ISO124U [TI]

±10V 输入、精密电压检测低成本隔离式放大器

| DVA | 8 | -25 to 85;
ISO124U
型号: ISO124U
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

±10V 输入、精密电压检测低成本隔离式放大器

| DVA | 8 | -25 to 85

放大器 分离技术 隔离技术 光电二极管
文件: 总29页 (文件大小:1494K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ISO124  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
ISO124 ±10V 输入精密隔离放大器  
1 特性  
3 说明  
1
100% 经过高电压击穿测试  
ISO124 是一款高精度隔离放大器,该放大器采用了全  
新的占空比调制-解调技术。信号以数字的形式通过  
2pF 差动电容隔离层进行传输。通过数字调制,其隔  
离层特点不但不会影响信号完整性,而且为隔离层提供  
出色的可靠性和优秀的高频瞬变抗扰性。两种隔离层电  
容器都嵌入到封装的塑料主体内。  
额定 1500Vrms  
IMR:频率 60Hz 时为 140dB  
非线性:0.010%(最大值)  
双极运算:VO = ±10V  
封装:PDIP-16 SOIC-28  
易用性:固定单位增益配置  
电源范围:±4.5V ±18V  
ISO124 易于使用。无需外部组件即可运行。以下是其  
重要规格:最大 0.010% 的非线性值、50kHz 信号带  
宽和 200µV/°C VOS 漂移。ISO124 器件提供 ±4.5V 至  
±18V 的电源范围,±5mA(采用 VS1 时)和 ±5.5mA  
(采用 VS2 时)静态电流,广泛适用于各种 应用。  
2 应用  
工业过程控制:  
变送器隔离器、热电偶隔离器、RTD、压力电  
桥和流量计,4mA 20mA 环路隔离  
ISO124 采用 16 引脚 PDIP 28 引线 SOIC 塑料表  
面贴装封装。  
消除接地环路  
电机和 SCR 控制  
电源监控  
器件信息(1)  
器件型号  
ISO124  
封装  
PDIP (16)  
SOIC (28)  
封装尺寸(标称值)  
17.90mm × 7.50mm  
20.01mm × 6.61mm  
基于 PC 的数据采集  
测试设备  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
简化原理图  
VIN  
VOUT  
–VS2  
Gnd 2  
+VS2  
–VS1  
Gnd 1  
+VS1  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS074  
 
 
 
 
ISO124  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions ...................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes.......................................... 9  
8
9
Application and Implementation ........................ 10  
8.1 Application Information............................................ 10  
8.2 Typical Applications ................................................ 11  
Power Supply Recommendations...................... 19  
9.1 Signal and Supply Connections.............................. 19  
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................. 20  
10.2 Layout Example .................................................... 20  
11 器件和文档支持 ..................................................... 21  
11.1 文档支持 ............................................................... 21  
11.2 接收文档更新通知 ................................................. 21  
11.3 社区资源................................................................ 21  
11.4 ....................................................................... 21  
11.5 静电放电警告......................................................... 21  
11.6 术语表 ................................................................... 21  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
Changes from Revision D (July 2016) to Revision E  
Page  
已更改 将 16 引脚 SOIC 封装更改为 16 引脚 PDIP 封装,以便与数据表最后的封装选项附录中显示的产品相匹............. 1  
Changed DVA and NVF pin configuration labels to match content shown in the package option addendum at the  
end of the data sheet.............................................................................................................................................................. 3  
Changed parameter name from "vs temperature" to "Input offset drift" in Electrical Characteristics table............................ 5  
Changed parameter name from "vs power supply" to "Power-supply rejection ratio" in Electrical Characteristics table ...... 5  
Changed location of supply voltage specifications from the Electrical Characteristics table to the Recommended  
Operating Conditions table ..................................................................................................................................................... 5  
Changed parameter name from "Quiescent current" to "High-side analog supply current", and changed symbol from  
"VS1" to "IVS1" in Electrical Characteristics table ..................................................................................................................... 5  
Changed parameter name from "Quiescent current" to "Low-side analog supply current", and changed symbol from  
"VS2" to "IVS2" in Electrical Characteristics table ..................................................................................................................... 5  
Changed location of Temperature specifications from the Electrical Characteristics table to the Recommended  
Operating Conditions table ..................................................................................................................................................... 5  
Deleted Thermal resistance parameters from Electrical Characteristics table; see Thermal Information table..................... 5  
Changes from Revision C (September 2005) to Revision D  
Page  
已添加 增加了 ESD 额定值表、特性 说明 部分、器件功能模式应用和实施 部分、电源建议 部分、布局 部分、器件  
和文档支持 部分以及机械、封装和可订购信息 部分........................................................................................................... 1  
2
Copyright © 1997–2018, Texas Instruments Incorporated  
 
ISO124  
www.ti.com.cn  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
5 Pin Configuration and Functions  
NVF Package  
16-Pin PDIP  
Top View  
DVA Package  
28-Pin SOIC  
Top View  
+VS1  
–VS1  
+VS1  
–VS1  
1
2
16 Gnd 1  
15 VIN  
1
2
28 Gnd 1  
27 VIN  
VOUT  
7
8
10  
9
VOUT 13  
16  
15  
–VS2  
+VS2  
–VS2  
+VS2  
Gnd 2  
Gnd 2 14  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
Gnd 1  
Gnd 2  
VIN  
PDIP  
16  
8
SOIC  
28  
14  
27  
13  
1
I
High-side ground reference  
Low-side ground reference  
High-side analog input  
15  
7
VOUT  
+VS1  
–VS1  
+VS2  
–VS2  
O
Low-side analog output  
1
High-side positive analog supply  
High-side negative analog supply  
Low-side positive analog supply  
Low-side negative analog supply  
2
2
9
15  
16  
10  
Copyright © 1997–2018, Texas Instruments Incorporated  
3
ISO124  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
±18  
UNIT  
V
Supply voltage  
Analog input voltage, VIN  
Continuous isolation voltage  
Junction temperature  
Output short to common  
Storage temperature, Tstg  
100  
V
1500  
Vrms  
°C  
125  
Continuous  
125  
–40  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
±4.5  
±4.5  
NOM  
±15  
MAX  
±18  
UNIT  
VS1  
VS2  
VIN  
TA  
High-side analog supply voltage (±VS1 to GND1)  
Low-side analog supply voltage (±VS2 to GND2)  
Analog input voltage  
V
V
±15  
±18  
±10  
V
Operating temperature  
–25  
85  
°C  
6.4 Thermal Information  
ISO124  
THERMAL METRIC(1)  
DVA (SOIC)  
28 PINS  
79.8  
NVF (PDIP)  
UNIT  
16 PINS  
51.0  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
32.9  
32.4  
42.2  
29.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
6.6  
10.4  
ψJB  
40.9  
29.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 1997–2018, Texas Instruments Incorporated  
ISO124  
www.ti.com.cn  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
6.5 Electrical Characteristics  
at TA = +25°C , VS1 = VS2 = ±15 V, and RL = 2 kΩ (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISOLATION  
Rated voltage  
Continuous ac 60 Hz  
1500  
2400  
Vac  
Vac  
100% test(1)  
Test time = 1 s, partial discharge 5 pC  
Isolation mode rejection  
Barrier impedance  
Leakage current at 60 Hz  
60 Hz  
140  
1014 || 2  
0.18  
dB  
Ω || pF  
µArms  
VISO = 240 Vrms  
0.5  
GAIN  
Nominal gain  
Gain error  
VO = ±10 V  
VO = ±10 V  
1
±0.05  
±10  
V/V  
±0.50  
%FSR  
ppm/°C  
%FSR  
Gain vs temperature  
Nonlinearity(2)  
±0.005 ±0.010  
INPUT OFFSET VOLTAGE  
Initial offset  
±20  
±50  
mV  
Input offset drift  
PSR  
R
±200  
µV/°C  
Power-supply rejection ratio  
±2  
4
mV/V  
Noise  
µV/Hz  
INPUT  
Input voltage  
Resistance  
±10  
±12.5  
200  
V
kΩ  
OUTPUT  
Output voltage  
±10  
±5  
±12.5  
±15  
0.1  
V
mA  
Current drive  
Capacitive load drive  
µF  
Ripple voltage(3)  
20  
mVp-p  
FREQUENCY RESPONSE  
Small-signal bandwidth  
Slew rate  
50  
2
kHz  
V/µs  
µs  
Settling Time 0.10%  
VO = ±10 V  
VO = ±10 V  
50  
Settling Time 0.01%  
350  
150  
µs  
Overload recovery time  
POWER SUPPLIES  
µs  
IVS1 High-side analog supply current  
IVS2 Low-side analog supply current  
±5.0  
±5.5  
±7.0  
±7.0  
mA  
mA  
(1) Tested at 1.6x rated, fail on 5-pC partial discharge.  
(2) Nonlinearity is the peak deviation of the output voltage from the best-fit straight line, and is expressed as the ratio of deviation to FSR.  
(3) Ripple frequency is at carrier frequency (500 kHz).  
Copyright © 1997–2018, Texas Instruments Incorporated  
5
ISO124  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = +25°C, and VS = ±15 V (unless otherwise noted)  
+10  
0
+10  
0
–10  
–10  
0
50  
0
100  
500  
1000  
Time (µs)  
Time (µs)  
f = 20 kHz  
f = 2 kHz  
Figure 2. Sine Response  
Figure 1. Sine Response  
+10  
+10  
0
0
–10  
–10  
0
500  
1000  
50  
0
100  
Time (µs)  
Time (µs)  
Figure 3. Step Response  
Figure 4. Step Response  
160  
140  
120  
100  
80  
Max DC Rating  
2.1k  
1k  
Degraded  
Performance  
100  
Typical  
Performance  
60  
0
40  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
Figure 5. Isolation Voltage vs Frequency  
Figure 6. IMR vs Frequency  
6
Copyright © 1997–2018, Texas Instruments Incorporated  
ISO124  
www.ti.com.cn  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
Typical Characteristics (continued)  
at TA = +25°C, and VS = ±15 V (unless otherwise noted)  
60  
100mA  
10mA  
1mA  
54  
40  
+VS1, +VS2  
1500Vrms  
100µA  
10µA  
1µA  
–VS1, –VS2  
20  
240Vrms  
0
0.1µA  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
Figure 7. PSRR vs Frequency  
Figure 8. Isolation Leakage Current vs Frequency  
100kHz  
VOUT/VIN  
Frequency  
0
–10  
–20  
–30  
–40  
250  
200  
150  
100  
50  
Out  
0
500k  
1M  
1.5M  
Input Frequency (Hz)  
NOTE: Shaded area shows aliasing frequencies that cannot  
be removed by a low-pass filter at the output.  
Figure 9. Signal Response to Inputs Greater than 250 kHz  
Copyright © 1997–2018, Texas Instruments Incorporated  
7
 
ISO124  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ISO124 isolation amplifier uses an input and an output section galvanically isolated by matched 1-pF  
isolating capacitors built into the plastic package. The input is duty-cycle modulated and transmitted digitally  
across the barrier. The output section receives the modulated signal, converts it back to an analog voltage and  
removes the ripple component inherent in the demodulation. Input and output sections are fabricated, then laser  
trimmed for exceptional circuitry matching common to input and output sections. The sections are then mounted  
on opposite ends of the package with the isolating capacitors mounted between the two sections. The ISO124  
contains 250 transistors.  
7.1.1 Modulator  
An input amplifier (A1, as shown in Functional Block Diagram) integrates the difference between the input current  
(VIN/200 kΩ) and a switched ±100-µA current source. This current source is implemented by a switchable 200-µA  
source and a fixed 100-µA current sink. To understand the basic operation of the modulator, assume that VIN = 0  
V. The integrator will ramp in one direction until the comparator threshold is exceeded. The comparator and  
sense amp will force the current source to switch; the resultant signal is a triangular waveform with a 50% duty  
cycle. The internal oscillator forces the current source to switch at 500 kHz. The resultant capacitor drive is a  
complementary duty-cycle modulation square wave  
7.1.2 Demodulator  
The sense amplifier detects the signal transitions across the capacitive barrier and drives a switched current  
source into integrator A2. The output stage balances the duty-cycle modulated current against the feedback  
current through the 200-kΩ feedback resistor, resulting in an average value at the VOUT pin equal to VIN. The  
sample-and-hold amplifiers in the output feedback loop serve to remove undesired ripple voltages inherent in the  
demodulation process.  
8
Copyright © 1997–2018, Texas Instruments Incorporated  
ISO124  
www.ti.com.cn  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
7.2 Functional Block Diagram  
Isolation Barrier  
200µA  
200µA  
1pF  
1pF  
1pF  
1pF  
Sense  
100µA  
100µA  
150pF  
Sense  
200kΩ  
150pF  
200kΩ  
VIN  
VOUT  
A2  
A1  
S/H  
S/H  
G = 6  
G = 1  
Osc  
Gnd 1  
–VS1  
Gnd 2  
–VS2  
+VS1  
+VS2  
7.3 Feature Description  
7.3.1 Isolation Amplifier  
The ISO124 is a precision analog isolation amplifier. The input signal is transmitted digitally across a high-voltage  
differential capacitive barrier. With digital modulation, the barrier characteristics do affect signal integrity, resulting  
in excellent reliability and high-frequency transient immunity.  
7.4 Device Functional Modes  
The ISO124 device does not have any additional functional modes.  
Copyright © 1997–2018, Texas Instruments Incorporated  
9
ISO124  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Carrier Frequency Considerations  
The ISO124 amplifier transmits the signal across the isolation barrier by a 500-kHz duty-cycle modulation  
technique. For input signals having frequencies below 250 kHz, this system works like any linear amplifier. But  
for frequencies above 250 kHz, the behavior is similar to that of a sampling amplifier. Figure 9 shows this  
behavior graphically; at input frequencies above 250 kHz, the device generates an output signal component of  
reduced magnitude at a frequency below 250 kHz. This is the aliasing effect of sampling at frequencies less than  
two times the signal frequency (the Nyquist frequency). At the carrier frequency and its harmonics, both the  
frequency and amplitude of the aliasing go to zero.  
8.1.2 Isolation Mode Voltage Induced Errors  
IMV can induce errors at the output as indicated by the plots of IMV vs Frequency. It should be noted that if the  
IMV frequency exceeds 250 kHz, the output also will display spurious outputs (aliasing) in a manner similar to  
that for VIN > 250 kHz and the amplifier response will be identical to that shown in Figure 9.This occurs because  
IMV-induced errors behave like input-referred error signals. To predict the total error, divide the isolation voltage  
by the IMR shown in Figure 11 and compute the amplifier response to this input-referred error signal from the  
data shown in Figure 9. For example, if a 800-kHz 1000-Vrms IMR is present, then a total of [(–60 dB) + (–30  
dB)] x (1000 V) = 32-mV error signal at 200 kHz plus a 1-V, 800-kHz error signal will be present at the output.  
8.1.3 High IMV dV/dt Errors  
As the IMV frequency increases and the dV/dt exceeds 1000 Vµs, the sense amp may start to false trigger, and  
the output will display spurious errors. The common-mode current being sent across the barrier by the high slew  
rate is the cause of the false triggering of the sense amplifier. Lowering the power-supply voltages below ±15 V  
may decrease the dV/dt to 500 V/M s for typical performance.  
8.1.4 High Voltage Testing  
TI has adopted a partial discharge test criterion that conforms to the German VDE0884 Optocoupler Standards.  
This method requires the measurement of minute current pulses (< 5 pC) while applying 2400-Vrms, 60-Hz high-  
voltage stress across every ISO124 isolation barrier. No partial discharge may be initiated to pass this test. This  
criterion confirms transient overvoltage (1.6 × 1500 Vrms) protection without damage to the ISO124. Lifetest  
results verify the absence of failure under continuous rated voltage and maximum temperature.  
This new test method represents the “state-of-the art” for nondestructive high-voltage reliability testing. It is  
based on the effects of nonuniform fields that exist in heterogeneous dielectric material during barrier  
degradation. In the case of void nonuniformities, electric field stress begins to ionize the void region before  
bridging the entire high-voltage barrier. The transient conduction of charge during and after the ionization can be  
detected externally as a burst of 0.01–0.1-µs current pulses that repeat on each ac voltage cycle. The minimum  
ac barrier voltage that initiates partial discharge is defined as the “inception voltage.” Decreasing the barrier  
voltage to a lower level is required before partial discharge ceases and is defined as the “extinction voltage.” The  
package insulation processes have been characterized and developed to yield an inception voltage in excess of  
2400 Vrms so that transient overvoltages below this level will not damage the ISO124. The extinction voltage is  
above 1500 Vrms so that even overvoltage induced partial discharge will cease once the barrier voltage is  
reduced to the 1500-Vrms (rated) level. Older high-voltage test methods relied on applying a large enough  
overvoltage (above rating) to break down marginal parts, but not so high as to damage good ones. Our new  
partial discharge testing gives us more confidence in barrier reliability than breakdown/no breakdown criteria.  
10  
Copyright © 1997–2018, Texas Instruments Incorporated  
ISO124  
www.ti.com.cn  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
8.2 Typical Applications  
8.2.1 Output Filters  
C2  
1000pF  
Isolation Barrier  
R1  
R2  
9.76kΩ  
OPA237  
VOUT = VIN  
4.75kΩ  
VIN  
ISO124  
–VS2  
C1  
+VS2  
220pF  
Gnd2  
Gnd1  
–VS1  
10µH  
+VS1  
10µH  
VS1  
10µH  
10µH  
VS2  
1µF  
1µF  
1µF 1µF 1µF  
1µF 1µF 1µF  
For more information concerning output filters, see Simple Output Filter Elminiates ISO Amp Output Ripple and Keeps  
Full Bandwidth and FilterPro™ MFB and Sallen-Key Low-Pass Filter Design Program User Guide.  
Figure 10. ISO124 With Output Filter for Improved Ripple  
8.2.1.1 Design Requirements  
The ISO124 isolation amplifiers (ISO amps) have a small (10 to 20 mVp-p typical) residual demodulator ripple at  
the output. A simple filter can be added to eliminate the output ripple without decreasing the 50kHz signal  
bandwidth of the ISO amp.  
8.2.1.2 Detailed Design Procedure  
The ISO124 device is designed to have a 50-kHz single-pole (Butterworth) signal response. By cascading the  
ISO amp with a simple 50-kHz, Q = 1, two-pole, low-pass filter, the overall signal response becomes three-pole  
Butterworth. The result is a maximally flat 50-kHz magnitude response and the output ripple reduced below the  
noise level. Figure 10 shows the complete circuit. The two-pole filter is a unity-gain Sallen-Key type consisting of  
A1, R1, R2, C1, and C2. The values shown give Q = 1 and f–3dB bandwidth = 50 kHz. Because the op amp is  
connected as a unity-gain follower, gain and gain accuracy of the ISO amp are unaffected. Using a precision op  
amp such as the OPA602 also preserves the DC accuracy of the ISO amp.  
Copyright © 1997–2018, Texas Instruments Incorporated  
11  
 
ISO124  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
www.ti.com.cn  
Typical Applications (continued)  
8.2.1.3 Application Curves  
+3  
0
–3  
1
–9  
2
–15  
–21  
–27  
2k  
5k  
10k  
20k  
50k  
100k 200k  
Frequency (Hz)  
1) Standard ISO124 has 50kHz single-pole (Butterworth) re-  
sponse.  
2) ISO124 with cascaded 50kHz, Q = 1, two-pole, low-pass  
filter has three-pole Butterworth response.  
Figure 12. Standard ISO124 (Approximately 20-mVp-p  
Output Ripple)  
Figure 11. Gain vs. Frequency  
Figure 13. Filtered ISO124 (No Visible Output Ripple)  
Figure 14. Step Response of Standard ISO124  
Figure 15. Step Response of ISO124 With Added Twopole  
Output Filter  
Figure 16. Large-signal, 10-kHz Sine-wave Response of  
ISO124 With and Without Output Filter  
12  
Copyright © 1997–2018, Texas Instruments Incorporated  
ISO124  
www.ti.com.cn  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
Typical Applications (continued)  
8.2.2 Battery Monitor  
Figure 17 provides a means to monitor the cell voltage on a 600-V battery stack by using the battery as a power  
source for the isolated voltage.  
This Section Repeated 49 Times.  
ISO124  
+V  
10kΩ  
1
e1 = 12V  
e1  
9
V =  
10kΩ  
2
15  
7
8
10  
e2 = 12V  
2
16  
–V  
Charge/Discharge Control  
Control  
Section  
ISO124  
+V –V  
+V  
7
4
e49 = 12V  
e50 = 12V  
1
15  
INA105  
9
25kΩ  
25kΩ  
7
10kΩ  
5
6
2
8
10  
2
16  
10kΩ  
–V  
25kΩ  
25kΩ  
e50  
3
V =  
2
1
(Derives input power from the battery.)  
Figure 17. Battery Monitor for a 600-V Battery Power System  
Copyright © 1997–2018, Texas Instruments Incorporated  
13  
 
ISO124  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
www.ti.com.cn  
Typical Applications (continued)  
8.2.3 Programmable Gain Amplifier  
In applications where variable gain configurations are required, a programmable gain amplifier like the PGA102  
can be used with the ISO124 device. Figure 18 uses an ISO150 device to provide gain pin selection options to  
the PGA102 device.  
A0  
A1  
ISO150  
+15V– 15V  
+15V –15V  
1
2
1
9
6
10  
2
5
15 15  
7
7
8
VIN  
VOUT  
PGA102  
ISO124  
8
4
3
16  
Figure 18. Programmable-Gain Isolation Channel With Gains of 1, 10, and 100  
14  
Copyright © 1997–2018, Texas Instruments Incorporated  
 
ISO124  
www.ti.com.cn  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
Typical Applications (continued)  
8.2.4 Thermocouple Amplifier  
For isolated temperature measurements, Figure 19 provides an application solution using the INA114 or INA128  
devices, feeding the input stage of the ISO124 device. The table provides suggested resistor values based on  
the type of thermistor used in the application.  
+15V  
2
10.0V  
6
4
REF102  
Thermocouple  
R4  
+15V –15V +15V –15V  
R1  
27kΩ  
+15V  
Isothermal  
Block with  
1N4148(1)  
2
1
2
7
ISO124  
10  
+In  
9
INA114  
or  
INA128  
7
1
8
6
15  
VOUT  
RG  
8
5
R2  
1MΩ  
–In  
4
16  
3
R3  
R5  
50Ω  
100Ω  
–15V  
SEEBACK  
ISA  
COEFFICIENT  
R2  
R4  
R6  
100  
Zero Adj  
TYPE  
MATERIAL  
(µV/°C)  
(R3 = 100) (R5 + R6 = 100)  
Chromel  
Constantan  
Iron  
E
J
58.5  
50.2  
39.4  
38.0  
3.48kΩ  
4.12kΩ  
5.23kΩ  
5.49kΩ  
56.2kΩ  
64.9kΩ  
80.6kΩ  
84.5kΩ  
Ground Loop Through Conduit  
NOTE: (1) –2.1mV/°C at 2.00µA.  
Constantan  
Chromel  
Alumel  
K
T
Copper  
Constantan  
Figure 19. Thermocouple Amplifier With Ground Loop Elimination,  
Cold Junction Compensation, and Up-scale Burn-out  
Copyright © 1997–2018, Texas Instruments Incorporated  
15  
 
ISO124  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
www.ti.com.cn  
Typical Applications (continued)  
8.2.5 Isolated 4-mA to 20-mA Instrument Loop  
For isolated temperature measurements in a 4-mA to 20-mA loop, Figure 20 provides a solution using the  
XTR101 and RCV420 devices. A high-performance PT100 resistance temperature detector (RTD) provides the  
user with an isolated 0-V to 5-V representation of the isolated temperature measurement.  
1
13  
3
14  
10  
4-20mA  
0.8mA  
0.8mA  
+VS = 15V on PWS740  
RG  
XTR105  
0.01µF  
4
ISO124  
+V  
16  
7
2
1
3
6
15  
RCV420  
14 15  
RTD  
(1)  
9
RZ  
2
VOUT  
(PT100)  
7
5, 13  
10  
4
RCM  
8
0V - 5V  
10  
11  
12  
1kΩ  
2
16  
–V  
Gnd  
1.6mA  
–VS = –15V  
on PWS740  
Figure 20. Isolated 4- to 20-mA Instrument Loop (RTD Shown)  
8.2.6 Single-Supply Operation of the ISO124 Isolation Amplifier  
The circuit shown in Figure 21 uses a 5.1-V Zener diode to generate the negative supply for an ISO12x from a  
single supply on the high-voltage side of the isolation amplifier. The input measuring range will be dependent on  
the applied voltage as noted in the accompanying table.  
VS1 (+15V)  
7
VS  
INPUT RANGE  
(V)(1)  
INA105  
(V)  
Difference Amp  
2
5
10kΩ  
20+  
15  
–2 to +10  
–2 to +5  
–2 to +2  
+VS2 (+15V)  
R1  
R2  
1
12  
6
1
15  
In  
9
7
VOUT = VIN  
ISO124  
(1)  
RC  
R3  
R4  
Signal Source  
VIN  
8
3
Gnd  
16  
10  
Com 2  
RS  
+
4
Reference  
2
IN4689  
5.1V  
–VS1  
–VS2 (–15V)  
NOTE: Because the amplifier is unity gain, the input range is also the output range. The output can go to –2 V because the  
output section of the ISO amp operates from dual supplies.  
For additional information see Single-Supply Operation of Isolation Amplifiers.  
Figure 21. Single-Supply Operation of the ISO124 Isolation Amplifier Schematic  
16  
Copyright © 1997–2018, Texas Instruments Incorporated  
 
 
ISO124  
www.ti.com.cn  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
Typical Applications (continued)  
8.2.7 Input-Side Powered ISO Amplifier  
The user side of the ISO124 device can be powered from the high voltage side using an isolated DC-DC  
converter as shown in Figure 22.  
1
2
5
6
7
DCP011515DB  
or  
DCV011515D  
0.47µF  
0.47µF  
0.47µF  
VIN  
–15V, 20mA  
+15V, 20mA  
Input  
Gnd  
16 15  
10  
9
Auxiliary  
Isolated  
Power  
Gnd VIN  
V– V+  
Output  
Input  
Output  
ISO124  
Section  
Section  
V+ V–  
VO Gnd  
1
2
7
8
Output  
Gnd  
+15V  
–15V  
VO  
Figure 22. Input-Side Powered ISO Amplifier Schematic  
Copyright © 1997–2018, Texas Instruments Incorporated  
17  
 
ISO124  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
www.ti.com.cn  
Typical Applications (continued)  
8.2.8 Powered ISO Amplifier With Three-Port Isolation  
Figure 23 illustrates an application solution that provides isolated power to both the user and high-voltage sides  
of the ISO124 amplifier.  
+15V Gnd  
1
2
5
6
7
DCP011515DB  
or  
DCV011515D  
DCP011515DB  
or  
DCV011515D  
7
6
5
2
1
0.47µF  
0.47µF  
0.47µF  
0.47µF  
0.47µF  
VIN  
–15V, 20mA  
+15V, 20mA  
Input  
Gnd  
16 15  
10  
9
Auxiliary  
Isolated  
Power  
Gnd VIN  
V– V+  
Output  
Input  
Output  
ISO124  
Section  
Section  
Auxiliary  
Isolated  
Power  
V+ V–  
VO Gnd  
Output  
1
2
7
8
Output  
Gnd  
+15V, 20mA  
–15V, 20mA  
VO  
Figure 23. Powered ISO Amplifier With Three-Port Isolation Schematic  
18  
Copyright © 1997–2018, Texas Instruments Incorporated  
 
ISO124  
www.ti.com.cn  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
9 Power Supply Recommendations  
9.1 Signal and Supply Connections  
Each power-supply pin should be bypassed with 1-µF tantalum capacitors located as close to the amplifier as  
possible. The internal frequency of the modulator/demodulator is set at 500 kHz by an internal oscillator.  
Therefore, if it is desired to minimize any feedthrough noise (beat frequencies) from a DC-DC converter, use a π  
filter on the supplies (see Figure 10). The ISO124 output has a 500-kHz ripple of 20 mV, which can be removed  
with a simple 2-pole low-pass filter with a 100-kHz cutoff using a low-cost op amp (see Figure 10).  
The input to the modulator is a current (set by the 200-kΩ integrator input resistor) that makes it possible to have  
an input voltage greater than the input supplies, as long as the output supply is at least ±15 V. It is therefore  
possible, when using an unregulated DC-DC converter, to minimize PSR related output errors with ±5-V voltage  
regulators on the isolated side and still get the full ±10-V input and output swing.  
Isolation Barrier  
VOUT  
VIN  
ISO124  
–VS2  
Gnd  
Gnd  
+VS2  
–VS1  
+VS1  
VS1  
VS2  
1µF  
1µF  
1µF  
1µF  
Figure 24. Basic Signal and Power Connections  
Copyright © 1997–2018, Texas Instruments Incorporated  
19  
ISO124  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
To maintain the isolation barrier of the device, the distance between the high-side ground (pin 16 or 28) and the  
low-side ground (pin 8 or 14) should be kept at maximum; that is, the entire area underneath the device should  
be kept free of any conducting materials.  
10.2 Layout Example  
1 µF  
SMD  
0603  
+VS1  
-VS1  
1 µF  
SMD  
0603  
ISOLATION  
BOUNDARY  
ISOLATION  
BOUNDARY  
1 µF  
SMD  
0603  
Figure 25. ISO124 Layout Example  
20  
版权 © 1997–2018, Texas Instruments Incorporated  
ISO124  
www.ti.com.cn  
ZHCSID3E SEPTEMBER 1997REVISED JUNE 2018  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
隔离放大器的单电源操作。  
简单输出滤波器消除 ISO 放大器输出波纹并保持满带宽。  
FilterPro™ 用户指南。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
FilterPro, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查看左侧的导航栏。  
版权 © 1997–2018, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO124P  
ISO124U  
ACTIVE  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
NVF  
8
8
8
8
8
25  
RoHS &  
Non-Green  
NIPDAU  
N / A for Pkg Type  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
ISO124P  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DVA  
20  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ISO  
124U  
ISO124U/1K  
ISO124U/1KE4  
ISO124UE4  
DVA  
1000 RoHS & Green  
1000 RoHS & Green  
ISO  
124U  
DVA  
ISO  
124U  
DVA  
20  
RoHS & Green  
ISO  
124U  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO124U/1K  
SOIC  
DVA  
8
1000  
330.0  
24.4  
10.9  
18.3  
3.2  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC DVA  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 45.0  
ISO124U/1K  
8
1000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO124P  
ISO124U  
NVF  
DVA  
DVA  
PDIP  
SOIC  
SOIC  
8
8
8
25  
20  
20  
506  
507  
507  
13.97  
12.83  
12.83  
11230  
5080  
5080  
4.32  
6.6  
ISO124UE4  
6.6  
Pack Materials-Page 3  
MECHANICAL DATA  
MPDS105 – AUGUST 2001  
DVA (R-PDSO-G8/28)  
PLASTIC SMALL-OUTLINE  
C
A
18,10  
17,70  
0,25 M B M  
28  
15  
B
7,60  
7,40  
10,65  
10,01  
D
Index  
Area  
1
14  
2,65  
2,35  
0,75  
0,25  
x 45°  
C
Seating  
Plane  
0,10  
0,32  
0,23  
0,51  
0,33  
1,27  
0,30  
0,10  
G
0,25  
M C A M B S  
0°–8°  
1,27  
0,40  
F
4202103/B 08/01  
NOTES: A. All linear dimensions are in millimeters.  
G. Lead width, as measured 0,36 mm or greater  
above the seating plane, shall not exceed a  
maximum value of 0,61 mm.  
H. Lead-to-lead coplanarity shall be less than  
0,10 mm from seating plane.  
B. This drawing is subject to change without notice.  
C. Body length dimension does not include mold  
flash, protrusions, or gate burrs. Mold flash, protrusions,  
and gate burrs shall not exceed 0,15 mm per side.  
D. Body width dimension does not include inter-lead flash  
or portrusions. Inter-lead flash and protrusions  
shall not exceed 0,25 mm per side.  
I. Falls within JEDEC MS-013-AE with the exception  
of the number of leads.  
E. The chamfer on the body is optional. If it is not present,  
a visual index feature must be located within the  
cross-hatched area.  
F. Lead dimension is the length of terminal for soldering  
to a substrate.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MPDI072 – AUGUST 2001  
NVF (R-PDIP-T8/16)  
PLASTIC DUAL-IN-LINE  
D
0.775 (21,34)  
0.735 (18,67)  
16  
9
0.280 (7,11)  
0.240 (6,10)  
D
1
8
Index  
Area  
0.195 (4,95)  
0.115 (2,92)  
0.210 (5,33)  
0.070 (1,78)  
0.045 (1,14)  
0.325 (8,26)  
0.300 (7,62)  
0.045 (1,14)  
0.030 (0,76)  
MAX  
C
Seating Plane  
Base Plane  
E
0.300 (7,63)  
0.150 (3,81)  
0.115 (2,92)  
0.005 (0,13)  
MIN 4 PL  
1/2 Lead  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
0.060 (1,52)  
D
0.022 (0,56)  
0.014 (0,36)  
0.015 (0,38)  
MIN  
F
0.010 (0,25)  
C
0.000 (0,00)  
M
0.430 (10,92)  
MAX  
F
4202501/A 08/01  
A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001-BB with the exception of lead  
count.  
D. Dimensions do not include mold flash or protrusions.  
Mold flash or protrusions shall not exceed 0.010 (0,25).  
E. Dimensions measured with the leads constrained to be  
perpendicular to Datum C.  
F. Dimensions are measured at the lead tips with the leads  
unconstrained.  
G. A visual index feature must be located within the  
cross-hatched area.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY