INA851 [TI]

具有低噪声 (3.2nV/√Hz)、高速 (22MHz) 和 OVP (±40V) 的全差分仪表放大器;
INA851
型号: INA851
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有低噪声 (3.2nV/√Hz)、高速 (22MHz) 和 OVP (±40V) 的全差分仪表放大器

放大器 仪表 仪表放大器
文件: 总53页 (文件大小:3828K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA851  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
INA851 具有衰减增益和输出钳位的低噪声、全差分输出精密仪表放大器  
1 特性  
3 说明  
• 可使用外部电阻器  
G = 0.2 10,000 的范围内对增益进行编程  
• 具有集成钳位的全差分输出  
• 低失调电压10 µV典型值),35 µV最大值)  
• 低温漂0.1 µV/°C典型值),0.3 µV/°C最大  
)  
INA851 是业内首款具有全差分输出的高精度仪表放大  
器。该器件经过优化可驱动具有全差分输入的现代高  
性能模数转换器 (ADC) 的输入。INA851 可在非常宽的  
单电源或双电源电压范围内运行。可通过短接或悬空两  
个引脚将输出级增益设置为 0.2 1。可通过单个外  
部电阻器1 10,000 范围内设置任意输入级增益。  
• 低输入偏置电流5 nA典型值)  
• 输入级噪声3.2 nV/Hz0.8 pA/Hz  
• 高带宽G = 0.2 22 MHz,  
G = 1 15 MHz  
• 共模抑制G = 10 106 dB最小值),在  
100 G 1000 120 dB最小值)  
• 电源抑制G = 1 110 dB最小值)  
• 电源电流6mA典型值)  
INA851 采用了超级 ß 输入晶体管因此与同一级别的  
其他放大器相比可提供极低的输入偏置电流和低输入  
参考电流噪声。先进的制造工艺实现了极低的电压噪  
声、输入失调电压和失调电压漂移。附加电路可保护器  
件输入免受超过电源电压多±40V 的过压影响。器件  
输出具有内置钳位电路可保护 ADC 或下游器件免受  
过驱损坏。  
该器件可在单电源最小 8V最大 36V或双电源  
±4V±18V供电的情况下运行。  
• 在超过电源电压多±40V 时提供输入过压保护  
• 电源电压范围:  
– 单电源8V 36V  
– 双电源±4V ±18V  
• 额定温度范围40°C +125°C  
• 微型封装16 VQFN  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
INA851  
RGTVQFN,  
16)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
2 应用  
模拟输入模块  
流量变送器  
LCD 测试  
心电(ECG)  
外科手术设备  
示波(DSO)  
称重计  
半导体测试  
VS+  
14  
5 V  
VS+  
INA851  
16  
15  
VCLAMP+  
FDA_IN  
LDO  
6 k  
RG  
1
2
IN  
Overvoltage  
Protection  
GIN  
= 1 +  
+
VIN  
G02+(1) 12  
R7  
RG  
GOUT = 0.2 or 1  
1.25 k  
R5  
G = GIN * GOUT  
R2  
3 k  
R3  
VDD  
ADC  
VSS  
5 k  
5 k  
INP  
INN  
OUT+ 11  
OUT 10  
+
+
RG  
R1  
5 k  
R4  
R6  
3 k  
5 k  
R8  
3
4
RG+  
IN+  
+
(1)  
G02  
9
6
5
Overvoltage  
Protection  
1.25 k  
VIN+  
FDA_IN+  
VCLAMP  
LDO  
VS  
VOCM  
7
13  
VOCM  
(1)  
Short OUT to G02 and OUT+ to G02+ for  
output stage G = 0.2 option.  
VS  
INA851 ADC 驱动器应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS999  
 
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
Table of Contents  
8.4 Device Functional Modes..........................................29  
9 Application and Implementation..................................30  
9.1 Application Information............................................. 30  
9.2 Typical Applications.................................................. 33  
9.3 Power Supply Recommendations.............................41  
9.4 Layout....................................................................... 41  
10 Device and Documentation Support..........................43  
10.1 Device Support....................................................... 43  
10.2 Documentation Support.......................................... 43  
10.3 接收文档更新通知................................................... 43  
10.4 支持资源..................................................................43  
10.5 Trademarks.............................................................43  
10.6 Electrostatic Discharge Caution..............................44  
10.7 术语表..................................................................... 44  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Related Products.............................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................6  
7.6 Typical Characteristics..............................................10  
8 Detailed Description......................................................22  
8.1 Overview...................................................................22  
8.2 Functional Block Diagram.........................................23  
8.3 Feature Description...................................................23  
Information.................................................................... 44  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (March 2022) to Revision A (October 2022)  
Page  
INA851 从预告信息预发布更改为量产数据正在供货....................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: INA851  
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
5 Related Products  
DEVICE  
DESCRIPTION  
GAIN EQUATION  
RG PINS AT PIN  
INA159  
G = 0.2 V differential amplifier for ±10-V to 3-V and 5-V conversion  
G = 0.2 V/V  
N/A  
35-µV offset, 0.4-µV/°C VOS drift, 8-nV/Hz noise, low-power,  
precision instrumentation amplifier  
INA818  
1, 8  
2, 3  
2, 3  
1, 8  
1, 8  
G = 1 + 50 kΩ/ RG  
G = 1 + 50 kΩ/ RG  
G = 1 + 49.4 kΩ/ RG  
G = 1 + 50 kΩ/ RG  
G = 1 + 100 kΩ/ RG  
G = 2000 V/V  
35-µV offset, 0.4-µV/°C VOS drift, 8-nV/Hz noise, low-power,  
precision instrumentation amplifier  
INA819  
INA821  
INA828  
INA333  
35-µV offset, 0.4-µV/°C VOS drift, 7-nV/Hz noise, high-bandwidth,  
precision instrumentation amplifier  
50-µV offset, 0.5-µV/°C VOS drift, 7-nV/Hz noise, low-power,  
precision instrumentation amplifier  
25-µV VOS, 0.1-µV/°C VOS drift, 1.8-V to 5-V, RRO, 50-µA IQ, chopper-  
stabilized INA  
Ultra-low-noise (1.5-nV/Hz), high-bandwidth instrumentation  
amplifier with fixed gain of 2000  
INA848  
INA849  
PGA280  
N/A  
2, 3  
N/A  
Ultra-low-noise (1-nV/Hz), high-bandwidth instrumentation amplifier  
G = 1 + 6 kΩ/ RG  
20-mV to ±10-V programmable gain IA with 3-V or 5-V differential  
output; analog supply up to ±18 V  
Digital programmable  
Precision, zero-drift, programmable gain IA with differential output;  
binary gain steps from 1/8 V/V to 128 V/V  
PGA281  
PGA112  
Digital programmable  
Digital programmable  
N/A  
N/A  
Precision programmable gain op amp with SPI  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: INA851  
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
6 Pin Configuration and Functions  
IN–  
RG  
RG  
IN+  
1
2
3
4
12  
11  
10  
9
G02+  
OUT+  
OUT–  
G02–  
Thermal Pad  
Not to scale  
6-1. RGT (16-Pin VQFN) Package, Top View  
6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
FDA_IN–  
FDA_IN+  
G02–  
G02+  
IN–  
NO.  
15  
6
Input  
Input  
Input  
Input  
Input  
Input  
Connection to output driver summing node.  
Connection to output driver summing node.  
9
Connection to gain network. Short to OUTfor output stage gain GOUT of 0.2 V/V.  
12  
1
Connection to gain network. Short to OUT+ for output stage gain GOUT of 0.2 V/V.  
Negative (inverting) input.  
Positive (noninverting) input.  
No connect  
IN+  
4
NC  
8
10  
11  
2,3  
Output  
Output  
Negative Output  
OUT–  
OUT+  
RG  
Positive Output  
Gain setting pin. Place a gain resistor between pin 2 and pin 3.  
Level set for output clamp value. Connect either to an external supply that is at least 1.5 V  
above VSor connect to VSif clamping function is not required.  
5
Input  
VCLAMP–  
Level set for output clamp value. Connect either to an external supply that is at least 1.5 V  
below VS+ or connect to VS+ if clamping function is not required.  
VCLAMP+  
16  
Input  
VOCM  
VS–  
VS+  
13  
7
Input  
Power  
Power  
Level set for output common mode value.  
Negative supply  
14  
Positive supply  
The thermal pad must be soldered to the printed-circuit board (PCB). Connect thermal pad  
to a plane or large copper pour electrically connected to the most negative supply or VS.  
Thermal Pad  
Thermal pad  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: INA851  
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0
MAX  
40  
UNIT  
VS  
V
Supply voltage on VS+, VSpins; VS = (VS+) (VS–  
Input voltage on IN+, INpins  
)
VIN  
(VS+) + 40  
VS + 40  
VS + 40  
(VS+) + 0.5  
(VS) 40  
(VS) 40  
(VS) 40  
(VS) 0.5  
GIN = 1 V/V, continuous  
GIN > 1 V/V(3)  
V
VDIFF  
Differential input voltage, VDIFF = (VIN+) (VIN–  
)
V
V
Output voltage on OUT+, OUTpins  
FDA_IN+, FDA_IN, G02+, G02, VCLAMP+, VCLAMP, VOCM pins  
voltage  
(VS+) + 0.5  
(VS) 0.5  
Output short-circuit(2)  
Operating temperature  
Junction temperature  
Storage temperature  
Continuous  
TA  
125  
175  
150  
°C  
°C  
°C  
40  
TJ  
Tstg  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Short-circuit to VS / 2.  
(3) Keep operation below 1% duty cycle of device lifecycle.  
7.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
Single supply, VS = (VS+), GND = (VS–  
)
8
36  
VS  
Supply voltage  
±4  
VS  
±18  
Dual supply, VS = (VS+) (VS–  
)
VIN  
VDIFF  
TA  
VS  
VS  
V
Input voltage on IN+, INpins  
GIN = 1 V/V  
VS  
Differential input voltage,  
V
GIN > 1 V/V(1)  
1 + (VS) / GIN  
125  
VDIFF = (VIN+) (VIN–  
)
1 (VS) / GIN  
40  
Specified temperature  
°C  
(1) See also INA851 Calculator Tool.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: INA851  
 
 
 
 
 
 
 
 
 
 
INA851  
www.ti.com.cn  
UNIT  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.4 Thermal Information  
INA851  
RGT (VQFN)  
16 PINS  
47.3  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
53.2  
22.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.4  
ψJT  
22.1  
ψJB  
RθJC(bot)  
7.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
k(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
±10  
±35  
±65  
Input stage offset  
voltage(1)  
VOSI  
µV  
TA = 40°C to +125°C(4)  
Input stage offset voltage  
drift(2)  
TA = 40°C to +125°C(4)  
±0.1  
±0.3 µV/°C  
G = 0.2  
G = 1  
±150  
±150  
±5  
±1150  
Output stage offset  
voltage(1)  
VOSO  
µV  
±650  
±15  
G = 0.2  
G = 1  
Output stage offset  
voltage drift(2)  
TA = 40°C to +125°C(4)  
µV/°C  
±5  
±15  
G = 0.2  
G = 1  
100  
110  
120  
126  
130  
120  
126  
Power-supply rejection  
ratio  
PSRR  
GIN = 10  
GIN = 100  
GIN = 1000  
140  
dB  
±4 V VS ±18 V, RTI  
140  
140  
zid  
zic  
Differential impedance  
1 || 100  
pF || GΩ  
pF || G  
Common-mode  
impedance  
7 || 100  
VIN  
Input voltage(4) (5)  
See also INA851 Calculator Tool  
(VS) + 2.5  
V
V
(VS+) 2.5  
Protected input voltage(8)  
(VS+) + 40  
(VS) 40  
Input current in  
(VS) 40 V VIN (VS+) + 40 V(3)  
G = 0.2  
16  
mA  
overvoltage mode(9)  
76  
86  
90  
96  
G = 1  
At dc to 60 Hz, RTI,  
Common-mode rejection  
ratio  
CMRR  
GIN = 10  
GIN = 100  
GIN = 1000  
106  
120  
120  
116  
132  
134  
dB  
VCM = (VS) + 2.5 V to (VS+) 2.5  
V
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: INA851  
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.5 Electrical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
k(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BIAS CURRENT  
5
15  
18  
IB  
Input bias current  
nA  
pA/°C  
nA  
TA = 40°C to +125°C(4)  
Input bias current drift  
Input offset current  
Input offset current drift  
25  
TA = 40°C to +125°C  
0.5  
5.5  
6
IOS  
TA = 40°C to +125°C(4)  
TA = 40°C to +125°C  
5
pA/°C  
NOISE VOLTAGE  
Input stage voltage noise  
density  
eNI  
f = 1 kHz, G = 1000  
3.2  
nV/Hz  
Input stage voltage noise fB = 0.1 Hz to 10 Hz, G = 1000  
0.1  
83  
52  
µVPP  
G = 0.2  
G = 1  
Output stage voltage  
f = 1 kHz  
eNO  
nV/Hz  
noise density(7)  
G = 1;  
GIN = 5, GOUT = 0.2  
12  
G = 0.2  
G = 1  
5.0  
2.8  
0.8  
37  
µVPP  
µVPP  
Output stage voltage  
fB = 0.1 Hz to 10 Hz  
noise(7)  
Current noise density  
Current noise  
f = 1 kHz, GIN = 1000  
pA/Hz  
pAPP  
In  
fB = 0.1 Hz to 10 Hz, G = 100  
GAIN  
Gain equation  
Gain  
G = GIN × GOUT  
GOUT = 0.2  
V/V  
V/V  
(1 + (6 k/ RG)) × (0.2 or 1)  
0.2  
1
2000  
10000  
±0.1  
G
GOUT = 1  
G = 0.2, VO = ±2 V  
G = 1, VO = ±10 V  
GIN 10, VO = ±10 V  
±0.02  
±0.2  
GE  
Gain error  
%
G = 0.2  
G = 1  
±5  
Gain drift(6)  
±5 ppm/°C  
±35  
TA = 40°C to +125°C(4)  
GIN > 1  
±5  
±5  
G = 0.2, VO = 2 V to +2 V  
G = 1, VO = 10 V to +10 V  
Gain nonlinearity  
ppm  
OUTPUT  
No output clamping  
(VCLAMP+ = VS+  
,
(VS) + 1.4  
(VS+) 1.4  
VCLAMP= VS–  
)
IOUT = 10 mA,  
TA = 40°C to +125°C  
VO  
Output voltage swing  
Load capacitance  
V
Output clamping enabled  
(VCLAMP+ = VS+ 1.5 V,  
VCLAMP= VS+1.5 V)  
(VCLAMP+) +  
0.1  
(VCLAMP) –  
0.1  
CL  
ZO  
ISC  
Stable operation for differential load  
f = 1 MHz  
100  
0.9  
pF  
Closed-loop output  
impedance  
Short-circuit current  
±37  
mA  
TA = 40°C to 125°C, continuous to VS / 2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: INA851  
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.5 Electrical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
k(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
G = 0.2  
22  
22  
G = 1, GIN = 5, GOUT = 0.2  
G = 1  
15  
BW  
SR  
MHz  
Bandwidth, 3 dB  
GIN = 10  
11  
GIN = 100  
5
GIN = 1000  
0.8  
Slew rate  
G = 1, VO = ±10 V  
37  
V/µs  
µs  
G = 0.2, VSTEP = 2 V  
G = 1, VSTEP = 10 V  
GIN = 10, 100, VSTEP = 10 V  
GIN = 1000, VSTEP = 10 V  
G = 0.2, VSTEP = 2 V  
G = 1, VSTEP = 10 V  
GIN = 10,100, VSTEP = 10 V  
GIN = 1000, VSTEP = 10 V  
G = 0.2, VO = 2 VPP  
G = 1, VO = 10 VPP  
0.24  
0.24  
0.5  
0.01%  
1.7  
tS  
Settling time  
0.55  
0.55  
2.1  
0.001%  
µs  
2.5  
109  
110  
131  
128  
119  
121  
Total harmonic distortion  
plus noise  
THD+N  
HD2  
Differential input, f = 10 kHz  
Differential input, f = 10 kHz  
Differential input, f = 10 kHz  
dB  
dB  
dB  
G = 0.2, VO = 2 VPP  
G = 1, VO = 10 VPP  
Second-order harmonic  
distortion  
G = 0.2, VO = 2 VPP  
G = 1, VO = 10 VPP  
Third-order harmonic  
distortion  
HD3  
OUTPUT COMMON-MODE VOLTAGE (VOCM) CONTROL  
No output clamping  
(VS) + 2.5  
(VS+) 2.5  
VOCM Input voltage  
V
TA = 40°C to +125°C  
(VCLAMP) +  
1
Output clamp enabled  
(VCLAMP+) 1  
Small-signal bandwidth  
from VOCM pin  
VOCM = 100 mVPP  
VOCM = 0.5-V step  
30  
47  
MHz  
MHz  
Large-signal bandwidth  
from VOCM pin  
Slew rate from VOCM pin  
DC output balance  
VOCM = 0.5-V step  
37  
70  
V/µs  
dB  
VOCM fixed midsupply (VO = ±1 V)  
Input impedance VVOCM  
pin  
250 || 1  
kΩ|| pF  
VOCM offset from mid-  
supply  
VOCM pin floating  
±2  
±2  
±6  
mV  
±6  
VOCM common-mode  
offset voltage  
VOCM = VICM, VO = 0 V  
mV  
±10  
TA = 40°C to +125°C  
VOCM common-mode  
offset voltage drift  
±20  
±60 µV/°C  
VOCM = VICM, VO = 0 V, TA = 40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: INA851  
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.5 Electrical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
k(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
VS+  
MAX  
UNIT  
OUTPUT CLAMPING  
No output clamping  
VCLAMP+ Positive clamp voltage(10)  
V
V
TA = 40°C to +125°C  
Output clamp enabled  
No output clamping  
Output clamp enabled  
VS+ 1.5  
VS–  
Negative clamp  
VCLAMP–  
TA = 40°C to +125°C  
voltage(10)  
VS+ 1.5  
3
Δ
VCLAMP  
Clamp voltage(10)  
V
ΔVCLAMP = (VCLAMP+) (VCLAMP–  
)
Power-supply rejection  
ratio from VCLAMP to VO  
120  
dB  
(3)  
Fail-safe current VCLAMP+ VS+ = VS= 0 V, VCLAMP+ = 10 V  
2
60  
60  
mA  
µA  
µA  
ICLAMP+ Positive clamp current  
ICLAMPNegative clamp current  
POWER SUPPLY  
V
CLAMP+ VS+ 1.5 V  
80  
80  
VCLAMPVS+ 1.5 V  
6
7
9
IQ  
Quiescent current  
VIN = 0 V  
mA  
TA = 40°C to +125°C  
(1) Offset voltages are uncorrelated. Total offset voltage, referred-to-input (RTI): VOS = [VOSI 2 + (VOSO(Gout1 or Gout0.2) / GIN)2]. See more  
details on Offset Voltage section.  
(2) Offset drifts are uncorrelated. Offset drift, referred-to-input (RTI): ΔVOS(RTI) = [ΔVOSI 2 + (ΔVOSO / GIN)2].  
(3) Specified by design.  
(4) Specified by characterization.  
(5) Input voltage range of the instrumentation amplifier input stage. The valid input range depends on the common-mode voltage,  
differential voltage, gain, and VOCM. See also the Input Common-Mode Range section.  
(6) The values specified for G > 1 do not include the effects of the external gain-setting resistor, RG.  
(7) eNO refers to output stage noise referred to the input of the FDA. See also the Noise Equivalent Model section.  
(8) See also the Input Protection section.  
(9) See also the Typical Characteristics section.  
(10) See also the Output Clamping section.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: INA851  
 
 
 
 
 
 
 
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.6 Typical Characteristics  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
kΩ(unless otherwise noted)  
7-1. Table of Graphs  
DESCRIPTION  
Typical Distribution of Input Stage Offset Voltage  
Typical Distribution of Input Stage Offset Voltage Drift  
Typical Distribution of Output Stage Offset Voltage, G = 1  
Typical Distribution of Output Stage Offset Voltage, G = 0.2  
Typical Distribution of Output Stage Offset Voltage Drift  
Typical Distribution of Input Offset Current  
Typical Distribution of Input Bias Current, TA = 25°C  
Typical Distribution of Input Bias Current, TA = 90°C  
Typical CMRR Distribution, G = 1  
FIGURE  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
Typical CMRR Distribution, G = 10  
7-10  
7-11  
7-12  
7-13  
7-14  
7-15  
7-16  
7-17  
7-18  
7-19  
7-20  
7-21  
7-22  
7-23  
7-24  
7-25  
7-26  
7-27  
7-28  
7-29  
7-30  
7-31  
7-32  
7-33  
7-34  
7-35  
7-36  
7-37  
7-38  
7-39  
Typical Distribution of Gain Error, G = 0.2  
Typical Distribution of Gain Error, G = 1  
Typical Distribution of Gain Error, G = 10  
Input Stage Offset Voltage vs Temperature  
Input Bias Current vs Temperature  
Input Offset Current vs Temperature  
Input-Referred Output Offset Voltage vs Temperature  
CMRR vs Temperature, G = 1  
CMRR vs Temperature, G = 10  
CMRR vs Frequency (RTI)  
CMRR vs Frequency (RTI, 1-kΩsource imbalance)  
Positive/Negative PSRR vs Frequency (RTI)  
PSRR vs Frequency of VCLAMP+ (RTI)  
Gain vs Frequency  
Voltage Noise Spectral Density vs Frequency (RTI)  
Current Noise Spectral Density vs Frequency (RTI)  
0.1-Hz to 10-Hz RTI Voltage Noise, G = 0.2  
0.1-Hz to 10-Hz RTI Voltage Noise, G = 1  
0.1-Hz to 10-Hz RTI Voltage Noise, G = 1000  
Positive Input Bias Current vs Common-Mode Voltage  
Negative Input Bias Current vs Common-Mode Voltage  
Gain Error vs Temperature  
Quiescent Current vs Temperature  
Gain Nonlinearity, G = 1  
Gain Nonlinearity, G = 10  
Offset Voltage vs Negative Common-Mode Voltage  
Offset Voltage vs Positive Common-Mode Voltage  
Positive Output Voltage Swing vs Output Current  
Negative Output Voltage Swing vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: INA851  
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.6 Typical Characteristics  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
kΩ(unless otherwise noted)  
7-1. Table of Graphs (continued)  
DESCRIPTION  
FIGURE  
7-40  
7-41  
7-42  
7-43  
7-44  
7-45  
7-46  
7-47  
7-48  
7-49  
7-50  
7-51  
7-52  
7-53  
7-54  
7-55  
7-56  
Claw Curve of VCLAMP+  
Short Circuit Current vs Temperature  
Large-Signal Frequency Response  
THD+N vs Frequency  
Overshoot vs Capacitive Loads  
Small-Signal Response with different Output Capacitors G = 1 V/V  
Small-Signal Response, G = 0.2  
Small-Signal Response, G = 1  
Small-Signal Response, G = 10  
Small-Signal Response, G = 1000  
Small-Signal Response of VOCM Amplifier  
Large Signal Step Response  
Closed-Loop Output Impedance  
Settling Time for G = 0.2  
Settling Time for G = 1  
Offset Warm-up for G = 1  
Offset Warm-up for G = 100  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: INA851  
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
kΩ(unless otherwise noted)  
15  
10  
5
20  
15  
10  
5
0
0
-35  
-25  
-15  
-5  
5
15  
25  
35  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
Input Offset Voltage (V)  
Input Offset Voltage Drift (V)  
N = 82 Mean = 0.062 µV/°C Std. Dev. = 0.0738 µV/°C  
N = 150  
Std. Dev. = 6.73 µV  
Mean = 2.32 µV  
7-2. Typical Distribution of Input Stage Offset Voltage Drift  
7-1. Typical Distribution of  
Input Stage Offset Voltage  
15  
20  
15  
10  
5
10  
5
0
0
-650  
-450  
-250  
0
250  
450  
650  
-1150-950 -750 -550 -350 -150 0 150 350 550 750 950 1150  
Output Offset Voltage (V)  
Output Offset Voltage (V)  
N = 150  
Std. Dev. = 82.71 µV  
N = 150  
Mean = 27.84 µV  
Mean = 97.17 μV Std. Dev. = 179.33 μV  
G = 1 V/V  
G = 0.2 V/V  
7-3. Typical Distribution of Output Offset Voltage  
7-4. Typical Distribution of Output Offset Voltage  
30  
30  
20  
10  
0
20  
10  
0
-15  
-10  
-5  
0
5
10  
15  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
Output Offset Voltage Drift (V/C)  
Input Offset Current (nA)  
N = 82  
Std. Dev. = 1.59 µV/°C  
N = 53  
Std. Dev. = 0.50 nA  
Mean = 4.98 µV/°C  
Mean = 0.14 nA  
7-5. Typical Distribution of Output Stage Offset Voltage Drift  
7-6. Typical Distribution of  
Input Offset Current  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: INA851  
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
kΩ(unless otherwise noted)  
30  
20  
10  
0
-18  
-14  
-10  
-6  
-2  
0
2
6
10  
14  
18  
Input Bias Current (nA)  
N = 107  
Std. Dev. = 0.75 nA  
Mean = 2.34  
Mean = 2.2 nA  
N = 107  
Std. Dev. = 0.78 nA  
nA  
TA = 90°C  
TA = 25°C  
7-8. Typical Distribution of Input Bias Current  
7-7. Typical Distribution of Input Bias Current  
20  
15  
10  
5
0
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
Common-Mode Rejection Ratio (V/V)  
N = 150  
G = 1 V/V  
7-9. Typical CMRR Distribution at G = 1 V/V  
Std. Dev. = 8.67 µV/V  
Mean = 4.78 µV/V  
N = 300  
Std. Dev. = 1.03 µV/V  
Mean = 0.62 µV/V  
G = 10 V/V  
7-10. Typical CMRR Distribution at G = 10 V/V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: INA851  
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
kΩ(unless otherwise noted)  
60  
40  
20  
0
-0.02  
-0.01  
0
0.01  
0.02  
Gain Error (%)  
N = 293  
G = 1 V/V  
Std. Dev. = 0.0011%  
Mean = 0.0037%  
N = 293  
Std. Dev. = 0.005%  
Mean = 0.017%  
7-11. Typical Gain Error Distribution at G = 0.2 V/V  
7-12. Typical Gain Error Distribution at G = 1 V/V  
75  
Mean  
+3  
-3  
50  
25  
0
-25  
-50  
-75  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (C)  
N = 52  
N = 297  
Std. Dev. = 0.0136%  
Mean = 0.0048 %  
G = 10 V/V  
7-14. Input Stage Offset Voltage vs Temperature  
7-13. Typical Gain Error Distribution at G = 10 V/V  
6
5
Avg  
+3  
-3ꢁ  
5
4
4
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
Avg  
+3  
-3ꢁ  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (C)  
Temperature (C)  
N = 54  
N = 54  
7-15. Input Bias Current vs Temperature  
7-16. Input Offset Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: INA851  
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
kΩ(unless otherwise noted)  
300  
200  
100  
0
-90  
-100  
-110  
-120  
-130  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Mean  
+3  
-3  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (C)  
Temperature (C)  
N = 50  
7-17. Input-Referred Output Offset Voltage vs Temperature  
7-18. CMRR vs Temperature  
-110  
140  
130  
120  
110  
100  
90  
-120  
80  
70  
60  
-130  
G = 0.2  
G = 1  
Unit 1  
Unit 2  
50  
G = 10  
G = 100  
G = 1000  
Unit 3  
Unit 4  
Unit 5  
40  
30  
20  
-140  
-40  
10  
100  
1k  
10k  
100k  
1M  
10M  
-20  
0
20  
40  
60  
80  
100 120 140  
Frequency (Hz)  
Temperature (C)  
G = 10  
7-20. CMRR vs Frequency (RTI)  
7-19. CMRR vs Temperature  
120  
100  
80  
60  
40  
Positive Supply PSRR(VS+  
)
Negative Supply PSRR(VS-  
)
20  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
1-kΩsource imbalance  
7-21. CMRR vs Frequency (RTI) Imbalance  
7-22. PSRR vs Frequency (RTI)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: INA851  
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
kΩ(unless otherwise noted)  
160  
150  
140  
130  
120  
110  
100  
90  
140  
120  
100  
80  
G = 1  
G = 1*0.2  
G = 10  
G = 100  
G = 1000  
G = 5*0.2  
60  
40  
80  
70  
20  
60  
50  
0
40  
-20  
30  
20  
100m  
-40  
1k  
1
10  
100  
1k  
10k  
100k  
1M  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
7-23. PSRR vs Frequency (RTI) of VCLAMP+  
7-24. Gain vs Frequency  
20000  
Current Noise N  
Current Noise P  
10000  
7000  
5000  
3000  
2000  
1000  
700  
500  
300  
200  
100m  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
eN(RTI) = [eNI 2 + (eNO(G0.2 or G1) / GIN)2]  
G = 1000 V/V  
7-26. Current Noise Spectral Density vs Frequency (RTI)  
7-25. Voltage Noise Spectral Density vs Frequency (RTI)  
3
2.5  
2
2
1
1.5  
1
0.5  
0
0
-0.5  
-1  
-1  
-2  
-3  
-1.5  
-2  
-2.5  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Time (1s/div)  
Time (1s/div)  
G = 1 V/V  
7-28. 0.1-Hz to 10-Hz RTI Voltage Noise  
G = 0.2 V/V  
7-27. 0.1-Hz to 10-Hz RTI Voltage Noise  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: INA851  
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
kΩ(unless otherwise noted)  
40  
30  
0
-0.5  
-1  
-40C  
25C  
85C  
125C  
CM Range  
20  
10  
-1.5  
-2  
0
-10  
-20  
-30  
-40  
-2.5  
-3  
-3.5  
-4  
-15 -12  
-9  
-6  
-3  
0
3
6
9
12  
15  
0
1
2
3
4
5
6
7
8
9
10  
Input Common Mode Voltage (V)  
Time (1s/div)  
G = 1000 V/V  
7-29. 0.1-Hz to 10-Hz RTI Voltage Noise  
7-30. Positive Input Bias Current vs CommonMode Voltage  
0
-40C  
25C  
85C  
125C  
-0.5  
-1  
CM Range  
-1.5  
-2  
-2.5  
-3  
-15 -12  
-9  
-6  
-3  
0
3
6
9
12  
15  
Input Common Mode Voltage (V)  
7-31. Negative Input Bias Current vs CommonMode Voltage  
7-32. Gain Error vs Temperature  
10  
0.5  
0.4  
0.3  
0.2  
0.1  
0
9
8
7
6
-0.1  
-0.2  
-0.3  
5
VS = 15 V  
VS = 4 V  
4
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12  
Temperature (C)  
Output Voltage (V)  
G = 1  
7-34. Gain Nonlinearity, G = 1  
7-33. Quiescent Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: INA851  
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
kΩ(unless otherwise noted)  
12  
10  
8
200  
150  
100  
50  
-40C  
-20C  
25C  
60C  
6
85C  
125C  
CM Range  
4
0
2
-50  
0
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-2  
-4  
-6  
-8  
-10  
-12  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12  
-14  
-13.5  
-13  
-12.5  
-12  
-11.5  
-11  
Output Voltage (V)  
Input Common-Mode Voltage (V)  
G = 10  
7-35. Gain Nonlinearity, G = 10  
7-36. Offset Voltage vs Negative Common-Mode Voltage  
200  
150  
100  
50  
15  
-40C  
-40C  
25C  
-20C  
25C  
60C  
85C  
125C  
14.5  
85C  
125C  
VO(max)  
0
14  
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
13.5  
13  
12.5  
12  
11  
11.5  
12  
12.5  
13  
13.5  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Current (mA)  
Input Common-Mode Voltage (V)  
7-37. Offset Voltage vs Positive Common-Mode Voltage  
7-38. Positive Output Voltage Swing vs Output Current  
-12  
6
-40C  
25C  
5
-12.5  
85C  
125C  
VO(min)  
4
-13  
-40C  
25 C  
3
2
85C  
-13.5  
-14  
125C  
VClamp+/-  
1
-14.5  
-15  
0
-1  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Current (mA)  
0
5
10  
15  
20  
25  
Output Current (mA)  
7-39. Negative Output Voltage Swing vs Output Current  
7-40. Claw Curve of VCLAMP+/-  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: INA851  
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
kΩ(unless otherwise noted)  
60  
40  
20  
0
20  
18  
16  
14  
12  
10  
8
VS = 15 V  
VS = 5 V  
ISC, Source  
ISC, Sink  
-20  
-40  
-60  
6
4
2
0
100  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
1k  
10k  
100k  
1M  
10M  
Temperature (C)  
Frequency (Hz)  
7-41. Short Circuit Current vs Temperature  
7-42. Large-Signal Frequency Response  
1
-40  
-60  
-80  
-100  
40  
30  
20  
10  
0
G = 1  
G = 10  
G = 100  
No stable operation  
0.1  
0.01  
Riso = 0  
Riso = 25 ꢀ  
Riso = 50 ꢀ  
0.001  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
D040  
50  
75  
100  
125  
150  
175  
200  
Capacitive Load (pF)  
500-kHz measurement bandwidth  
1-VRMS output voltage  
7-43. THD+N vs Frequency  
100-kΩload  
7-44. Overshoot vs Capacitive Loads  
200  
150  
100  
50  
100  
80  
CL = 40 pF  
CL = 76 pF  
CL = 100 pF  
CL = 130 pF  
CL = 150 pF  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
0
-50  
-100  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
-1  
0
1
2
3
4
5
6
Time (s)  
Time (s)  
G = 1  
G = 0.2 V/V  
CL = 100 pF  
RL = 10 kΩ  
RL = 10 kΩ  
7-45. Small-Signal Response with different Output  
7-46. Small-Signal Response for G = 0.2 V/V  
Capacitors G = 1 V/V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: INA851  
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
kΩ(unless otherwise noted)  
90  
60  
30  
0
-30  
-60  
-90  
-1  
0
1
2
3
4
5
6
Time (s)  
G = 1 V/V  
CL = 100 pF  
G = 10 V/V  
CL = 100 pF  
RL = 10 kΩ  
RL = 10 kΩ  
7-47. Small-Signal Response for G = 1 V/V  
7-48. Small-Signal Response for G = 10 V/V  
60  
40  
20  
0
100  
75  
VOCM Input  
Output  
50  
25  
0
-20  
-40  
-60  
-25  
-50  
-75  
2
3
4
5
6
7
8
9
10  
-2  
-1  
0
1
2
3
4
5
6
7
Time (us)  
Time (s)  
G = 1000 V/V  
CL = 100 pF  
RL = 10 kΩ  
7-50. Small-Signal Response of VOCM Amplifier  
7-49. Small-Signal Response for G = 1000 V/V  
7.5  
100  
5
10  
1
2.5  
0
0.1  
-2.5  
-5  
0.01  
0.001  
0.0001  
-7.5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
6
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Time (s)  
Frequency (Hz)  
7-51. Large Signal Step Response  
7-52. Closed-Loop Output Impedance  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: INA851  
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, VICM = VOCM = midsupply, VCLAMP+ = VS+, VCLAMP= VS, G = GIN = GOUT = 1 V/V, and RL = 10  
kΩ(unless otherwise noted)  
0.001%  
0.01%  
0.01%  
0.001%  
Time (100 µs/div)  
Time (1 µs/div)  
G = 1 V/V  
G = 0.2 V/V  
7-54. Settling Time for G = 1 V/V  
7-53. Settling Time for G = 0.2 V/V  
20  
16  
12  
8
4
0
-4  
-8  
-12  
-16  
-20  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Time (s)  
G = 100 V/V  
G = 1 V/V  
7-56. Offset Warm-up for G = 100 V/V  
7-55. Offset Warm-up for G = 1 V/V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: INA851  
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
8 Detailed Description  
8.1 Overview  
The INA851 is a monolithic, precision instrumentation amplifier that incorporates a current-feedback input stage  
and a four-resistor, fully differential amplifier output stage. The schematic in 8-1 shows how the differential  
input voltage is buffered by Q1 and Q2, and is forced across RG, which causes a signal current to flow through  
RG, R1, and R2. The fully differential amplifier, A3, removes the common-mode component of the input signal and  
refers the output signal to the VOCM pin. The VBE and voltage drop across R1 and R2 produce output voltages  
on A1 and A2 that are approximately 0.8 V less than the input voltages.  
VS +VS  
FDA_IN–  
VS +VS  
+VS  
R7  
1.25 k  
G02+  
VB  
RB  
RB  
IB Cancellation  
IB Cancellation  
VS +VS  
R5  
5 k  
R3  
5 k  
A1  
A2  
OUT+  
OUT–  
+
C1  
A3  
C2  
+
R4  
5 k  
R6  
5 k  
VS +VS  
VS +VS  
VS +VS  
+VS  
+VS  
G02–  
R8  
1.25 k  
Super-  
NPN  
Super-  
NPN  
+IN  
IN  
+VS  
+VS  
FDA_IN+  
Q1  
Q2  
R2  
3 k  
R1  
3 k  
VS  
VS  
OUT+  
VCLAMP+  
A4  
Optional RG  
(External)  
C3  
0.5pF  
R11  
70 k  
R9  
500 k  
VS  
VS  
VOCM  
C4  
0.5pF  
R12  
70 k  
R10  
500 k  
OUT–  
VCLAMP  
VS +VS  
8-1. Detailed Schematic  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: INA851  
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
8.2 Functional Block Diagram  
External Gain Set  
Resistor (Optional)  
VOCM VCLAMP+ FDA_IN(Optional)  
G02+ (Optional, Externally  
Short to OUT+ or Float)  
LDO  
Input Bias  
Current  
Cancellation  
Current-  
Feedback  
Input Stage  
Overvoltage  
Protection  
IN  
OUT+  
Fully Differential  
Amplifier  
OUT─  
Input Bias  
Current  
Cancellation  
Current-  
Feedback  
Input Stage  
Overvoltage  
Protection  
+IN  
G02(Optional, Externally  
Short to OUTor Float)  
LDO  
VCLAMPFDA_IN+ (Optional)  
8.3 Feature Description  
8.3.1 Adjustable Gain Setting  
8-2 shows that the INA851 input-stage gain is set by a single external resistor (RG) connected between the  
RG pins. The gain of the output stage can be set to a unity gain of 1 V/V by floating the G02+ and G02pins, or  
to an attenuating gain of 0.2 V/V by shorting those pins to the respective OUT+ and OUTpins.  
Short OUT to G02 and  
INA851  
IN  
OUT+ to G02+ for output  
stage G = 0.2 option  
FDA_IN  
G02+  
+
VIN  
R3  
RG  
VO = G • (VIN+ VIN ) + VOCM  
1.25 k  
R4  
RF  
3 k  
R1  
5 k  
5 k  
INP  
INN  
OUT+  
OUT  
+
VO  
+
+
RG  
ADC  
RF  
5 k  
R2  
R5  
3 k  
5 k  
R6  
RG+  
IN+  
+
G02  
6 k  
RG  
GIN  
= 1 +  
1.25 k  
VIN+  
GOUT = 0.2 or 1  
FDA_IN+  
G = GIN * GOUT  
VOCM  
VOCM  
8-2. Simplified Diagram of the INA851 With Gain Equations  
If the output stage is in the unity gain configuration, the value of RG is selected according to the following  
equation:  
6kΩ  
G = 1 +  
(1)  
R
G
When OUT+ is shorted to G02+ (pin 11 to pin 12) and OUTis shorted to G02(pin 9 to pin 10) so that the  
output stage is in the attenuating configuration, the gain equation becomes:  
6kΩ  
G = 0.2 × 1 +  
(2)  
R
G
8-1 lists several commonly used gains and resistor values, as well as the additional gain error that is  
contributed by the gain resistors. The 6-kΩ term in the gain equation is a result of the sum of the two internal 3-  
kΩ feedback resistors. These on-chip resistors are laser-trimmed to accurate absolute values. The accuracy  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: INA851  
 
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
and temperature coefficients of these resistors are included in the gain accuracy and drift specifications of the  
INA851. The 5-kΩ and 1.25-kΩ resistors used in the output stage are ratiometrically matched to achieve stable  
1-V/V and 0.2-V/V gain terms; although, the resistor values can shift up to 15%, depending on production.  
8-1. Commonly Used Gains and Resistor Values  
RG  
(Ω)  
NEAREST 1% RG  
DESIRED GAIN  
(V/V)  
CALCULATED GAIN  
(V/V)  
CONTRIBUTED GAIN ERROR  
(%)  
(Ω)  
NC, short OUT+ to G02+  
and OUTto G02–  
0.2  
0.5  
NC  
0.200  
0.499  
N/A  
4 k, short OUT+ to G02+  
and OUTto G02–  
4.02 k  
0.30  
1
2
NC  
6 k  
NC  
5.97 k  
1.5 k  
665  
1.000  
2.005  
N/A  
0.25  
0.00  
5
1.5 k  
5.000  
10  
666.67  
315.79  
122.45  
60.61  
30.15  
12.02  
6.01  
10.023  
19.987  
49.387  
100.338  
200.336  
496.868  
994.377  
9934.775  
0.23  
0.06  
20  
316  
50  
124  
1.23  
100  
200  
500  
1000  
10000  
60.4  
30.1  
12.1  
6.04  
604 m  
0.34  
0.17  
0.63  
0.56  
600 m  
0.65  
As shown in 8-2 and explained in more detail in 9.4, make sure to connect low-ESR, 0.1-µF ceramic  
bypass capacitors between each supply pin and ground, and to place these capacitors as close as possible to  
the device pins.  
8.3.1.1 Gain Drift  
The stability and temperature drift of external gain setting resistor RG also affects gain. The contribution of RG to  
gain accuracy and drift is determined from 方程式 1. The best gain drift of 5 ppm/(maximum) is achieved  
when the INA851 uses G = 1 in the input stage, without RG connected. In this case, gain drift is limited by the  
mismatch of the temperature coefficient of the integrated resistors in fully differential amplifier A3. When the  
output stage is in attenuating gain mode (OUTshorted to G02and OUT+ shorted to G02+), both the 1.25-kΩ  
and the 5-kΩ resistors contribute mismatch, as do the traces between the G02x and OUTx pins. Only the 5-kΩ  
resistors contribute mismatch when the output stage is in unity gain mode (with G02and G02+ floating).  
At input stage gains greater than 1, gain drift increases as a result of the individual drift of the 3-kΩ resistors in  
the feedback of A1 and A2, relative to the drift of external gain resistor RG. The low temperature coefficient of the  
internal feedback resistors improves the overall temperature stability of applications using input-stage gains  
greater than 1 V/V over alternate solutions. The low resistor values required for high gain make wiring resistance  
an important consideration. Sockets add to the wiring resistance and contribute additional gain error (such as a  
possible unstable gain error) at gains of approximately 20 or greater. To maintain stability, avoid parasitic  
capacitance of more than a few picofarads at the RG connections. Careful matching of any parasitics on the RG  
pins maintains optimal CMRR over frequency.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: INA851  
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
8.3.2 Offset Voltage  
Low offset voltage is one of the key parameters for an instrumentation amplifier (INA). In a current-feedback INA,  
this error source is classified in three stages: input, output, and intermediate. The input-stage dc offset (VOSI) is  
mainly caused by the mismatch of the input transistors Q1 and Q2, (see 8-1). The output-stage dc offset  
(VOSO) is caused partially by the mismatch of the output amplifier A3. In the INA851, A3 is a fully-differential  
amplifier and gained up by the noise gain of the circuit (1 + R5 / R3). An additional intermediate stage offset  
contribution error adds to VOSO that is caused by the mismatch of the current mirrors in the front end (through R1  
and R2).  
Unlike typical instrumentation amplifiers that incorporate a difference amplifier (A3) with a fixed output gain, the  
INA851 has two different output gain stages that subsequently contribute differently to VOSO; see Gaussian  
distributions for G = GOUT = 1 V/V in 7-3 and for G = GOUT = 0.2 V/V in 7-4.  
The following equation calculates the total offset voltage error referred to the input:  
2
V
OSO G  
= 1 or G  
= 0.2  
OUT  
2
OUT  
V
=
V
+
OSI  
(3)  
OS  
G
IN  
8.3.3 Input Common-Mode Range  
The linear input voltage range of the INA851 input circuitry extends within 2.5 V (maximum) of both power  
supplies, and maintains excellent common-mode rejection throughout this range. The valid input common-mode  
range is a function of the input common-mode voltage, input differential voltage, gain, and output common-mode  
voltage.  
The common-mode range is best calculated using the INA851 Input-Output Range Design Calculator .  
The common-mode range for the most common operating conditions are shown in 8-3 to 8-9.  
2
1.6  
1.2  
0.8  
0.4  
0
15  
12  
9
G = 0.2 V/V  
G = 0.5 V/V  
G = 0.2 V/V  
G = 0.5 V/V  
6
3
0
-3  
-6  
-9  
-12  
-15  
-0.4  
-0.8  
-1.2  
-1.6  
-2  
-6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
-1 -0.8 -0.6 -0.4 -0.2  
0
0.2 0.4 0.6 0.8  
1
Output Differential Voltage (V)  
Output Differential Voltage (V)  
V= 15 V  
V= ±4 V  
8-4. Input Common-Mode Voltage vs Output  
8-3. Input Common-Mode Voltage vs Output  
Voltage, Low Gains  
Voltage, Low Gains  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: INA851  
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
2
15  
12  
9
G = 1 V/V  
G = 5 x 0.2 V/V  
G = 1 V/V  
G = 5x0.2 V/V  
1
0
6
3
0
-3  
-6  
-9  
-12  
-15  
-1  
-2  
-25 -20 -15 -10  
-5  
0
5
10  
15  
20  
25  
-4  
-3  
-2  
-1  
0
1
2
3
4
Output Differential Voltage (V)  
Output Differential Voltage (V)  
V= ±15 V  
V= ±4 V  
8-6. Input Common-Mode Voltage vs Output  
8-5. Input Common-Mode Voltage vs Output  
Voltage, Unity-Gains  
Voltage, Unity-Gain  
2
15  
G = 10x1 V/V  
G = 100x1 V/V  
G = 10 x 1 V/V  
G = 100 x 1 V/V  
12  
1.5  
1
9
6
0.5  
0
3
0
-3  
-6  
-9  
-12  
-15  
-0.5  
-1  
-1.5  
-2  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
-28 -24 -20 -16 -12 -8 -4  
0
4
8
12 16 20 24 28  
Output Differential Voltage (V)  
Output Differential Voltage (V)  
V= ±4 V  
High Gains  
8-7. Input Common-Mode Voltage vs Output  
8-8. Input Common-Mode Voltage vs Output  
Voltage, High Gains  
Voltage, High Gains  
21  
G = 0.2 V/V  
G = 0.5 V/V  
18  
G = 10 V/V  
15  
12  
9
6
3
0
-3  
-6  
-9  
-12  
-3  
-2  
-1  
0
1
2
3
Output Differential Voltage (V)  
V= ±12 V  
Vclamp+ = 5 V, Vclamp- = GND  
8-9. Input Common-Mode Voltage vs Output Voltage With Output Clamping  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: INA851  
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
8.3.4 Input Protection  
The inputs of the INA851 device are individually protected for voltages up to ±40 V beyond the power supply  
rails. For example, a condition of VS= 55 V on one input and VS+ = 55 V on the other input does not cause  
damage. Internal circuitry on each input provides low series impedance under normal signal conditions. 8-10  
shows that if the input is overloaded, the protection circuitry limits the input current to a value of approximately  
16 mA.  
8-10. Input Current During an Overvoltage Condition  
8-11 shows that during an input overvoltage condition, current flows through the input protection diodes into  
the power supplies. If the power supplies are unable to sink current, then place Zener diode clamps (ZD1 and  
ZD2 in 8-11) on the power supplies to provide a current pathway to ground.  
VS+  
ZD1  
VS+  
INx  
RIN  
Overvoltage  
Protection  
Input Voltage  
Source  
+
Input Transistor  
VS–  
ZD2  
VS–  
8-11. Input Current Path During an Overvoltage Condition  
If an input stage gain greater than GIN = 1 V/V is implemented, where a gain resistor is present across the RG  
pins, the inputs are still well protected against overvoltage conditions; however, make sure that the input  
differential voltage limitations of the INA851 are not exceeded. For example, a condition of (VS+) + 40 V on both  
inputs does not cause damage. However, a condition of (VS) 40 V on one input and (VS+) + 40 V on the  
other input can cause damage. Precautions can include the use of external resistors in series with each of the  
inputs.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: INA851  
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
8.3.5 Output Clamping  
The INA851 features a unique output clamping function that protects the downstream device against damage  
that results from inadvertent over-driving. Usually the downstream device is an ADC that typically operates at a  
lower supply voltage than the INA851.  
To implement this function, use the VCLAMP+ and VCLAMPpins to limit the supply voltage range of the  
differential output drive amplifier. For typical operation, use a low-impedance connection from the pins to the  
power supplies of the ADC. For proper operation of the clamp circuitry, set the VS+ or VSsupply voltages at  
least 1.5 V beyond the respective VCLAMP+ and VCLAMPclamping voltages. In addition, for the output driver to  
function correctly, the VCLAMP+ and VCLAMPvoltages must be at least 3 V apart. If the output clamping  
functionality is not desired, short the VCLAMP+ and VCLAMPpins to the amplifier VS+ and VSsupply pins.  
The output driver operates up to the VCLAMP+ or VCLAMPlimits without experiencing distortion. When the  
clamping function is in use the output voltage is clamped at approximately 600 mV beyond the clamp voltage.),  
so that the device output spans the full input range of the ADC. However, if the predriver output swings beyond  
the VCLAMP+ or VCLAMPvoltage, the output driver begins to run out of headroom as a result of the clamped  
supply voltage, shown in 8-12.  
The output is unable to swing greater than approximately 500 mV beyond the VCLAMP+ or VCLAMPvoltage (at  
zero load), helping prevent or reduce damage to the ADC from overvoltage conditions.  
The linear operation becomes distorted when the driver load becomes higher than 20 mA, see 8-13.  
VS+  
VCLAMP+  
Output Driver  
OUT+  
OUT  
FDA_IN  
+
+
+
FDA Input  
Predriver  
+
FDA_IN+  
+
+
VS  
VCLAMP  
8-12. Simplified Schematic of Output Driver Clamping Structure  
备注  
Be aware that instead of providing an immediate hard-stop voltage limit, the output driver is not  
clamped until VCLAMP+ or VCLAMPvoltage has been exceeded, and the driver starts to run out of  
headroom. This configuration prevents distortion of the amplifier output when operating near the  
VCLAMP+ and VCLAMPrails. However, the output voltage exceeds VCLAMP+ and VCLAMPby several  
hundreds of millivolts before the clamps turn on strongly. When used in conjunction with several tens  
of ohms of resistance between the amplifier output and ADC input pins (commonly implemented as  
part of a low-pass filter for proper ADC acquisition), output clamping helps severely diminish any  
potential damage to the ADC that can otherwise result.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: INA851  
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
6
5
4
-40C  
25 C  
85C  
3
125C  
VClamp+/-  
2
1
0
-1  
0
5
10  
15  
20  
25  
Output Current (mA)  
8-13. Output Voltage With Output Clamping Enabled  
The VCLAMP+ pin features a fail-safe against power-up sequencing issues between the INA851 and a  
downstream device. For example, a condition of V(CLAMP+) + 10 V on this pin does not cause damage.  
Therefore, the ADC supply can safely turn on while the INA851 supply is still off or just beginning to turn on. In  
this case, the current draw through the VCLAMP+ pin is limited to a safe value of typically 3 mA.  
8.3.6 Low Noise  
An output noise calculation helps design a low-noise circuit to drive high-precision ADC applications and  
optimize the signal-to-noise ratio (SNR).  
8-14 shows a simplified noise model for the INA851. The eNO noise refers to the input resistor network of the  
FDA. This term incorporates the thermal noise of the internal feedback resistors, and the interaction of the  
internal current noise density of the output stage with the internal feedback resistors.  
In  
GOUT  
eN(RTO)  
eN(RTI)  
GIN  
+
+
eNO(GOUT = 1 or GOUT = 0.2)  
+
eNI  
8-14. Simplified Noise Model for the INA851  
The internal feedback resistor network is considered in the eNO specification; therefore, the calculation of the  
total input-referred noise, eN(RTI), is simplified to the following equation:  
2
e
NO G  
= 1 or G  
= 0.2  
OUT  
OUT  
2
e
=
e
+
NI  
(4)  
N RTI  
G
IN  
The total output-referred noise, eN(RTO), multiplies directly by the output stage gain, GOUT, by GOUT = 0.2 V/V or  
GOUT = 1 V/V respectively, as shown in the following equation:  
2
2
e
=
e
× G × 0.2 V/V or 1 V/V + e  
× 0.2 V/V or 1 V/V  
= 0.2  
OUT  
(5)  
N RTO  
NI  
IN  
NO G  
= 1 or G  
OUT  
8.4 Device Functional Modes  
The INA851 has a single functional mode and operates when the power-supply voltage is greater than 8 V  
(±4 V). The maximum power-supply voltage for the INA851 is 36 V (±18 V).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: INA851  
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
9.1.1 Output Common-Mode Pin  
The output voltage of the INA851 is developed with respect to the voltage on the output common-mode pin,  
VOCM. The starting point for most designs is to assign an output common-mode voltage for the INA851. For ac-  
coupled signal paths, this voltage is often the default midsupply voltage, so as to retain the most available output  
swing around the voltage centered at VOCM. For dc-coupled signal paths, set this voltage between a minimum of  
VS+ 2.5 V and maximum of VS+ 2.5 V. For precision ADC applications, this voltage is typically the input  
common mode voltage of the ADC.  
The voltage at the VOCM pin is internally buffered to bias the fully differential output amplifier, eliminating the  
need for an additional external VOCM buffer. While the buffer input is high-ohmic, the VOCM pin also connects  
through internal 500-kΩ resistors to VCLAMP+ and VCLAMP, which sets the output common-mode voltage to  
midsupply in the event that the pin is floating.  
While the VOCM buffer has high small-signal bandwidth, be aware that large-signal steps with fast edges at the  
VOCM pin cause delays in the output. For best tracking between the buffer input and output signals, use rise  
times of 200 ns or greater for large steps.  
9.1.2 Output-Stage Gain Selection and Noise-Gain Shaping  
In the default unity-gain configuration, the INA851 fully differential amplifier output stage uses 5-kΩ feedback  
resistors between the OUT+ and OUToutputs and the inverting and noninverting inputs, respectively.  
However, the INA851 also features internal 1.25-kΩ feedback resistors between those inputs and the G02+ and  
G02pins. By shorting the G02+ pin to the OUT+ pin, and the G02pin to the OUTpin, the amplifier is  
placed in an attenuating gain of 0.2 V/V.  
Additionally, access directly to the inverting and noninverting inputs of the fully differential amplifier is provided  
through the FDA_INand FDA_IN+ pins, respectively. This option allows circuit designers to add external  
feedback capacitors in parallel with the internal feedback resistors to implement noise filtering or noise-gain  
shaping techniques. These pins can also be used to implement customized attenuating gains for the output  
stage. Do not treat these pins as outputs, nor use the pins to source or sink current.  
备注  
These pins are internally disconnected on preliminary samples of the INA851; these pins will be  
connected to the aforementioned internal nodes in the final device release.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: INA851  
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
9.1.3 Input Bias Current Return Path  
The input impedance of the INA851 is very high at approximately 1 GΩ. However, a path must be provided for  
the input bias current of both inputs. This input bias current is typically 5 nA. High input impedance means that  
this input bias current changes very little with varying input voltage.  
For proper operation, input circuitry must provide a path for input bias current. 9-1 shows various provisions  
for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the  
common-mode range of the INA851, and the input amplifiers saturate. If the differential source resistance is low,  
the thermocouple example in 9-1 shows that the bias current return path can connect to one input. With a  
higher source impedance, using two equal resistors provides a balanced input with the possible advantages of a  
lower input offset voltage as a result of bias current and better high-frequency common-mode rejection.  
For more details about why a valid input bias current return path is necessary, see the Importance of Input Bias  
Current Return Paths in Instrumentation Amplifier Applications application report.  
Microphone,  
Hydrophone,  
and So Forth  
TI Device  
47 kW  
47 kW  
Thermocouple  
TI Device  
10 kW  
TI Device  
Center tap provides  
bias current return.  
Copyright © 2017, Texas Instruments Incorporated  
9-1. Providing an Input Common-Mode Current Path  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: INA851  
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
9.1.4 Thermal Effects due to Power Dissipation  
The INA851 dissipates approximately 180 mW of power under quiescent conditions at a ±15-V supply voltage.  
The internal resistor network and output load drive causes an additional power dissipation that depends on the  
input signal. The small silicon area of the INA851 causes the internal circuitry to experience temperature  
gradients that can adversely affect the electrical performance.  
Precision parameters, such as offset voltage, linearity, common-mode rejection ratio, and total harmonic  
distortion, can be impacted as a result of these thermal effects in the silicon. The thermal gradient particularly  
affects the performance of low-frequency input signals with higher gains (> 10) and large output voltage  
variation. 9-2 shows that the thermal effect can be minimized by lowering the supply voltage, if the application  
permits.  
To properly dissipate heat from the INA851, connect the thermal pad with sufficient thermal vias to a large  
copper plane that is connected to the negative supply, VS. A thorough PCB layout is of key importance (see  
also 9.4).  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
-50  
-100  
VS = 6  
-150  
-200  
-250  
-300  
VS = 12  
VS = 15  
VS = 18  
-8  
-6  
-4  
-2  
0
2
4
6
8
Output Voltage (V)  
9-2. Linearity vs Supply Voltage for G = 1000  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: INA851  
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
9.2 Typical Applications  
9.2.1 Three-Pin Programmable Logic Controller (PLC)  
9-3 shows a three-pin programmable-logic controller (PLC) design for the INA851. This PLC reference design  
accepts inputs of ±10 V or ±20 mA. The output is a differential voltage of ±4.95 V with a VOCM of 2.5 V (or 25 mV  
to 4.975 V on OUT+ and OUT) to be measured by the ADS8920B SAR ADC.  
5.3 V  
REF5050  
VOUT  
GND  
VIN  
±10 V  
1
F
5 k  
5 k  
0.1  
10  
F
R1  
100 k  
100 nF  
15 V  
VS+  
1 k  
10 μF  
R2  
4.17 k  
VOCM  
VCLAMP+  
IN  
100 pF  
±20 mA  
REFIN RVDD  
AINP  
47.4  
FDA_IN  
RG  
OUT+  
OUT  
+
RG  
530  
= ± 4.95 V  
100 pF  
510 pF  
ADS8920B  
AINM  
REFM  
INA851  
VO  
R3  
20  
RG  
FDA_IN+  
47.4  
51 pF  
GND  
IN+ VCLAMP  
51 pF  
VS  
15 V  
9-3. PLC Input with INA851 (±10 V, 4 mA to 20 mA)  
9.2.1.1 Design Requirements  
For this application, the design requirements are as follows:  
4-mA to 20-mA input with less than 20-Ωburden  
±20-mA input with less than 20-Ωburden  
±10-V input with impedance of approximately 100 kΩ  
Maximum 4-mA to 20-mA or ±20-mA burden voltage equal to ±0.4 V  
Output range within 0 V to 5 V  
9.2.1.2 Detailed Design Procedure  
There are two modes of operation for the circuit shown in 9-3: current input and voltage input. This design  
requires R1 >> R2 >> R3. Given this relationship, the following equation calculates the current input mode  
transfer function.  
V
= V  
× G = I × R  
3
(6)  
OUT  
DIFF  
IN  
where  
VOUT represents the differential voltage at the INA851 outputs in current input mode.  
VDIFF represents the differential voltage at the INA851 inputs.  
G represents the total gain of the INA851  
IIN is the input current to the PLC.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: INA851  
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
The following equation shows the transfer function for the voltage input mode:  
R
2
+ R  
V
= V  
× G = – V ×  
IN  
(7)  
OUT  
DIFF  
R
2
1
where  
VOUT represents the differential voltage at the INA851 outputs in voltage input mode.  
VIN is the input voltage to the PLC.  
The voltages on the output pins of the INA851 follow the relationships in 方程8 and 方程9.  
G
2
V
V
= V  
×
+ V  
OCM  
(8)  
(9)  
OUT +  
DIFF  
G
= V  
×
+ V  
OCM  
2
OUT −  
DIFF  
R1 sets the input impedance of the voltage input mode. The minimum typical input impedance is 100 kΩ. The R1  
value is 100 kΩbecause increasing the R1 value also increases noise. The value of R3 must be extremely small  
compared to R1 and R2. A 20Ω value is selected for R3 because that resistance value is much smaller than R1  
and yields an input voltage of ±400 mV when operated in current mode (±20 mA).  
Use 方程10 to calculate R2 given VDIFF = ±400 mV, VIN = ±10 V, and R1 = 100 kΩ.  
R
R × V  
1 DIFF  
2
V
= V  
×
R =  
= 4.167 kΩ  
(10)  
DIFF  
IN  
2
R
+ R  
V
V  
1
2
IN DIFF  
The value obtained from 方程式 10 is not a standard 0.1% value; therefore, 4.17 kΩ is selected. R1 and R2 also  
use 0.1% tolerance resistors to minimize error.  
Use 方程11 to calculate the gain of the instrumentation amplifier.  
V
OUT  
DIFF  
4.95 V  
400 mV  
G =  
=
= 12.375 V/V  
(11)  
V
方程12 calculates the gain-setting resistor value using the INA851 gain equation for GOUT = 1 V/V (方程1).  
6 kΩ  
G1  
6 kΩ  
12.375 1  
R
=
=
= 527.473 Ω  
(12)  
G
Use a standard 0.1% resistor value of 530 Ωfor this design.  
The ADS8920B is selected because of the differential input, 1-MSPS sampling rate, and integrated reference  
buffer. Implement the antialiasing R-C-R filter using two 47.4-Ω resistors, a COG or NPO-type 510-pF  
differential capacitor, and two ceramic 51-pF common-mode capacitors. The REF5050 is selected to create a 5-  
V reference voltage for the ADC. Use well-matched precision resistors to create a voltage divider that generates  
a stable 2.5-V VOCM reference. Connect the VCLAMP+ and VCLAMPpins of the INA851 to the supplies of the  
ADC to protect against overdrive damage in the event of a fault. Consider implementing a TVS diode from the  
ADC supply to GND for additional protection, and include 100-nF decoupling capacitors between the amplifier  
and ADC supplies and GND.  
9.2.1.3 应用曲线  
9-4 9-5 展示了9-3 中电路的典型特性曲线。  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: INA851  
 
 
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
C001  
5
5
4
3
2
1
0
4
3
2
1
0
-10  
-5  
0
5
10  
-20  
-10  
0
10  
20  
Input Voltage (V)  
Input Current (mA)  
C001  
9-4. PLC 输出电压与输入电压之间的关系  
9-5. PLC 输出电压与输入电流间的关系  
9.2.2 20-Bit, 1-MSPS ADS8900B Driver Circuit With FDA Noise Filter  
The application circuit in 9-6 shows the schematic of a complete input and reference driver circuit for the  
ADS8900B, a 20-bit, precision, 1-MSPS, successive approximation register (SAR), analog-to-digital converter  
(ADC). This circuit is used to measure the driving capability of the INA851 with the ADS8900B ADC.  
To test the complete dynamic range of the circuit, the common-mode voltage VOCM of the input of the ADC is  
established at a value of VREF / 2.  
To exclude noise caused by supply voltage, the test circuit uses the TPS7A4700, a low-noise 4-µVRMS, RF  
LDO voltage regulator, to generate the 5.2-V supply rail.  
For VOCM, the circuit uses the REF5050, a low-noise, low-drift, 5-V reference, a 20k-20k voltage divider to  
establish VREF/2 and an additional RC filter (10 Ω, 150 pF) into the VOCM pin. See also the ADS8900EVM-  
PDK user's guide.  
15 V  
14  
5.2 V  
VS+  
LDO  
INA851  
16  
15  
5.0 V  
VCLAMP+  
FDA_IN  
1
2
IN  
VIN-  
+
OVP  
R3  
G02+ 12  
CFB  
1 nF  
RG  
1.25 k  
R4  
CFIL  
RF  
3 k  
R1  
RFIL  
VDD VREF  
ADS8900B  
VSS  
1 nF  
5 k  
5 k  
INP  
INN  
OUT+ 11  
OUT 10  
+
+
47.4  
RG  
RF  
5 k  
R2  
R5  
3 k  
RFIL  
47.4  
CFIL  
1 nF  
5 k  
R6  
3
4
RG+  
IN+  
+
CFB  
G02  
FDA_IN+  
VCLAMP  
9
6
5
1 nF  
VIN+  
1.25 k  
OVP  
LDO  
VS  
VOCM  
13  
7
15 V  
10  
VREF/2  
150 pF  
9-6. Driving ADS8900B With FDA Noise Filter  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: INA851  
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
9.2.2.1 Design Requirements  
The requirements for the application driving the ADS8900B ADC are listed in the following table.  
9-1. Design Parameters  
PARAMETER  
Differential to differential conversion  
Supply voltages  
VALUE  
VINDIFF to VOUTDIFF  
VS± = ± 15 V, VDD = 5.2 V, VREF = 5 V  
FSR = ± 5 V  
Full-scale range of ADC for FSR  
Driver configuration  
See 9-2  
Circuit bandwidth  
f(3dB) = 31.7 kHz  
Output RC elements  
See ADS8900B input requirements  
To eliminate ground loops, unwanted parasitic effects, and distortion, use appropriate PCB layout and grounding  
techniques (see also 9.4).  
9.2.2.2 Application Curves  
9-2 show the typical signal-to-noise (SNR) and total harmonic distortion (THD) of the INA851 driving the  
ADS8900B SAR ADC at full-scale range and at different gain configurations. The RC filter combination (RFIL  
,
C
FIL) shown in 9-6 helps attenuate the nonlinear charge kickback of the ADC and optimize for best THD  
performance. The combination of the RC filter and the feedback capacitor CFB allow for the best trade-off  
between harmonic distortion and maintaining stability of the FDA. Low voltage-coefficient C0G capacitors are  
used everywhere in the signal path (CFB, CFIL) for the low-distortion properties.  
For other bandwidth requirements, adjust the feedback capacitor accordingly, and verify the circuit performance  
using a SPICE simulation using the INA851 TINA-TI™ SPICE Model. The amplifier output voltage must settle  
within the ADC bit accuracy during the ADC acquisition time window. Verify the desired circuit is stable; that is,  
the FDA has more than a 45º phase margin.  
9-2. INA851 + ADS8900B FFT Data Summary  
INPUT AMPLITUDE  
GIN (V/V)  
GOUT (V/V)  
SNR (dB)  
THD (dB)  
ENOB (Bits)  
RG RESISTOR (Ω)  
(Vpk)  
23.7378  
4.7476  
0.2374  
0.0475  
None  
None  
316  
1
1
0.2  
1
100.7  
100.6  
99.1  
16.42  
16.41  
16.10  
14.64  
117.3  
122.7  
112.0  
99.0  
20  
100  
1
60.4  
1
91.1  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: INA851  
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
G = 0.2 V/V, fIN = 1 kHz, SNR = 100.73 dB, THD = 117.28  
G = 1 V/V, fIN = 1 kHz, SNR = 100.6 dB, THD = 122.74 dB  
dB  
9-8. Noise Performance FFT Plots for G = 1 V/V  
9-7. Noise Performance FFT Plots for  
G = 0.2 V/V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: INA851  
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
9.2.3 24-Bit, 200 kSPS, Delta-Sigma ADS127L11 ADC Driver Circuit With FDA Noise Filter  
The application circuit in 9-9 shows an schematic for a 24-bit-precision, 200-kSPS, delta-sigma, ADC. The  
circuit is used to measure the driving capacity of the INA851 with the ADS127L11 ADC.  
The ADS127L11 ADC offers two digital filters to optimize for ac applications (wideband filter) or dc applications  
(Sinc4 filter). Application Curves shows measurement results in both filter settings. For detailed design  
procedure to operate the ADS127L11 ADC, see the ADS127L11EVM-PDK evaluation module.  
15 V  
14  
5.2 V  
VS+  
LDO  
INA851  
16  
15  
2.5 V  
VCLAMP+  
FDA_IN  
1
2
IN  
VIN-  
+
OVP  
R3  
G02+ 12  
CFB  
100 pF  
RG  
1.25 k  
R4  
CCM  
51 pF  
RFIL  
47.4  
RF  
3 k  
R1  
AVDD VREF  
5 k  
5 k  
INP  
INN  
OUT+ 11  
OUT 10  
+
+
CDIFF  
510 pF  
ADS127L11  
2x Input Range  
RG  
RF  
5 k  
R2  
R5  
3 k  
RFIL  
47.4  
AVSS  
CCM  
51 pF  
5 k  
R6  
3
4
RG+  
IN+  
+
CFB  
100 pF  
G02  
FDA_IN+  
VCLAMP  
9
6
5
VIN+  
1.25 k  
OVP  
LDO  
VS  
VOCM  
13  
7
15 V  
10  
ADS127L11 V  
VCM Pin  
150 pF  
9-9. Driving the Delta-Sigma ADC ADS127L11  
9.2.3.1 Design Requirements  
The design requirements for the application driving the ADS127L11 ADC are listed in the following table.  
9-3. Design Parameters  
PARAMETER  
Differential-to-differential conversion  
Supply voltages  
VALUE  
VINDIFF to VOUTDIFF  
VS± = ±15 V, AVDD = 5.2 V, VREF = 2.5 V  
FSR = ± 5 V  
Full-scale range of ADC for FSR  
Data rate of ADC  
fDATA = 187.5 kSPS  
(1) High-speed mode, Sinc4 filter, OSR = 64  
(2) High-speed mode, wideband filter, OSR = 64  
See 9-4 and 9-5  
ADC filter configuration  
INA gain and filter configuration  
Signal frequency  
fIN = 1 kHz  
RC kickback filter(1)  
RFIL = 47.4 Ω+ CDIFF = 510 pF + RFIL = 47.4 Ω, CFIL = 51 pF  
(1) A trade-off must be considered between THD, frequency response and drift. The differential current drift into the ADC can interact with  
this filter resistors and result in higher drift errors. However, low resistance degrades the phase margin of the INA851. For low drift  
applications, keep RFIL < 50 .  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: INA851  
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
For optimized linearity and THD performance, use good printed circuit board (PCB) layout practice. For proper  
heat dissipation of the INA851, connect the thermal pad to a plane or a large copper pour at the bottom  
connected to VS(see also 9.4.2).  
9.2.3.2 Application Curves  
9-4 and 9-5 show the typical signal-to-noise (SNR) and total harmonic distortion (THD) of the INA851  
driving the ADS127L11 delta-sigma ADC at full-scale range and at different gain configurations.  
The RC filter combination is dimensioned such to help attenuate the nonlinear charge kickback and optimize for  
best THD performance. The ADC requires a low impedance input for lowest distortion performance; however,  
driving heavier loads degrades the phase margin of the INA851. Use a feedback capacitor (CFB) in the range of  
47 pF to 100 pF to optimize for stability versus THD performance. Low voltage-coefficient C0G capacitors are  
used everywhere in the signal path (CFB, CDIFF, CCM) for their low distortion properties.  
For other bandwidth requirements, adjust the feedback capacitor accordingly and verify the circuit performance  
using a SPICE simulation using INA851 TINA-TI™ SPICE Model. Confirm that the desired circuit is stable; that  
is, the FDA has more than a 45º phase margin.  
9-4. INA851 + ADS127L11 (Sinc4 Filter) FFT Data Summary  
INPUT  
AMPLITUDE  
(Vpk)  
RG RESISTOR  
GIN (V/V)  
GOUT (V/V)  
SNR (dB)  
THD (dB)  
ENOB (Bits)  
(Ω)  
23.7378  
4.7476  
None  
None  
1500  
316  
1
1
0.2  
1
106.8  
105.9  
107.2  
102.5  
92.5  
17.36  
17.28  
17.25  
16.59  
14.81  
116.0  
122.0  
113.8  
112.0  
99.0  
2.3738(1)  
0.2374  
5
0.2  
1
20  
100  
0.0475  
60.4  
1
G = 0.2 V/V, fIN = 1 kHz, SNR = 106.75 dB, THD = 115.95  
G = 0.2 V/V, fIN = 1 kHz, SNR = 105.88 dB, THD = 122.00  
dB  
dB  
9-10. Noise Performance FFT Plots with Sinc4  
9-11. Noise Performance FFT Plots with Sinc4  
Filter for G = 0.2 V/V  
Filter for G = 1 V/V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: INA851  
 
 
INA851  
www.ti.com.cn  
ENOB (Bits)  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
9-5. INA851 + ADS127L11 (Wideband Filter) FFT Data Summary  
INPUT  
AMPLITUDE  
(Vpk)  
RG RESISTOR  
GIN (V/V)  
GOUT (V/V)  
SNR (dB)  
THD (dB)  
(Ω)  
23.76015  
4.7476  
2.3738  
0.2360  
0.0472  
None  
None  
1500  
316  
1
1
0.2  
1
105.3  
103.1  
104.2  
99.0  
17.14  
16.81  
16.85  
16.08  
14.40  
116.2  
120.0  
113.0  
112.0  
99.0  
5
0.2  
1
20  
100  
60.4  
1
89.3  
G = 0.2 V/V, fIN = 1 kHz, SNR = 105.29 dB, THD = 116.21  
G = 1 V/V, fIN = 1 kHz, SNR = 103.07 dB, THD = 120.01 dB  
dB  
9-13. Noise Performance FFT Plots with  
9-12. Noise Performance FFT Plots with  
Wideband Filter for G = 1 V/V  
Wideband Filter for G = 0.2 V/V  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: INA851  
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
9.3 Power Supply Recommendations  
The nominal performance of the INA851 is specified with a supply voltage of ±15 V, and VICM and VOCM at  
midsupply. The device also operates using power supplies from ±4 V (8 V) to ±18 V (36 V) and non-midsupply  
input and output common-mode voltages with excellent performance.  
9.4 Layout  
9.4.1 Layout Guidelines  
Attention to good layout practices is always recommended. For best operational performance of the device, use  
good printed circuit board (PCB) layout practices:  
To avoid converting common-mode signals into differential signals and thermal electromotive forces (EMFs),  
make sure that both input paths are symmetrical and well-matched for source impedance and capacitance.  
As shown in 9-14, keep the external gain resistor close to the RG pins to keep the loop inductance as low  
as possible and to avoid a potential parasitic coupling path. Even slight mismatch in parasitic capacitance at  
the gain setting pins can degrade CMRR over frequency. In applications that implement gain switching using  
switches or PhotoMOS® relays to change the value of RG, select the component so that the switch  
capacitance is as small as possible, and most importantly, so that capacitance mismatch between the RG  
pins is minimized.  
Noise can propagate into analog circuitry through the power pins of the device and of the circuit as a whole.  
Bypass capacitors reduce the coupled noise by providing low-impedance power sources local to the analog  
circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
To reduce parasitic coupling, run the input traces as far away as possible from the supply or output traces. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular to the noisy trace is much  
better than in parallel.  
Leakage on the FDA_IN+ and FDA_INpins can cause in a dc offset error in the output voltages.  
Additionally, excessive parasitic capacitance at these pins can result in decreased phase margin and affect  
the stability of the output stage. If these pins are not used to implement deliberate capacitive feedback, follow  
best practices to minimize leakage and parasitic capacitance. Consider implementing keep-out areas in any  
ground planes that lie immediately below the pins.  
Minimize the number of thermal junctions. Ideally, the signal path is routed within a single layer without vias.  
Keep sufficient distance from major thermal energy sources (circuits with high power dissipation). If not  
possible, place the device so that the effects of the thermal energy source on the high and low sides of the  
differential signal path are evenly matched.  
Solder the thermal pad to the PCB. For the INA851 to properly dissipate heat, connect the thermal pad to a  
plane or large copper pour that is electrically connected to VS, even for low-power applications.  
Keep the traces as short as possible.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: INA851  
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
9.4.2 Layout Example  
Connect feedback  
capacitors between  
OUTx and FDA_INx  
(optional)  
VS+  
C1  
R1  
C3  
C5  
R3  
VIN–  
INP  
INN  
RG  
OUT+  
OUT–  
INA851  
RG  
C7  
ADC  
RG  
R4  
VIN+  
C6  
C4  
VOCM  
R2  
C2  
VS–  
Place bypass  
capacitors as close to  
IC as possible  
Use ground pours for  
shielding the input  
signal pairs  
VS+  
GND  
Short OUTx to  
G02x for output  
stage G = 0.2  
C1  
VOCM  
VCLAMP+  
GND  
GND  
R1  
VIN–  
12  
11  
10  
9
1
2
3
4
IN–  
RG  
RG  
C5  
G02+  
OUT+  
OUT–  
G02–  
R3  
C3  
INP  
INN  
PAD  
C7  
RG  
Cutouts on ground planes  
underneath input pins  
(1, 4, 6, 15) can reduce  
stray capacitance, for  
better phase margin  
C4  
C6  
R4  
IN+  
VIN+  
GND  
R2  
Consider utilizing  
thermal vias for  
heatsinking  
GND  
VCLAMP–  
C2  
VS–  
GND  
9-14. Example Schematic and Associated PCB Layout  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: INA851  
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 Development Support  
10.1.1.1 PSpice® for TI  
PSpice® for TI 是可帮助评估模拟电路性能的设计和仿真环境。在进行布局和制造之前创建子系统设计和原型解决  
方案可降低开发成本并缩短上市时间。  
10.1.1.2 TINA-TI™ Simulation Software (Free Download)  
TINA-TIsimulation software is a simple, powerful, and easy-to-use circuit simulation program based on a  
SPICE engine. TINA-TI simulation software is a free, fully-functional version of the TINAsoftware, preloaded  
with a library of macromodels, in addition to a range of both passive and active models. TINA-TI simulation  
software provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as  
additional design capabilities.  
Available as a free download from the Design tools and simulation web page, TINA-TI simulation software offers  
extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments  
offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic  
quick-start tool.  
备注  
These files require that either the TINA software or TINA-TI software be installed. Download the free  
TINA-TI simulation software from the TINA-TI™ software folder.  
10.2 Documentation Support  
10.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Comprehensive Error Calculation for Instrumentation Amplifiers application note  
Texas Instruments, Importance of Input Bias Current Return Paths in Instrumentation Amplifier Applications  
application note  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
TINA-TIand TI E2Eare trademarks of Texas Instruments.  
TINAis a trademark of DesignSoft, Inc.  
PhotoMOS® is a registered trademark of Panasonic Electric Works Europe AG.  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: INA851  
 
 
 
 
 
 
INA851  
www.ti.com.cn  
ZHCSQ83A MARCH 2022 REVISED OCTOBER 2022  
10.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: INA851  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA851RGTR  
INA851RGTT  
XINA851RGTR  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
RGT  
RGT  
RGT  
16  
16  
16  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
-40 to 125  
-40 to 125  
-40 to 85  
INA851  
INA851  
Samples  
Samples  
Samples  
250  
RoHS & Green  
TBD  
NIPDAU  
Call TI  
3000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA851RGTR  
INA851RGTT  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA851RGTR  
INA851RGTT  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RGT0016C  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
1.0  
0.8  
C
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
1.5  
1
12  
0.30  
16X  
0.18  
13  
16  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4222419/D 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
(0.58) TYP  
8
(R0.05)  
ALL PAD CORNERS  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222419/D 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4222419/D 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY