INA821ID [TI]

高带宽 (4.7MHz)、低噪声 (7nV/√Hz)、精密 (35μV)、低功耗仪表放大器 | D | 8 | -40 to 125;
INA821ID
型号: INA821ID
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高带宽 (4.7MHz)、低噪声 (7nV/√Hz)、精密 (35μV)、低功耗仪表放大器 | D | 8 | -40 to 125

放大器 仪表 仪表放大器
文件: 总49页 (文件大小:1849K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
INA821 35µV 失调电压、7-nV/Hz 噪声、低功耗精密仪表放大器  
1 特性  
3 说明  
1
低失调电压:10µV(典型值)、35µV(最大值)  
INA821 是一款高精度仪表放大器,可提供低功耗并且  
可在较宽的单电源或双电源电压范围内工作。可通过单  
个外部电阻器在 1 10,000 范围内设置任意增益。由  
于采用超 β 输入晶体管(这些晶体管可提供较低的输  
入失调电压、失调电压漂移、输入偏置电流以及输入电  
压和电流噪声),该器件可提供出色的精度。附加电路  
可以为输入提供高达 ±40V 的过压保护。  
增益漂移:5ppm/°C (G = 1)、  
35ppm/°C (G > 1)(最大值)  
噪声:7nV/Hz  
带宽:4.7MHz (G = 1)290kHz (G = 100)  
采用 1nF 容性负载时保持稳定  
输入保护电压高达 ±40V  
共模抑制:112dBG = 10(最小值)  
电源抑制:110dBG = 1(最小值)  
电源电流:650µA(最大值)  
电源电压范围:  
INA821 经过优化,可提供较高的共模抑制比。当 G =  
1 时,整个输入共模范围内共模抑制比超过 92dB。根  
据设计,此器件采用低电压运行,由 4.5V 单电源和高  
±18V 的双电源供电。  
单电源:4.5V 36V  
INA821 采用 8 引脚 SOIC 8 引脚 VSSOP 封装,  
并且额定工作温度范围为 –40°C +125°C。  
双电源:±2.25V ±18V  
额定温度范围:–40°C +125°C  
封装:8 引脚 SOIC VSSOP  
器件信息(1)  
器件型号  
INA821  
封装  
SOIC (8)  
VSSOP (8)  
封装尺寸(标称值)  
4.90mm × 3.91mm  
3.00mm × 3.00mm  
2 应用  
电池测试设备  
流量变送器  
ECG 放大器  
模拟输入模块  
断路器  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
工业过程控制  
实验室仪表  
INA821 简化内部原理图  
输入阶段失调电压漂移的典型分布  
+VS  
30  
Over-  
Voltage  
Protection  
10 k  
+
10 kꢀ  
25  
20  
15  
10  
5
-IN  
œ
RG  
œ
24.7 kꢀ  
24.7 kꢀ  
RG  
OUT  
REF  
+
RG  
+IN  
œ
Over-  
Voltage  
Protection  
+
10 kꢀ  
10 kꢀ  
-VS  
0
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
49.4 kW  
RG  
G = 1+  
VO = G V+IN - V-IN + V  
(
)
REF  
Input Stage Offset Voltage Drift (mV/èC)  
D002  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS893  
 
 
 
 
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 26  
Application and Implementation ........................ 26  
9.1 Application Information............................................ 26  
9.2 Typical Application .................................................. 29  
9.3 Other Application Examples.................................... 31  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Typical Characteristics: Table of Graphs.................. 8  
7.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 19  
8.1 Overview ................................................................. 19  
8.2 Functional Block Diagram ....................................... 19  
8.3 Feature Description................................................. 20  
9
10 Power Supply Recommendations ..................... 32  
11 Layout................................................................... 32  
11.1 Layout Guidelines ................................................. 32  
11.2 Layout Example .................................................... 33  
12 器件和文档支持 ..................................................... 34  
12.1 器件支持 ............................................................... 34  
12.2 文档支持................................................................ 34  
12.3 接收文档更新通知 ................................................. 34  
12.4 社区资源................................................................ 34  
12.5 ....................................................................... 34  
12.6 静电放电警告......................................................... 34  
12.7 Glossary................................................................ 34  
13 机械、封装和可订购信息....................................... 34  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (May 2019) to Revision C  
Page  
已更改 将 DGK (VSSOP) 封装从预告信息(预览)更改为生产数据(正在供货) ................................................................ 1  
已更改 Figure 9, Typical Distribution of Input Offset Current, to show correct image.......................................................... 11  
已更改 Figure 27, Typical Distribution of Gain Error, G = 1, to show improved data........................................................... 14  
Changes from Revision A (December 2018) to Revision B  
Page  
已添加 向数据表中添加了 8 引脚 DGK (VSSOP) 预告信息封装和相关内容 .......................................................................... 1  
已更改 应用列表.................................................................................................................................................................. 1  
Changes from Original (August 2018) to Revision A  
Page  
首次发布生产数据数据表 ........................................................................................................................................................ 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
5 Device Comparison Table  
DEVICE  
DESCRIPTION  
GAIN EQUATION  
RG PINS AT PIN  
35-µV Offset, 0.4 µV/°C VOS Drift, 7-nV/Hz Noise, High-  
Bandwidth, Precision Instrumentation Amplifier  
INA821  
INA819  
INA818  
INA828  
INA333  
PGA280  
G = 1 + 49.4 kΩ / RG  
2, 3  
35-µV Offset, 0.4 µV/°C VOS Drift, 8-nV/Hz Noise, Low-Power,  
Precision Instrumentation Amplifier  
G = 1 + 50 kΩ / RG  
G = 1 + 50 kΩ / RG  
G = 1 + 50 kΩ / RG  
G = 1 + 100 kΩ / RG  
Digital programmable  
2, 3  
1, 8  
1, 8  
1, 8  
N/A  
35-µV Offset, 0.4 µV/°C VOS Drift, 8-nV/Hz Noise, Low-Power,  
Precision Instrumentation Amplifier  
50-µV Offset, 0.5 µV/°C VOS Drift, 7-nV/Hz Noise, Low-Power,  
Precision Instrumentation Amplifier  
25-µV VOS, 0.1 µV/°C VOS Drift, 1.8-V to 5-V, RRO, 50-µA IQ,  
Chopper-Stabilized INA  
20-mV to ±10-V Programmable Gain IA With 3-V or 5-V  
Differential Output; Analog Supply up to ±18 V  
G = 0.2 V Differential Amplifier for ±10-V to 3-V and 5-V  
Conversion  
INA159  
G = 0.2 V/V  
N/A  
N/A  
PGA112  
Precision Programmable Gain Op Amp With SPI  
Digital programmable  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
D and DGK Packages  
8-Pin SOIC and 8-Pin VSSOP  
Top View  
œIN  
RG  
RG  
+IN  
1
2
3
4
8
7
6
5
+VS  
OUT  
REF  
œVS  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN  
NO.  
1
I
Negative (inverting) input  
Positive (noninverting) input  
Output  
+IN  
4
O
I
OUT  
RG  
7
2, 3  
6
Gain setting pin. Place a gain resistor between pin 2 and pin 3.  
Reference input. This pin must be driven by a low impedance source.  
Negative supply  
REF  
–VS  
+VS  
5
8
Positive supply  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–20  
MAX  
UNIT  
Supply voltage  
20  
40  
V
Voltage  
–40  
Signal input pins  
REF pin  
V
V
–20  
20  
Signal output pins  
(-Vs) - 0.5  
(+Vs) + 0.5  
Output short-circuit(2)  
Continuous  
Operating Temperature, TA  
Junction Temperature, TJ  
Storage Temperature, Tstg  
–50  
150  
175  
150  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to VS / 2.  
7.2 ESD Ratings  
VALUE  
±1500  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
36  
UNIT  
Single-supply  
Supply voltage VS  
V
Dual-supply  
±2.25  
–40  
±18  
125  
Specified temperature  
Specified temperature  
°C  
7.4 Thermal Information  
INA821  
DGK (VSSOP)  
THERMAL METRIC(1)  
D (SOIC)  
UNIT  
8 PINS  
119.6  
66.3  
8 PINS  
215.4  
66.3  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
61.9  
97.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
20.5  
10.5  
ψJB  
61.4  
96.1  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
7.5 Electrical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
INA821ID  
10  
35  
40  
µV  
µV  
TA = 25°C  
INA821IDGK  
INA821ID  
Input stage offset  
voltage(1)(2)  
VOSI  
75  
µV  
TA = –40°C to 125°C(3)  
INA821IDGK  
80  
µV  
vs temperature, TA = –40°C to 125°C  
TA = 25°C  
TA = –40°C to 125°C(3)  
vs temperature, TA = –40°C to 125°C  
G = 1, RTI  
0.4  
350  
850  
5
µV/°C  
µV  
50  
Output stage offset  
voltage(1)(2)  
VOSO  
µV  
µV/°C  
110  
114  
130  
136  
120  
130  
G = 10, RTI  
Power-supply rejection  
ratio  
PSRR  
dB  
G = 100, RTI  
135  
G = 1000, RTI  
140  
zid  
zic  
Differential impedance  
100 || 1  
GΩ || pF  
G|| pF  
Common-mode  
impedance  
100 || 7  
45  
RFI filter, –3-dB  
frequency  
MHz  
(V–) + 2  
(V+) – 2  
±40  
VCM  
Operating input range(4)  
Input overvoltage range  
V
V
VS = ±2.25 V to ±18 V, TA = –40°C to 125°C  
TA = –40°C to 125°C(3)  
See 51 to 54  
At DC to 60 Hz, RTI, VCM = (V–) + 2 V to (V+) – 2 V,  
G = 1  
92  
112  
132  
140  
105  
125  
145  
150  
At DC to 60 Hz, RTI, VCM = (V–) + 2 V to (V+) – 2 V,  
G = 10  
Common-mode rejection  
ratio  
CMRR  
dB  
At DC to 60 Hz, RTI, VCM = (V–) + 2 V to (V+) – 2 V,  
G = 100  
At DC to 60 Hz, RTI, VCM = (V–) + 2 V to (V+) – 2 V,  
G = 1000  
BIAS CURRENT  
VCM = VS / 2  
0.15  
0.15  
0.5  
2
IB  
Input bias current  
nA  
nA  
TA = –40°C to 125°C  
VCM = VS / 2  
0.5  
2
IOS  
Input offset current  
TA = –40°C to 125°C  
NOISE VOLTAGE  
f = 1 kHz, G = 100, RS = 0 Ω  
fB = 0.1 Hz to 10 Hz, G = 100, RS = 0 Ω  
f = 1 kHz, RS = 0 Ω  
7
0.14  
65  
nV/Hz  
µVPP  
Input stage voltage  
eNI  
eNO  
In  
noise(5)  
nV/Hz  
µVPP  
Output stage voltage  
noise(5)  
fB = 0.1 Hz to 10 Hz, RS = 0 Ω  
f = 1 kHz  
2.5  
130  
4.7  
fA/Hz  
pAPP  
Noise current  
fB = 0.1 Hz to 10 Hz, G = 100  
GAIN  
G
Gain equation  
Range of gain  
1 + (49.4 k/ RG)  
V/V  
V/V  
1
10000  
(1) Total offset, referred-to-input (RTI): VOS = (VOSI) + (VOSO / G).  
(2) Offset drifts are uncorrelated. Input-referred offset drift is calculated using: ΔVOS(RTI) = [ΔVOSI2 + (ΔVOSO / G)2]  
(3) Specified by characterization.  
(4) Input voltage range of the INA821 input stage. The input range depends on the common-mode voltage, differential voltage, gain, and  
reference voltage. See Typical Characteristic curves 51 through 54 for more information.  
(5) Total RTI voltage noise is equal to: eN(RTI) = [eNI2 + (eNO / G)2]  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
Electrical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
±0.005%  
±0.025%  
±0.025%  
±0.05%  
MAX  
±0.025%  
±0.15%  
±0.15%  
UNIT  
G = 1, VO = ±10 V  
G = 10, VO = ±10 V  
G = 100, VO = ±10 V  
G = 1000, VO = ±10 V  
GE  
Gain error  
G = 1, TA = –40°C to 125°C  
±5  
±35  
10  
Gain vs temperature(6)  
Gain nonlinearity  
ppm/°C  
ppm  
G > 1, TA = –40°C to 125°C  
G = 1 to 10, VO = –10 V to 10 V, RL = 10 kΩ  
G = 100, VO = –10 V to 10 V, RL = 10 kΩ  
G = 1000, VO = –10 V to 10 V, RL = 10 kΩ  
G = 1 to 100, VO = –10 V to 10 V, RL = 2 kΩ  
1
15  
10  
30  
OUTPUT  
(V–) +  
0.15  
Voltage swing  
(V+) – 0.15  
V
Load capacitance  
stability  
1000  
pF  
Closed-loop output  
impedance  
ZO  
ISC  
f = 10 kHz  
1.3  
Short-circuit current  
Continuous to VS / 2  
±20  
mA  
FREQUENCY RESPONSE  
G = 1  
4.7  
970  
290  
30  
MHz  
kHz  
G = 10  
BW  
SR  
tS  
Bandwidth, –3 dB  
Slew rate  
G = 100  
G = 1000  
G = 1, VO = ±10 V  
2.0  
6
V/µs  
0.01%, G = 1 to 100, VSTEP = 10 V  
0.01%, G = 1000, VSTEP = 10 V  
0.001%, G = 1 to 100, VSTEP = 10 V  
0.001%, G = 1000, VSTEP = 10 V  
40  
Settling time  
µs  
10  
50  
REFERENCE INPUT  
RIN Input impedance  
10  
kΩ  
V
Voltage range  
(V–)  
(V+)  
Gain to output  
1
V/V  
Reference gain error  
0.01%  
POWER SUPPLY  
Single-supply  
4.5  
36  
±18  
650  
870  
VS  
IQ  
Power-supply voltage  
V
Dual-supply  
±2.25  
VIN = 0 V  
600  
Quiescent current  
µA  
vs temperature, TA = –40°C to 125°C  
(6) The values specified for G > 1 do not include the effects of the external gain-setting resistor, "RG".  
版权 © 2018–2019, Texas Instruments Incorporated  
7
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
7.6 Typical Characteristics: Table of Graphs  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
1. Table of Graphs  
DESCRIPTION  
Typical Distribution of Input Stage Offset Voltage  
Typical Distribution of Input Stage Offset Voltage Drift  
Typical Distribution of Output Stage Offset Voltage  
Typical Distribution of Output Stage Offset Voltage Drift  
Input Stage Offset Voltage vs Temperature  
Output Stage Offset Voltage vs Temperature  
Typical Distribution of Input Bias Current, TA = 25°C  
Typical Distribution of Input Bias Current, TA = 90°C  
Typical Distribution of Input Offset Current  
Input Bias Current vs Temperature  
FIGURE  
1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
Input Offset Current vs Temperature  
Typical CMRR Distribution, G = 1  
Typical CMRR Distribution, G = 10  
CMRR vs Temperature, G = 1  
CMRR vs Temperature, G = 10  
Input Current vs Input Overvoltage  
CMRR vs Frequency (RTI)  
CMRR vs Frequency (RTI, 1-kΩ source imbalance)  
Positive PSRR vs Frequency (RTI)  
Negative PSRR vs Frequency (RTI)  
Gain vs Frequency  
Voltage Noise Spectral Density vs Frequency (RTI)  
Current Noise Spectral Density vs Frequency (RTI)  
0.1-Hz to 10-Hz RTI Voltage Noise, G = 1  
0.1-Hz to 10-Hz RTI Voltage Noise, G = 1000  
0.1-Hz to 10-Hz RTI Current Noise  
Typical Distribution of Gain Error, G = 1  
Typical Distribution of Gain Error, G = 10  
Input Bias Current vs Common-Mode Voltage  
Gain Error vs Temperature, G = 1  
Gain Error vs Temperature, G = 10  
Supply Current vs Temperature  
Gain Nonlinearity, G = 1  
Gain Nonlinearity, G = 10  
Offset Voltage vs Negative Common-Mode Voltage  
Offset Voltage vs Positive Common-Mode Voltage  
Positive Output Voltage Swing vs Output Current  
Negative Output Voltage Swing vs Output Current  
Short-Circuit Current vs Temperature  
Large-Signal Frequency Response  
THD+N vs Frequency  
Overshoot vs Capacitive Loads  
Small-Signal Response, G = 1  
Small-Signal Response, G = 10  
Small-Signal Response, G = 100  
8
版权 © 2018–2019, Texas Instruments Incorporated  
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
Typical Characteristics: Table of Graphs (接下页)  
1. Table of Graphs (接下页)  
DESCRIPTION  
Small-Signal Response, G = 1000  
FIGURE  
46  
47  
48  
49  
50  
51  
52  
53  
54  
Large-Signal Step Response  
Closed-Loop Output Impedance  
Differential-Mode EMI Rejection Ratio  
Common-Mode EMI Rejection Ratio  
Input Common-Mode Voltage vs Output Voltage, G = 1, VS = 5 V  
Input Common-Mode Voltage vs Output Voltage, G = 100, VS = 5 V  
Input Common-Mode Voltage vs Output Voltage, VS = ±5 V  
Input Common-Mode Voltage vs Output Voltage, VS = ±15 V  
版权 © 2018–2019, Texas Instruments Incorporated  
9
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
7.7 Typical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
-30 -25 -20 -15 -10 -5  
0
5
10 15 20 25 30  
Input Stage Offset Voltage (mV)  
Input Stage Offset Voltage Drift (mV/èC)  
D001  
D002  
N = 2667  
Mean = 3.1 µV  
Std. Dev. = 8.1 µV  
N = 81  
Mean = -0.03 µV/°C  
Std. Dev. = 0.09 µV/°C  
1. Typical Distribution of  
2. Typical Distribution of  
Input Stage Offset Voltage  
Input Stage Offset Voltage Drift  
15  
10  
5
16  
14  
12  
10  
8
6
4
2
0
0
-200  
-100  
0
100  
200  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
Input Stage Offset Voltage (mV)  
Output Offset Voltage Drift (mV/èC)  
D003  
D004  
N = 2667  
Mean = 7.7 µV  
Std. Dev. = 50.7 µV  
N = 81  
Mean = –1.09 µV/°C  
Std. Dev. = 0.94 µV/°C  
3. Typical Distribution of  
4. Typical Distribution of  
Output Stage Offset Voltage  
Output Stage Offset Voltage Drift  
100  
75  
500  
400  
300  
200  
100  
0
50  
25  
0
-100  
-200  
-300  
-400  
-500  
-25  
-50  
-75  
Mean  
+3s  
-3s  
Mean  
+3s  
-3s  
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
D005  
D006  
81 units  
81 units  
5. Input Stage Offset Voltage vs Temperature  
6. Output Stage Offset Voltage vs Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
10  
 
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
20  
15  
10  
5
20  
15  
10  
5
0
0
-300  
-200  
-100  
0
100  
200  
300  
-200 -150 -100  
-50  
0
50  
100  
150  
200  
Input Bias Current (pA)  
Input Bias Current (pA)  
D007  
D008  
N = 292  
Mean = 45 pA  
Std. Dev. = 62 pA  
N = 292  
Mean = 34 pA  
Std. Dev. = 52 pA  
TA = 25°C  
TA = 90°C  
7. Typical Distribution of Input Bias Current,  
8. Typical Distribution of Input Bias Current,  
TA = 25°C  
TA = 90°C  
25  
20  
15  
10  
5
1
0.8  
0.6  
0.4  
0.2  
0
Avg  
+3s  
-3s  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
-300  
-200  
-100  
0
100  
200  
300  
-50 -30 -10 10  
30  
50  
70  
90 110 130 150  
Input Offset Current (pA)  
Temperature (èC)  
D050  
D009  
N = 294  
G = 1  
N = 94  
Mean = –38.82 pA  
Std. Dev. = 47.24 pA  
9. Typical Distribution of Input Offset Current  
10. Input Bias Current vs Temperature  
25  
20  
15  
10  
5
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Avg  
+3s  
-3s  
0
-20 -16 -12  
-8  
-4  
0
4
8
12  
16  
20  
-50 -30 -10 10  
30  
50  
70  
90 110 130 150  
Temperature (èC)  
Common-Mode Rejection Ratio (mV/V)  
D010  
D011  
N = 294  
G = 1  
N = 294  
G = 1  
Mean = 4.87 µV/V  
Std. Dev. = 4.14 µV/V  
11. Input Offset Current vs Temperature  
12. Typical CMRR Distribution, G = 1  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
150  
125  
100  
75  
30  
25  
20  
15  
10  
5
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
0
50  
-50  
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
-25  
0
25  
50  
75  
100  
125  
150  
Common-Mode Rejection Ratio (mV/V)  
Temperature (èC)  
D012  
D013  
N = 5  
G = 1  
N = 294  
G = 10  
Mean = 0.51 µV/V  
Std. Dev. = 0.42 µV/V  
13. Typical CMRR Distribution, G = 10  
14. CMRR vs Temperature, G = 1  
175  
150  
125  
100  
75  
10  
20  
16  
12  
8
8
6
4
2
4
0
0
-2  
-4  
-6  
-8  
-10  
-4  
Unit 1  
-8  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
-12  
-16  
-20  
Input Current  
Output Voltage  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
Temperature (èC)  
Input Voltage (V)  
D014  
D015  
N = 5  
VS = ±18 V  
G = 10  
15. CMRR vs Temperature, G = 10  
16. Input Current vs Input Overvoltage  
160  
140  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
G = 1  
G = 1  
G = 10  
G = 100  
G = 1000  
G = 10  
G = 100  
G = 1000  
20  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
D016  
D017  
17. CMRR vs Frequency (RTI)  
18. CMRR vs Frequency  
(RTI, 1-kΩ source imbalance)  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
 
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
G = 1  
G = 1  
G = 10  
G = 100  
G = 1000  
0
0
G = 10  
G = 100  
G = 1000  
-20  
-40  
-20  
-40  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
D018  
D019  
19. Positive PSRR vs Frequency (RTI)  
20. Negative PSRR vs Frequency (RTI)  
80  
60  
40  
20  
0
1000  
100  
10  
G = 1  
G = 10  
G = 100  
G = 1000  
-20  
-40  
-60  
G = 1  
G = 10  
G = 100  
G = 1000  
10  
100  
1k  
10k  
100k  
1M  
10M  
100m  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
D020  
D021  
21. Gain vs Frequency  
22. Voltage Noise Spectral Density vs Frequency (RTI)  
1k  
100  
10  
Time (1 s/div)  
100m  
1
10  
100  
1k  
10k  
Frequency (Hz)  
D023  
D022  
G = 1  
24. 0.1-Hz to 10-Hz RTI Voltage Noise, G = 1  
23. Current Noise Spectral Density vs Frequency (RTI)  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
Time (1 s/div)  
Time (1 s/div)  
D024  
D025  
G = 1  
G = 1000  
25. 0.1-Hz to 10-Hz RTI Voltage Noise, G = 1000  
26. 0.1-Hz to 10-Hz RTI Current Noise  
30  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
6
4
2
0
0
-900  
-250 -200 -150 -100 -50  
0
50 100 150 200 250  
-600  
-300  
0
300  
600  
900  
Gain Error (ppm)  
Input Stage Offset Voltage (mV)  
D026  
D027  
N = 5412  
G = 1  
Mean = 30 ppm  
Std. Dev. = 55 ppm  
N = 293  
G = 10  
Mean = 152 ppm  
Std. Dev. = 291 ppm  
27. Typical Distribution of Gain Error, G = 1  
28. Typical Distribution of Gain Error, G = 10  
100  
80  
60  
40  
20  
0
0.5  
0.3  
-45èC  
25èC  
125èC  
0.1  
-0.1  
-0.3  
-0.5  
-20  
-40  
-15 -12  
-9  
-6  
-3  
0
3
6
9
12  
15  
-50 -30 -10 10  
30  
50  
70  
90 110 130 150  
Common-Mode Voltage (V)  
Temperature (èC)  
D028  
D029  
VS = ±15 V  
Average of 294 units  
30. Gain Error vs Temperature, G = 1  
G = 1  
29. Input Bias Current vs Common-Mode Voltage  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
1500  
1250  
1000  
750  
0.9  
0.84  
0.78  
0.72  
0.66  
0.6  
500  
250  
0
-250  
-500  
-750  
-1000  
-1250  
-1500  
0.54  
0.48  
0.42  
0.36  
0.3  
VS = ê 15 V  
VS = ê 2.25 V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50 -30 -10 10  
30  
50  
70  
90 110 130 150  
Temperature (èC)  
Temperature (èC)  
D030  
D031  
Average of 294 units  
31. Gain Error vs Temperature, G = 10  
G = 10  
32. Supply Current vs Temperature  
10  
8
1
0.8  
0.6  
0.4  
0.2  
0
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
Output Voltage (V)  
Output Voltage (V)  
D032  
D033  
G = 1  
G = 10  
33. Gain Nonlinearity, G = 1  
34. Gain Nonlinearity, G = 10  
175  
150  
125  
100  
75  
150  
125  
100  
75  
-40èC  
25èC  
-40èC  
25èC  
85èC  
125èC  
85èC  
125èC  
50  
50  
25  
25  
0
0
-25  
-50  
-75  
-25  
-50  
-15  
-14.6 -14.2 -13.8 -13.4  
-13  
-12.6 -12.2  
12  
12.4  
12.8  
13.2  
13.6  
14  
14.4  
14.8  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D034  
D035  
35. Offset Voltage vs Negative Common-Mode Voltage  
36. Offset Voltage vs Positive Common-Mode Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
15  
14.9  
14.8  
14.7  
14.6  
14.5  
14.4  
14.3  
14.2  
14.1  
14  
-14  
-14.1  
-14.2  
-14.3  
-14.4  
-14.5  
-14.6  
-14.7  
-14.8  
-14.9  
-15  
œ40èC  
25èC  
85èC  
125èC  
œ40èC  
25èC  
85èC  
125èC  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Output Current (mA)  
Output Current (mA)  
D036  
D037  
37. Positive Output Voltage Swing vs Output Current  
38. Negative Output Voltage Swing vs Output Current  
40  
30  
20  
Vs = ê15 V  
Vs = ê5 V  
18  
20  
16  
14  
12  
10  
8
10  
0
-10  
-20  
-30  
-40  
6
4
ISC, Source  
ISC, Sink  
-50  
-60  
2
0
-50 -30 -10 10  
30  
50  
70  
90 110 130 150  
100  
1k  
10k  
100k  
1M  
10M  
Temperature (èC)  
Frequency (Hz)  
D038  
D039  
39. Short-Circuit Current vs Temperature  
40. Large-Signal Frequency Response  
1
0.1  
-40  
50  
G = 1  
G = 10  
G = 100  
Positive Overshoot  
Negative Overshoot  
45  
40  
35  
30  
25  
20  
15  
10  
5
-60  
0.01  
0.001  
-80  
-100  
0
10  
100  
1k  
10k  
100k  
1
10  
100  
1000  
Frequency (Hz)  
Capacitive Load (pF)  
D040  
D041  
500-kHz measurement bandwidth  
1-VRMS output voltage 100-kΩ load  
41. THD+N vs Frequency  
42. Overshoot vs Capacitive Loads  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
75  
50  
25  
0
75  
50  
25  
0
-25  
-50  
-75  
-25  
-50  
-75  
-5  
-2.5  
0
2.5  
5
7.5  
10  
12.5  
15  
-5  
-2.5  
0
2.5  
5
7.5  
10  
12.5  
15  
Time (µs)  
Time (µs)  
D042  
D043  
G = 1  
RL = 10 kΩ  
CL = 100 pF  
G = 10  
RL = 10 kΩ  
CL = 100 pF  
43. Small-Signal Response  
44. Small-Signal Response  
75  
50  
25  
0
75  
50  
25  
0
-25  
-50  
-25  
-50  
-75  
-5  
-75  
-25  
-2.5  
0
2.5  
5
7.5  
10  
12.5  
15  
0
25  
50  
75  
Time (µs)  
Time (µs)  
D044  
D045  
G = 100  
RL = 10 kΩ  
CL = 100 pF  
G = 1000  
RL = 10 kΩ  
CL = 100 pF  
45. Small-Signal Response  
46. Small-Signal Response  
Output  
Input  
100  
10  
1
0.1  
Time (10 µs/div)  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
D046  
D047  
47. Large-Signal Step Response  
48. Closed-Loop Output Impedance  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = 0 V, and G = 1 (unless otherwise noted)  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
60  
40  
20  
0
10M  
100M  
Frequency (Hz)  
1G  
10G  
10M  
100M  
Frequency (Hz)  
1G  
10G  
D048  
D049  
49. Differential-Mode EMI Rejection Ratio  
50. Common-Mode EMI Rejection Ratio  
5
4
3
2
1
0
5
4
3
2
1
0
VREF = 0 V  
VREF = 0 V  
VREF = 2.5 V  
VREF = 2.5 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Voltage (V)  
G = 1  
Output Voltage (V)  
C006  
C006  
VS = 5 V  
VS = 5 V  
G = 100  
51. Input Common-Mode Voltage vs Output Voltage  
52. Input Common-Mode Voltage vs Output Voltage  
5
4
15  
10  
5
3
2
1
0
0
-5  
-1  
-2  
-3  
-10  
-15  
G = 1  
G = 1  
-4  
G = 100  
-20  
G = 100  
-5  
0
10  
20  
0
2
4
±
20  
10  
±±  
±4  
±2  
Output Voltage (V)  
Output Voltage (V)  
C006  
C00±  
VS = ±5 V  
VREF = 0 V  
VS = ±15 V  
VREF = 0 V  
53. Input Common-Mode Voltage vs Output Voltage  
54. Input Common-Mode Voltage vs Output Voltage  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
8 Detailed Description  
8.1 Overview  
The INA821 is a monolithic precision instrumentation amplifier that incorporates a current-feedback input stage  
and a four-resistor difference amplifier output stage. The functional block diagram in the next section shows how  
the differential input voltage is buffered by Q1 and Q2 and is forced across RG, which causes a signal current to  
flow through RG, R1, and R2. The output difference amplifier, A3, removes the common-mode component of the  
input signal and refers the output signal to the REF pin. The VBE and voltage drop across R1 and R2 produces  
output voltages on A1 and A2 that are approximately 0.8 V lower than the input voltages.  
Each input is protected by two field-effect transistors (FETs) that provide a low series resistance under normal  
signal conditions, and preserve excellent noise performance. When excessive voltage is applied, these  
transistors limit input current to approximately 8 mA.  
8.2 Functional Block Diagram  
+VS  
VB  
RB  
RB  
IB Cancellation  
IB Cancellation  
10 k  
-VS +VS  
10 kꢀ  
œ
A1  
A2  
A3  
+
OUT  
REF  
10 kꢀ  
10 kꢀ  
+VS  
+VS  
-VS +VS  
Q2  
Q1  
Super-ꢁ  
Super-ꢁ  
-IN  
+IN  
NPN  
NPN  
Over-Voltage  
Protection  
+VS  
+VS  
Over-Voltage  
Protection  
R2  
24.7 kꢀ  
R1  
24.7 kꢀ  
RG  
(External)  
-VS  
-VS  
RG  
RG  
Copyright © 2017, Texas Instruments Incorporated  
-VS  
-VS  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Setting the Gain  
55 shows that the gain of the INA821 is set by a single external resistor (RG) connected between the RG pins  
(pins 1 and 8).  
V+  
+VS  
Overvoltage  
Protection  
10 k  
+
10 kꢀ  
-IN  
œ
RG  
œ
49.4 kW  
24.7 kꢀ  
24.7 kꢀ  
OUT  
REF  
G = 1+  
RG  
RG  
+
VO = G V+IN - V-IN + V  
(
)
REF  
RG  
+IN  
œ
Overvoltage  
Protection  
+
10 kꢀ  
10 kꢀ  
-VS  
Copyright © 2017, Texas Instruments Incorporated  
V-  
55. Simplified Diagram of the INA821 With Gain and Output Equations  
The value of RG is selected according to:  
49.4 kW  
G = 1+  
RG  
(1)  
2 lists several commonly used gains and resistor values. The 49.4-kterm in 公式 1 is a result of the sum of  
the two internal 24.7-kΩ feedback resistors. These on-chip resistors are laser-trimmed to accurate absolute  
values. The accuracy and temperature coefficients of these resistors are included in the gain accuracy and drift  
specifications of the INA821. As shown in 55 and explained in more details in the Layout section, make sure  
to connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, that are placed as  
close to the device as possible.  
2. Commonly-Used Gains and Resistor Values  
DESIRED GAIN  
RG (Ω)  
NC  
NEAREST 1% RG (Ω)  
1
2
NC  
49.9 k  
12.4 k  
5.49 k  
2.61 k  
1 k  
49.4 k  
12.35 k  
5.489 k  
2.600 k  
1.008 k  
499  
5
10  
20  
50  
100  
200  
500  
1000  
499  
248  
249  
99  
100  
49.4  
49.9  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
8.3.1.1 Gain Drift  
The stability and temperature drift of the external gain setting resistor (RG) also affects gain. The contribution of  
RG to gain accuracy and drift is determined from 公式 1.  
The best gain drift of 5 ppm/(maximum) is achieved when the INA821 uses G = 1 without RG connected. In  
this case, gain drift is limited by the slight mismatch of the temperature coefficient of the integrated 10-kΩ  
resistors in the differential amplifier (A3). At gains greater than 1, gain drift increases as a result of the individual  
drift of the 24.7-kΩ resistors in the feedback of A1 and A2 relative to the drift of the external gain resistor (RG.)  
The low temperature coefficient of the internal feedback resistors significantly improves the overall temperature  
stability of applications using gains greater than 1 V/V over alternate options.  
Low resistor values required for high gain make wiring resistance an important consideration. Sockets add to the  
wiring resistance and contribute additional gain error (such as a possible unstable gain error) at gains of  
approximately 100 or greater. To maintain stability, avoid parasitic capacitance of more than a few picofarads at  
RG connections. Careful matching of any parasitics on the RG pins maintains optimal CMRR over frequency; see  
17.  
8.3.2 EMI Rejection  
Texas Instruments developed a method to accurately measure the immunity of an amplifier over a broad  
frequency spectrum extending from 10 MHz to 6 GHz. This method uses an EMI rejection ratio (EMIRR) to  
quantify the ability of the INA821 to reject EMI. The offset resulting from an input EMI signal is calculated using  
公式 2:  
EMIRR (dB)  
2
÷
-
VRF_PEAK  
100 mVP  
«
÷
20  
DVOS  
=
10  
«
÷
where  
VRF_PEAK is the peak amplitude of the input EMI signal.  
(2)  
56 and 57 show the INA821 EMIRR graph for differential and common-mode EMI rejection across this  
frequency range. 3 lists the EMIRR values for the INA821 at frequencies commonly encountered in real-world  
applications. Applications listed in 3 are centered on or operated near the particular frequency shown.  
Depending on the end-system requirements, additional EMI filters may be required near the signal inputs of the  
system. Incorporating known good practices such as using short traces, low-pass filters, and damping resistors  
combined with parallel and shielded signal routing may be required.  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
10M  
100M  
Frequency (Hz)  
1G  
10G  
10M  
100M  
Frequency (Hz)  
1G  
10G  
D049  
D048  
56. Common-Mode EMIRR Testing  
57. Differential Mode EMIRR Testing  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
 
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
3. INA821 EMIRR for Frequencies of Interest  
COMMON-MODE  
EM is a result of  
the sum of the  
two IRR  
DIFFERENTIAL  
EMIRR  
FREQUENCY  
APPLICATION OR ALLOCATION  
Mobile radio, mobile satellite, space operation, weather, radar, ultrahigh-frequency (UHF)  
applications  
400 MHz  
900 MHz  
1.8 GHz  
60 dB  
58 dB  
66 dB  
88 dB  
60 dB  
89 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (up to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
GSM applications, mobile personal communications, broadband, satellite,  
L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific  
and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
2.4 GHz  
3.6 GHz  
5 GHz  
73 dB  
99 dB  
83 dB  
98 dB  
111 dB  
91 dB  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and  
satellite operation, C-band (4 GHz to 8 GHz)  
8.3.3 Input Common-Mode Range  
The linear input voltage range of the INA821 input circuitry extends within 2 V of power supplies and maintains  
excellent common-mode rejection throughout this range. The common-mode range for the most common  
operating conditions are shown in 58 to61. The common-mode range for other operating conditions is best  
calculated using the Common-Mode Input Range Calculator for Instrumentation Amplifiers.  
5
4
3
2
1
0
5
4
3
2
1
0
VREF = 0 V  
VREF = 0 V  
VREF = 2.5 V  
VREF = 2.5 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Voltage (V)  
G = 1  
Output Voltage (V)  
C006  
C006  
VS = 5 V  
VS = 5 V  
G = 100  
58. Input Common-Mode Voltage vs Output Voltage  
59. Input Common-Mode Voltage vs Output Voltage  
5
4
15  
10  
5
3
2
1
0
0
-5  
-1  
-2  
-3  
-10  
-15  
G = 1  
G = 1  
-4  
G = 100  
-20  
G = 100  
-5  
0
10  
20  
0
2
4
±
20  
10  
±±  
±4  
±2  
Output Voltage (V)  
Output Voltage (V)  
C006  
C00±  
VS = ±5 V  
VREF = 0 V  
VS = ±15 V  
VREF = 0 V  
60. Input Common-Mode Voltage vs Output Voltage  
61. Input Common-Mode Voltage vs Output Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
22  
 
 
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
8.3.4 Input Protection  
The inputs of the INA821 device are individually protected for voltages up to ±40 V. For example, a condition of  
–40 V on one input and +40 V on the other input does not cause damage. Internal circuitry on each input  
provides low series impedance under normal signal conditions. If the input is overloaded, the protection circuitry  
limits the input current to a value of approximately 8 mA.  
+V  
ZD1  
+VS  
IN  
Overvoltage  
Protection  
Input Voltage  
Source  
+
Input Transistor  
œ
-VS  
ZD2  
-V  
62. Input Current Path During an Overvoltage Condition  
During an input overvoltage condition, current flows through the input protection diodes into the power supplies;  
see 62. If the power supplies are unable to sink current, then Zener diode clamps (ZD1 and ZD2 in 62)  
must be placed on the power supplies to provide a current pathway to ground. 63 shows the input current for  
input voltages from –40 V to 40 V when the INA821 is powered by ±15-V supplies.  
10  
8
20  
16  
12  
8
6
4
2
4
0
0
-2  
-4  
-6  
-8  
-10  
-4  
-8  
-12  
-16  
-20  
Input Current  
Output Voltage  
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
Input Voltage (V)  
D015  
63. Input Current vs Input Overvoltage  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
 
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
8.3.5 Operating Voltage  
The INA821 operates over a power-supply range of 4.5 V to 36 V (±2.25 V to ±18 V).  
CAUTION  
Supply voltages higher than 40 V (±20 V) can permanently damage the device.  
Parameters that vary over supply voltage or temperature are shown in the Typical  
Characteristics section of this data sheet.  
8.3.6 Error Sources  
Most modern signal-conditioning systems calibrate errors at room temperature. However, calibration of errors  
that result from a change in temperature is normally difficult and costly. Therefore, minimize these errors by  
choosing high-precision components, such as the INA821, that have improved specifications in critical areas that  
impact the precision of the overall system. 64 shows an example application.  
+15 V  
C2  
RS+  
1 k  
RG  
VDIFF = VOUT / G  
5.49 kꢀ  
INA  
RG  
VOUT = 1 V  
RSœ  
0.99 kꢀ  
VCM = 10 V  
C1  
œ15 V  
64. Example Application with G = 10 V/V and 1 V Output Voltage  
Resistor-adjustable devices (such as the INA821) show the lowest gain error in G = 1 because of the inherently  
well-matched drift of the internal resistors of the differential amplifier. At gains greater than 1 (for instance, G =  
10 V/V or G = 100 V/V), the gain error becomes a significant error source because of the contribution of the  
resistor drift of the 24.7-kΩ feedback resistors in conjunction with the external gain resistor. Except for very high  
gain applications, the gain drift is by far the largest error contributor compared to other drift errors, such as offset  
drift.  
The INA821 offers excellent gain error over temperature for both G > 1 and G = 1 (no external gain resistor). 5  
summarizes the major error sources in common INA applications and compares the three cases of G = 1 (no  
external resistor) and G = 10 (5.49-kΩ external resistor) and G = 100 (499-Ω external resistor). All calculations  
are assuming an output voltage of VOUT = 1 V. Thus, the input signal VDIFF (given by VDIFF= VOUT/G) exhibits  
smaller and smaller amplitudes with increasing gain G. In this example, VDIFF = 1 mV at G = 1000. All  
calculations refer the error to the input for easy comparison and system evaluation. As 5 shows, errors  
generated by the input stage (such as input offset voltage) are more dominant at higher gain, while the effects of  
output stage are suppressed because they are divided by the gain when referring them back to the input. the  
gain error and gain drift error are much more significant for gains greater than 1 because of the contribution of  
the resistor drift of the 24.7-kΩ feedback resistors in conjunction with the external gain resistor. In most  
applications, static errors (absolute accuracy errors) can readily be removed during calibration in production,  
while the drift errors are the key factors limiting overall system performance.  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
 
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
4. System Specifications for Error Calculation  
QUANTITY  
VALUE  
1
UNIT  
VOUT  
V
VCM  
10  
V
VS  
1
V
Ω
RS+  
RS–  
1000  
999  
0.01  
10  
Ω
RG tolerance  
RG drift  
%
ppm/°C  
°C  
Temperature range upper limit  
105  
5. Error Calculation  
INA821 VALUES  
G = 1  
G = 100  
ERROR  
(ppm)  
G = 1000  
ERROR  
(ppm)  
ERROR SOURCE  
ERROR CALCULATION  
SPECIFICATION  
UNIT  
ERROR  
(ppm)  
ABSOLUTE ACCURACY AT 25°C  
Input offset voltage  
VOSI / VDIFF  
35  
300  
0.5  
µV  
µV  
nA  
35  
350  
1
350  
350  
5
3500  
350  
50  
Output offset voltage  
VOSO / (G × VDIFF)  
Input offset current  
IOS × maximum (RS+, RS–) / VDIFF  
92 (G = 1),  
112 (G = 10),  
132 (G = 100)  
VCM / (10CMRR/20 × VDIFF  
)
CMRR (min)  
PSRR (min)  
dB  
dB  
251  
3
251  
20  
251  
32  
110 (G = 1),  
114 (G = 10),  
130 (G = 100)  
(VCC – VS)/ (10PSRR/20 × VDIFF  
)
0.02 (G = 1),  
0.15 (G = 10, 100)  
GE(%) × 104  
GE(%) × 104  
sum of all errors  
Gain error from INA (max)  
%
%
200  
100  
940  
1500  
100  
1500  
100  
Gain error from external resistor RG (max)  
0.01  
Total absolute accuracy error (ppm) at 25°C,  
worst case  
2576  
5738  
Total absolute accuracy error (ppm) at 25°C,  
average  
rms sum of all errors  
GTC × (TA – 25)  
487  
1603  
3834  
DRIFT TO 105°C  
5 (G = 1),  
35 (G = 10, 100)  
Gain drift from INA (max)  
ppm/°C  
400  
2800  
2800  
Gain drift from external resistor RG (max)  
Input offset voltage drift (max)  
Output offset voltage drift  
GTC × (TA – 25)  
10  
0.4  
5
ppm/°C  
µV/°C  
µV/°C  
800  
32  
800  
320  
400  
800  
3200  
400  
(VOSI_TC / VDIFF) × (TA – 25)  
[VOSO_TC / ( G × VDIFF)] × (TA – 25)  
400  
IOS_TC × maximum (RS+, RS–) ×  
(TA – 25) / VDIFF  
Offset current drift  
20  
pA/°C  
2
16  
160  
Total drift error to 105°C (ppm), worst case  
Total drift error to 105°C (ppm), typical  
RESOLUTION  
sum of all errors  
1634  
980  
4336  
2957  
7360  
4348  
rms sum of all errors  
10 (G = 1, 10),  
15 (G = 100)  
Gain nonlinearity  
ppm of FS  
µVPP  
10  
1335  
0.4  
10  
886  
2
15  
3566  
11  
2
eNO  
6
eNI = 7,  
eNO = 65  
2
(eNI  
+
´
´
BW  
Voltage noise (at 1 kHz)  
G
VDIFF  
IN × maximum (RS+, RS–) × BW /  
Current noise (at 1kHz)  
0.13  
pA/Hz  
VDIFF  
Total resolution error (ppm), worst case  
Total resolution error (ppm), typical  
TOTAL ERROR  
sum of all errors  
1345  
1335  
896  
886  
3581  
3566  
rms sum of all errors  
Total error (ppm), worst case  
Total error (ppm), typical  
sum of all errors  
3919  
1726  
7808  
3478  
16724  
6806  
rms sum of all errors  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
8.4 Device Functional Modes  
The INA821 has a single functional mode and is operational when the power supply voltage is greater than 4.5 V  
(±2.25 V). The maximum power-supply voltage for the INA821 is 36 V (±18 V).  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Reference Pin  
The output voltage of the INA821 is developed with respect to the voltage on the reference pin (REF.) Often, in  
dual-supply operation, REF (pin 6) connects to the low-impedance system ground. In single-supply operation,  
offsetting the output signal to a precise midsupply level is useful (for example, 2.5 V in a 5-V supply  
environment). To accomplish this level shift, a voltage source must be connected to the REF pin to level-shift the  
output so that the INA821 drives a single-supply analog-to-digital converter (ADC).  
The voltage source applied to the reference pin must have a low output impedance. As shown in 65, any  
resistance at the reference pin ( RREF in 65) is in series with one of the internal 10-kΩ resistors.  
V+  
+VS  
Over-  
10 k  
Voltage  
+
10 kꢀ  
-IN  
Protection  
œ
RG  
œ
24.7 kꢀ  
24.7 kꢀ  
RG  
OUT  
REF  
+
RG  
+IN  
œ
Over-  
Voltage  
+
RREF  
10 kꢀ  
10 kꢀ  
Protection  
-VS  
V-  
65. Parasitic Resistance Shown at the Reference Pin  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
 
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
Application Information (接下页)  
The parasitic resistance at the reference pin (RREF) creates an imbalance in the four resistors of the internal  
difference amplifier that results in a degraded common-mode rejection ratio (CMRR). 66 shows the  
degradation in CMRR of the INA821 as a result of the increased resistance at the reference pin. For the best  
performance, keep the source impedance to the REF pin (RREF) less than 5 Ω.  
120  
100  
80  
60  
0 Ω  
40  
5 Ω  
10 Ω  
20  
15 Ω  
20 Ω  
0
10  
100  
1k  
Frequency (Hz)  
10k  
66. The Effect of Increasing Resistance at the Reference Pin  
Voltage reference devices are an excellent option for providing a low-impedance voltage source for the reference  
pin. However, if a resistor voltage divider generates a reference voltage, the divider must be buffered by an op  
amp, as 67 shows, to avoid CMRR degradation.  
5 V  
+IN  
RG  
RG  
INA821  
RG  
OUT  
œIN  
5 V  
5 V  
100 k  
+
OPA191  
1 F  
œ
100 kꢀ  
Copyright © 2017, Texas Instruments Incorporated  
67. Using an Op Amp to Buffer Reference Voltages  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
 
 
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
Application Information (接下页)  
9.1.2 Input Bias Current Return Path  
The input impedance of the INA821 is extremely high (approximately 100 GΩ.) However, a path must be  
provided for the input bias current of both inputs. This input bias current is typically 150 pA. High input  
impedance means that this input bias current changes little with varying input voltage.  
For proper operation, Input circuitry must provide a path for this input bias current. 68 shows various  
provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds  
the common-mode range of the INA821 and the input amplifiers saturate. If the differential source resistance is  
low, the bias current return path connects to one input (as shown in the thermocouple example in 68). With a  
higher source impedance, using two equal resistors provides a balanced input with possible advantages of a  
lower input offset voltage as a result of bias current and better high-frequency common-mode rejection.  
Microphone,  
Hydrophone,  
and So Forth  
TI Device  
47 kW  
47 kW  
Thermocouple  
TI Device  
10 kW  
TI Device  
Center tap provides  
bias current return.  
Copyright © 2017, Texas Instruments Incorporated  
68. Providing an Input Common-Mode Current Path  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
 
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
9.2 Typical Application  
69 shows a three-pin programmable-logic controller (PLC) design for the INA821. This PLC reference design  
accepts inputs of ±10 V or ±20 mA. The output is a single-ended voltage of 2.5 V ±2.3 V (or 200 mV to 4.8 V).  
Typically, PLCs have these input and output ranges.  
±10 V  
15 V  
REF5025  
R
= 100 kΩ  
= 4.17 kΩ  
1
VOUT  
GND  
VIN  
NR  
1 F  
1 F  
1 F  
15 V  
+VS  
R
2
±20 mA  
-IN  
RG  
REF  
R
3
=
V
2.5 V ± 2.3 V  
INA821  
OUT  
R
= 10.4 kΩ  
OUT  
G
20 Ω  
RG  
+IN  
-VS  
-15 V  
Copyright © 2017, Texas Instruments Incorporated  
69. PLC Input (±10 V, 4 mA to 20 mA)  
9.2.1 Design Requirements  
For this application, the design requirements are as follows:  
4-mA to 20-mA input with less than 20-burden  
±20-mA input with less than 20-burden  
±10-V input with impedance of approximately 100 kΩ  
Maximum 4-mA to 20-mA or ±20 mA burden voltage equal to ±0.4 V  
Output range within 0 V to 5 V  
9.2.2 Detailed Design Procedure  
There are two modes of operation for the circuit shown in 69: current input and voltage input. This design  
requires R1 >> R2 >> R3. Given this relationship, 公式 3 calculates the current input mode transfer function.  
VOUT-I = VD ´ G + VREF = -(IIN ´ R3) ´ G + VREF  
where  
G represents the gain of the instrumentation amplifier.  
VD represents the differential voltage at the INA821 inputs.  
VREF is the voltage at the INA821 REF pin.  
IIN is the input current.  
(3)  
公式 4 shows the transfer function for the voltage input mode.  
R2  
VOUT-V = VD ´ G + VREF = - VIN  
´
´ G + VREF  
R1 + R2  
where  
VIN is the input voltage  
(4)  
29  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
Typical Application (接下页)  
R1 sets the input impedance of the voltage input mode. The minimum typical input impedance is 100 kΩ. The R1  
value is 100 kΩ because increasing the R1 value also increases noise. The value of R3 must be extremely small  
compared to R1 and R2. The value of R3 is 20 Ω because that resistance value is smaller than R1 and yields an  
input voltage of ±400 mV when operating in current mode (±20 mA).  
Use 公式 5 to calculate R2 if VD = ±400 mV, VIN = ±10 V, and R1 = 100 kΩ.  
R2  
R1 ´ VD  
VD = VIN ´  
® R2 =  
= 4.167 kW  
R1 + R2  
VIN - VD  
(5)  
The value obtained from 公式 5 is not a standard 0.1% value, so 4.17 kΩ is selected. R1 and R2 use 0.1%  
tolerance resistors to minimize error.  
Use 公式 6 to calculate the gain of the instrumentation amplifier.  
V
OUT - VREF  
V
4.8 V - 2.5 V  
G =  
=
= 5.75  
V
VD  
400 mV  
(6)  
(7)  
公式 7 calculates the gain-setting resistor value using the INA821 gain equation (公式 1).  
49.4 kW 49.4 kW  
RG  
=
=
= 10.4 kW  
G -1  
5.75 -1  
Use a standard 0.1% resistor value of 10.5 kΩ for this design.  
9.2.3 Application Curves  
70 and 71 show typical characteristic curves for the circuit in 69.  
C001  
5
5
4
4
3
3
2
2
1
1
0
0
-10  
-5  
0
5
10  
-20  
-10  
0
10  
20  
Input Voltage (V)  
Input Current (mA)  
C001  
70. PLC Output Voltage vs Input Voltage  
71. PLC Output Voltage vs Input Current  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
9.3 Other Application Examples  
9.3.1 Resistance Temperature Detector Interface  
72 illustrates a 3-wire interface circuit for resistance temperature detectors (RTDs). The circuit incorporates  
analog linearization and has an output voltage range from 0 V to 5 V. The linearization technique employed is  
described in Analog linearization of resistance temperature detectors analog application journal. Series and  
parallel combinations of standard 1% resistor values are used to achieve less than 0.02°C of error over a 200°C  
temperature span.  
15 V  
REF5050  
VOUT  
GND  
VIN  
NR  
4.99  
k  
4.99  
kꢀ  
-IN  
RG  
VOUT  
100  
kꢀ  
0 V at 0°C  
5 V at 200°C  
25 mV/°C  
100 ꢀ  
INA821  
801 ꢀ  
OUT  
RG  
+IN  
Pt100 RTD  
100 ꢀ  
-15 V  
105 k1.18 kꢀ  
Copyright © 2017, Texas Instruments Incorporated  
72. A 3-Wire Interface for RTDs With Analog Linearization  
5
4.5  
4
0.018  
0.016  
0.014  
0.012  
0.01  
3.5  
3
2.5  
2
0.008  
0.006  
0.004  
0.002  
0
1.5  
1
0.5  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Temperature (°C)  
Temperature (°C)  
C001  
73. Transfer Function of 3-Wire RTD Interface  
74. Temperature Error Over Full Temperature Range  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
 
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
The nominal performance of the INA821 is specified with a supply voltage of ±15 V and midsupply reference  
voltage. The device also operates using power supplies from ±2.25 V (4.5 V) to ±18 V (36 V) and non-midsupply  
reference voltages with excellent performance. Parameters that can vary significantly with operating voltage and  
reference voltage are shown in the Typical Characteristics section.  
11 Layout  
11.1 Layout Guidelines  
Attention to good layout practices is always recommended. For best operational performance of the device, use  
good PCB layout practices, including:  
Take care to make sure that both input paths are well-matched for source impedance and capacitance to  
avoid converting common-mode signals into differential signals. Even slight mismatch in parasitic capacitance  
at the gain setting pins can degrade CMRR over frequency. For example, in applications that implement gain  
switching using switches or PhotoMOS® relays to change the value of RG, select the component so that the  
switch capacitance is as small as possible and most importantly so that capacitance mismatch between the  
RG pins is minimized.  
Noise propagates into analog circuitry through the power pins of the circuit as a whole and of the device.  
Bypass capacitors reduce the coupled noise by providing low-impedance power sources local to the analog  
circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better than in  
parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in 75, keep RG close to the  
pins to minimize parasitic capacitance.  
Keep the traces as short as possible.  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
INA821  
www.ti.com.cn  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
11.2 Layout Example  
+V  
C2  
R2  
+IN  
-IN  
RG  
INA821  
RG  
R3  
OUT  
R1  
C1  
-V  
+V  
Use ground pours for  
shielding the input  
signal pairs  
Place bypass  
capacitors as close to  
IC as possible  
GND  
C2  
R1  
œIN  
1
2
3
4
œIN  
RG  
RG  
+IN  
+VS  
OUT  
REF  
-VS  
8
7
6
5
OUT  
R3  
Low-impedance  
connection for  
+IN  
R2  
reference terminal  
GND  
C1  
REF  
-V  
Copyright © 2017, Texas Instruments Incorporated  
75. Example Schematic and Associated PCB Layout  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
INA821  
ZHCSIM8C AUGUST 2018REVISED JULY 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
基于 SPICE 的模拟仿真程序 - TINA-TI 软件文件夹  
用于仪表放大器的共模输入范围计算器  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《仪表放大器的综合误差计算》应用手册  
德州仪器 (TI)REF50xx 低噪声、极低漂移、精密电压基准》数据表  
德州仪器 (TI)OPAx191 36V、低功耗、精密、CMOS、轨至轨输入/输出、低失调电压、低输入偏置电流运算  
放大器 数据表  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
PhotoMOS is a registered trademark of Panasonic Electric Works Europe AG.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA821ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
SOIC  
D
8
8
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
INA821  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
INA821IDGKR  
INA821IDGKT  
INA821IDR  
DGK  
DGK  
D
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG | SN  
NIPDAUAG | SN  
NIPDAU  
1X4Q  
1X4Q  
2500 RoHS & Green  
3000 RoHS & Green  
INA821  
INA821  
INA821  
INA821IDRGR  
INA821IDRGT  
SON  
DRG  
DRG  
NIPDAU  
SON  
250  
RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Apr-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA821IDGKR  
INA821IDGKT  
INA821IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
8
8
2500  
250  
330.0  
330.0  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
6.4  
3.3  
3.3  
3.4  
3.4  
5.2  
3.3  
3.3  
1.4  
1.4  
2.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q2  
Q2  
2500  
3000  
250  
INA821IDRGR  
INA821IDRGT  
SON  
DRG  
DRG  
SON  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA821IDGKR  
INA821IDGKT  
INA821IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
8
8
2500  
250  
366.0  
366.0  
356.0  
367.0  
210.0  
364.0  
364.0  
356.0  
367.0  
185.0  
50.0  
50.0  
35.0  
35.0  
35.0  
2500  
3000  
250  
INA821IDRGR  
INA821IDRGT  
SON  
DRG  
DRG  
SON  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
INA821ID  
D
8
75  
506.6  
8
3940  
4.32  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DRG0008B  
WSON - 0.8 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
3.1  
2.9  
PIN 1 INDEX AREA  
0.8  
0.7  
C
SEATING PLANE  
0.05 C  
DIMENSION A  
0.05  
0.00  
OPTION 01  
OPTION 02  
(0.1)  
(0.2)  
(DIM A) TYP  
OPT 01 SHOWN  
EXPOSED  
THERMAL PAD  
1.45 0.1  
4
1
5
2X  
1.5  
2.4 0.1  
8
6X 0.5  
0.3  
0.2  
0.1  
0.08  
8X  
0.6  
0.4  
PIN 1 ID  
(OPTIONAL)  
8X  
C A B  
C
4218886/A 01/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRG0008B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.45)  
SYMM  
8X (0.7)  
1
8
8X (0.25)  
(2.4)  
(0.95)  
5
6X (0.5)  
4
(R0.05) TYP  
(0.475)  
(
0.2) VIA  
(2.7)  
TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218886/A 01/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRG0008B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
8X (0.7)  
1
8X (0.25)  
SYMM  
8
(0.635)  
6X (0.5)  
(1.07)  
5
4
(R0.05) TYP  
(1.47)  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
82% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218886/A 01/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

INA821IDGKR

高带宽 (4.7MHz)、低噪声 (7nV/√Hz)、精密 (35μV)、低功耗仪表放大器 | DGK | 8 | -40 to 125
TI

INA821IDGKT

高带宽 (4.7MHz)、低噪声 (7nV/√Hz)、精密 (35μV)、低功耗仪表放大器 | DGK | 8 | -40 to 125
TI

INA821IDR

高带宽 (4.7MHz)、低噪声 (7nV/√Hz)、精密 (35μV)、低功耗仪表放大器 | D | 8 | -40 to 125
TI

INA821IDRGR

高带宽 (4.7MHz)、低噪声 (7nV/√Hz)、精密 (35μV)、低功耗仪表放大器 | DRG | 8 | -40 to 125
TI

INA821IDRGT

高带宽 (4.7MHz)、低噪声 (7nV/√Hz)、精密 (35μV)、低功耗仪表放大器 | DRG | 8 | -40 to 125
TI

INA823

INA823 Precision, Low-Power, Wide-Supply (2.7-V to 36-V) Instrumentation Amplifier
TI

INA823DGKR

INA823 Precision, Low-Power, Wide-Supply (2.7-V to 36-V) Instrumentation Amplifier
TI

INA823DGKT

INA823 Precision, Low-Power, Wide-Supply (2.7-V to 36-V) Instrumentation Amplifier
TI

INA823DR

INA823 Precision, Low-Power, Wide-Supply (2.7-V to 36-V) Instrumentation Amplifier
TI

INA823DT

INA823 Precision, Low-Power, Wide-Supply (2.7-V to 36-V) Instrumentation Amplifier
TI

INA823_V01

INA823 Precision, Low-Power, Wide-Supply (2.7-V to 36-V) Instrumentation Amplifier
TI

INA826

Precision, 200-μA Supply Current, 2.7-V to 36-V Supply Instrumentation Amplifier with Rail-to-Rail Output
TI