ISO1042BQDWVQ1 [TI]

具有 70V 总线故障保护功能和灵活数据速率的汽车类隔离式 CAN 收发器 | DWV | 8 | -40 to 125;
ISO1042BQDWVQ1
型号: ISO1042BQDWVQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 70V 总线故障保护功能和灵活数据速率的汽车类隔离式 CAN 收发器 | DWV | 8 | -40 to 125

电信 光电二极管 电信集成电路
文件: 总44页 (文件大小:2990K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
70V 总线故障保护功能和灵活数据速率ISO1042-Q1 汽车隔离CAN 收  
发器  
5Mbps 数据速率与经CAN 相比可实现更为快速的  
载荷传输。该器件采用二氧化硅 (SiO2) 绝缘隔栅可  
1 特性  
AEC Q100 标准符合汽车应用要求  
1 40°C +125°C 环境温度  
提供功能安全  
承受 5000VRMS 的电压和 1060VRMS 的工作电压。电  
磁兼容性得到了显著增强可实现系统级 ESDEFT  
和浪涌并符合辐射标准。与隔离式电源一起使用此器  
件可抵御高电压冲击并防止总线的噪声电流进入本地  
接地。ISO1042-Q1 器件提供基础型和增强型隔离请  
参阅增强型和基础型隔离选项ISO1042-Q1 器件支  
持 –40°C +125°C 的宽环境温度范围该器件采用  
SOIC-16 (DW) 封装和较小SOIC-8 (DWV) 封装。  
可提供用于功能安全系统设计的文档  
• 符ISO 11898-2:2016 物理层标准  
• 支持经典的最1Mbps CAN 和最5Mbps FD  
灵活数据速率)  
• 低环路延迟152ns  
• 保护特性  
器件信息  
– 直流总线故障保护电压±70V  
– 总线引脚HBM ESD 容差±16kV  
– 驱动器显性超(TXD DTO)  
VCC1 VCC2 欠压保护  
器件型号(1)  
ISO1042-Q1  
封装尺寸标称值)  
5.85mm × 7.50mm  
10.30mm × 7.50mm  
封装  
SOIC (8)  
SOIC (16)  
• 共模电压范围±30V  
• 未上电时的理想无源、高阻抗总线终端  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
CMTI100kV/µs  
VCC1 电压范围1.71V 5.5V  
增强型和基础型隔离选项  
ISO1042x-Q1  
ISO1042Bx-Q1  
特性  
– 支持连接CAN 控制器1.8V2.5V3.3V  
5.0V 逻辑接口  
VCC2 电压范围4.5V 5.5V  
• 优异的电磁兼容(EMC)  
保护级别  
增强型  
基本型  
6000VPK  
5000VRMS  
10000VPK  
5000VRMS  
浪涌测试电压  
隔离额定值  
1060VRMS  
1500VPK  
/
1060VRMS  
1500VPK  
/
工作电压  
– 系统ESDEFT 和浪涌抗扰性  
– 低辐射  
16-SOIC 8-SOIC 封装选项  
• 提供工业版本ISO1042  
• 安全相关认证:  
VCC2  
8
VCC1  
1
VCC1  
VCC2  
VDD  
TXD  
7
2
3
CANH  
TXD  
RXD  
ISO1042-Q1  
CAN Bus  
6
MCU  
RXD  
DGND  
CANL  
– 符DIN VDE V 0884-11:2017-01 标准的  
4
5
7071VPK  
VIOTM 1500VPK VIORM增强型和基  
GND2  
GND1  
本型选项)  
Galvanic  
Isolation Barrier  
Digital  
Ground  
ISO  
Ground  
UL 1577 标准下1 分钟5000VRMS 隔  
应用示意图  
CQCTUV CSA 认证  
2 应用  
起动机/发电机  
电池管理系(BMS)  
直流/直流转换器  
车载充电(OBC) 和无线充电器  
逆变器和电机控制  
3 说明  
ISO1042-Q1 器件是一款符合 ISO11898-2 (2016) 标准  
规格的电隔离控制器局域网 (CAN) 收发器。ISO1042-  
Q1 器件提供 ±70V 直流母线故障保护功能和 ±30V 共  
模电压范围。该器件在 CAN FD 式下最高支持  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFA5  
 
 
 
 
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
Table of Contents  
8 Detailed Description......................................................20  
8.1 Overview...................................................................20  
8.2 Functional Block Diagram.........................................20  
8.3 Feature Description...................................................20  
8.4 Device Functional Modes..........................................24  
9 Application and Implementation..................................25  
9.1 Application Information............................................. 25  
9.2 Typical Application.................................................... 25  
10 Power Supply Recommendations..............................28  
11 Layout...........................................................................29  
11.1 Layout Guidelines................................................... 29  
11.2 Layout Example...................................................... 29  
12 Device and Documentation Support..........................31  
12.1 Documentation Support.......................................... 31  
12.2 Receiving Notification of Documentation Updates..31  
12.3 支持资源..................................................................31  
12.4 Trademarks.............................................................31  
12.5 静电放电警告.......................................................... 31  
12.6 术语表..................................................................... 31  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Transient Immunity......................................................5  
6.4 Recommended Operating Conditions.........................5  
6.5 Thermal Information....................................................6  
6.6 Power Ratings.............................................................6  
6.7 Insulation Specifications............................................. 7  
6.8 Safety-Related Certifications...................................... 8  
6.9 Safety Limiting Values.................................................8  
6.10 Electrical Characteristics - DC Specification...........10  
6.11 Switching Characteristics........................................12  
6.12 Insulation Characteristics Curves........................... 13  
6.13 Typical Characteristics............................................14  
7 Parameter Measurement Information..........................16  
7.1 Test Circuits.............................................................. 16  
Information.................................................................... 31  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (January 2020) to Revision B (October 2020)  
Page  
• 添加了“功能安全”要点....................................................................................................................................1  
Changes from Revision * (October 2018) to Revision A (January 2020)  
Page  
• 更改了新的安全认证........................................................................................................................................... 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
2
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
VCC1  
GND1  
TXD  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCC2  
GND2  
NC  
CANH  
CANL  
VCC2  
RXD  
NC  
NC  
GND2  
GND2  
GND1  
Not to scale  
5-1. DW Package 16-Pin SOIC Top View  
5-1. Pin Functions16 Pins  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
1
VCC1  
GND1  
TXD  
NC  
Digital-side supply voltage, Side 1  
I
2
Digital-side ground connection, Side 1  
CAN transmit data input (LOW for dominant and HIGH for recessive bus states)  
Not connected  
3
4
5
RXD  
NC  
O
CAN receive data output (LOW for dominant and HIGH for recessive bus states)  
Not connected  
6
7
NC  
Not connected  
8
GND1  
Digital-side ground connection, Side 1  
9
GND2  
Transceiver-side ground connection, Side 2  
10  
11  
12  
13  
14  
15  
16  
VCC2  
CANL  
CANH  
NC  
Transceiver-side supply voltage, Side 2. Must be externally connected to pin 16.  
Low-level CAN bus line  
I/O  
I/O  
High-level CAN bus line  
Not connected  
GND2  
VCC2  
Transceiver-side ground connection, Side 2  
Transceiver-side supply voltage, Side 2. Must be externally connected to pin 11.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
VCC1  
TXD  
1
2
3
4
8
7
6
5
VCC2  
CANH  
CANL  
GND2  
RXD  
GND1  
Not to scale  
5-2. DWV Package 8-Pin SOIC Top View  
5-2. Pin Functions8 Pins  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
1
VCC1  
TXD  
Digital-side supply voltage, Side 1  
I
2
CAN transmit data input (LOW for dominant and HIGH for recessive bus states)  
CAN receive data output (LOW for dominant and HIGH for recessive bus states)  
Digital-side ground connection, Side 1  
3
RXD  
O
4
GND1  
GND2  
CANL  
CANH  
VCC2  
5
Transceiver-side ground connection, Side 2  
Low-level CAN bus line  
6
I/O  
I/O  
7
High-level CAN bus line  
8
Transceiver-side supply voltage, Side 2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
4
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
-0.5  
-0.5  
MAX  
UNIT  
V
VCC1  
VCC2  
Supply voltage, side 1  
Supply voltage, side 2  
6
6
V
Logic input and output voltage range (TXD and  
RXD)  
VIO  
-0.5  
VCC1+0.5(3)  
V
IO  
Output current on RXD pin  
-15  
-70  
-70  
-40  
-65  
15  
70  
mA  
V
VBUS  
VBUS_DIFF  
TJ  
Voltage on bus pins (CANH, CANL)  
Differential voltage on bus pins (CANH-CANL)  
Junction temperature  
70  
V
150  
150  
TSTG  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(3) Maximum voltage must not exceed 6 V  
6.2 ESD Ratings  
VALUE  
UNIT  
Electrostatic discharge  
All pins(1)  
±6000  
V
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001  
CANH and CANL to GND2(1)  
±16000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per  
JEDEC specification JESD22-C101  
V
All pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Transient Immunity  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
Pulse 1; CAN bus terminals (CANH, CANL) to  
GND2  
-100  
V
V
V
V
Pulse 2; CAN bus terminals (CANH, CANL) to  
GND2  
75  
ISO7637-2 Transients according to GIFT - ICT  
CAN EMC test specification  
VPULSE  
Pulse 3a; CAN bus terminals (CANH, CANL) to  
GND2  
-150  
100  
Pulse 3b; CAN bus terminals (CANH, CANL) to  
GND2  
6.4 Recommended Operating Conditions  
MIN  
MAX  
1.89  
5.5  
UNIT  
V
Supply Voltage, Side 1, 1.8-V operation  
VCC1  
1.71  
Supply Voltage, Side 1, 2.5-V, 3.3-V and 5.5-V operation  
2.25  
4.5  
V
VCC2  
TA  
Supply Voltage, Side 2  
5.5  
V
Operating ambient temperature  
-40  
125  
°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
 
 
 
 
 
 
 
 
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6.5 Thermal Information  
ISO1042-Q1  
THERMAL METRIC(1)  
DW (SOIC)  
16 PINS  
69.9  
DWV (SOIC)  
8 PINS  
100  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
31.8  
40.8  
29.0  
51.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
13.2  
16.8  
ΨJT  
28.6  
49.8  
ΨJB  
RΘJC(bot)  
-
-
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
See 7-3, VCC1 = VCC2 = 5.5 V, TJ =  
150°C, RL = 50 , A repetitive pattern on  
TXD with 1 ms time period, 990 µs LOW  
time, and 10 µs HIGH time.  
PD  
Maximum power dissipation (both sides)  
385  
mW  
See 7-5, VCC1 = VCC2 = 5.5 V, TJ =  
150°C, RL = 50 , Input a 2-V pk-pk 2.5-  
MHz 50% duty cycle differential square  
wave on CANH-CANL  
PD1  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
25  
mW  
mW  
See 7-3, VCC1 = VCC2 = 5.5 V, TJ =  
150°C, RL = 50 , A repetitive pattern on  
TXD with 1 ms time period, 990 µs LOW  
time, and 10 µs HIGH time.  
PD2  
360  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
6
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
 
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6.7 Insulation Specifications  
SPECIFICATIONS  
PARAMETER  
TEST CONDITIONS  
UNIT  
DW-16  
DWV-8  
IEC 60664-1  
CLR  
CPG  
External clearance(1)  
External Creepage(1)  
Side 1 to side 2 distance through air  
>8  
>8.5  
mm  
mm  
Side 1 to side 2 distance across package  
surface  
>8  
>8.5  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
IEC 60112; UL 746A  
>17  
>600  
I
>17  
>600  
I
µm  
V
According to IEC 60664-1  
I-IV  
I-III  
I-IV  
I-III  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
Overvoltage category  
DIN VDE V 0884-11:2017-01(2)  
VIORM Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
1500  
1060  
1500  
7071  
1500  
1060  
1500  
7071  
VPK  
VRMS  
VDC  
AC voltage (sine wave); time-dependent  
dielectric breakdown (TDDB) test;  
VIOWM  
Maximum isolation working voltage  
Maximum transient isolation voltage  
DC voltage  
VTEST = VIOTM, t = 60 s (qualification); VTEST  
= 1.2 × VIOTM, t = 1 s (100% production)  
VIOTM  
VPK  
Test method per IEC 62368-1, 1.2/50 µs  
waveform, VTEST = 1.6 × VIOSM = 10000 VPK 6250  
(qualification)  
Maximum surge isolation voltage  
ISO1042-Q1 (3)  
6250  
4615  
5  
VPK  
VIOSM  
Test method per IEC 62368-1, 1.2/50 µs  
waveform, VTEST = 1.3 × VIOSM = 6000 VPK  
(qualification)  
Maximum surge isolation voltage  
ISO1042B-Q1 (3)  
4615  
VPK  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM  
,
5  
tm = 10 s  
Method a: After environmental tests  
subgroup 1, Vini = VIOTM, tini = 60 s;  
ISO1042-Q1: Vpd(m) = 1.6 × VIORM, tm = 10 s  
ISO1042B-Q1: Vpd(m) = 1.2 × VIORM, tm = 10  
s
5  
5  
5  
5  
qpd  
Apparent charge(4)  
pC  
Method b1: At routine test (100% production)  
and preconditioning (type test), Vini = VIOTM  
,
tini = 1 s;  
ISO1042-Q1: Vpd(m) = 1.875 × VIORM, tm = 1 s  
ISO1042B-Q1: Vpd(m) = 1.5 × VIORM, tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance, input to output(5)  
1
1
pF  
VIO = 0.4 × sin (2 πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
> 1012  
> 1011  
> 109  
2
> 1012  
> 1011  
> 109  
2
VIO = 500 V, 100°C TA 150°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
40/125/  
21  
40/125/  
21  
UL 1577  
VTEST = VISO , t = 60 s (qualification); VTEST  
1.2 × VISO , t = 1 s (100% production)  
=
VISO  
Withstand isolation voltage  
5000  
5000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these  
specifications.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
(2) ISO1042-Q1 is suitable for safe electrical insulation and ISO1042B-Q1 is suitable for basic electrical insulation only within the safety  
ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
6.8 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to EN  
61010-1:2010/A1:2019,  
EN 60950-1:2006/A2:2013  
and EN 62368-1:2014  
Certified according to IEC Recognized under UL  
60950-1, IEC 62368-1 and 1577 Component  
Certified according to DIN  
VDE V 0884-11:2017- 01  
Certified according to  
GB4943.1-2011  
IEC 60601-1  
Recognition Program  
CSA 60950-1-07+A1+A2,  
IEC 60950-1 2nd  
Ed.+A1+A2 and IEC  
62368-1 2nd Ed., for  
pollution degree 2,  
material group I  
EN 61010-1:2010 /  
A1:2019  
ISO1042-Q1: 600 VRMS  
reinforced isolation  
ISO1042B-Q1: 1000 VRMS  
basic isolation  
Maximum transient  
isolation voltage,  
7071 VPK  
;
Maximum repetitive peak ISO1042-Q1: 800 VRMS  
isolation voltage, reinforced isolation  
1500 VPK ISO1042B-Q1: 1060 VRMS Single protection,  
Maximum surge isolation basic isolation 5000 VRMS  
Reinforced insulation,  
Altitude 5000 m, Tropical  
Climate,  
700 VRMS maximum working  
voltage  
;
----------------  
EN 60950-1:2006/A2:2013  
and EN 62368-1:2014  
ISO1042-Q1: 800 VRMS  
reinforced isolation  
ISO1042B-Q1: 1060 VRMS  
basic isolation  
voltage,  
ISO1042-Q1: 6250 VPK  
(Reinforced)  
----------------  
CSA 60601- 1:14 and IEC  
60601-1 Ed. 3.1+A1,  
ISO1042B-Q1: 4615 VPK ISO1042-Q1: 2 MOPP  
(Basic)  
(Means of Patient  
Protection) 250 VRMS (354  
VPK) maximum working  
voltage  
Certificates:  
Reinforced: 40040142  
Basic: 40047657  
Certificate:  
Master contract number:  
220991  
File number: E181974 CQC15001121716 (DW-16) Client ID number: 77311  
CQC18001199096 (DWV-8)  
6.9 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
DW-16 PACKAGE  
325  
RθJA = 69.9°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see 6-1  
RθJA = 69.9°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see 6-1  
RθJA = 69.9°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see 6-1  
RθJA = 69.9°C/W, VI = 1.89 V, TJ = 150°C, TA = 25°C, see 6-1  
496  
mA  
650  
Safety input, output, or supply  
current  
IS  
946  
Safety input, output, or total  
power  
PS  
TS  
1788 mW  
150 °C  
RθJA = 69.9°C/W, TJ = 150°C, TA = 25°C, see 6-3  
Maximum safety temperature  
DWV-8 PACKAGE  
227  
RθJA = 100°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see 6-2  
RθJA = 100°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see 6-2  
RθJA = 100°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see 6-2  
RθJA = 100°C/W, VI = 1.89 V, TJ = 150°C, TA = 25°C, see 6-2  
347  
mA  
454  
Safety input, output, or supply  
current  
IS  
661  
Safety input, output, or total  
power  
PS  
TS  
1250 mW  
150 °C  
RθJA = 100°C/W, TJ = 150°C, TA = 25°C, see 6-4  
Maximum safety temperature  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
8
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
 
 
 
 
 
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6.10 Electrical Characteristics - DC Specification  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CHARACTERISTICS  
VCC1 =1.71 V to 1.89 V, TXD = 0 V, bus  
dominant  
2.3  
2.4  
1.2  
1.3  
3.5  
3.5  
2.1  
2.1  
mA  
mA  
mA  
mA  
VCC1 = 2.25 V to 5.5 V, TXD = 0 V, bus  
dominant  
ICC1  
Supply current Side 1  
Supply current Side 2  
VCC1 = 1.71 V to 1.89 V, TXD = VCC1, bus  
recessive  
VCC1 = 2.25 V to 5.5 V, TXD = VCC1, bus  
recessive  
43  
73.4  
4.1  
mA  
mA  
V
TXD = 0 V, bus dominant, RL = 60 Ω  
TXD = VCC1, bus recessive, RL = 60 Ω  
ICC2  
2.8  
UVVCC1 Rising under voltage detection, Side 1  
UVVCC1 Falling under voltage detection, Side 1  
VHYS(UVC Hysterisis voltage on VCC1 undervoltage  
1.7  
1.0  
75  
V
125  
mV  
lock-out  
C1)  
UVVCC2 Rising under voltage detection, side 2  
UVVCC2 Falling under voltage detection, side 2  
VHYS(UVC Hysterisis voltage on VCC2 undervoltage  
4.2  
4.0  
4.45  
4.25  
V
V
3.8  
200  
mV  
lock-out  
C2)  
TXD TERMINAL  
VIH  
VIL  
IIH  
High level input voltage  
0.7×VCC1  
V
V
Low level input voltage  
0.3×VCC1  
1
High level input leakage current  
Low level input leakage current  
TXD = VCC1  
TXD = 0V  
uA  
uA  
IIL  
-20  
VIN = 0.4 x sin(2 x πx 1E+6 x t) + 2.5 V,  
VCC1 = 5 V  
CI  
Input capacitance  
3
pF  
RXD TERMINAL  
See 7-4, IO = -4 mA for 4.5 V VCC1  
5.5 V  
-0.4  
-0.2  
-0.1  
-0.1  
-0.2  
-0.07  
-0.04  
-0.045  
0.2  
V
V
V
V
V
V
V
V
See 7-4, IO = -2 mA for 3.0 V VCC1  
3.6 V  
VOH  
VCC1  
-
High level output voltage  
See 7-4, IO = -1 mA for 2.25 V VCC1  
2.75 V  
See 7-4, IO = -1 mA for 1.71 V VCC1  
1.89 V  
See 7-4, IO = 4 mA for 4.5 V VCC1  
5.5 V  
0.4  
0.2  
0.1  
0.1  
See 7-4, IO = 2 mA for 3.0 V VCC1  
3.6 V  
0.07  
VOL  
Low level output voltage  
See 7-4, IO = 1 mA for 2.25 V VCC1  
2.75 V  
0.035  
0.04  
See 7-4, IO = 1 mA for 1.71 V VCC1  
1.89 V  
DRIVER ELECTRICAL CHARACTERISTICS  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
10  
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
See 7-1 and 7-2, TXD = 0 V, 50  
Ω≤RL 65 Ω, CL = open  
Bus output voltage(Dominant), CANH  
2.75  
4.5  
V
VO(DOM)  
See 7-1 and 7-2, TXD = 0 V, 50 Ω  
RL 65 Ω, CL = open  
Bus output voltage(Dominant), CANL  
0.5  
2.0  
2.25  
3.0  
V
V
Bus output voltage(recessive), CANH and  
CANL  
0.5 x  
VCC2  
See 7-1 and 7-2, TXD = VCC1, RL =  
open  
VO(REC)  
Differential output voltage, CANH-CANL See 7-1 and 7-2, TXD = 0 V, 45 Ω  
(dominant)  
1.4  
3.0  
V
RL 50 Ω, CL = open  
Differential output voltage, CANH-CANL See 7-1 and 7-2, TXD = 0 V, 50 Ω  
VOD(DOM)  
1.5  
3.0  
V
(dominant)  
RL 65 Ω, CL = open  
Differential output voltage, CANH-CANL See 7-1 and 7-2, TXD = 0 V, RL =  
1.5  
5.0  
V
(dominant)  
Differential output voltage, CANH-CANL See 7-1 and 7-2, TXD = VCC1, RL =  
2240 Ω, CL = open  
-120.0  
-50.0  
-400.0  
-100.0  
12.0  
50.0  
400.0  
mV  
mV  
mV  
mA  
mA  
mA  
(recessive)  
60 Ω, CL = open  
VOD(REC)  
Differential output voltage, CANH-CANL  
(recessive)  
See 7-1 and 7-2, TXD = VCC1, RL =  
open, CL = open  
DC Output symmetry (VCC2 - VO(CANH)  
VO(CANL)  
-
See 7-1 and 7-2, RL = 60 Ω, CL =  
open, TXD = VCC1 or 0 V  
VSYM_DC  
)
See 7-9, VCANH = -5 V to 40 V, CANL  
= open, TXD = 0 V  
ISO(SS_DO Short circuit current steady state output  
current, dominant  
M)  
See 7-9, VCANL = -5 V to 40 V, CANH  
100.0  
5.0  
= open, TXD = 0 V  
ISO(SS_RE Short circuit current steady state output  
See 7-9, -27 V VBUS 32 V,  
-5.0  
current, recessive  
VBUS = CANH = CANL, TXD = VCC1  
C)  
RECEIVER ELECTRICAL CHARACTERISTICS  
Differential input threshold voltage  
500.0  
400.0  
900.0  
See 7-4 and 7-1, |VCM| 20 V  
VIT  
See 7-4 and 7-1, 20 V |VCM| ≤  
30 V  
Differential input threshold voltage  
1000.0  
mV  
Hysteresis voltage for differential input  
threshold  
VHYS  
120  
See 7-4 and 7-1  
See 7-4 and 7-1  
VCM  
Input common mode range  
-30.0  
30.0  
4.8  
V
CANH = CANL = 5 V, VCC2 to GND via 0  
Ωand 47 kΩresistor  
IOFF(LKG) Power-off bus input leakage current  
uA  
Input capacitance to ground (CANH or  
CANL)  
CI  
TXD = VCC1  
TXD = VCC1  
24.0  
12.0  
30  
15  
pF  
pF  
Differential input capacitance (CANH-  
CANL)  
CID  
RID  
RIN  
Differential input resistance  
30.0  
15.0  
80.0  
40.0  
TXD = VCC1 ; -30 V VCM +30 V  
TXD = VCC1 ; -30 V VCM +30 V  
kΩ  
kΩ  
Input resistance (CANH or CANL)  
Input resistance matching: (1 -  
RIN(CANH)/RIN(CANL)) x 100%  
RIN(M)  
VCANH = VCANL = 5 V  
-2.0  
2.0  
%
THERMAL SHUTDOWN  
TTSD  
Thermal shutdown temperature  
170  
5
TTSD_HYS  
Thermal shutdown hysteresis  
T
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6.11 Switching Characteristics  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DEVICE SWITCHING CHARACTERISTICS  
See 7-6, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns; 1.71 V ≤  
70  
125  
198.0  
192.0  
215.0  
ns  
V
CC1 1.89 V  
tPROP(LOO Total loop delay, driver input TXD to  
receiver RXD, recessive to dominant  
P1)  
See 7-6, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns; 2.25 V ≤  
70  
70  
70  
122  
155  
152  
ns  
ns  
ns  
V
CC1 5.5 V  
See 7-6, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns; 1.71 V VCC1  
1.89 V  
tPROP(LOO Total loop delay, driver input TXD to  
receiver RXD, dominant to recessive  
P2)  
See 7-6, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns; 2.25 V ≤  
215.0  
300.0  
V
CC1 5.5 V  
Time for device to return to normal  
Re-enable time after Undervoltage event operation from VCC1 or VCC2 under  
voltage event  
tUV_RE_EN  
µs  
ABLE  
CMTI  
Common mode transient immunity  
85  
100  
kV/µs  
VCM = 1200 VPK, See 7-10  
DRIVER SWITCHING CHARACTERISTICS  
Propagation delay time, HIGH TXD to  
driver recessive  
tpHR  
76  
61  
120  
120  
Propagation delay time, LOW TXD to  
driver dominant  
tpLD  
See 7-3, RL = 60 Ωand CL = 100  
pF; input rise/fall time (10% to 90%) on  
TXD =1 ns  
ns  
tsk(p)  
tR  
Pulse skew (|tpHR - tpLD|)  
14  
45  
45  
Differential output signal rise time  
Differential output signal fall time  
tF  
See 7-3 and 9-4 , RTERM = 60 ,  
CSPLIT = 4.7 nF, CL = open, RL = open,  
TXD = 250 kHz, 1 MHz  
Output symmetry (dominant or recessive)  
(VO(CANH) + VO(CANL)) / VCC2  
VSYM  
0.9  
1.2  
1.1  
3.8  
V/V  
ms  
tTXD_DTO Dominant time out  
See 7-8, RL = 60 Ωand CL = open  
RECEIVER SWITCHING CHARACTERISTICS  
Propagation delay time, bus recessive  
input to RXD high output  
tpRH  
75  
63  
130  
130  
ns  
ns  
Propogation delay time, bus dominant  
input to RXD low output  
tpDL  
See 7-5, CL(RXD) = 15 pF  
tR  
tF  
Output signal rise time(RXD)  
Output signal fall time(RXD)  
1.4  
1.8  
ns  
ns  
FD TIMING PARAMETERS  
See 7-7, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns  
Bit time on CAN bus output pins with  
tBIT(TXD) = 500 ns  
435.0  
155.0  
530.0  
210.0  
ns  
ns  
tBIT(BUS)  
See 7-7, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns  
Bit time on CAN bus output pins with  
tBIT(TXD) = 200 ns  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
12  
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
See 7-7, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns  
Bit time on RXD output pins with tBIT(TXD)  
= 500 ns  
400  
550.0  
ns  
tBIT(RXD)  
See 7-7, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns  
Bit time on RXD output pins with tBIT(TXD)  
= 200 ns  
120.0  
-65.0  
220.0  
40.0  
ns  
ns  
See 7-7, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns; ΔtREC = tBIT(RXD)  
- tBIT(BUS)  
Receiver timing symmetry with tBIT(TXD)  
500 ns  
=
=
tREC  
See 7-7, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns; ΔtREC =  
tBIT(RXD) - tBIT(BUS)  
Receiver timing symmetry with tBIT(TXD)  
200 ns  
-45.0  
15.0  
ns  
6.12 Insulation Characteristics Curves  
1000  
700  
VCC1 =1.89 V  
VCC1 = 1.89 V  
VCC1 = 2.75 V  
VCC1 = 3.6 V  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VCC1 = 2.75 V  
VCC1 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
600  
500  
400  
300  
200  
100  
0
VCC1 = VCC2 = 5.5 V  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D003  
D001  
6-1. Thermal Derating Curve for Limiting Current  
6-2. Thermal Derating Curve for Limiting Current  
per VDE for DW-16 Package  
per VDE for DWV-8 Package  
2000  
1800  
1600  
1400  
1200  
1000  
800  
1400  
1200  
1000  
800  
600  
400  
200  
0
600  
400  
200  
0
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D004  
D002  
6-3. Thermal Derating Curve for Limiting Power 6-4. Thermal Derating Curve for Limiting Power  
per VDE for DW-16 Package per VDE for DWV-8 Package  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
 
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6.13 Typical Characteristics  
50  
45  
40  
35  
30  
25  
2.3  
2.25  
2.2  
VCC1=1.71 V  
VCC1=1.8 V  
VCC1=2.5 V  
VCC1=3.3 V  
VCC1=5 V  
VCC1=5.5 V  
2.15  
2.1  
2.05  
2
1.95  
1.9  
20  
15  
10  
5
1.85  
1.8  
Recessive  
Dominant  
500 kbps  
1 Mbps  
2 Mbps  
5 Mbps  
1.75  
1.7  
1.65  
1.6  
0
1.55  
4.5 4.6 4.7 4.8 4.9  
5
VCC2 (V)  
5.1 5.2 5.3 5.4 5.5  
0
0.5  
1
1.5  
2
2.5  
3
Data Rate (Mbps)  
3.5  
4
4.5  
5
D001  
D002  
VCC1 = 5 V  
CL(RXD) = 15 pF  
VCC2 = 5 V  
Temp = 25°C  
CL(RXD) = 15 pF  
RL = 60 Ω  
RL = 60 Ω  
Temp = 25°C  
6-5. ICC2 vs VCC2 for Recessive, Dominant and  
6-6. ICC1 vs Datarate  
Different CAN Datarates  
45  
40  
35  
30  
25  
20  
3
2.75  
2.5  
2.25  
2
Recessive  
Dominant  
500 kbps  
1 Mbps  
2 Mbps  
5 Mbps  
1.75  
1.5  
1.25  
1
Recessive  
Dominant  
500 kbps  
1 Mbps  
2 Mbps  
5 Mbps  
15  
10  
5
0
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D003  
D004  
VCC1 = VCC2 = 5 V  
CL(RXD) = 15 pF  
VCC1 = VCC2 = 5 V  
Temp = 25°C  
CL(RXD) = 15 pF  
RL = 60 Ω  
RL = 60 Ω  
6-7. ICC2 vs Ambient Temperature for Recessive,  
Dominant and Different CAN Datarates  
6-8. : ICC1 vs Ambient Temperature for  
Recessive, Dominant and Different CAN Datarates.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
180  
170  
160  
150  
140  
130  
120  
110  
100  
3
2.5  
2
tPROP(LOOP1)  
tPROP(LOOP2)  
1.5  
1
0.5  
0
-55  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-35  
-15  
5
25 45  
Temperature (°C)  
65  
85  
105 125  
Temperature (èC)  
D005  
D001  
VCC1 = VCC2 = 5 V  
CL(RXD) = 15 pF  
RL = 60 Ω  
VCC = 5 V  
CL = Open  
VCC1 = 5 V  
RL = 60 Ω  
6-9. Loop Delay vs Ambient Temperature  
6-10. VOD(DOM) Over Temperature  
3
2.5  
2
1.5  
1
0.5  
VCC1 = VCC2 = 5 V  
CL(RXD) = 15 pF  
CL = 100 pF  
RL = 60 Ω  
0
4.5 4.6 4.7 4.8 4.9  
5
VCC (V)  
5.1 5.2 5.3 5.4 5.5  
6-12. Typical TXD, RXD, CANH and CANL  
D002  
Waveforms at 1 Mbps  
VCC1 = 5 V  
CL = Open  
RL = 60 Ω  
Temp = 25°C  
6-11. VOD(DOM) Over VCC  
TXD = VCC1  
VCC1 = VCC2 = 5 V  
RL = 60 Ω  
TXD = VCC1  
VCC1 = VCC2 = 5 V  
RL = 60 Ω  
6-13. Glitch Free Power Up on VCC1 CAN Bus  
6-14. Glitch Free Power Up on VCC2 CAN Bus  
Remains Recessive  
Remains Recessive  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Test Circuits  
IO(CANH)  
CANH  
II  
TXD  
0 or  
Vcc1  
VOD  
RL  
VO(CANH)  
V
O(CANL)  
+
2
CANL  
IO(CANL)  
GND1  
GND2  
VI  
VOC  
VO(CANH)  
VO(CANL )  
GND1  
GND2  
7-1. Driver Voltage, Current and Test Definitions  
Dominant  
V
O
(CANH)  
» 3.5 V  
Recessive  
2.5 V  
»
V
1.5 V  
O (CANL)  
»
7-2. Bus Logic State Voltage Definitions  
Vcc  
0 V  
CANH  
CANL  
V
Vcc/2  
Vcc/2  
I
TXD  
RL  
VO  
CL  
t
t
PLH  
PHL  
V
O(D)  
90%  
10%  
0.9V  
VI  
V
O
0.5V  
(SEE NOTE A)  
V
t
t
f
O(R)  
r
A. The input pulse is supplied by a generator having the following characteristics: PRR 125 kHz, 50% duty cycle,  
tr 6 ns, tf 6 ns, ZO = 50 .  
7-3. Driver Test Circuit and Voltage Waveforms  
CANH  
IO  
VI(CANH) VI(CANL)  
RXD  
+
VIC  
VID  
CANL  
=
2
VI(CANH)  
VO  
VI(CANL)  
GND2  
GND1  
7-4. Receiver Voltage and Current Definitions  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
16  
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
 
 
 
 
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
CANH  
CANL  
I
O
3.5 V  
RXD  
V
2.4 V  
I
2 V  
1.5 V  
t
t
pHL  
pLH  
V
V
OH  
O
V
CL(RXD)  
90 %  
10 %  
I
0.7 Vcc 1  
(SEE NOTE A)  
0.3 Vcc 1  
1 .5 V  
V
O
V
t
t
f
OL  
r
GND 1  
GND 2  
A. The input pulse is supplied by a generator having the following characteristics: PRR 125 kHz, 50% duty cycle,  
tr 6 ns, tf 6 ns, ZO = 50 .  
7-5. Receiver Test Circuit and Voltage Waveforms  
7-1. Receiver Differential Input Voltage Threshold Test  
INPUT  
OUTPUT  
VCANH  
-29.5 V  
30.5 V  
VCANL  
-30.5 V  
29.5 V  
|VID|  
1000 mV  
1000 mV  
900 mV  
900 mV  
500 mV  
500 mV  
400 mV  
400 mV  
X
RXD  
L
L
VOL  
-19.55 V  
20.45 V  
-19.75 V  
20.25 V  
-29.8 V  
30.2 V  
-20.45 V  
19.55 V  
-20.25 V  
19.75 V  
-30.2 V  
29.8 V  
L
L
H
H
H
H
H
VOH  
Open  
Open  
CANH  
CANL  
TXD  
RXD  
CL  
RL  
V
Vcc  
I
50%  
TXD Input  
0 V  
V
t
loop2  
t
loop1  
OH  
50%  
50%  
RXD Output  
+
V
OL  
CL(RXD)  
GND1  
VO  
_
7-6. tLOOP Test Circuit and Voltage Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
 
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
VI  
70%  
TXD  
CANH  
30%  
30%  
0V  
tBIT(TXD)  
TXD  
5 x tBIT  
VI  
CL  
RL  
CANL  
tBIT(BUS)  
900 mV  
VDIFF  
RXD  
500 mV  
CL(RXD)  
GND1  
VO  
VOH  
70%  
RXD  
30%  
tBIT(RXD)  
VOL  
7-7. CAN FD Timing Parameter Measurement  
Vcc  
V
I
CANH  
CANH  
TXD  
0 V  
R
V
C
OD  
L
L
V
OD(D)  
(see Note A )  
GND 1  
900 mV  
V
I
V
OD  
500 mV  
tTXD_DTO  
0 V  
A. The input pulse is supplied by a generator having the following characteristics: tr 6 ns, tf 6 ns, ZO = 50 .  
7-8. Dominant Time-out Test Circuit and Voltage Waveforms  
200 s  
IOS  
IOS  
CANH  
TXD  
VBUS  
IOS  
+
VBUS  
CANL  
VBUS  
0V  
0V  
œ
GND2  
or  
VBUS  
VBUS  
7-9. Driver Short-Circuit Current Test Circuit and Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
18  
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
 
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
C = 0.1 F  
m
1%  
V
V
CC 1  
CC2  
V
CC 1  
±
CANH  
C = 0.1 F ±1%  
m
+
GND1  
TXD  
GND  
2
V
V
OL  
60 W  
OH  
or  
S1  
CANL  
0 V  
RXD  
V
V
OL  
OH  
or  
1 k W  
GND 1  
GND 2  
C
L
= 15 pF  
(includes probe and  
jig capacitance )  
V
CM  
7-10. Common-Mode Transient Immunity Test Circuit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ISO1042-Q1 device is a digitally isolated CAN transceiver that offers ±70-V DC bus fault protection and ±30-  
V common-mode voltage range. The device supports up to 5-Mbps data rate in CAN FD mode allowing much  
faster transfer of payload compared to classic CAN. The ISO1042-Q1 device has an isolation withstand voltage  
of 5000 VRMS and is available in basic and reinforced isolation with a surge test voltage of 6 kVPK and 10 kVPK  
respectively. The device can operate from 1.8-V, 2.5-V, 3.3-V, and 5-V supplies on side 1 and a 5-V supply on  
side 2. This supply range is of particular advantage for applications operating in harsh industrial environments  
because the low voltage on side 1 enables the connection to low-voltage microcontrollers for power  
conservation, whereas the 5 V on side 2 maintains a high signal-to-noise ratio of the bus signals.  
8.2 Functional Block Diagram  
VCC1  
VCC2  
CANH  
CANL  
+
RXD  
œ
TXD  
GND1  
GND2  
8.3 Feature Description  
8.3.1 CAN Bus States  
The CAN bus has two states during operation: dominant and recessive. A dominant bus state, equivalent to logic  
low, is when the bus is driven differentially by a driver. A recessive bus state is when the bus is biased to a  
common mode of VCC / 2 through the high-resistance internal input resistors of the receiver, equivalent to a logic  
high. The host microprocessor of the CAN node uses the TXD pin to drive the bus and receives data from the  
bus on the RXD pin. See 8-1 and 8-2.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
20  
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
 
 
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
4
3
2
1
CANH  
Vdiff(D)  
Vdiff(R)  
CANL  
Time (t)  
Recessive  
Logic H  
Dominant  
Logic L  
Recessive  
Logic H  
8-1. Bus States (Physical Bit Representation)  
CANH  
RXD  
VCC / 2  
CANL  
8-2. Simplified Recessive Common Mode Bias and Receiver  
8.3.2 Digital Inputs and Outputs: TXD (Input) and RXD (Output)  
The VCC1 supply for the isolated digital input and output side of the device can be supplied by 1.8-V, 2.5-V, 3.3-V,  
and 5-V supplies and therefore the digital inputs and outputs are 1.8-V, 2.5-V, 3.3-V, and 5-V compatible.  
备注  
The TXD pin is very weakly internally pulled up to VCC1. An external pullup resistor should be used to  
make sure that the TXD pin is biased to recessive (high) level to avoid issues on the bus if the  
microprocessor does not control the pin and the TXD pin floats. The TXD pullup strength and CAN bit  
timing require special consideration when the device is used with an open-drain TXD output on the  
CAN controller of the microprocessor. An adequate external pullup resistor must be used to make sure  
that the TXD output of the microprocessor maintains adequate bit timing input to the input on the  
transceiver.  
8.3.3 Protection Features  
8.3.3.1 TXD Dominant Timeout (DTO)  
The TXD DTO circuit prevents the transceiver from blocking network communication in the event of a hardware  
or software failure where the TXD pin is held dominant longer than the timeout period, tTXD_DTO. The DTO circuit  
timer starts on a falling edge on the TXD pin. The DTO circuit disables the CAN bus driver if no rising edge  
occurs before the timeout period expires, which frees the bus for communication between other nodes on the  
network. The CAN driver is activated again when a recessive signal occurs on the TXD pin, clearing the TXD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
DTO condition. The receiver and RXD pin still reflect activity on the CAN bus, and the bus terminals are biased  
to the recessive level during a TXD dominant timeout.  
TXD fault stuck dominant  
Example: PCB failure or bad software  
Fault is repaired and transmission  
capability is restored  
TXD  
(driver)  
tTXD_DTO  
Driver disabled freeing bus for other nodes  
Bus would be stuck dominant, blocking communication for the  
whole network but TXD DTO prevents this and frees the bus for  
communication after the tTXD_DTO time.  
Normal CAN  
communication  
CAN  
Bus  
Signal  
tTXD_DTO  
Communication from  
other bus nodes  
Communication from  
repaired nodes  
RXD  
(receiver)  
Communication from  
local node  
Communication from  
other bus nodes  
Communication from  
repaired nodes  
8-3. Example Timing Diagram for TXD DTO  
备注  
The minimum dominant TXD time (tTXD_DTO) allowed by the TXD DTO circuit limits the minimum  
possible transmitted data rate of the device. The CAN protocol allows a maximum of eleven  
successive dominant bits (on TXD) for the worst case, where five successive dominant bits are  
followed immediately by an error frame. This, along with the tTXD_DTO minimum, limits the minimum  
data rate. Calculate the minimum transmitted data rate with 方程1.  
Minimum Data Rate = 11 / tTXD_DTO  
(1)  
8.3.3.2 Thermal Shutdown (TSD)  
If the junction temperature of the device exceeds the thermal shutdown threshold (TTSD), the device turns off the  
CAN driver circuits, blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the  
recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown  
condition is cleared when the junction temperature drops at least the thermal shutdown hysteresis temperature  
(TTSD_HYST) below the thermal shutdown temperature (TTSD) of the device.  
8.3.3.3 Undervoltage Lockout and Default State  
The supply pins have undervoltage detection that places the device in protected or default mode which protects  
the bus during an undervoltage event on the VCC1 or VCC2 supply pins. If the bus-side power supply, VCC2, is  
less than about 4 V, the power shutdown circuits in the ISO1042-Q1 device disable the transceiver to prevent  
false transmissions because of an unstable supply. If the VCC1 supply is still active when this occurs, the receiver  
output (RXD) goes to a default HIGH (recessive) value. 8-1 summarizes the undervoltage lockout and fail-  
safe behavior.  
8-1. Undervoltage Lockout and Default State  
VCC1  
VCC2  
DEVICE STATE  
BUS OUTPUT  
Per Device State and TXD  
Recessive  
RXD  
> UVVCC1  
<UVVCC1  
> UVVCC2  
> UVVCC2  
Functional  
Mirrors Bus  
Undetermined  
Protected  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
22  
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
8-1. Undervoltage Lockout and Default State (continued)  
VCC1  
VCC2  
DEVICE STATE  
BUS OUTPUT  
RXD  
>UVVCC1  
< UVVCC2  
Protected  
High Impedance  
Recessive (Default High)  
备注  
After an undervoltage condition is cleared and the supplies have returned to valid levels, the device  
typically resumes normal operation in 300 µs.  
8.3.3.4 Floating Pins  
Pullup and pulldown resistors should be used on critical pins to place the device into known states if the pins  
float. The TXD pin should be pulled up through a resistor to the VCC1 pin to force a recessive input level if the  
microprocessor output to the pin floats.  
8.3.3.5 Unpowered Device  
The device is designed to be ideal passive or no load to the CAN bus if it is unpowered. The bus pins (CANH,  
CANL) have extremely low leakage currents when the device is unpowered to avoid loading down the bus which  
is critical if some nodes of the network are unpowered while the rest of the of network remains in operation.  
8.3.3.6 CAN Bus Short Circuit Current Limiting  
The device has two protection features that limit the short circuit current when a CAN bus line has a short-circuit  
fault condition. The first protection feature is driver current limiting (both dominant and recessive states) and the  
second feature is TXD dominant state time out to prevent permanent higher short circuit current of the dominant  
state during a system fault. During CAN communication the bus switches between dominant and recessive  
states, therefore the short circuit current may be viewed either as the instantaneous current during each bus  
state or as an average current of the two states. For system current (power supply) and power considerations in  
the termination resistors and common-mode choke ratings, use the average short circuit current. Determine the  
ratio of dominant and recessive bits by the data in the CAN frame plus the following factors of the protocol and  
PHY that force either recessive or dominant at certain times:  
Control fields with set bits  
Bit stuffing  
Interframe space  
TXD dominant time out (fault case limiting)  
These factors ensure a minimum recessive amount of time on the bus even if the data field contains a high  
percentage of dominant bits. The short circuit current of the bus depends on the ratio of recessive to dominant  
bits and their respective short circuit currents. Use 方程2 to calculate the average short circuit current.  
IOS(AVG) = %Transmit × [(%REC_Bits × IOS(SS)_REC) + (%DOM_Bits × IOS(SS)_DOM)] + [%Receive × IOS(SS)_REC  
]
(2)  
where  
IOS(AVG) is the average short circuit current  
%Transmit is the percentage the node is transmitting CAN messages  
%Receive is the percentage the node is receiving CAN messages  
%REC_Bits is the percentage of recessive bits in the transmitted CAN messages  
%DOM_Bits is the percentage of dominant bits in the transmitted CAN messages  
IOS(SS)_REC is the recessive steady state short circuit current  
IOS(SS)_DOM is the dominant steady state short circuit current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
备注  
Consider the short circuit current and possible fault cases of the network when sizing the power  
ratings of the termination resistance and other network components.  
8.4 Device Functional Modes  
8-2 and 8-3 list the driver and receiver functions. 8-4 lists the functional modes for the ISO1042-Q1  
device.  
8-2. Driver Function Table  
INPUT  
TXD(1)  
L
OUTPUTS  
DRIVEN BUS STATE  
CANH(1)  
CANL(1)  
H
Z
L
Z
Dominant  
Recessive  
H
(1) H = high level, L = low level, Z = common mode (recessive) bias to VCC / 2. See 8-1 and 8-2  
for bus state and common mode bias information.  
8-3. Receiver Function Table  
CAN DIFFERENTIAL INPUTS  
DEVICE MODE  
BUS STATE  
RXD PIN(1)  
(3)  
VID = VCANH VCANL  
Dominant  
?
L
?
VID VIT(MAX)  
VIT(MIN) < VID < VIT(MAX)  
VID VIT(MIN)  
Normal  
Recessive  
Open  
H
H
Open (VID 0 V)  
(1) H = high level, L = low level, ? = indeterminate.  
8-4. Function Table  
DRIVER  
OUTPUTS  
RECEIVER  
INPUTS(1)  
DIFFERENTIAL INPUTS  
OUTPUT  
RXD  
BUS STATE  
BUS STATE  
VID = CANHCANL(3)  
TXD  
L(2)  
H
CANH  
CANL  
H
Z
Z
Z
L
Z
Z
Z
DOMINANT  
RECESSIVE  
RECESSIVE  
RECESSIVE  
L
?
DOMINANT  
?
VID VIT(MAX)  
VIT(MIN) < VID < VIT(MAX)  
VID VIT(MIN)  
Open  
X
H
H
RECESSIVE  
RECESSIVE  
Open (VID 0 V)  
(1) H = high level; L = low level; X = irrelevant; ? = indeterminate; Z = high impedance  
(2) Logic low pulses to prevent dominant time-out.  
(3) See Receiver Electrical Characteristics section for input thresholds.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
24  
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
 
 
 
 
 
 
 
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The ISO1042-Q1 device can be used with other components from Texas Instruments such as a microcontroller,  
a transformer driver, and a linear voltage regulator to form a fully isolated CAN interface.  
9.2 Typical Application  
4
8
1
3
5
4
GND  
D2  
IN  
OUT  
EN  
SN6505-Q1  
3
2
7
6
3.3 V  
TPS76350-Q1  
EN  
VCC  
D1  
2
GND  
NC  
1
5
CLK  
11,16  
3.3 V  
1
VCC1  
VCC2  
2
3
GND1  
VDD  
14  
13  
NC  
TXD  
RXD  
TXD  
ISO1042-Q1  
4
5
NC  
CANH  
MCU  
12  
RXD  
CANL  
NC  
Optional bus  
protection  
function  
6
DGND  
7
8
NC  
9,10,15  
GND1  
GND2  
Galvanic  
Isolation Barrier  
Digital  
Ground  
ISO  
Ground  
9-1. Application Circuit With ISO1042-Q1 in 16-SOIC Package  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
 
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
4
8
1
3
5
4
GND  
D2  
IN  
OUT  
EN  
SN6505-Q1  
3
2
7
6
3.3 V  
TPS76350-Q1  
EN  
VCC  
D1  
2
GND  
NC  
1
5
CLK  
8
3.3 V  
1
VCC1  
TXD  
VCC2  
VDD  
7
6
2
3
CANH  
TXD  
MCU  
RXD  
CANL  
ISO1042-Q1  
RXD  
Optional bus  
protection  
function  
DGND  
4
5
GND2  
GND1  
Galvanic  
Isolation Barrier  
Digital  
Ground  
ISO  
Ground  
9-2. Application Circuit With ISO1042-Q1 in 8-SOIC Package  
9.2.1 Design Requirements  
Unlike an optocoupler-based solution, which requires several external components to improve performance,  
provide bias, or limit current, the ISO1042-Q1 device only requires external bypass capacitors to operate.  
9.2.2 Detailed Design Procedure  
9.2.2.1 Bus Loading, Length and Number of Nodes  
The ISO 11898-2 Standard specifies a maximum bus length of 40 m and maximum stub length of 0.3 m.  
However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a  
bus. A large number of nodes requires transceivers with high input impedance such as the ISO1042-Q1  
transceivers.  
Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO  
11898-2 Standard. These organizations and standards have made system-level trade-offs for data rate, cable  
length, and parasitic loading of the bus. Examples of some of these specifications are ARINC825, CANopen,  
DeviceNet, and NMEA2000.  
The ISO1042-Q1 device is specified to meet the 1.5-V requirement with a 50-load, incorporating the worst  
case including parallel transceivers. The differential input resistance of the ISO1042-Q1 device is a minimum of  
30 k. If 100 ISO1042-Q1 transceivers are in parallel on a bus, this requirement is equivalent to a 300-Ω  
differential load worst case. That transceiver load of 300 in parallel with the 60 gives an equivalent loading  
of 50 . Therefore, the ISO1042-Q1 device theoretically supports up to 100 transceivers on a single bus  
segment. However, for CAN network design margin must be given for signal loss across the system and cabling,  
parasitic loadings, network imbalances, ground offsets and signal integrity, therefore a practical maximum  
number of nodes is typically much lower. Bus length may also be extended beyond the original ISO 11898  
standard of 40 m by careful system design and data-rate tradeoffs. For example, CANopen network design  
guidelines allow the network to be up to 1 km with changes in the termination resistance, cabling, less than 64  
nodes, and a significantly lowered data rate.  
This flexibility in CAN network design is one of the key strengths of the various extensions and additional  
standards that have been built on the original ISO 11898-2 CAN standard. Using this flexibility requires the  
responsibility of good network design and balancing these tradeoffs.  
9.2.2.2 CAN Termination  
The ISO11898 standard specifies the interconnect to be a single twisted pair cable (shielded or unshielded) with  
120-Ωcharacteristic impedance (ZO). Resistors equal to the characteristic impedance of the line should be used  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
26  
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
to terminate both ends of the cable to prevent signal reflections. Unterminated drop-lines (stubs) connecting  
nodes to the bus should be kept as short as possible to minimize signal reflections. The termination may be in a  
node, but if nodes are removed from the bus, the termination must be carefully placed so that it is not removed  
from the bus.  
Node 1  
Node 2  
Node 3  
Node n  
(with termination)  
MCU or DSP  
MCU or DSP  
MCU or DSP  
MCU or DSP  
CAN  
Controller  
CAN  
Controller  
CAN  
Controller  
CAN  
Controller  
CAN  
Transceiver  
CAN  
Transceiver  
CAN  
Transceiver  
CAN  
Transceiver  
RTERM  
RTERM  
9-3. Typical CAN Bus  
Termination may be a single 120-Ω resistor at the end of the bus, either on the cable or in a terminating node. If  
filtering and stabilization of the common-mode voltage of the bus is desired, then split termination can be used.  
(See 9-4). Split termination improves the electromagnetic emissions behavior of the network by eliminating  
fluctuations in the bus common-mode voltages at the start and end of message transmissions.  
Standard Termination  
Split Termination  
CANH  
CANH  
RTERM / 2  
CAN  
Transceiver  
CAN  
Transceiver  
RTERM  
CSPLIT  
RTERM / 2  
CANL  
CANL  
9-4. CAN Bus Termination Concepts  
9.2.3 Application Curve  
9-5. Typical TXD, RXD, CANH and CANL Waveforms at 1 Mbps  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
To make sure operation is reliable at all data rates and supply voltages, a 0.1-µF bypass capacitor is  
recommended at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to  
the supply pins as possible. In addition, a bulk capacitance, typically 4.7 μF, should be placed near the VCC2  
supply pin. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as TI's SN6505B. For such  
applications, detailed power supply design, and transformer selection recommendations are available in the  
SN6505 Low-Noise 1-A Transformer Drivers for Isolated Power Supplies data sheet.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
28  
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see 11.2). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
Suggested placement and routing of ISO1042-Q1 bypass capacitors and optional TVS diodes is shown in 图  
11-2 and 11-3. In particular, place the VCC2 bypass capacitors on the top layer, as close to the device pins as  
possible, and complete the connection to the VCC2 and GND2 pins without using vias. Note that the SOIC-16  
variant needs two VCC2 bypass capacitor, one on each VCC2 pin.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
For detailed layout recommendations, refer to the Digital Isolator Design Guide.  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over lower-  
cost alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater  
strength and stiffness, and the self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this space  
FR-4  
free from planes,  
traces, pads, and  
vias  
40 mils  
0r ~ 4.5  
Power plane  
10 mils  
Low-speed traces  
11-1. Recommended Layer Stack  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
 
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
Minimize  
distance to  
VCC  
VCC1  
0.1 µF  
VCC2  
GND2  
NC  
VCC1  
GND1  
TXD  
NC  
C
C
C
0.1 µF  
C1  
C2  
CANH  
CANL  
VCC2  
CAN  
BUS  
MCU  
D1  
RXD  
NC  
0.1 µF  
GND2  
GND2  
NC  
GND1  
GND1  
GND2  
PLANE  
PLANE  
VCC2  
11-2. 16-DW Layout Example  
Minimize  
distance to VCC  
VCC2  
C
C
VCC1  
VCC2  
CANH  
CANL  
GND2  
VCC1  
C1  
C2  
TXD  
CAN  
BUS  
D1  
MCU  
RXD  
GND1  
GND1  
PLANE  
GND2  
PLANE  
11-3. 8-DWV Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFA5  
30  
Submit Document Feedback  
Product Folder Links: ISO1042-Q1  
 
 
ISO1042-Q1  
ZHCSIX9B OCTOBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, ISO1042DW Isolated CAN Transceiver Evaluation Module User's Guide  
Texas Instruments, Isolate your CAN systems without compromising on performance or space TI TechNote  
Texas Instruments, Isolation Glossary  
Texas Instruments, High-voltage reinforced isolation: Definitions and test methodologies  
Texas Instruments, How to Isolate Signal and Power in Isolated CAN Systems TI TechNote  
Texas Instruments, How to Design Isolated CAN Systems With Correct Bus Protection Application Report  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISO1042-Q1  
English Data Sheet: SLLSFA5  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO1042BQDWQ1  
ISO1042BQDWRQ1  
ISO1042BQDWVQ1  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
DW  
DW  
16  
16  
8
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
ISO1042BQ1  
2000 RoHS & Green  
64 RoHS & Green  
1000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
64 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
ISO1042BQ1  
DWV  
ISO1042B  
Q1  
ISO1042BQDWVRQ1  
ACTIVE  
SOIC  
DWV  
8
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
ISO1042B  
Q1  
ISO1042QDWQ1  
ISO1042QDWRQ1  
ISO1042QDWVQ1  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
DW  
DW  
16  
16  
8
NIPDAU  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
ISO1042Q1  
ISO1042Q1  
DWV  
ISO1042  
Q1  
ISO1042QDWVRQ1  
ACTIVE  
SOIC  
DWV  
8
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
ISO1042  
Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO1042BQDWRQ1  
ISO1042BQDWVRQ1  
ISO1042QDWRQ1  
ISO1042QDWVRQ1  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DWV  
DW  
16  
8
2000  
1000  
2000  
1000  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
10.75 10.7  
12.05 6.15  
10.75 10.7  
12.05 6.15  
2.7  
3.3  
2.7  
3.3  
12.0  
16.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
16  
8
DWV  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO1042BQDWRQ1  
ISO1042BQDWVRQ1  
ISO1042QDWRQ1  
ISO1042QDWVRQ1  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DWV  
DW  
16  
8
2000  
1000  
2000  
1000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
16  
8
DWV  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO1042BQDWQ1  
ISO1042BQDWVQ1  
ISO1042QDWQ1  
ISO1042QDWVQ1  
DW  
DWV  
DW  
SOIC  
SOIC  
SOIC  
SOIC  
16  
8
40  
64  
40  
64  
506.98  
505.46  
506.98  
505.46  
12.7  
13.94  
12.7  
4826  
4826  
4826  
4826  
6.6  
6.6  
6.6  
6.6  
16  
8
DWV  
13.94  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DWV0008A  
SOIC - 2.8 mm max height  
S
C
A
L
E
2
.
0
0
0
SOIC  
C
SEATING PLANE  
11.5 0.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.95  
5.75  
NOTE 3  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
0.25  
C A  
B
A
B
2.8 MAX  
NOTE 4  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1.0  
0.5  
DETAIL A  
TYPICAL  
(2)  
4218796/A 09/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218796/A 09/2013  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4218796/A 09/2013  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DW 16  
7.5 x 10.3, 1.27 mm pitch  
SOIC - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224780/A  
www.ti.com  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
R0.05 TYP  
9
9
8
8
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
R0.05 TYP  
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY