 kΩ  
RL = 10 kΩ  
7-45. Small-Signal Response  
7-46. Small-Signal Response  
Output  
Input  
1k  
100  
10  
1
0.1  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
Time (10 µs/div)  
D046  
C0xx  
7-47. Large Signal Step Response  
7-48. Closed-Loop Output Impedance  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: INA819  
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
60  
40  
20  
10M  
100M  
Frequency (Hz)  
1G  
10G  
10M  
100M  
Frequency (Hz)  
1G  
10G  
D047  
D048  
7-49. Differential-Mode EMI Rejection Ratio  
7-50. Common-Mode EMI Rejection Ratio  
5
5
VREF = 0 V  
VREF = 0 V  
VREF = 2.5 V  
VREF = 2.5 V  
4
3
2
1
0
4
3
2
1
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Voltage (V)  
Output Voltage (V)  
C006  
C006  
VS = 5 V  
G = 1  
VS = 5 V  
G = 100  
7-51. Input Common-Mode Voltage vs Output Voltage  
7-52. Input Common-Mode Voltage vs Output Voltage  
15  
5
4
10  
5
3
2
1
0
0
-5  
-1  
-2  
-3  
-10  
-15  
G = 1  
G = 1  
-4  
G = 100  
-20  
G = 100  
-5  
0
10  
20  
0
2
4
±
20  
10  
±±  
±4  
±2  
Output Voltage (V)  
Output Voltage (V)  
C006  
C00±  
VS = ±5 V  
VREF = 0 V  
VS = ±15 V  
VREF = 0 V  
7-53. Input Common-Mode Voltage vs Output Voltage  
7-54. Input Common-Mode Voltage vs Output Voltage  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: INA819  
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
8 Detailed Description  
8.1 Overview  
The INA819 is a monolithic precision instrumentation amplifier that incorporates a current-feedback input stage  
and a four-resistor difference amplifier output stage. The functional block diagram in the next section shows how  
the differential input voltage is buffered by Q1 and Q2 and is forced across RG, which causes a signal current to  
flow through RG, R1, and R2. The output difference amplifier, A3, removes the common-mode component of the  
input signal and refers the output signal to the REF pin. The VBE and voltage drop across R1 and R2 produce  
output voltages on A1 and A2 that are approximately 0.8 V lower than the input voltages.  
Each input is protected by two field-effect transistors (FETs) that provide a low series resistance under normal  
signal conditions, and preserve excellent noise performance. When excessive voltage is applied, these  
transistors limit input current to approximately 8 mA.  
8.2 Functional Block Diagram  
+VS  
VB  
RB  
RB  
IB Cancellation  
IB Cancellation  
40 k  
–VS +VS  
40 k  
A1  
A2  
A3  
+
OUT  
REF  
40 k  
40 k  
+VS  
+VS  
–VS +VS  
Q2  
Q1  
Super-  
NPN  
Super-  
NPN  
–IN  
+IN  
Overvoltage  
Protection  
+VS  
+VS  
Overvoltage  
Protection  
R2  
25 k  
R1  
25 k  
RG  
(External)  
–VS  
–VS  
RG  
RG  
–VS  
–VS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: INA819  
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
8.3 Feature Description  
8.3.1 Setting the Gain  
8-1 shows that the gain of the INA819 is set by a single external resistor (RG) connected between the RG pins  
(pins 1 and 8).  
V+  
+VS  
Overvoltage  
Protection  
40 k  
+
40 kꢀ  
-IN  
œ
RG  
œ
50 kW  
RG  
25 kꢀ  
25 kꢀ  
OUT  
REF  
G = 1+  
RG  
+
VO = G V+IN - V-IN + V  
(
)
REF  
RG  
+IN  
œ
Overvoltage  
Protection  
+
40 kꢀ  
40 kꢀ  
-VS  
Copyright © 2017, Texas Instruments Incorporated  
V-  
8-1. Simplified Diagram of the INA819 With Gain and Output Equations  
The value of RG is selected according to 方程1:  
50 kW  
G = 1+  
RG  
(1)  
8-1 lists several commonly used gains and resistor values. The 50-kΩ term in 方程式 1 is a result of the sum  
of the two internal 25-kΩ feedback resistors. These on-chip resistors are laser-trimmed to accurate absolute  
values. The accuracy and temperature coefficients of these resistors are included in the gain accuracy and drift  
specifications of the INA819. As shown in 8-1 and explained in more details in 11, make sure to connect  
low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground that are placed as close to the  
device as possible.  
8-1. Commonly Used Gains and Resistor Values  
DESIRED GAIN  
RG (Ω)  
NEAREST 1% RG (Ω)  
1
2
NC  
NC  
49.9 k  
12.4 k  
5.49 k  
2.61 k  
1.02 k  
511  
50 k  
5
12.5 k  
5.556 k  
2.632 k  
1.02 k  
505.1  
251.3  
100.2  
50.05  
10  
20  
50  
100  
200  
500  
1000  
249  
100  
49.9  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: INA819  
 
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
8.3.1.1 Gain Drift  
The stability and temperature drift of the external gain setting resistor (RG ) also affects gain. The contribution of  
RG to gain accuracy and drift is determined from 方程1.  
The best gain drift of 5 ppm/(maximum) is achieved when the INA819 uses G = 1 without RG connected. In  
this case, gain drift is limited by the mismatch of the temperature coefficient of the integrated 40-kΩ resistors in  
the differential amplifier (A3). At gains greater than 1, gain drift increases as a result of the individual drift of the  
25-kΩ resistors in the feedback of A1 and A2, relative to the drift of the external gain resistor (RG.) The low  
temperature coefficient of the internal feedback resistors improves the overall temperature stability of  
applications using gains greater than 1 V/V over alternate solutions.  
Low resistor values required for high gain make wiring resistance an important consideration. Sockets add to the  
wiring resistance and contribute additional gain error (such as a possible unstable gain error) at gains of  
approximately 100 or greater. To maintain stability, avoid parasitic capacitance of more than a few picofarads at  
RG connections. Careful matching of any parasitics on the RG pins maintains optimal CMRR over frequency; see  
7-17.  
8.3.2 EMI Rejection  
Texas Instruments developed a method to accurately measure the immunity of an amplifier over a broad  
frequency spectrum extending from 10 MHz to 6 GHz. This method uses an EMI rejection ratio (EMIRR) to  
quantify the ability of the INA819 to reject EMI. The offset resulting from an input EMI signal is calculated using  
Equation 2:  
EMIRR (dB)  
2
÷
-
VRF_PEAK  
100 mVP  
«
÷
20  
DVOS  
=
10  
«
÷
(2)  
where  
VRF_PEAK is the peak amplitude of the input EMI signal.  
8-2 and 8-3 show the INA819 EMIRR graph for differential and common-mode EMI rejection across this  
frequency range. 8-2 lists the EMIRR values for the INA819 at frequencies commonly encountered in real-  
world applications. Applications listed in 8-2 are centered on or operated near the frequency shown.  
Depending on the end-system requirements, additional EMI filters may be required near the signal inputs of the  
system. Incorporating known good practices such as using short traces, low-pass filters, and damping resistors  
combined with parallel and shielded signal routing may be required.  
140  
120  
100  
80  
100  
80  
60  
40  
20  
0
60  
40  
20  
10M  
100M  
Frequency (Hz)  
1G  
10G  
10M  
100M  
Frequency (Hz)  
1G  
10G  
D048  
D047  
8-2. Common-Mode EMIRR Testing  
8-3. Differential Mode EMIRR Testing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: INA819  
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
8-2. INA819 EMIRR for Frequencies of Interest  
DIFFERENTIAL  
EMIRR  
COMMON-MODE  
EMIRR  
FREQUENCY  
400 MHz  
APPLICATION OR ALLOCATION  
Mobile radio, mobile satellite, space operation, weather, radar, ultrahigh-frequency (UHF)  
applications  
52 dB  
55 dB  
58 dB  
80 dB  
71 dB  
73 dB  
Global system for mobile communications (GSM) applications, radio communication,  
navigation, GPS (up to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
GSM applications, mobile personal communications, broadband, satellite,  
L-band (1 GHz to 2 GHz)  
1.8 GHz  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific  
and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
2.4 GHz  
3.6 GHz  
5 GHz  
59 dB  
78 dB  
70 dB  
95 dB  
96 dB  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and  
satellite operation, C-band (4 GHz to 8 GHz)  
100 dB  
8.3.3 Input Common-Mode Range  
The linear input voltage range of the INA819 input circuitry extends within 1.5 volts (typical) of both power  
supplies and maintains excellent common-mode rejection throughout this range. The common-mode range for  
the most common operating conditions are shown in 8-4 to 8-7. The common-mode range for other  
operating conditions is best calculated using the Analog Engineers Calculator.  
5
4
3
2
1
0
5
4
3
2
1
0
VREF = 0 V  
VREF = 0 V  
VREF = 2.5 V  
VREF = 2.5 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Voltage (V)  
Output Voltage (V)  
C006  
C006  
VS = 5 V  
G = 1  
VS = 5 V  
G = 100  
8-4. Input Common-Mode Voltage  
8-5. Input Common-Mode Voltage  
vs Output Voltage  
vs Output Voltage  
15  
10  
5
5
4
3
2
1
0
0
-5  
-1  
-2  
-3  
-10  
-15  
-20  
G = 1  
G = 1  
-4  
G = 100  
G = 100  
-5  
0
10  
20  
0
2
4
±
20  
10  
±±  
±4  
±2  
Output Voltage (V)  
Output Voltage (V)  
C006  
C00±  
VS = ±5 V  
VREF = 0 V  
VS = ±15 V  
VREF = 0 V  
8-6. Input Common-Mode Voltage  
8-7. Input Common-Mode Voltage  
vs Output Voltage  
vs Output Voltage  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: INA819  
 
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
8.3.4 Input Protection  
The inputs of the INA819 device are individually protected for voltages up to ±60 V. For example, a condition of  
60 V on one input and +60 V on the other input does not cause damage. Internal circuitry on each input  
provides low series impedance under normal signal conditions. If the input is overloaded, the protection circuitry  
limits the input current to a value of approximately 8 mA.  
+V  
ZD1  
+VS  
IN  
Overvoltage  
Protection  
Input Voltage  
Source  
+
Input Transistor  
œ
-VS  
ZD2  
-V  
8-8. Input Current Path During an Overvoltage Condition  
During an input overvoltage condition, current flows through the input protection diodes into the power supplies;  
see 8-8. If the power supplies are unable to sink current, then Zener diode clamps (ZD1 and ZD2 in 8-8)  
must be placed on the power supplies to provide a current pathway to ground. 8-9 shows the input current for  
input voltages from 50 V to 50 V when the INA819 is powered by ±15-V supplies.  
10  
8
20  
16  
12  
8
6
4
2
4
0
0
-2  
-4  
-6  
-8  
-10  
-4  
-8  
-12  
-16  
-20  
Input Current  
Output Voltage  
-50 -40 -30 -20 -10  
0
Input Voltage (V)  
10  
20  
30  
40  
50  
D015  
8-9. Input Current vs Input Overvoltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: INA819  
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
8.3.5 Operating Voltage  
The INA819 operates over a power-supply range of 4.5 V to 36 V (±2.25 V to ±18 V).  
CAUTION  
Supply voltages higher than 40 V (±20 V) can permanently damage the device. Parameters that vary  
over supply voltage or temperature are shown in 7.6 .  
8.3.6 Error Sources  
Most modern signal-conditioning systems calibrate errors at room temperature. However, calibration of errors  
that result from a change in temperature is normally difficult and costly. Therefore, minimize these errors by  
choosing high-precision components, such as the INA819, that have improved specifications in critical areas that  
impact the precision of the overall system. 8-10 shows an example application.  
+15 V  
C2  
RS+  
1 k  
RG  
VDIFF = VOUT / G  
INA  
RG  
5.49 kꢀ  
VOUT = 1 V  
RSœ  
0.99 kꢀ  
VCM = 10 V  
C1  
œ15 V  
8-10. Example Application with G = 10 V/V and 1-V Output Voltage  
Resistor-adjustable devices (such as the INA819) show the lowest gain error in G = 1 because of the inherently  
well-matched drift of the internal resistors of the differential amplifier. At gains greater than 1 (for instance, G =  
10 V/V or G = 100 V/V), the gain error becomes a significant error source because of the contribution of the  
resistor drift of the 25-kΩ feedback resistors in conjunction with the external gain resistor. Except for very high  
gain applications, the gain drift is by far the largest error contributor compared to other drift errors, such as offset  
drift.  
The INA819 offers excellent gain error over temperature for both G > 1 and G = 1 (no external gain resistor). 表  
8-4 summarizes the major error sources in common INA applications and compares the three cases of G = 1 (no  
external resistor) and G = 10 (5.49-kΩ external resistor) and G = 100 (511-Ω external resistor). All calculations  
are assuming an output voltage of VOUT = 1 V. Thus, the input signal VDIFF (given by VDIFF= VOUT/G) exhibits  
smaller and smaller amplitudes with increasing gain G. In this example, VDIFF = 1 mV at G = 1000. All  
calculations refer the error to the input for easy comparison and system evaluation. As 8-4 shows, errors  
generated by the input stage (such as input offset voltage) are more dominant at higher gain, while the effects of  
output stage are suppressed because they are divided by the gain when referring them back to the input. The  
gain error and gain drift error are much more significant for gains greater than 1 because of the contribution of  
the resistor drift of the 25-kΩ feedback resistors in conjunction with the external gain resistor. In most  
applications, static errors (absolute accuracy errors) can readily be removed during calibration in production,  
while the drift errors are the key factors limiting overall system performance.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: INA819  
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
8-3. System Specifications for Error Calculation  
QUANTITY  
VALUE  
UNIT  
VOUT  
1
V
V
V
VCM  
10  
VS  
1
RS+  
RS–  
1000  
999  
0.01  
10  
Ω
Ω
RG tolerance  
RG drift  
%
ppm/°C  
°C  
Temperature range upper limit  
105  
8-4. Error Calculation  
INA819 VALUES  
G = 1  
G = 100  
ERROR  
(ppm)  
G = 1000  
ERROR  
(ppm)  
ERROR SOURCE  
ERROR CALCULATION  
SPECIFICATION  
UNIT  
ERROR  
(ppm)  
ABSOLUTE ACCURACY AT 25°C  
Input offset voltage  
VOSI / VDIFF  
35  
300  
0.5  
µV  
µV  
nA  
35  
300  
1
350  
300  
5
3500  
300  
50  
Output offset voltage  
VOSO / (G × VDIFF)  
Input offset current  
IOS × maximum (RS+, RS) / VDIFF  
90 (G = 1),  
110 (G = 10),  
130 (G = 100)  
CMRR (min)  
VCM / (10CMRR/20 × VDIFF  
)
dB  
dB  
316  
3
316  
20  
316  
32  
110 (G = 1),  
114 (G = 10),  
130 (G = 100)  
(VCC VS)/ (10PSRR/20 × VDIFF  
)
PSRR (min)  
0.02 (G = 1),  
0.15 (G = 10, 100)  
Gain error from INA (max)  
GE(%) × 104  
%
%
200  
100  
955  
1500  
100  
1500  
100  
Gain error from external resistor RG (max) GE(%) × 104  
0.01  
Total absolute accuracy error (ppm) at  
sum of all errors  
2591  
5798  
25°C, worst case  
Total absolute accuracy error (ppm) at  
rms sum of all errors  
491  
1604  
3835  
25°C, average  
DRIFT TO 105°C  
5 (G = 1),  
35 (G = 10, 100)  
Gain drift from INA (max)  
ppm/°C  
400  
2800  
2800  
GTC × (TA 25)  
Gain drift from external resistor RG (max)  
Input offset voltage drift (max)  
Output offset voltage drift  
10  
0.4  
5
ppm/°C  
µV/°C  
µV/°C  
800  
32  
800  
320  
400  
800  
3200  
400  
GTC × (TA 25)  
(VOSI_TC / VDIFF) × (TA 25)  
400  
[VOSO_TC / ( G × VDIFF)] × (TA 25)  
IOS_TC × maximum (RS+, RS) ×  
(TA 25) / VDIFF  
Offset current drift  
20  
pA/°C  
2
16  
160  
Total drift error to 105°C (ppm), worst case sum of all errors  
1634  
980  
4336  
2957  
7360  
4348  
Total drift error to 105°C (ppm), typical  
RESOLUTION  
rms sum of all errors  
10 (G = 1, 10),  
15 (G = 100)  
Gain nonlinearity  
ppm of FS  
µVPP  
10  
1204  
0.3  
10  
1070  
2
15  
3941  
11  
2
eNO  
G
6
eNI = 8,  
eNO = 90  
2
(eNI  
+
´
´
BW  
Voltage noise (at 1 kHz)  
VDIFF  
IN × maximum (RS+, RS) × BW /  
Current noise (at 1kHz)  
0.13  
pA/Hz  
VDIFF  
Total resolution error (ppm), worst case  
Total resolution error (ppm), typical  
TOTAL ERROR  
sum of all errors  
1214  
1204  
1080  
1070  
3956  
3941  
rms sum of all errors  
Total error (ppm), worst case  
sum of all errors  
3802  
8007  
17113  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: INA819  
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
8-4. Error Calculation (continued)  
INA819 VALUES  
G = 1  
G = 100  
ERROR  
(ppm)  
G = 1000  
ERROR  
(ppm)  
ERROR SOURCE  
ERROR CALCULATION  
SPECIFICATION  
UNIT  
ERROR  
(ppm)  
Total error (ppm), typical  
rms sum of all errors  
1628  
3530  
7010  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: INA819  
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
8.4 Device Functional Modes  
The INA819 has a single functional mode and operates when the power-supply voltage is greater than 4.5 V  
(±2.25 V). The maximum power-supply voltage for the INA819 is 36 V (±18 V.)  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
9.1.1 Reference Pin  
The output voltage of the INA819 is developed with respect to the voltage on the reference pin (REF.) Often, in  
dual-supply operation, REF (pin 6) is connected to the low-impedance system ground. In single-supply  
operation, offsetting the output signal to a precise midsupply level is useful (for example, 2.5 V in a 5-V supply  
environment). To accomplish this level shift, a voltage source must be connected to the REF pin to level-shift the  
output so that the INA819 drives a single-supply analog-to-digital converter (ADC).  
The voltage source applied to the reference pin must have a low output impedance. As shown in 9-1, any  
resistance at the reference pin (shown as RREF in 9-1) is in series with an internal 40-kΩresistor.  
V+  
+VS  
Overvoltage  
40 k  
+
40 kꢀ  
-IN  
Protection  
œ
RG  
œ
25 kꢀ  
25 kꢀ  
RG  
OUT  
REF  
+
RG  
+IN  
œ
Overvoltage  
Protection  
+
RREF  
40 kꢀ  
40 kꢀ  
-VS  
V-  
9-1. Parasitic Resistance Shown at the Reference Pin  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: INA819  
 
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
The parasitic resistance at the reference pin (RREF) creates an imbalance in the four resistors of the internal  
difference amplifier that results in a degraded common-mode rejection ratio (CMRR). 9-2 shows the  
degradation in CMRR of the INA819 as a result of increased resistance at the reference pin. For the best  
performance, keep the source impedance to the REF pin (RREF) less than 5 Ω.  
120  
100  
80  
60  
0 Ω  
40  
5 Ω  
10 Ω  
20  
15 Ω  
20 Ω  
0
10  
100  
1k  
Frequency (Hz)  
10k  
9-2. The Effect of Increasing Resistance at the Reference Pin  
Voltage reference devices are an excellent option for providing a low-impedance voltage source for the  
reference pin. However, if a resistor voltage divider generates a reference voltage, the divider must be buffered  
by an op amp, as 9-3 shows, to avoid CMRR degradation.  
5 V  
+IN  
RG  
INA819  
RG  
OUT  
RG  
œIN  
5 V  
5 V  
100 k  
+
OPA191  
1 F  
œ
100 kꢀ  
Copyright © 2017, Texas Instruments Incorporated  
9-3. Using an Op Amp to Buffer Reference Voltages  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: INA819  
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
9.1.2 Input Bias Current Return Path  
The input impedance of the INA819 is extremely highapproximately 100 GΩ. However, a path must be  
provided for the input bias current of both inputs. This input bias current is typically 150 pA. High input  
impedance means that this input bias current changes very little with varying input voltage.  
For proper operation, input circuitry must provide a path for input bias current. 9-4 shows various provisions  
for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the  
common-mode range of the INA819, and the input amplifiers saturate. If the differential source resistance is low,  
the bias current return path can connect to one input (as shown in the thermocouple example in 9-4). With a  
higher source impedance, using two equal resistors provides a balanced input with possible advantages of a  
lower input offset voltage as a result of bias current and better high-frequency common-mode rejection.  
Microphone,  
Hydrophone,  
and So Forth  
TI Device  
47 kW  
47 kW  
Thermocouple  
TI Device  
10 kW  
TI Device  
Center tap provides  
bias current return.  
Copyright © 2017, Texas Instruments Incorporated  
9-4. Providing an Input Common-Mode Current Path  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: INA819  
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
9.2 Typical Applications  
9.2.1 Three-Pin Programmable Logic Controller (PLC)  
9-5 shows a three-pin programmable-logic controller (PLC) design for the INA819. This PLC reference design  
accepts inputs of ±10 V or ±20 mA. The output is a single-ended voltage of 2.5 V ±2.3 V (or 200 mV to 4.8 V).  
Many PLCs typically have these input and output ranges.  
10 V  
15 V  
REF5025  
R
= 100 kΩ  
= 4.17 kΩ  
1
VOUT  
GND  
VIN  
NR  
1 F  
1 F  
1 F  
15 V  
+VS  
R
2
20 mA  
-IN  
RG  
REF  
R
3
=
V
2.5 V 2.3 V  
INA819  
OUT  
R
= 10.5 kΩ  
OUT  
G
20 Ω  
RG  
+IN  
-VS  
-15 V  
Copyright © 2018, Texas Instruments Incorporated  
9-5. PLC Input (±10 V, 4 mA to 20 mA)  
9.2.1.1 Design Requirements  
For this application, the design requirements are as follows:  
4-mA to 20-mA input with less than 20-Ωburden  
±20-mA input with less than 20-Ωburden  
±10-V input with impedance of approximately 100 kΩ  
Maximum 4-mA to 20-mA or ±20-mA burden voltage equal to ±0.4 V  
Output range within 0 V to 5 V  
9.2.1.2 Detailed Design Procedure  
There are two modes of operation for the circuit shown in 9-5: current input and voltage input. This design  
requires R1 >> R2 >> R3. Given this relationship, Equation 3 calculates the current input mode transfer function.  
VOUT-I = VD ´ G + VREF = -(IIN ´ R3) ´ G + VREF  
(3)  
where  
G represents the gain of the instrumentation amplifier.  
VD represents the differential voltage at the INA819 inputs.  
VREF is the voltage at the INA819 REF pin.  
IIN is the input current.  
Equation 4 shows the transfer function for the voltage input mode.  
R2  
VOUT-V = VD ´ G + VREF = - VIN  
´
´ G + VREF  
R1 + R2  
(4)  
where  
VIN is the input voltage.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: INA819  
 
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
R1 sets the input impedance of the voltage input mode. The minimum typical input impedance is 100 kΩ. The R1  
value is 100 kΩbecause increasing the R1 value also increases noise. The value of R3 must be extremely small  
compared to R1 and R2. 20 Ω for R3 is selected because that resistance value is much smaller than R1 and  
yields an input voltage of ±400 mV when operated in current mode (±20 mA).  
Use Equation 5 to calculate R2 given VD = ±400 mV, VIN = ±10 V, and R1 = 100 kΩ.  
R2  
R1 ´ VD  
VD = VIN  
´
® R2 =  
= 4.167 kW  
R1 + R2  
VIN - VD  
(5)  
The value obtained from Equation 5 is not a standard 0.1% value, so 4.17 kΩ is selected. R1 and R2 also use  
0.1% tolerance resistors to minimize error.  
Use Equation 6 to calculate the ideal gain of the instrumentation amplifier.  
V
OUT - VREF  
V
4.8 V - 2.5 V  
G =  
=
= 5.75  
V
VD  
400 mV  
(6)  
(7)  
Equation 7 calculates the gain-setting resistor value using the INA819 gain equation (方程1).  
50 kW 50 kW  
RG  
=
=
= 10.5 kW  
G -1 5.75 -1  
Use a standard 0.1% resistor value of 10.5 kΩfor this design.  
9.2.1.3 Application Curves  
9-6 and 9-7 show typical characteristic curves for the circuit in 9-5.  
C001  
5
5
4
4
3
3
2
2
1
1
0
0
-10  
-5  
0
5
10  
-20  
-10  
0
10  
20  
Input Voltage (V)  
Input Current (mA)  
C001  
9-6. PLC Output Voltage vs Input Voltage  
9-7. PLC Output Voltage vs Input Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: INA819  
 
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
9.2.2 Resistance Temperature Detector Interface  
9-8 illustrates a 3-wire interface circuit for resistance temperature detectors (RTDs). The circuit incorporates  
analog linearization and has an output voltage range from 0 V to 5 V. The linearization technique employed is  
described in Analog linearization of resistance temperature detectors analog application journal. Series and  
parallel combinations of standard 1% resistor values are used to achieve less than 0.02°C of error over a 200°C  
temperature span.  
15 V  
REF5050  
VOUT  
GND  
VIN  
NR  
4.99  
k  
4.99  
kꢀ  
-IN  
RG  
VOUT  
1.13  
kꢀ  
100  
kꢀ  
2.87  
kꢀ  
0 V at 0°C  
5 V at 200°C  
25 mV/°C  
100 ꢀ  
INA819  
OUT  
RG  
+IN  
Pt100 RTD  
100 ꢀ  
-15 V  
105 k1.18 kꢀ  
Copyright © 2018, Texas Instruments Incorporated  
9-8. A 3-Wire Interface for RTDs With Analog Linearization  
5
4.5  
4
0.018  
0.016  
0.014  
0.012  
0.01  
3.5  
3
2.5  
2
0.008  
0.006  
0.004  
0.002  
0
1.5  
1
0.5  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Temperature (°C)  
C001  
Temperature (°C)  
9-10. Temperature Error Over the Full  
9-9. Transfer Function of a 3-Wire RTD Interface  
Temperature Range  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: INA819  
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
10 Power Supply Recommendations  
The nominal performance of the INA819 is specified with a supply voltage of ±15 V and midsupply reference  
voltage. The device also operates using power supplies from ±2.25 V (4.5 V) to ±18 V (36 V) and non-midsupply  
reference voltages with excellent performance. Parameters that can vary significantly with operating voltage and  
reference voltage are shown in the 7.6 section.  
11 Layout  
11.1 Layout Guidelines  
Attention to good layout practices is always recommended. For best operational performance of the device, use  
good PCB layout practices, including:  
Take care to make sure that both input paths are well-matched for source impedance and capacitance to  
avoid converting common-mode signals into differential signals. Even slight mismatch in parasitic  
capacitance at the gain setting pins can degrade CMRR over frequency. For example, in applications that  
implement gain switching using switches or PhotoMOS® relays to change the value of RG, select the  
component so that the switch capacitance is as small as possible and most importantly so that capacitance  
mismatch between the RG pins is minimized.  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of the device.  
Bypass capacitors reduce the coupled noise by providing low-impedance power sources local to the analog  
circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better than in  
parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in 11-1, keep RG close to the  
pins to minimize parasitic capacitance.  
Keep the traces as short as possible.  
Connect exposed thermal pad to negative supply V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: INA819  
 
 
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
11.2 Layout Example  
+V  
C2  
R2  
+IN  
-IN  
RG  
INA819  
R3  
OUT  
RG  
R1  
C1  
-V  
+V  
Use ground pours for  
shielding the input  
signal pairs  
Place bypass  
capacitors as close to  
IC as possible  
GND  
C2  
R1  
œIN  
1
2
3
4
œIN  
RG  
RG  
+IN  
+VS  
OUT  
REF  
-VS  
8
7
6
5
OUT  
R3  
Low-impedance  
connection for  
reference terminal  
+IN  
R2  
GND  
C1  
REF  
-V  
Copyright © 2017, Texas Instruments Incorporated  
11-1. Example Schematic and Associated PCB Layout  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: INA819  
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
12.1.1.1 PSpice® for TI  
PSpice® for TI is a design and simulation environment that helps evaluate performance of analog circuits. Create  
subsystem designs and prototype solutions before committing to layout and fabrication, reducing development  
cost and time to market.  
12.1.1.2 TINA-TI™ Simulation Software (Free Download)  
TINA-TIsimulation software is a simple, powerful, and easy-to-use circuit simulation program based on a  
SPICE engine. TINA-TI simulation software is a free, fully-functional version of the TINAsoftware, preloaded  
with a library of macromodels, in addition to a range of both passive and active models. TINA-TI simulation  
software provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as  
additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI simulation software offers extensive  
post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the  
ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-  
start tool.  
备注  
These files require that either the TINA software or TINA-TI software be installed. Download the free  
TINA-TI simulation software from the TINA-TI™ software folder.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Comprehensive Error Calculation for Instrumentation Amplifiers application note  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
TINA-TIand TI E2Eare trademarks of Texas Instruments.  
TINAis a trademark of DesignSoft, Inc.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
PhotoMOS® is a registered trademark of Panasonic Electric Works Europe AG.  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: INA819  
 
 
 
 
 
 
INA819  
www.ti.com.cn  
ZHCSJ44D DECEMBER 2018 REVISED APRIL 2022  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: INA819  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA819ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
SOIC  
D
8
8
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
INA819  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
INA819IDGKR  
INA819IDGKT  
INA819IDR  
DGK  
DGK  
D
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG | SN  
NIPDAUAG | SN  
NIPDAU  
1X3Q  
1X3Q  
2500 RoHS & Green  
3000 RoHS & Green  
INA819  
INA819  
INA819  
INA819IDRGR  
INA819IDRGT  
SON  
DRG  
DRG  
NIPDAU  
SON  
250  
RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jun-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA819IDGKR  
INA819IDGKR  
INA819IDGKT  
INA819IDGKT  
INA819IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
8
8
8
2500  
2500  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
6.4  
3.3  
3.3  
3.4  
3.4  
3.4  
3.4  
5.2  
3.3  
3.3  
1.4  
1.4  
1.4  
1.4  
2.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q2  
Q2  
250  
2500  
3000  
250  
INA819IDRGR  
INA819IDRGT  
SON  
DRG  
DRG  
SON  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA819IDGKR  
INA819IDGKR  
INA819IDGKT  
INA819IDGKT  
INA819IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
8
8
8
2500  
2500  
250  
366.0  
366.0  
366.0  
366.0  
356.0  
367.0  
210.0  
364.0  
364.0  
364.0  
364.0  
356.0  
367.0  
185.0  
50.0  
50.0  
50.0  
50.0  
35.0  
35.0  
35.0  
250  
2500  
3000  
250  
INA819IDRGR  
INA819IDRGT  
SON  
DRG  
DRG  
SON  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jul-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
INA819ID  
D
8
75  
506.6  
8
3940  
4.32  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DRG0008B  
WSON - 0.8 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
3.1  
2.9  
PIN 1 INDEX AREA  
0.8  
0.7  
C
SEATING PLANE  
0.05 C  
DIMENSION A  
0.05  
0.00  
OPTION 01  
OPTION 02  
(0.1)  
(0.2)  
(DIM A) TYP  
OPT 01 SHOWN  
EXPOSED  
THERMAL PAD  
1.45 0.1  
4
1
5
2X  
1.5  
2.4 0.1  
8
6X 0.5  
0.3  
0.2  
0.1  
0.08  
8X  
0.6  
0.4  
PIN 1 ID  
(OPTIONAL)  
8X  
C A B  
C
4218886/A 01/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRG0008B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.45)  
SYMM  
8X (0.7)  
1
8
8X (0.25)  
(2.4)  
(0.95)  
5
6X (0.5)  
4
(R0.05) TYP  
(0.475)  
(
0.2) VIA  
(2.7)  
TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218886/A 01/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRG0008B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
8X (0.7)  
1
8X (0.25)  
SYMM  
8
(0.635)  
6X (0.5)  
(1.07)  
5
4
(R0.05) TYP  
(1.47)  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
82% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218886/A 01/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY