INA828 [TI]

50µV 失调电压、7nV/√Hz 噪声、低功耗、精密仪表放大器;
INA828
型号: INA828
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

50µV 失调电压、7nV/√Hz 噪声、低功耗、精密仪表放大器

放大器 仪表 仪表放大器
文件: 总40页 (文件大小:1953K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
INA828 50µV 偏移、7nV/Hz 噪声低功耗精密仪表放大器  
1 特性  
3 说明  
1
精密仪表放大器演变:  
INA828 是一款高精度仪表放大器,此放大器提供低功  
耗并且可在极宽的单电源或双电源范围内工作。可通过  
单个外部电阻器在 1 1000 范围内设置增益。由于采  
用新的超 β 输入晶体管(这些晶体管可提供极低的输  
入失调电压、失调电压漂移、输入偏置电流以及输入电  
压和电流噪声),该器件可提供出色的精度。附加电路  
可以为输入提供高达 ±40V 的过压保护。  
第二代:INA828  
第一代:INA128  
低失调电压:最大值为 50µV  
增益漂移:5ppm/°C (G = 1)50ppm/°C (G > 1)  
噪声:7nV/Hz  
带宽:2MHz (G = 1)260kHz (G = 100)  
1nF 电容负载一起工作时保持稳定  
输入保护电压高达 ±40V  
INA828 经过优化,可提供出色的共模抑制比。当 G =  
1 时,整个输入共模范围内共模抑制比超过 90dB。该  
器件非常适用于通过 5V 单电源和高达 ±18V 的双电源  
供电的低电压运行。最后,INA828 采用 8 引脚 SOIC  
封装,额定温度范围为 –40°C +125°C。  
共模抑制:  
最小值为 110dB (G = 10)  
电源抑制:最小值为 100dB (G = 1)  
电源电流:最大值为 650 µA  
电源范围:  
Device Information(1)  
PART NUMBER  
INA828  
PACKAGE  
BODY SIZE (NOM)  
单电源:4.5V 36V  
SOIC (8)  
4.90mm x 3.91mm  
双电源:±2.25V ±18V  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
额定温度范围:  
–40°C +125°C  
封装:8 引脚 SOIC  
2 应用  
工业过程控制  
断路器  
电池检测仪  
心电图 (ECG) 放大器  
电力自动化  
医疗仪表  
便携式仪表  
INA828 简化内部原理图  
输入失调电压漂移的典型分布  
+VS  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
Overvoltage  
Protection  
40 k  
+
40 kꢀ  
-IN  
RG  
œ
œ
25 kꢀ  
25 kꢀ  
OUT  
REF  
+
œ
RG  
+IN  
Overvoltage  
Protection  
+
40 kꢀ  
40 kꢀ  
0
-VS  
Copyright © 2017, Texas Instruments Incorporated  
Input Offset Voltage Drift (V/°C)  
C001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS792  
 
 
 
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 16  
7.3 Feature Description................................................. 17  
7.4 Device Functional Modes........................................ 21  
8
9
Application and Implementation ........................ 22  
8.1 Reference Terminal................................................. 22  
8.2 Input Bias Current Return Path............................... 24  
8.3 PCB Assembly Effects on Precision ....................... 25  
8.4 Typical Application .................................................. 26  
8.5 Other Application Examples.................................... 28  
Power Supply Recommendations...................... 29  
10 Layout................................................................... 29  
10.1 Layout Guidelines ................................................. 29  
10.2 Layout Example .................................................... 30  
11 器件和文档支持 ..................................................... 31  
11.1 Documentation Support ........................................ 31  
11.2 Receiving Notification of Documentation Updates 31  
11.3 Community Resources.......................................... 31  
11.4 ....................................................................... 31  
11.5 静电放电警告......................................................... 31  
11.6 Glossary................................................................ 31  
12 机械、封装和可订购信息....................................... 31  
7
4 修订历史记录  
Changes from Original (August 2017) to Revision A  
Page  
Changed MAX value for G = 1 in "GE" row from "±0.020%" to "±0.025%"............................................................................ 5  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
5 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
1
RG  
œIN  
+IN  
-VS  
RG  
8
7
6
5
2
3
4
+VS  
OUT  
REF  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
RG  
NO.  
1
Gain setting pin. Place a gain resistor between pin 1 and pin 8.  
8
–IN  
2
I
I
Negative (inverting) input  
+IN  
3
Positive (noninverting) input  
–VS  
REF  
OUT  
+VS  
4
I
Negative supply  
5
Reference input. This pin must be driven by a low impedance source.  
6
O
Output  
7
Positive supply  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–18  
–40  
–18  
MAX  
18  
UNIT  
Supply voltage  
V
Voltage  
40  
Signal input pins  
V
REF pin  
18  
Output short-circuit(2)  
Operating, TA  
Continuous  
–50  
–65  
150  
175  
150  
Temperature  
Junction, TJ  
Storage, Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to VS / 2.  
6.2 ESD Ratings  
VALUE  
±1500  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD) Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
36  
UNIT  
Single supply  
Dual supply  
Supply voltage  
V
±2.25  
–40  
±18  
125  
150  
Specified temperature  
Operating temperature  
°C  
°C  
–50  
6.4 Thermal Information  
INA828  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
119.6  
66.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
61.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
20.5  
ψJB  
61.4  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
 
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
6.5 Electrical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
G = 100, RTI  
20  
50  
90  
µV  
µV  
Input stage offset  
voltage(1)(2)  
VOSI  
TA = –40°C to +125°C(3)  
vs temperature, TA = –40°C to +125°C  
G = 1, RTI  
TA = –40°C to +125°C(3)  
vs temperature, TA = –40°C to +125°C  
G = 1, RTI  
0.5  
250  
500  
5
µV/°C  
µV  
50  
Output stage offset  
voltage(1)(2)  
VOSO  
µV  
µV/°C  
110  
114  
130  
136  
120  
130  
G = 10, RTI  
Power-supply rejection  
ratio  
PSRR  
dB  
G = 100, RTI  
135  
G = 1000, RTI  
140  
zid  
zic  
Differential impedance  
100 || 1  
100 || 10  
53  
GΩ || pF  
GΩ || pF  
MHz  
Common-mode impedance  
RFI filter, –3-dB frequency  
(V–) + 2  
(V+) – 2  
±40  
VCM  
Operating input range(4)  
Input overvoltage range  
V
V
VS = ±2.25 V to ±18 V, TA = –40°C to +125°C  
TA = –40°C to +125°C  
See Figure 48 to Figure 51  
At dc to 60 Hz, RTI, VCM = (V–) + 2 V to (V+) – 2 V,  
G = 1  
90  
110  
130  
140  
100  
120  
140  
145  
At dc to 60 Hz, RTI, VCM = (V–) + 2 V to (V+) – 2 V,  
G = 10  
Common-mode rejection  
ratio  
CMRR  
dB  
At dc to 60 Hz, RTI, VCM = (V–) + 2 V to (V+) – 2 V,  
G = 100  
At dc to 60 Hz, RTI, VCM = (V–) + 2 V to (V+) – 2 V,  
G = 1000  
BIAS CURRENT  
VCM = VS / 2  
0.15  
0.15  
0.6  
2
IB  
Input bias current  
nA  
nA  
TA = –40°C to +125°C  
VCM = VS / 2  
0.6  
2
IOS  
Input offset current  
TA = –40°C to +125°C  
NOISE VOLTAGE  
f = 1 kHz, G = 100, RS = 0 Ω  
fB = 0.1 Hz to 10 Hz, G = 100, RS = 0 Ω  
f = 1 kHz, RS = 0 Ω  
7
0.14  
90  
nV/Hz  
µVPP  
Input stage voltage  
eNI  
eNO  
In  
noise(5)  
nV/Hz  
µVPP  
Output stage voltage  
noise(5)  
fB = 0.1 Hz to 10 Hz, RS = 0 Ω  
f = 1 kHz  
7.7  
170  
4.7  
fA/Hz  
pAPP  
Noise current  
fB = 0.1 Hz to 10 Hz, G = 100  
GAIN  
G
Gain equation  
Range of gain  
1 + (50 kΩ / RG)  
V/V  
V/V  
1
1000  
±0.025%  
±0.15%  
±0.15%  
G = 1, VO = ±10 V  
±0.005%  
±0.025%  
±0.025%  
±0.05%  
G = 10, VO = ±10 V  
GE  
Gain error  
G = 100, VO = ±10 V  
G = 1000, VO = ±10 V  
G = 1, TA = –40°C to +125°C  
G > 1, TA = –40°C to +125°C  
±5  
Gain vs temperature(6)  
ppm/°C  
±50  
(1) Total offset, referred-to-input (RTI): VOS = (VOSI) + (VOSO / G).  
(2) Offset drifts are uncorrelated. Input-referred offset drift is calculated using: ΔVOS(RTI) = [ΔVOSI2 + (ΔVOSO / G)2]  
(3) Specified by characterization.  
(4) Input voltage range of the INA828 input stage. The input range depends on the common-mode voltage, differential voltage, gain, and  
reference voltage. See Typical Characteristic curves 48 through 51 for more information.  
(5) Total RTI voltage noise is equal to: eN(RTI) = [eNI2 + (eNO / G)2]  
(6) The values specified for G > 1 do not include the effects of the external gain-setting resistor, RG.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
G = 1 to 10, VO = –10 V to +10 V, RL = 10 kΩ  
G = 100, VO = –10 V to +10 V, RL = 10 kΩ  
G = 1000, VO = –10 V to +10 V, RL = 10 kΩ  
G = 1 to 100, VO = –10 V to +10 V, RL = 2 kΩ  
1
10  
15  
20  
Gain nonlinearity  
ppm  
30  
OUTPUT  
Voltage swing  
(V–) + 0.15  
(V+) – 0.15  
V
Load capacitance stability  
1000  
1.3  
pF  
Closed-loop output  
impedance  
ZO  
ISC  
f = 10 kHz  
Ω
Short-circuit current  
Continuous to VS / 2  
±18  
mA  
FREQUENCY RESPONSE  
G = 1  
2.0  
640  
260  
33  
MHz  
kHz  
G = 10  
BW  
SR  
tS  
Bandwidth, –3 dB  
Slew rate  
G = 100  
G = 1000  
G = 1, VO = ±10 V  
1.2  
12  
V/µs  
0.01%, G = 1 to 100, VSTEP = 10 V  
0.01%, G = 1000, VSTEP = 10 V  
0.001%, G = 1 to 100, VSTEP = 10 V  
0.001%, G = 1000, VSTEP = 10 V  
40  
Settling time  
µs  
16  
50  
REFERENCE INPUT  
RIN Input impedance  
40  
kΩ  
V
Voltage range  
(V–)  
(V+)  
Gain to output  
1
V/V  
Reference gain error  
0.01%  
POWER SUPPLY  
Single supply  
4.5  
36  
±18  
650  
850  
VS  
IQ  
Power-supply voltage  
V
Dual supply  
±2.25  
VIN = 0 V  
600  
Quiescent current  
µA  
vs temperature, TA = –40°C to +125°C  
6
版权 © 2017–2018, Texas Instruments Incorporated  
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
6.6 Typical Characteristics  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
450  
400  
350  
300  
250  
200  
150  
100  
50  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
Input Offset Voltage (V)  
Input Offset Voltage Drift (V/°C)  
C001  
C001  
N = 1886  
Mean = 4.73 µV  
N = 19081  
Mean = 0.16 nV/°C  
Std. Dev. = 13.98 µV  
Std. Dev. = 0.09 µV/°C  
1. Typical Distribution of Input Offset Voltage  
2. Typical Distribution of Input Offset Voltage Drift  
600  
500  
400  
300  
200  
100  
0
6000  
5000  
4000  
3000  
2000  
1000  
0
Output Offset Voltage Drift (V/°C)  
Output Offset Voltage (V)  
C001  
C001  
N = 1886  
Mean = –8.71 µV  
N = 19081  
Mean = –0.73 µV/°C  
Std. Dev. = 48.57 µV  
Std. Dev. = 0.74 µV/°C  
3. Typical Distribution of Output Offset Voltage  
4. Typical Distribution of Output Offset Voltage Drift  
100  
80  
500  
Mean  
+31  
-31  
Mean  
400  
+31  
-31  
60  
300  
200  
40  
20  
100  
0
0
œ20  
œ40  
œ60  
œ80  
œ100  
œ100  
œ200  
œ300  
œ400  
œ500  
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
G = 100  
88 units, 3 wafer lots  
G = 1  
88 units, 3 wafer lots  
5. Input-Referred Offset Voltage vs Temperature  
6. Input-Referred Offset Voltage vs Temperature  
版权 © 2017–2018, Texas Instruments Incorporated  
7
 
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
450  
400  
350  
300  
250  
200  
150  
100  
50  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
Input Bias Current (pA)  
Input Bias Current (pA)  
C001  
C001  
N = 1886  
Mean = 36.25 pA  
N = 19081  
Mean = –5.32 pA  
Std. Dev. = 65.31 pA  
Std. Dev. = 57.46 pA  
7. Typical Distribution of Input Bias Current (25°C)  
8. Typical Distribution of Input Bias Current (90°C)  
0.6  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
Mean  
+31  
-31  
0
0
50  
100  
150  
œ50  
Input Offset Current (pA)  
Temperature (°C)  
C117  
C001  
N = 1886  
Std. Dev. = 63.86 pA  
Mean = –52.64 pA  
10. Input Bias Current vs Temperature  
9. Typical Distribution of Input Offset Current  
0.8  
0.6  
0.4  
0.2  
0
300  
Mean  
+31  
-31  
250  
200  
150  
100  
50  
-0.2  
-0.4  
-0.6  
-0.8  
0
-50  
0
50  
100  
150  
Common-Mode Rejection Ratio (V/V)  
Temperature (°C)  
C116  
C001  
N = 1886  
Mean = 1.18 µV/V  
Std. Dev. = 10.04 µV/V  
11. Input Offset Current vs Temperature  
12. Typical CMRR Distribution (G = 1)  
8
版权 © 2017–2018, Texas Instruments Incorporated  
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
Typical Characteristics (接下页)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
125  
120  
115  
110  
105  
100  
95  
300  
250  
200  
150  
100  
50  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
90  
0
85  
-50  
0
50  
100  
150  
Common-Mode Rejection Ratio (V/V)  
Temperature (°C)  
5 Typical Units  
C121  
C001  
N = 1886  
Mean = 0.01 µV/V  
Std. Dev. = 0.1 µV/V  
14. CMRR vs Temperature (G = 1)  
13. Typical CMRR Distribution (G = 100)  
155  
150  
145  
140  
135  
130  
125  
120  
115  
10  
8
20  
15  
10  
5
6
4
2
0
0
œ2  
œ4  
œ6  
œ8  
œ10  
-5  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
-10  
-15  
-20  
Input Current  
Output Voltage  
-50  
0
50  
100  
150  
0
10  
20  
30  
40  
œ40 œ30 œ20 œ10  
Temperature (°C)  
Input Voltage (V)  
C122  
C015  
15. CMRR vs Temperature (G = 100)  
16. Input Current vs Input Overvoltage  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
G = 1  
G = 1  
40  
40  
G = 10  
G = 100  
G = 1000  
G = 10  
G = 100  
G = 1000  
20  
20  
0
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
C006  
C005  
18. CMRR vs Frequency  
(RTI, 1-kΩ Source Imbalance)  
17. CMRR vs Frequency (RTI)  
版权 © 2017–2018, Texas Instruments Incorporated  
9
 
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
G = 1  
G = 1  
40  
40  
G = 10  
G = 100  
G = 1000  
G = 10  
G = 100  
G = 1000  
20  
20  
0
0
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
C003  
C004  
19. Positive PSRR vs Frequency (RTI)  
20. Negative PSRR vs Frequency (RTI)  
80  
1000  
G = 1  
G = 1  
G = 10  
G = 100  
G = 1000  
G = 10  
G = 100  
G = 1000  
60  
40  
20  
0
100  
10  
1
-20  
-40  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
C001  
C002  
21. Gain vs Frequency  
22. Voltage Noise Spectral Density  
vs Frequency (RTI)  
3
2
1
0
1000  
100  
10  
-1  
-2  
-3  
-4  
1
10  
100  
1k  
10k  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (Hz)  
Time (1 s/div)  
C007  
C008  
23. Current Noise Spectral Density  
24. 0.1-Hz to 10-Hz RTI Voltage Noise (G = 1)  
vs Frequency (RTI)  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
Typical Characteristics (接下页)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
80  
2
1.5  
1
60  
40  
20  
0.5  
0
0
-20  
-40  
-60  
-80  
-0.5  
-1  
-1.5  
-2  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Time (1 s/div)  
Time (1 s/div)  
C008  
C008  
25. 0.1-Hz to 10-Hz RTI Voltage Noise (G = 1000)  
26. 0.1-Hz to 10-Hz RTI Current Noise  
2
1.5  
1
1
0.5  
0
-0.5  
-1  
0.5  
0
-40°C  
25°C  
-1.5  
-2  
-0.5  
-1  
125°C  
-50  
0
50  
100  
150  
-16  
-12  
-8  
-4  
0
4
8
12  
16  
Common Mode Voltage(V)  
Temperature (°C)  
C119  
C116  
VS = ±15 V  
28. Gain Error vs Temperature (G = 1)  
27. Input Bias Current vs Common-Mode Voltage  
30  
20  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
10  
0
-10  
-20  
-30  
-40  
-50  
VS = ± 15 V  
VS = ± 2.25 V  
100 150  
-50  
0
50  
100  
150  
0
50  
œ50  
Temperature (°C)  
Temperature (°C)  
C120  
C123  
29. Gain Error vs Temperature (G = 100)  
30. Supply Current vs Temperature  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
10  
20  
15  
10  
5
8
6
4
2
0
0
-2  
-4  
-6  
-8  
-10  
-5  
-10  
-15  
-20  
0
2
4
6
8
10  
0
2
4
6
8
10  
œ10 œ8  
œ6  
œ4  
œ2  
œ10 œ8  
œ6  
œ4  
œ2  
Output Voltage (V)  
Output Voltage (V)  
C124  
C125  
31. Gain Nonlinearity (G = 1)  
32. Gain Nonlinearity (G = 100)  
300  
250  
200  
150  
100  
50  
-40°C  
25°C  
-40°C  
25°C  
85°C  
-160  
-180  
-200  
-220  
-240  
-260  
-280  
-300  
85°C  
125°C  
125°C  
-14  
-13.8 -13.6 -13.4 -13.2  
-13  
-12.8 -12.6  
12.5  
12.7  
12.9  
13.1  
13.3  
13.5  
13.7  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
C126  
C127  
33. Offset Voltage vs Negative Common-Mode Voltage  
34. Offset Voltage vs Positive Common-Mode Voltage  
15  
14.9  
14.8  
14.7  
14.6  
14.5  
14.4  
-14  
-40°C  
-14.1  
25°C  
85°C  
-14.2  
125°C  
-14.3  
-14.4  
-14.5  
-14.6  
-14.7  
-14.8  
-14.9  
-15  
14.3  
-40°C  
14.2  
25°C  
85°C  
14.1  
125°C  
14  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Output Current (mA)  
Output Current (mA)  
C128  
C129  
35. Positive Output Voltage Swing vs Output Current  
36. Negative Output Voltage Swing vs Output Current  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
Typical Characteristics (接下页)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
20  
1
-40  
-60  
-80  
-100  
VS = ±15 V  
18  
VS = ±5 V  
16  
14  
0.1  
12  
10  
8
0.01  
6
4
2
G = 1  
G = 10  
G = 100  
0
0.001  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
C001  
C002  
500-kHz Measurement bandwidth  
1-VRMS Output voltage  
100-kΩ Load  
37. Large-Signal Frequency Response  
38. THD+N vs Frequency  
100  
80  
70  
60  
50  
40  
30  
20  
10  
0
Positive Overshoot  
Negative Overshoot  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
-10  
-5  
0
5
10  
15  
20  
25  
30  
1
10  
100  
1000  
Time (s)  
Capacitive Load (pF)  
C012  
C011  
G = 1, RL = 10 kΩ, CL = 100 pF  
40. Small-Signal Response  
39. Overshoot vs Capacitive Loads  
100  
80  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
-10  
-5  
0
5
10  
15  
20  
25  
30  
-50 -30 -10 10  
30  
50  
70  
90 110 130 150  
Time (s)  
Time (s)  
C013  
C014  
G = 10, RL = 10 kΩ, CL = 100 pF  
41. Small-Signal Response  
G = 100, RL = 10 kΩ, CL = 100 pF  
42. Small-Signal Response  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
100  
Output  
Input  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
-200 -100  
0
100 200 300 400 500 600 700 800  
Time (10 µs/div)  
Time (s)  
C015  
C0xx  
G = 1000, RL = 10 kΩ, CL = 100 pF  
43. Small-Signal Response  
44. Large Signal Step Response  
1000  
100  
10  
110  
90  
70  
50  
30  
10  
1
0.1  
0.01  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
10M  
100M  
Frequency (Hz)  
1G  
10G  
Frequency (Hz)  
C001  
C001  
45. Closed-Loop Output Impedance  
46. Differential-Mode EMI Rejection Ratio  
5
4
3
2
1
0
VREF = 0 V  
110  
90  
70  
50  
30  
10  
VREF = 2.5 V  
10M  
100M  
Frequency (Hz)  
1G  
10G  
0
1
2
3
4
5
6
Output Voltage (V)  
C001  
C006  
VS = 5 V, G = 1  
48. Input Common-Mode Voltage vs Output Voltage  
47. Common-Mode EMI Rejection Ratio  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
Typical Characteristics (接下页)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = 0 V, and G = 1 (unless otherwise noted)  
5
4
3
2
1
0
5
VREF = 0 V  
4
VREF = 2.5 V  
3
2
1
0
-1  
-2  
-3  
-4  
-5  
G = 1  
G = 100  
0
1
2
3
4
5
6
0
2
4
6
œ6  
œ4  
œ2  
Output Voltage (V)  
Output Voltage (V)  
C006  
C006  
VS = 5 V, G = 100  
VS = ±5 V, VREF = 0 V  
50. Input Common-Mode Voltage vs Output Voltage  
49. Input Common-Mode Voltage vs Output Voltage  
15  
10  
5
0
-5  
-10  
-15  
G = 1  
G = 100  
-20  
0
10  
20  
œ20  
œ10  
Output Voltage (V)  
C006  
VS = ±15 V, VREF = 0 V  
51. Input Common-Mode Voltage vs Output Voltage  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
 
 
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The INA828 is a monolithic precision instrumentation amplifier incorporating a current-feedback input stage and a  
4-resistor difference amplifier output stage. The differential input voltage is buffered by Q1 and Q2 and is forced  
across RG, which causes a signal current to flow through RG, R1, and R2. The output difference amplifier, A3,  
removes the common-mode component of the input signal and refers the output signal to the REF terminal. The  
VBE and voltage drop across R1 and R2 produce output voltages on A1 and A2 that are approximately 0.8 V lower  
than the input voltages.  
Each input is protected by two field-effect transistors (FETs) that provide a low series resistance under normal  
signal conditions, and preserve excellent noise performance. When excessive voltage is applied, these  
transistors limit input current to approximately 8 mA.  
7.2 Functional Block Diagram  
+VS  
VB  
RB  
RB  
IB Cancellation  
IB Cancellation  
40 k  
-VS +VS  
40 kꢀ  
œ
A1  
A2  
A3  
+
OUT  
REF  
40 kꢀ  
40 kꢀ  
+VS  
+VS  
-VS +VS  
Q2  
Q1  
Super-ꢁ  
Super-ꢁ  
-IN  
+IN  
NPN  
NPN  
Overvoltage  
Protection  
+VS  
+VS  
Overvoltage  
Protection  
R2  
25 kꢀ  
R1  
25 kꢀ  
RG  
(External)  
-VS  
-VS  
RG  
RG  
-VS  
-VS  
Copyright © 2017, Texas Instruments Incorporated  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
7.3 Feature Description  
7.3.1 Setting the Gain  
52 shows that the gain of the INA828 is set by a single external resistor, RG, connected between the RG pins  
(pins 1 and 8).  
V+  
+VS  
Overvoltage  
Protection  
40 k  
+
40 kꢀ  
-IN  
œ
RG  
œ
50 kW  
RG  
25 kꢀ  
25 kꢀ  
OUT  
REF  
G = 1+  
RG  
+
VO = G V+IN - V-IN + V  
(
)
REF  
RG  
+IN  
œ
Overvoltage  
Protection  
+
40 kꢀ  
40 kꢀ  
-VS  
Copyright © 2017, Texas Instruments Incorporated  
V-  
52. Simplified Diagram of the INA828 With Gain and Output Equations  
The value of RG is selected according to:  
50 kW  
RG  
G = 1+  
(1)  
1 lists several commonly-used gains and resistor values. The 50-kterm in 公式 1 comes from the sum of the  
two internal 25-kΩ feedback resistors. These on-chip resistors are laser-trimmed to accurate absolute values.  
The accuracy and temperature coefficients of these resistors are included in the gain accuracy and drift  
specifications of the INA828.  
1. Commonly-Used Gains and Resistor Values  
DESIRED GAIN  
RG ()  
NC  
NEAREST 1% RG ()  
1
2
NC  
49.9 k  
12.4 k  
5.49 k  
2.61 k  
1.02 k  
511  
50 k  
5
12.5 k  
5.556 k  
2.632 k  
1.02 k  
505.1  
251.3  
100.2  
50.05  
10  
20  
50  
100  
200  
500  
1000  
249  
100  
49.9  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
 
 
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
7.3.1.1 Gain Drift  
The stability and temperature drift of the external gain setting resistor, RG, also affects gain. The contribution of  
RG to gain accuracy and drift can be determined from 公式 1.  
The best gain drift of 5 ppm/(maximum) can be achieved when the INA828 uses G = 1 without RG connected.  
In this case, gain drift is limited only by the slight mismatch of the temperature coefficient of the integrated 40-kΩ  
resistors in the differential amplifier (A3). At gains greater than 1, gain drift increases as a result of the individual  
drift of the 25-kΩ resistors in the feedback of A1 and A2, relative to the drift of the external gain resistor RG. The  
low temperature coefficient of the internal feedback resistors significantly improves the overall temperature  
stability of applications using gains greater than 1 V/V over alternate solutions.  
Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring  
resistance and contribute additional gain error (such as a possible unstable gain error) at gains of approximately  
100 or greater. To assure stability, avoid parasitic capacitance of more than a few picofarads at RG connections.  
Careful matching of any parasitics on both RG pins maintains optimal CMRR over frequency; see Typical  
Characteristics, 17.  
7.3.2 EMI Rejection  
Texas Instruments developed a method to accurately measure the immunity of an amplifier over a broad  
frequency spectrum, extending from 10 MHz to 6 GHz. This method uses an EMI rejection ratio (EMIRR) to  
quantify the ability of the INA828 to reject EMI. The offset resulting from an input EMI signal can be calculated  
using 公式 2:  
EMIRR (dB)  
2
÷
-
VRF_PEAK  
100 mVP  
«
÷
20  
DVOS  
=
10  
«
÷
where  
VRF_PEAK is the peak amplitude of the input EMI signal.  
(2)  
53 and 54 show the INA828 EMIRR graph for both differential and common-mode EMI rejection across this  
frequency range. 2 shows the EMIRR values for the INA828 at frequencies commonly encountered in real-  
world applications. Applications listed in 2 can be centered on or operated near the particular frequency  
shown. Depending on the end-system requirements, additional EMI filters may be required near the signal inputs  
of the system, as well as incorporating known good practices such as using short traces, low-pass filters, and  
damping resistors combined with parallel and shielded signal routing.  
110  
90  
70  
50  
30  
10  
110  
90  
70  
50  
30  
10  
10M  
100M  
Frequency (Hz)  
1G  
10G  
10M  
100M  
Frequency (Hz)  
1G  
10G  
C001  
C001  
53. Common-Mode EMIRR Testing  
54. Differential Mode EMIRR Testing  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
2. INA828 EMIRR for Frequencies of Interest  
DIFFERENTIAL COMMON-MODE  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR  
EMIRR  
Mobile radio, mobile satellite, space operation, weather, radar, ultrahigh-  
frequency (UHF) applications  
400 MHz  
48 dB  
87 dB  
Global system for mobile communications (GSM) applications, radio  
communication, navigation, GPS (up to 1.6 GHz), GSM, aeronautical mobile,  
UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
52 dB  
94 dB  
66 dB  
98 dB  
51 dB  
57 dB  
GSM applications, mobile personal communications, broadband, satellite,  
L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications,  
industrial, scientific and medical (ISM) radio band, amateur radio and satellite,  
S-band (2 GHz to 4 GHz)  
3.6 GHz  
5 GHz  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
79 dB  
90 dB  
87 dB  
92 dB  
802.11a, 802.11n, aero communication and navigation, mobile communication,  
space and satellite operation, C-band (4 GHz to 8 GHz)  
7.3.3 Input Common-Mode Range  
The linear input voltage range of the INA828 input circuitry extends within 2 Volts of both power supplies and  
maintains excellent common-mode rejection throughout this range. The common-mode range for the most  
common operating conditions are shown in 55, 50, and 51. The common-mode range for other  
operating conditions is best calculated using the INA common-mode range calculating tool. The INA828 device  
can operate over a wide range of power supplies and VREF configurations, thus providing a comprehensive  
guide to common-mode range limits for all possible conditions is impractical.  
5
4
3
2
1
0
5
4
3
2
1
0
VREF = 0 V  
VREF = 0 V  
VREF = 2.5 V  
VREF = 2.5 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Voltage (V)  
Output Voltage (V)  
C006  
C006  
VS = 5 V, G = 1  
VS = 5 V, G = 100  
55. Input Common-Mode Voltage vs Output Voltage  
56. Input Common-Mode Voltage vs Output Voltage  
5
4
15  
10  
5
3
2
1
0
0
-5  
-1  
-2  
-3  
-10  
-15  
G = 1  
G = 1  
-4  
G = 100  
-5  
G = 100  
-20  
0
2
4
6
0
10  
20  
œ6  
œ4  
œ2  
œ20  
œ10  
Output Voltage (V)  
Output Voltage (V)  
C006  
C006  
VS = ±5 V, VREF = 0 V  
VS = ±15 V, VREF = 0 V  
58. Input Common-Mode Voltage vs Output Voltage  
57. Input Common-Mode Voltage vs Output Voltage  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
7.3.4 Input Protection  
The inputs of the INA828 device are individually protected for voltages up to ±40 V. For example, a condition of  
–40 V on one input and 40 V on the other input does not cause damage. Internal circuitry on each input provides  
low series impedance under normal signal conditions. If the input is overloaded, the protection circuitry limits the  
input current to a value of approximately 8 mA.  
+V  
ZD1  
+VS  
IN  
Overvoltage  
Protection  
Input Voltage  
Source  
+
Input Transistor  
œ
-VS  
ZD2  
-V  
59. Input Current Path During an Overvoltage Condition  
During an input overvoltage condition, current flows through the input protection diodes into the power supplies,  
see 59. If the power supplies are unable to sink current, then Zener diode clamps (ZD1 and ZD2 in 59)  
must be placed on the power supplies to provide a current pathway to ground. 60 illustrates the input current  
for input voltages from –40 V to +40 V when the INA828 is powered by ±15-V supplies.  
10  
8
20  
15  
10  
5
6
4
2
0
0
œ2  
œ4  
œ6  
œ8  
œ10  
-5  
-10  
-15  
-20  
Input Current  
Output Voltage  
0
10  
20  
30  
40  
œ40 œ30 œ20 œ10  
Input Voltage (V)  
C015  
60. Input Current vs Input Overvoltage  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
7.3.5 Operating Voltage  
The INA828 operates over a power-supply range of 4.5 V to 36 V (±2.25 V to ±18 V).  
CAUTION  
Supply voltages higher than 40 V (±20 V) can permanently damage the device.  
Parameters that vary over supply voltage or temperature are shown in the Typical  
Characteristics section of this data sheet.  
7.4 Device Functional Modes  
The INA828 has a single functional mode and is operational when the power-supply voltage is greater than 4.5 V  
(±2.25 V). The maximum power-supply voltage for the INA828 is 36 V (±18 V).  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Reference Terminal  
The output voltage of the INA828 is developed with respect to the voltage on the reference terminal, REF. Often,  
in dual-supply operation, the reference pin (pin 6) is connected to the low-impedance system ground. In single-  
supply operation, offsetting the output signal to a precise mid-supply level is useful (for example, 2.5 V in a 5-V  
supply environment). To accomplish this level shift, a voltage source must be connected to the REF pin to level-  
shift the output so that the INA828 can drive a single-supply ADC.  
The voltage source applied to the reference terminal must have a low output impedance. As illustrated in 61,  
any resistance at the reference terminal (shown as RREF in 61) is in series with one of the internal 40-kΩ  
resistors.  
V+  
+VS  
Overvoltage  
Protection  
40 k  
+
40 kꢀ  
-IN  
œ
RG  
œ
25 kꢀ  
25 kꢀ  
RG  
OUT  
REF  
+
RG  
+IN  
œ
Overvoltage  
Protection  
+
RREF  
40 kꢀ  
40 kꢀ  
-VS  
V-  
61. Parasitic Resistance Shown at the Reference Terminal  
The parasitic resistance at the reference terminal, RREF, creates an imbalance in the 4 resistors of the internal  
difference amplifier, resulting in degraded common-mode rejection ratio (CMRR). 62 shows the degradation in  
CMRR of the INA828 for increasing resistance at the reference terminal. For the best performance, keep the  
source impedance to the REF terminal, RREF, below 5 Ω.  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
 
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
Reference Terminal (接下页)  
120  
100  
80  
60  
40  
20  
0
0  
5 ꢀ  
10 ꢀ  
15 ꢀ  
20 ꢀ  
10  
100  
1k  
10k  
Frequency (Hz)  
C001  
62. The Effect of Increasing Resistance at the Reference Terminal  
Voltage reference ICs are an excellent option for providing a low-impedance voltage source for the reference  
terminal. However, if a resistor voltage divider is used to generate a reference voltage, it must be buffered by an  
op amp as shown in 63 to avoid CMRR degradation.  
5 V  
+IN  
RG  
RG  
INA828  
RG  
OUT  
œIN  
5 V  
5 V  
100 k  
+
OPA191  
1 F  
œ
100 kꢀ  
Copyright © 2017, Texas Instruments Incorporated  
63. Using an Op Amp to Buffer Reference Voltages  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
 
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
8.2 Input Bias Current Return Path  
The input impedance of the INA828 is extremely high—approximately 100 G. However, a path must be  
provided for the input bias current of both inputs. This input bias current is typically 150 pA. High input  
impedance means that this input bias current changes very little with varying input voltage.  
Input circuitry must provide a path for this input bias current for proper operation. 64 shows various provisions  
for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the  
common-mode range of the INA828, and the input amplifiers saturate. If the differential source resistance is low,  
the bias current return path can be connected to one input (as shown in the thermocouple example in 64).  
With a higher source impedance, using two equal resistors provides a balanced input with possible advantages  
of a lower input offset voltage as a result of bias current and better high-frequency common-mode rejection.  
Microphone,  
Hydrophone,  
and So Forth  
TI Device  
47 kW  
47 kW  
Thermocouple  
TI Device  
10 kW  
TI Device  
Center tap provides  
bias current return.  
Copyright © 2017, Texas Instruments Incorporated  
64. Providing an Input Common-Mode Current Path  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
 
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
8.3 PCB Assembly Effects on Precision  
The printed-circuit board (PCB) assembly process, including reflow soldering, imparts thermal stresses on the  
INA828 which can degrade the precision of the device and must be considered in the development of very-high-  
precision systems. Baking the PCBs after the assembly process can restore the precision of the device to pre-  
assembly values. 65, 66, and 67 illustrate the effect of reflow soldering on the typical distribution of input  
offset voltage of the INA828. 65 shows the distribution of input offset voltage for a set of INA828 devices prior  
to the PCB assembly process. Exposing the INA828 to a JEDEC-standard thermal profile for reflow soldering  
produces the histogram shown in 66 on another set of INA828 devices. The standard deviation of input offset  
voltage has almost doubled due to the thermal stress imparted to the INA828 from the reflow process. However,  
baking INA828 units for 30 minutes at 125°C after the reflow soldering process produced the distribution given in  
67. The post-reflow bake restored the standard deviation of the input offset voltage to pre-assembly levels.  
300  
250  
200  
150  
100  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
Input Offset Voltage (V)  
Input Offset Voltage (V)  
C001  
C001  
65. Typical Distribution of INA828 Input Offset Voltage  
66. Typical Distribution of INA828 Input Offset Voltage  
Prior to Reflow Soldering  
After Reflow Soldering  
250  
200  
150  
100  
50  
0
Input Offset Voltage (V)  
C001  
67. Typical Distribution of Post-Reflow INA828 Units Baked at 125°C for 30 Minutes  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
 
 
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
8.4 Typical Application  
68 shows a three-terminal programmable-logic controller (PLC) design for the INA828. This PLC reference  
design accepts inputs of ±10 V or ±20 mA. The output is a single-ended voltage of 2.5 V ±2.3 V (or 200 mV to  
4.8 V). Many PLCs typically have these input and output ranges.  
±10 V  
15 V  
REF5025  
R
= 100 kΩ  
= 4.17 kΩ  
1
VOUT  
GND  
VIN  
NR  
1 F  
1 F  
1 F  
15 V  
+VS  
R
2
±20 mA  
-IN  
RG  
REF  
R
3
=
V
2.5 V ± 2.3 V  
INA828  
OUT  
R
= 10.5 kΩ  
OUT  
G
20 Ω  
RG  
+IN  
-VS  
-15 V  
Copyright © 2017, Texas Instruments Incorporated  
68. PLC Input (±10 V, 4 mA to 20 mA)  
8.4.1 Design Requirements  
For this application, the design requirements are:  
4-mA to 20-mA input with less than 20-burden  
±20-mA input with less than 20-burden  
±10-V input with impedance of approximately 100 kΩ  
Maximum 4-mA to 20-mA or ±20-mA burden voltage equal to ±0.4 V  
Output range within 0 V to 5 V  
8.4.2 Detailed Design Procedure  
There are two modes of operation for the circuit shown in 68: current input and voltage input. This design  
requires R1 >> R2 >> R3. Given this relationship, 公式 3 calculates the current input mode transfer function.  
VOUT-I = VD ´ G + VREF = -(IIN ´ R3) ´ G + VREF  
where  
G represents the gain of the instrumentation amplifier  
VD represents the differential voltage at the INA828 inputs  
VREF is the voltage at the INA828 REF pin  
IIN is the input current  
(3)  
(4)  
公式 4 shows the transfer function for the voltage input mode.  
R2  
VOUT-V = VD ´ G + VREF = - VIN  
´
´ G + VREF  
R1 + R2  
where  
VIN is the input voltage  
R1 sets the input impedance of the voltage input mode. The minimum typical input impedance is 100 kΩ. 100 kΩ  
is selected for R1 because increasing the R1 value also increases noise. The value of R3 must be extremely  
small compared to R1 and R2. 20 Ω for R3 is selected because that resistance value is much smaller than R1 and  
yields an input voltage of ±400 mV when operated in current mode (±20 mA).  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
Typical Application (接下页)  
Use 公式 5 to calculate R2 given VD = ±400 mV, VIN = ±10 V, and R1 = 100 kΩ.  
R2  
R1 ´ VD  
VD = VIN ´  
® R2 =  
= 4.167 kW  
R1 + R2  
VIN - VD  
(5)  
The value obtained from 公式 5 is not a standard 0.1% value, so 4.17 kΩ is selected. R1 and R2 also use 0.1%  
tolerance resistors to minimize error.  
Use 公式 6 to calculate the ideal gain of the instrumentation amplifier.  
V
OUT - VREF  
V
4.8 V - 2.5 V  
G =  
=
= 5.75  
V
VD  
400 mV  
(6)  
(7)  
公式 7 calculates the gain-setting resistor value using the INA828 gain equation, 公式 1.  
50 kW 50 kW  
RG  
=
=
= 10.5 kW  
G -1 5.75 -1  
10.5 kΩ is a standard 0.1% resistor value that can be used in this design.  
8.4.3 Application Curves  
69 and 70 show typical characteristic curves for the circuit in 68.  
5
4
3
2
1
0
5
4
3
2
1
0
-10  
-5  
0
5
10  
-20  
-10  
0
10  
20  
Input Voltage (V)  
Input Current (mA)  
C001  
C001  
69. PLC Output Voltage vs Input Voltage  
70. PLC Output Voltage vs Input Current  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
 
 
 
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
8.5 Other Application Examples  
8.5.1 Resistance Temperature Detector Interface  
71 illustrates a 3-wire interface circuit for resistance temperature detectors (RTDs). The circuit incorporates  
analog linearization and has an output voltage range from 0 to 5 V. The linearization technique employed is  
described in Analog linearization of resistance temperature detectors. Series and parallel combinations of  
standard 1% resistor values are used to achieve less than 0.02°C of error over a 200°C temperature span.  
15 V  
REF5050  
VOUT  
GND  
VIN  
NR  
4.99  
k  
4.99  
kꢀ  
-IN  
RG  
VOUT  
1.13  
kꢀ  
100  
kꢀ  
2.87  
kꢀ  
0 V at 0°C  
5 V at 200°C  
25 mV/°C  
100 ꢀ  
INA828  
OUT  
RG  
+IN  
Pt100 RTD  
100 ꢀ  
-15 V  
105 k1.18 kꢀ  
Copyright © 2017, Texas Instruments Incorporated  
71. A 3-Wire Interface for RTDs With Analog Linearization  
5
4.5  
4
0.018  
0.016  
0.014  
0.012  
0.01  
3.5  
3
2.5  
2
0.008  
0.006  
0.004  
0.002  
0
1.5  
1
0.5  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
72. Transfer Function of 3-Wire RTD Interface  
73. Temperature Error Over Full Temperature Range  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
 
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
9 Power Supply Recommendations  
The nominal performance of the INA828 is specified with a supply voltage of ±15 V and mid-supply reference  
voltage. The device can also be operated using power supplies from ±1.5 V (3 V) to ±18 V (36 V) and non mid-  
supply reference voltages with excellent performance. Parameters that can vary significantly with operating  
voltage and reference voltage are illustrated in the Typical Characteristics section.  
10 Layout  
10.1 Layout Guidelines  
Attention to good layout practices is always recommended. For best operational performance of the device, use  
good PCB layout practices, including:  
Care must be taken to assure that both input paths are well-matched for source impedance and capacitance  
to avoid converting common-mode signals into differential signals. In addition, parasitic capacitance at the  
gain-setting pins can also affect CMRR over frequency. For example, in applications that implement gain  
switching using switches or PhotoMOS® relays to change the value of RG, select the component so that the  
switch capacitance is as small as possible.  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of the device  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better than in  
parallel with the noisy trace.  
Place the external components as close to the device as possible. As illustrated in 74, keeping RG close to  
the pins minimizes parasitic capacitance.  
Keep the traces as short as possible.  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
INA828  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
www.ti.com.cn  
10.2 Layout Example  
+V  
C2  
R2  
+IN  
-IN  
RG  
INA828  
RG  
R3  
OUT  
R1  
C1  
Ground plane  
removed at gain  
-V  
resistor to minimize  
parasitic capacitance  
Use ground pours for  
shielding the input  
signal pairs  
R3  
+V  
GND  
R1  
C2  
1
2
3
4
RG  
RG  
8
7
6
5
œIN  
+IN  
œIN  
+IN  
-VS  
+VS  
OUT  
REF  
Input traces routed  
adjacent to each other  
OUT  
R2  
Low-impedance  
connection for  
reference terminal  
GND  
C1  
Place bypass  
capacitors as close to  
IC as possible  
-V  
Copyright © 2017, Texas Instruments Incorporated  
74. Example Schematic and Associated PCB Layout  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
INA828  
www.ti.com.cn  
ZHCSGR1A AUGUST 2017REVISED JANUARY 2018  
11 器件和文档支持  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
REF50xx 低噪声、极低漂移、高精度电压基准》  
OPA191 低功耗精密 36V e-trim CMOS 放大器  
TINA-TI 软件文件夹  
INA 共模范围计算器  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. 有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 Community Resources  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
PhotoMOS is a registered trademark of Panasonic Electric Works Europe AG.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA828ID  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
INA828  
INA828  
INA828IDR  
2500 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA828IDR  
SOIC  
D
8
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
INA828IDR  
D
8
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
INA828ID  
D
8
75  
506.6  
8
3940  
4.32  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

INA828ID

50µV 失调电压、7nV/√Hz 噪声、低功耗、精密仪表放大器 | D | 8 | -40 to 125
TI

INA828IDR

50µV 失调电压、7nV/√Hz 噪声、低功耗、精密仪表放大器 | D | 8 | -40 to 125
TI

INA848

INA849 Ultra-Low-Noise (1 nV/√Hz), High-Bandwidth, Instrumentation Amplifier
TI

INA848ID

INA848 Ultra-Low-Noise (1.5 nV/√Hz), High-Bandwidth Instrumentation Amplifier With Fixed Gain of 2000
TI

INA848IDR

INA848 Ultra-Low-Noise (1.5 nV/√Hz), High-Bandwidth Instrumentation Amplifier With Fixed Gain of 2000
TI

INA849

INA849 Ultra-Low-Noise (1 nV/√Hz), High-Bandwidth, Instrumentation Amplifier
TI

INA849DGKR

INA849 Ultra-Low-Noise (1 nV/√Hz), High-Bandwidth, Instrumentation Amplifier
TI

INA849DGKT

INA849 Ultra-Low-Noise (1 nV/√Hz), High-Bandwidth, Instrumentation Amplifier
TI

INA849DR

INA849 Ultra-Low-Noise (1 nV/√Hz), High-Bandwidth, Instrumentation Amplifier
TI

INA849_V01

INA849 Ultra-Low-Noise (1 nV/√Hz), High-Bandwidth, Instrumentation Amplifier
TI

INA849_V02

INA849 Ultra-Low-Noise (1 nV/√Hz), High-Bandwidth, Instrumentation Amplifier
TI

INA84C030

8-BIT MICROCONTROLLERS WITH OCD AND VST
INTEGRAL