ISO1500DBQ [TI]

1Mbps、半双工、3kVrms 超小型隔离式 RS-485 和 RS-422 收发器 | DBQ | 16 | -40 to 125;
ISO1500DBQ
型号: ISO1500DBQ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1Mbps、半双工、3kVrms 超小型隔离式 RS-485 和 RS-422 收发器 | DBQ | 16 | -40 to 125

驱动 光电二极管 接口集成电路 驱动器
文件: 总36页 (文件大小:2470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
采用超小型封装的 ISO1500 3kVRMS 基础型隔离式 RS-485/RS-422 收发器  
1 特性  
3 说明  
1
符合或超出 TIA/EIA-485-A 要求  
ISO1500 器件是适用于 TIA/EIA RS-485 RS-422 应  
用的电隔离差动线路 收发器。该器件采用超小型 16  
引脚 SSOP 封装,具有一个 3 通道数字隔离器和一个  
RS-485 收发器。该收发器的总线引脚受到 IEC ESD  
接触放电和 IEC EFT 事件保护。接收器输出具有针对  
总线开路、短路和空闲情况的失效防护。与其他集成的  
隔离式 RS-485 解决方案或采用光耦合器和非隔离式  
RS-485 收发器的分立式实施相比,ISO1500 的小解决  
方案尺寸可极大地减少所需的布板空间。  
半双工收发器  
EMI 1Mbps 数据速率  
总线 I/O 保护  
±16kV HBM ESD  
1.71V 5.5V 逻辑侧电源 (VCC1)4.5V 5.5V  
总线侧电源 (VCC2  
)
1/8 单位负载:多达 256 个总线节点  
失效防护接收器(总线开路、短路和空闲)  
100kV/µs(典型值)高共模瞬态抗扰度  
扩展温度范围为 -40°C +125°C  
适用于热插拔功能的无干扰加电和断电  
超小型 SSOP (DBQ-16) 封装  
该器件用于长距离通信。隔离会破坏通信节点之间的接  
地回路,从而获得更大的共模电压范围。经测试,每个  
器件的对称隔离层可在总线收发器和逻辑电平接口之间  
按照 UL 1577 标准提供为时 1 分钟的 3000VRMS 隔  
离。  
安全相关认证:  
符合 DIN VDE V 0884-11:2017-01 标准的  
4242VPK VIOTM 566VPK VIORM  
ISO1500 器件可由 1 侧的 1.71V 5.5V 电压供电,  
从而使器件可与低压 FPGA ASIC 相连接。2 侧的  
电源电压范围为 4.5V 5.5V。该器件支持 -40°C 至  
+125°C 的宽工作环境温度范围。  
符合 UL 1577 标准且长达 1 分钟的 3000 VRMS  
隔离  
IEC 60950-1IEC 62368-1 IEC 61010-1 认  
器件信息(1)  
CQCTUV CSA 认证  
器件型号  
ISO1500  
封装  
SSOP (16)  
封装尺寸(标称值)  
VDEULCQC TUV 认证完成;等待 CSA  
审批  
4.90mm × 3.90mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
电表  
简化原理图  
保护继电器  
工厂自动化与控制  
HVAC 系统和楼宇自动化  
电机驱动器  
Logic Supply  
Bus-Side Supply  
VCC1  
VCC2  
VDD  
DE  
D
ISO1500  
A
B
MCU  
RS485 Bus  
R
RE  
GND1  
Isolated Ground  
DGND  
Logic Ground  
GND2  
Galvanic Isolation  
Barrier  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF21  
 
 
 
 
 
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Power Ratings........................................................... 5  
6.6 Insulation Specifications............................................ 6  
6.7 Safety-Related Certifications..................................... 7  
6.8 Safety Limiting Values .............................................. 7  
6.9 Electrical Characteristics: Driver ............................... 8  
6.10 Electrical Characteristics: Receiver ........................ 8  
6.11 Supply Current Characteristics: Side 1(ICC1) .......... 9  
6.12 Supply Current Characteristics: Side 2(ICC2) .......... 9  
6.13 Switching Characteristics: Driver .......................... 10  
6.14 Switching Characteristics: Receiver...................... 10  
6.15 Insulation Characteristics Curves ......................... 10  
6.16 Typical Characteristics.......................................... 11  
7
8
Parameter Measurement Information ................ 15  
Detailed Description ............................................ 18  
8.1 Overview ................................................................. 18  
8.2 Functional Block Diagram ....................................... 18  
8.3 Feature Description................................................. 18  
8.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 22  
9.1 Application Information............................................ 22  
9.2 Typical Application ................................................. 23  
9
10 Power Supply Recommendations ..................... 24  
11 Layout................................................................... 25  
11.1 Layout Guidelines ................................................. 25  
11.2 Layout Example .................................................... 25  
12 器件和文档支持 ..................................................... 27  
12.1 文档支持 ............................................................... 27  
12.2 接收文档更新通知 ................................................. 27  
12.3 社区资源................................................................ 27  
12.4 ....................................................................... 27  
12.5 静电放电警告......................................................... 27  
12.6 Glossary................................................................ 27  
13 机械、封装和可订购信息....................................... 27  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (May 2019) to Revision C  
Page  
已更改 证书相关信息 特性 部分中的 VDE CSA 安全相关认证说明 ................................................................................... 1  
Added footnote to Pin function table for NC pin..................................................................................................................... 3  
Changed Insulation Specifications table with test condition for VIOSM and qPD (Partial discharge) ................................... 6  
Changed certificate related info in Safety-Related Certifications section............................................................................... 7  
Changes from Revision A (December 2018) to Revision B  
Page  
已添加 向特性列表中添加了 HBM ESD.................................................................................................................................. 1  
Changes from Original (September 2018) to Revision A  
Page  
已更改 将器件状态从预告信息更改为生产数据.................................................................................................................. 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
ISO1500  
www.ti.com.cn  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
5 Pin Configuration and Functions  
DBQ Package  
16-Pin SSOP  
Top View  
VCC1  
GND1  
R
1
2
3
4
5
6
7
8
16  
VCC2  
GND2  
NC  
15  
14  
13  
12  
11  
10  
9
RE  
B
DE  
A
D
NC  
NC  
VCC2  
GND2  
GND1  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
12  
13  
6
A
B
D
I/O  
I/O  
I
Transceiver noninverting input or output (I/O) on the bus side  
Transceiver inverting input or output (I/O) on the bus side  
Driver input  
Driver enable. This pin enables the driver output when high and disables the driver output when low  
or open.  
DE  
5
I
2
8
GND1  
Ground connection for VCC1  
Ground connection for VCC2  
9
GND2  
NC(1)  
15  
7
11  
14  
3
No internal connection  
Receiver output  
R
O
I
Receiver enable. This pin disables the receiver output when high or open and enables the receiver  
output when low.  
RE  
VCC1  
4
1
Logic-side power supply  
10  
16  
Transceiver-side power supply. These pins are not connected internally and must be shorted  
externally on PCB.  
VCC2  
(1) Device functionality is not affected if NC pins are connected to supply or ground on PCB  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
-0.5  
-0.5  
-0.5  
-15  
MAX  
UNIT  
V
VCC1  
VCC2  
VIO  
Supply voltage, side 1  
6
Supply voltage, side 2  
6
V
Logic voltage level (D, DE, RE, R)  
Output current on R pin  
VCC1+0.5(3)  
V
IO  
15  
18  
mA  
V
VBUS  
TJ  
Voltage on bus pins (A, B, Y, Z w.r.t GND2)  
Junction temperature  
-18  
-40  
150  
150  
TSTG  
Storage temperature  
-65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(3) Maximum voltage must not exceed 6 V  
6.2 ESD Ratings  
VALUE  
UNIT  
Electrostatic discharge  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001  
All pins except bus pins(1)  
Bus terminals to GND2(1)  
±4000  
V
±16000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per  
JEDEC specification JESD22-C101  
V
All pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
1.89  
5.5  
UNIT  
Supply Voltage, Side 1, 1.8-V operation  
Supply Voltage, Side 1, 2.5-V, 3.3-V and 5.5-V operation  
Supply Voltage, Side 2  
1.71  
V
V
VCC1  
2.25  
VCC2  
VI  
4.5  
5.5  
V
Common mode voltage at any bus terminal: A or B  
High-level input voltage (D, DE, RE inputs)  
Low-level input voltage (D, DE, RE inputs)  
Differential input voltage  
-7  
12  
V
VIH  
VIL  
VID  
IO  
0.7*VCC1  
VCC1  
0.3*VCC1  
12  
V
0
-12  
-60  
-4  
V
V
Output current, Driver  
60  
mA  
mA  
Ω
IOR  
RL  
Output current, Receiver  
4
Differential load resistance  
54  
1/tUI  
TA  
Signaling rate  
1
Mbps  
°C  
Operating ambient temperature  
-40  
125  
6.4 Thermal Information  
ISO1500  
DBQ (SSOP)  
16 PINS  
112.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
RθJC(top)  
57.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
ISO1500  
www.ti.com.cn  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
Thermal Information (continued)  
ISO1500  
THERMAL METRIC(1)  
DBQ (SSOP)  
16 PINS  
64.0  
UNIT  
RθJB  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
32.1  
ΨJB  
63.7  
RθJC(bot)  
--  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
278  
28  
UNIT  
PD  
Maximum power dissipation (both sides) VCC1 = VCC2 = 5.5 V, TA=125°C, TJ =  
mW  
mW  
150°C, A-B load = 54 ||50pF, Load on  
R=15pF  
Input a 500kHz 50% duty cycle square  
wave to D pin with  
PD1  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
PD2  
250  
mW  
VDE=VCC1, VRE=GND1  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
6.6 Insulation Specifications  
SPECIFICATIONS  
DBQ-16  
PARAMETER  
TEST CONDITIONS  
UNIT  
IEC 60664-1  
(1)  
CLR  
CPG  
DTI  
External clearance  
External creepage  
Side 1 to side 2 distance through air  
>3.7  
mm  
mm  
µm  
V
(1)  
Side 1 to side 2 distance across package surface >3.7  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
IEC 60112; UL 746A  
>17  
>600  
I
CTI  
According to IEC 60664-1  
Overvoltage category  
Rated mains voltage 300 VRMS  
I-III  
DIN VDE V 0884-11:2017-01(2)  
VIORM Maximum repetitive peak isolation voltage AC voltage (bipolar)  
566  
400  
566  
4242  
VPK  
VRMS  
VDC  
AC voltage (sine wave); time-dependent  
dielectric breakdown (TDDB) test;  
VIOWM  
Maximum isolation working voltage  
DC voltage  
VTEST = VIOTM , t = 60 s (qualification); VTEST  
1.2 × VIOTM, t = 1 s (100% production)  
=
VIOTM  
VIOSM  
Maximum transient isolation voltage  
Maximum surge isolation voltage  
VPK  
Test method per IEC 62368-1, 1.2/50 µs  
waveform, VTEST = 10000 VPK (qualification)  
4000  
VPK  
(3)  
ISO1500  
Method a: After I/O safety test subgroup 2/3, Vini  
= VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM , tm = 10 5  
s
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM , tm = 10 s  
5  
(4)  
qpd  
Apparent charge  
pC  
Method b1: At routine test (100% production)  
and preconditioning (type test), Vini = VIOTM, tini  
=
1 s;  
5  
Vpd(m) = 1.875 × VIORM , tm = 1 s  
(5)  
CIO  
RIO  
Barrier capacitance, input to output  
VIO = 0.4 × sin (2 πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
~1  
pF  
> 1012  
> 1011  
> 109  
2
(5)  
Insulation resistance, input to output  
VIO = 500 V, 100°C TA 150°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
40/125/21  
UL 1577  
VTEST = VISO , t = 60 s (qualification); VTEST = 1.2  
× VISO , t = 1 s (100% production)  
VISO  
Withstand isolation voltage  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.  
(2) ISO1500 is suitable for safe electrical insulation within the safety ratings. Compliance with the safety ratings shall be ensured by means  
of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
ISO1500  
www.ti.com.cn  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
6.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to EN  
61010-1:2010/A1:2019,  
EN 60950-  
1:2006/A2:2013 and EN  
62368-1:2014  
Plan to certify according  
to IEC 60950-1, IEC  
62368-1  
Recognized under UL  
1577 Component  
Recognition Program  
Certified according to DIN  
VDE V 0884-11:2017- 01  
Certified according to  
GB4943.1-2011  
Maximum transient  
isolation voltage,  
EN 61010-  
1:2010/A1:2019,  
Basic insulation, Altitude 300 VRMS basic isolation  
CSA 60950-1-07+A1+A2  
and IEC 60950-1 2nd Ed.,  
for pollution degree 2,  
material group I: 370  
VRMS  
4242 VPK  
;
Maximum repetitive peak  
isolation voltage,  
Single protection,  
3000 VRMS  
5000 m, Tropical Climate,  
400 VRMS maximum  
working voltage  
----------------  
EN 60950-  
1:2006/A2:2013 and EN  
62368-1:2014, 400 VRMS  
basic isolation  
566 VPK  
;
Maximum surge isolation  
voltage,  
4000 VPK  
Certificate number:  
40040142  
Certificate number:  
CQC18001199097  
Certificate planned  
File number: E181974  
Client ID number: 77311  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
DBQ-16 PACKAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 67.9°C/W, VI = 5.5 V, TJ = 150°C,  
201  
308  
403  
586  
TA = 25°C, see 1  
θJA = 67.9°C/W, VI = 3.6 V, TJ = 150°C,  
TA = 25°C, see 1  
θJA = 67.9°C/W, VI = 2.75 V, TJ =  
150°C, TA = 25°C, see 1  
θJA = 67.9°C/W, VI = 1.89 V, TJ =  
150°C, TA = 25°C, see 1  
θJA = 67.9°C/W, TJ = 150°C, TA = 25°C,  
see 2  
R
IS  
Safety input, output, or supply current  
mA  
R
R
R
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
1105  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
6.9 Electrical Characteristics: Driver  
Typical specs are at VCC1=3.3V, VCC2=5V, TA=27(Min/Max specs are over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Open circuit voltage, unloaded bus,  
4.5 V VCC2 5.5 V  
1.5  
4.3  
VCC2  
V
RL = 60 Ω, –7 V VTEST 12 V,  
4.5 V < VCC2 < 5.5 V (see 19)  
1.5  
2
2.5  
2.9  
2.5  
V
V
V
Driver differential-output voltage  
magnitude  
|VOD  
|
RL = 100 Ω (see 20), RS-422 load  
RL = 54 Ω (see 20), RS-485 load,  
4.5 V < VCC2 < 5.5 V  
1.5  
Change in differential output voltage  
between two states  
Δ|VOD  
|
RL = 54 Ω or RL = 100 Ω, see 20  
RL = 54 Ω or RL = 100 Ω, see 20  
RL = 54 Ω or RL = 100 Ω, see 20  
–50  
–50  
50  
3
mV  
V
VOC  
Common-mode output voltage  
0.5 × VCC2  
change in steady-state common-mode  
output voltage between two states  
ΔVOC(SS)  
VOC(PP)  
IOS  
50  
mV  
Peak-to-peak common-mode output  
voltage  
RL = 54 Ω or RL = 100 Ω, see 20  
300  
mV  
mA  
VD = VCC1 or VD = VGND1, VDE = VCC1  
–7 V VO 12 V, see 28  
,
Short-circuit output current  
–175  
175  
10  
Ii  
Input current  
VD and VDE = 0 V or VD and VDE = VCC1  
–10  
85  
µA  
CMTI  
Common-mode transient immunity  
VD= VCC1 or GND1, VCM = 1200V, See 22  
100  
kV/µs  
6.10 Electrical Characteristics: Receiver  
Typical specs are at VCC1=3.3V, VCC2=5V, TA=27(Min/Max are over recommended operating conditions unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDE = 0 V, VCC2 = 0 V or VCC2 = 5.5 V, One bus  
input at –7 V or 12 V, other input at 0 V  
Ii1  
Bus input current  
–100  
100  
µA  
–7 V Common mode voltage on bus terminals ≤  
12 V  
(1)  
VTH+  
VTH–  
Vhys  
Positive-going input threshold voltage  
See  
–100  
–145  
45  
–50  
mV  
mV  
mV  
Negative-going input threshold  
voltage  
–7 V Common mode voltage on bus terminals ≤  
12 V  
(1)  
–200  
20  
See  
–7 V Common mode voltage on bus terminals ≤  
12 V  
Input hysteresis (VTH+ – VTH–  
)
VCC1=5V+/-10%, IOH = –4 mA, VID = 200 mV  
VCC1=3.3V+/-10%, IOH = –2 mA, VID = 200 mV  
VCC1 – 0.4  
VCC1 – 0.3  
V
V
VOH  
Output high voltage on the R pin  
Output low voltage on the R pin  
VCC1=2.5V+/-10%, 1.8V+/-5%, IOH = –1 mA, VID  
200 mV  
=
VCC1 – 0.2  
V
VCC1=5V+/-10%, IOL = 4 mA, VID = –200 mV  
VCC1=3.3V+/-10%, IOL = 2 mA, VID = –200 mV  
0.4  
0.3  
V
V
VOL  
VCC1=2.5V+/-10%, 1.8V+/-5%, IOL = 1 mA, VID  
–200 mV  
=
0.2  
V
Output high-impedance current on  
the R pin  
IOZ  
VR = 0 V or VR = VCC1, VRE = VCC1  
–1  
1
µA  
Ii  
Input current on the RE pin  
VRE = 0 V or VRE = VCC1  
–10  
85  
10  
µA  
CMTI  
Common-mode transient immunity  
VID = 1.5 V or -1.5 V, VCM= 1200 V , See 22  
100  
kV/µs  
(1) Under any specific conditions, VTH+ is ensured to be at least Vhys higher than VTH–  
.
8
Copyright © 2018–2019, Texas Instruments Incorporated  
ISO1500  
www.ti.com.cn  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
6.11 Supply Current Characteristics: Side 1(ICC1  
)
Bus loaded or unloaded (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DRIVER ENABLED, RECEIVER DISABLED  
Logic-side  
VD = VCC1, VCC1 = 5 V ± 10%  
supply current  
2.6  
2.6  
3.2  
3.2  
4.4  
4.4  
5.1  
5.1  
mA  
mA  
mA  
mA  
Logic-side  
VD = VCC1, VCC1 = 3.3 V ± 10%  
supply current  
Logic-side  
supply current  
D = 1Mbps square wave with 50% duty cycle, VCC1 = 5 V ± 10%  
D = 1Mbps square wave with 50% duty cycle, VCC1 = 3.3 V ± 10%  
Logic-side  
supply current  
DRIVER ENABLED, RECEIVER ENABLED  
Logic-side  
supply current  
VRE = VGND1, VD = VCC1, VCC1 = 5 V ± 10%  
2.6  
2.6  
3.4  
3.2  
4.4  
4.4  
5.2  
5.2  
mA  
mA  
mA  
mA  
Logic-side  
supply current  
VRE = VGND1, VD = VCC1, VCC1 = 3.3 V ± 10%  
Logic-side  
supply current  
VRE = VGND1, D = 1Mbps square wave with 50% duty cycle, VCC1 = 5 V ± 10%, CL(R)(1) = 15 pF  
VRE = VGND1, D= 1Mbps square wave with 50% duty cycle, VCC1 = 3.3 V ± 10%, CL(R)(1) = 15 pF  
Logic-side  
supply current  
DRIVER DISABLED, RECEIVER ENABLED  
Logic-side  
supply current  
V
(A-B) 200 mV, VD = VCC1, VCC1 = 5 V ± 10%  
(A-B) 200 mV, VD = VCC1, VCC1 = 3.3 V ± 10%  
1.5  
1.5  
1.7  
1.7  
3.1  
3.1  
3.2  
3.2  
mA  
mA  
mA  
mA  
Logic-side  
supply current  
V
Logic-side  
supply current  
(A-B) =1Mbps square wave with 50% duty cycle, VD = VCC1, VCC1 = 5 V ± 10%, CL(R)(1) = 15 pF  
(A-B) = 1Mbps square wave with 50% duty cycle, VD = VCC1, VCC1 = 3.3 V ± 10%, CL(R)(1) = 15 pF  
Logic-side  
supply current  
DRIVER DISABLED, RECEIVER DISABLED  
Logic-side  
supply current  
VDE = VGND1, VD = VCC1, VCC1 = 5 V ± 10%  
VDE = VGND1, VD = VCC1, VCC1 = 3.3 V ± 10%  
1.5  
1.5  
3.1  
3.1  
mA  
mA  
Logic-side  
supply current  
(1) CL(R) is the load capacitance on the R pin.  
6.12 Supply Current Characteristics: Side 2(ICC2  
)
VRE = VGND1 or VRE = VCC1 (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DRIVER ENABLED, BUS UNLOADED  
Bus-side supply  
VD = VCC1, VCC2 = 5 V ± 10%  
2.5  
4.4  
mA  
current  
DRIVER ENABLED, BUS LOADED  
Bus-side supply  
VD = VCC1, RL = 54 Ω, VCC2 = 5 V ± 10%  
52  
60  
70  
80  
mA  
mA  
current  
Bus-side supply  
current  
D =1Mbps square wave with 50% duty cycle, RL = 54 Ω, CL = 50 pF, VCC2 = 5 V ± 10%  
DRIVER DISABLED, BUS LOADED OR UNLOADED  
Bus-side supply  
VD = VCC1, VCC2 = 5 V ± 10%  
current  
2.4  
3.9  
mA  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
6.13 Switching Characteristics: Driver  
Typical specs are at VCC1=3.3V, VCC2=5V, TA=27(Min/Max specs over recommended operating conditions unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1Mbps DEVICE  
tr, tf Differential output rise time and fall time RL = 54 Ω, CL = 50 pF, see 21  
tPHL, tPLH Propagation delay  
210  
210  
3
300  
300  
30  
ns  
ns  
ns  
ns  
ns  
RL = 54 Ω, CL = 50 pF, see 21  
RL = 54 Ω, CL = 50 pF, see 21  
See 23, and 24  
PWD  
Pulse width distortion(1), |tPHL – tPLH  
|
tPHZ, tPLZ Disable time  
tPZH, tPZL Enable time  
160  
200  
250  
400  
See 23, and 24  
(1) Also known as pulse skew.  
6.14 Switching Characteristics: Receiver  
Typical specs are at VCC1=3.3V, VCC2=5V, TA=27(Min/Max are over recommended operating conditions unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1Mbps DEVICE  
tr, tf Differential output rise time and fall time CL = 15 pF, see 25  
tPHL, tPLH Propagation delay  
2.4  
120  
5
4
180  
20  
ns  
ns  
ns  
ns  
ns  
CL = 15 pF, see 25  
CL = 15 pF, see 25  
See 26 and 27  
See 26 and 27  
PWD  
Pulse width distortion(1), |tPHL – tPLH  
|
tPHZ, tPLZ Disable time  
tPZH, tPZL Enable time  
11  
7
30  
20  
(1) Also known as pulse skew.  
6.15 Insulation Characteristics Curves  
700  
1200  
1000  
800  
600  
400  
200  
0
VCC = 1.89 V  
VCC = 2.75 V  
VCC = 3.6 V  
VCC = 5.5 V  
600  
500  
400  
300  
200  
100  
0
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D001  
D002  
1. Thermal Derating Curve for Limiting Current per VDE  
2. Thermal Derating Curve for Limiting Power per VDE  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
ISO1500  
www.ti.com.cn  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
6.16 Typical Characteristics  
35  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
ICC1 (VCC1 = 3.3V)  
ICC2 (VCC2 = 5V)  
ICC1 (VCC1=3.3V)  
ICC2 (VCC2=5V)  
0
0
100 200 300 400 500 600 700 800 900 1000  
Data Rate (kbps)  
0
100 200 300 400 500 600 700 800 900 1000  
Data rate (kbps)  
D001  
D002  
TA = 25°C  
DE = VCC1  
RE = GND1  
TA = 25°C  
DE = VCC1  
RE = GND1  
Driver load = 54  
ohm || 50 pF  
Load on R = 15 pF  
3. Supply Current Vs Data Rate- No Load  
4. Supply Current Vs Data Rate- with 54 || 50 pf Load  
60  
50  
40  
30  
20  
10  
0
4.5  
ICC1 (VCC1=3.3V)  
ICC2 (VCC2=5V)  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
100 200 300 400 500 600 700 800 900 1000  
Data rate (kbps)  
0
10  
20  
30  
40  
50  
60  
Driver output current (mA)  
70  
80  
90 100  
D003  
D005  
TA = 25°C  
DE = VCC1  
RE = GND1  
DE = VCC1  
VCC2 = 5 V  
D = GND1  
VCC1 = 3.3 V  
Driver load = 120  
ohm || 50 pF  
Load on R = 15 pF  
TA = 25°C  
6. Driver Differential Output Voltage Vs Driver Output  
5. Supply Current Vs Data Rate - with 120 || 50 pf Load  
Current  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
5
4.5  
4
4
3.5  
3
VOH  
VOL  
VOD (5V, 120 W)  
VOD (5V, 54 W)  
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0
10  
20  
30  
Driver output current (mA)  
40  
50  
60  
70  
80  
90 100  
-40  
-20  
0
20  
40  
Ambient temp (°C)  
60  
80  
100 120 140  
D004  
D006  
DE = VCC1  
VCC2 = 5 V  
D = GND1  
VCC1 = 3.3 V  
TA = 25°C  
7. Driver Output Voltage Vs Driver Output Current  
8. Driver Differential Output Voltage Vs Temperature  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
230  
225  
220  
215  
210  
205  
200  
195  
0
0
0.5  
1
1.5  
2
Supply Voltage VCC2 (V)  
2.5  
3
3.5  
4
4.5  
5
5.5  
-40  
-20  
0
20  
40  
60  
80  
Ambient Temperature (°C )  
100 120 140  
D007  
D008  
TA = 25°C  
RL = 54 ohm  
DE = D = VCC1  
VCC1 = 3.3 V  
VCC2 = 5 V  
9. Driver Output Current Vs Supply Voltage (VCC2  
)
10. Driver rise/fall time vs Temperature  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
ISO1500  
www.ti.com.cn  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
215  
7
6
5
4
3
2
1
0
VOH (1.8V)  
VOH (3.3V)  
VOH (5V)  
210  
205  
200  
195  
190  
-40  
-20  
0
20  
40  
60  
80  
Ambient Temperature (°C )  
100 120 140  
-15  
-10 -5  
High Level Output Current (mA)  
0
D009  
D010  
VCC1 = 3.3 V  
VCC2 = 5 V  
TA = 25°C  
11. Driver Propagation Delay vs Temperature  
12. Receiver Buffer High Level Output Voltage Vs High  
Level Output Current  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
140  
135  
130  
125  
120  
115  
110  
105  
Vol (1.8V)  
Vol (3.3V)  
Vol (5V)  
0
5
10  
Low Level Output Current (mA)  
15  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D013  
D014  
TA = 25°C  
VCC1 = 3.3 V  
VCC2 = 5 V  
13. Receiver Buffer Low Level Output Voltage Vs Low  
14. Receiver Propagation Delay Vs Temperature  
Level Output Current  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
VCC1 = 3.3 V  
DE = GND1  
VCC2 = 5 V  
RE = GND1  
TA = 25°C,  
VCC1 = 3.3 V  
TA = 25°C  
VCC2 = 5 V  
DE = VCC1  
16. Receiver Propagation Delay  
15. Driver Propagation delay  
18. VCC2 Power Up / Power down- Glitch Free Behavior  
17. VCC1 Power Up / Power down- Glitch Free Behavior  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
ISO1500  
www.ti.com.cn  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
7 Parameter Measurement Information  
VCC2  
375  
DE = VCC1  
A
VOD  
RL  
B
D = 0 or  
VTEST  
VCC1  
375 ꢀ  
+
œ
GND2  
19. Driver Voltages  
RL(1) / 2  
A
0 V or  
VCC1  
D
A
VA  
VB  
VOD  
RL(1) / 2  
B
B
VOC  
VOC  
GND2  
ûVOC(SS)  
VOC(PP)  
(1) RL = 100 Ω for RS422, RL = 54 Ω for RS-485  
20. Driver Voltages  
VCC1  
DE = VCC1  
VI  
50%  
VOD  
A
B
(1)  
CL  
50 pF 20%  
RL  
54 1%  
D
tPHL  
tPLH  
VOD (H)  
Input  
Generator  
90%  
90%  
tf  
50 ꢀ  
VI  
0 V  
10%  
0 V  
10%  
tr  
VOD  
VOD (L)  
GND1  
(1) CL includes fixture and instrumentation capacitance.  
21. Driver Switching Specifications  
VCC1  
DE  
VCC2  
10 µF  
VCC1  
0.1 µF  
10 µF  
0.1 µF  
GND1  
A
B
+
VOH or VOL  
D
54  
œ
GND1  
R
RE  
+
VOH or VOL  
œ
CL  
15 pF(1)  
1 kꢀ  
GND1  
GND2  
+ VCM  
œ
(1) Includes probe and fixture capacitance.  
22. Common Mode Transient Immunity (CMTI)—Half Duplex  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
A
S1  
VCC1  
D
VO  
50 % 50 %  
VI  
B
DE  
0 V  
VOH  
(1)  
CL  
50 pF  
RL  
110  
tPZH  
90%  
Input  
Generator  
50 ꢀ  
50%  
VI  
VO  
0 V  
tPHZ  
GND2  
GND1  
(1) CL includes fixture and instrumentation capacitance  
23. Driver Enable and Disable Times  
VCC2  
RL  
110  
VCC1  
A
50 % 50 %  
VI  
D
0 V  
S1  
tPZL  
tPLZ  
(1)  
CL  
50 pF  
B
DE  
VCC2  
VO  
50%  
10%  
Input  
Generator  
VOL  
50 ꢀ  
VI  
GND2  
GND1  
24. Driver Enable and Disable Times  
3 V  
50 %  
50 %  
A
VI  
R
VO  
0 V  
VOH  
B
Input  
Generator  
(1)  
CL  
15 pF  
1.5 V  
50  
tPLH  
tPHL  
VI  
RE  
90%  
50%  
10%  
50%  
VO  
VOL  
tr  
tf  
(1) CL includes fixture and instrumentation capacitance.  
25. Receiver Switching Specifications  
VCC1  
50%  
VI  
0 V  
tPZH  
tPHZ  
VOH  
90%  
VO  
50%  
0 V  
VCC1  
VOL  
tPZL  
tPLZ  
VO  
50%  
10%  
26. Receiver Enable and Disable Times  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
ISO1500  
www.ti.com.cn  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
Parameter Measurement Information (接下页)  
VCC1  
0 V  
VCC1  
VI  
50%  
A
B
1 k  
0 V or 1.5 V  
R
VO  
CL  
15 pF  
S1  
tPZH  
1.5 V or 0 V  
VOH  
A at 1.5 V  
B at 0 V  
S1 to GND  
RE  
VO  
50%  
0 V  
VCC1  
VOL  
Input  
Generator  
tPZL  
VI  
50 ꢀ  
A at 0 V  
B at 1.5 V  
S1 to  
VO  
50%  
VCC1  
27. Receiver Enable and Disable Times  
A
A
B
Steady-State  
Logic Input  
(1 or 0)  
Steady State  
Logic Input  
(1 or 0)  
œ7 V ≤ V ≤ 12 V  
I(1)  
G
G
V
B
C
C
GND  
GND  
(1) The driver should not sustain any damage with this configuration.  
28. Short-Circuit Current Limiting  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ISO1500 device is an isolated RS-485/RS-422 transceiver designed to operate in harsh industrial  
environments. This device supports data transmissions up to 1 Mbps. The ISO1500 device has a 3-channel  
digital isolator and an RS-485 transceiver in an ultra-small SSOP package. The silicon-dioxide based capacitive  
isolation barrier supports an isolation withstand voltage of 3 kVRMS and an isolation working voltage of 566 VPK  
.
Isolation breaks the ground loop between the communicating nodes and lets data transfer in the presence of  
large ground potential differences. The wide logic supply of the device (VCC1) supports interfacing with 1.8-V, 2.5-  
V, 3.3-V. and 5-V control logic. Functional Block Diagram shows the functional block diagram of the the half-  
duplex device.  
8.2 Functional Block Diagram  
VCC2  
VCC1  
VCC2  
Rx  
VCC  
Tx  
Tx  
Rx  
DE  
D
Rx  
Tx  
D
A
B
Half duplex  
R
R
RE  
GND2  
GND1  
GND2  
8.3 Feature Description  
1 shows an overview of the device features.  
1. Device Features  
PART NUMBER  
ISOLATION  
DUPLEX  
DATA RATE  
1 Mbps  
PACKAGE  
16-pin SSOP  
ISO1500  
Basic  
Half  
8.3.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO1500  
device has dedicated circuitry to help protect the transceiver from Contact ESD per IEC61000-4-2.  
8.3.2 Failsafe Receiver  
The differential receiver of the ISO1500 device has failsafe protection from invalid bus states caused by:  
Open bus conditions such as a broken cable or a disconnected connector  
Shorted bus conditions such as insulation breakdown of a cable that shorts the twisted-pair  
Idle bus conditions that occur when no driver on the bus is actively driving  
The differential input of the RS-485 receiver is 0 in any of these conditions for a terminated transmission line.  
The receiver outputs a failsafe logic-high state so that the output of the receiver is not indeterminate.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ISO1500  
www.ti.com.cn  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
The receiver thresholds are offset in the receiver failsafe protection so that the indeterminate range of the input  
does not include a 0 V differential. The receiver output must generate a logic high when the differential input (VID)  
is greater than 200 mV to comply with the RS-485 standard. The receiver output must also generate a output a  
logic low when VID is less than –200 mV to comply with the RS-485 standard. The receiver parameters that  
determine the failsafe performance are VTH+, VTH–, and VHYS. Differential signals less than –200 mV always  
cause a low receiver output as shown in the Electrical Characteristics table. Differential signals greater than 200  
mV always cause a high receiver output. A differential input signal that is near zero is still greater than the VTH+  
threshold which makes the receiver output logic high. The receiver output goes to a low state only when the  
differential input decreases by VHYS to less than VTH+  
.
The internal failsafe biasing feature removes the need for the two external resistors that are typically required  
with traditional isolated RS-485 transceivers as shown in 29.  
Traditional  
transceiver  
ISO1500  
(R1 and R2 not needed)  
VCC2  
VCC2  
VCC1  
VCC2  
VCC1  
VCC2  
R1  
A
A
RS-485  
Bus  
RS-485  
Bus  
RT  
RT  
B
B
R2  
GND2  
GND1  
GND2  
GND1  
ISO  
Ground  
ISO  
Ground  
Galvanic  
Isolation Barrier  
Galvanic  
Isolation Barrier  
29. Failsafe Transceiver  
8.3.3 Thermal Shutdown  
The ISO1500 device has a thermal shutdown circuit to protect against damage when a fault condition occurs. A  
driver output short circuit or bus contention condition can cause the driver current to increase significantly which  
increases the power dissipation inside the device. An increase in the die temperature is monitored and the device  
is disabled when the die temperature becomes 170(typical) which lets the device decrease the temperature.  
The device is enabled when the junction temperature becomes 163(typical).  
8.3.4 Glitch-Free Power Up and Power Down  
Communication on the bus that already exist between a master node and slave node in an RS485 network must  
not be disturbed when a new node is swapped in or out of the network. No glitches on the bus occur when the  
device is:  
Hot plugged into the network in an unpowered state  
Hot plugged into the network in a powered state and disabled state  
Powered up or powered down in a disabled state when already connected to the bus  
The ISO1500 device does not cause any false data toggling on the bus when powered up or powered down in a  
disabled state with supply ramp rates from 100 µs to 10 ms.  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.4 Device Functional Modes  
2 shows the driver functional modes.  
2. Driver Functional Table(1)  
OUTPUTS  
DRIVER ENABLE  
DE  
VCC1  
VCC2  
INPUT D  
A
H
B
L
H
L
H
H
L
H
PU  
PU  
X
L
Hi-Z  
Hi-Z  
H
Hi-Z  
Hi-Z  
L
X
Open  
H
Open  
X
PD(2)  
X
PU  
PD  
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
X
X
(1) PU = Powered Up; PD = Powered Down; H = High Level; L = Low level; X = Irrelevant, Hi-Z = High impedance state  
(2) A strongly driven input signal can weakly power the floating VCC1 through an internal protection diode and cause an undetermined  
output.  
When the driver enable pin, DE, is logic high, the differential outputs, A and B, follow the logic states at data  
input, D. A logic high at the D input causes the A output to go high and the B output to go low. Therefore the  
differential output voltage defined by 公式 1 is positive.  
VOD = VA – VB  
(1)  
A logic low at the D input causes the B output to go high and the A output to go low. Therefore the differential  
output voltage defined by 公式 1 is negative. A logic low at the DE input causes both outputs to go to the high-  
impedance (Hi-Z) state. The logic state at the D pin is irrelevant when the DE input is logic low. The DE pin has  
an internal pulldown resistor to ground. The driver is disabled (bus outputs are in the Hi-Z) by default when the  
DE pin is left open. The D pin has an internal pullup resistor. The A output goes high and the B output goes low  
when the D pin is left open while the driver enabled.  
3 shows the receiver functional modes.  
3. Receiver Functional Table(1)  
VCC1  
VCC2  
DIFFERENTIAL INPUT  
VID = VA – VB  
RECEIVER ENABLE RE  
OUTPUT R  
–0.02 V VID  
L
H
–0.2 V < VID < 0.02 V  
L
Indeterminate  
V
ID–0.2 V  
L
H
L
PU  
PU  
X
X
Hi-Z  
Hi-Z  
H
Open  
L
Open, Short, Idle  
PD(2)  
PU  
PD(2)  
PU  
PD  
PD  
X
X
X
X
Hi-Z  
H
L
X
Hi-Z  
(1) PU = Powered Up; PD = Powered Down; H = Logic High; L= Logic Low; X = Irrelevant, Hi-Z = High Impedance (OFF) state  
(2) A strongly driven input signal can weakly power the floating VCC1 through an internal protection diode and cause an undetermined  
output.  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
ISO1500  
www.ti.com.cn  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
The receiver is enabled when the receiver enable pin, RE, is logic low. The receiver output, R, goes high when  
the differential input voltage defined by 公式 2 is greater than the positive input threshold, VTH+  
.
VID = VA – VB  
(2)  
The receiver output, R, goes low when the differential input voltage defined by 公式 2 is less than the negative  
input threshold, VTH–. If the VID voltage is between the VTH+ and VTH– thresholds, the output is indeterminate. The  
receiver output is in the Hi-Z state and the magnitude and polarity of VID are irrelevant when the RE pin is logic  
high or left open. The internal biasing of the receiver inputs causes the output to go to a failsafe-high when the  
transceiver is disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or  
the bus is not actively driven (idle bus).  
8.4.1 Device I/O Schematics  
D and RE Inputs  
VCC1 VCC1  
DE Input  
VCC1  
VCC1  
VCC1  
VCC1  
VCC1  
1.5 M  
985 ꢀ  
985 ꢀ  
Input  
Input  
1.5 Mꢀ  
R Output  
VCC1  
~20 ꢀ  
R
30. Device I/O Schematics  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ISO1500 device is designed for bidirectional data transfer on multipoint RS-485 networks. The design of  
each RS-485 node in the network requires an ISO1500 device and an isolated power supply as shown in 32.  
An RS-485 bus has multiple transceivers that connect in parallel to a bus cable. Both cable ends are terminated  
with a termination resistor, RT, to remove line reflections. The value of RT matches the characteristic impedance,  
Z0, of the cable. This method, known as parallel termination, lets higher data rates be used over a longer cable  
length.  
In half-duplex implementation, as shown in 31, the driver and receiver enable pins let any node at any given  
moment be configured in either transmit or receive mode which decreases cable requirements.  
Integrated isolation barrier allows for communication between  
nodes with large ground potential differences  
R
R
A
B
A
B
RE  
DE  
D
RE  
DE  
D
ISO1500  
ISO1500  
RT  
RT  
A
B
A
B
31. Half-Duplex Network Circuit  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ISO1500  
www.ti.com.cn  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
9.2 Typical Application  
32 shows the application circuit of the ISO1500 device.  
4
8
1
3
5
4
GND  
D2  
IN  
OUT  
NC  
EN  
SN6505  
3
2
7
6
3.3 V  
TPS76350  
EN  
VCC  
2
GND  
1
5
CLK  
D1  
1
2
10, 16  
VCC1  
VCC2  
0.1 F  
0.1 F × 2  
GND1  
R
VDD  
3
14  
13  
GPIO1  
NC  
B
4
5
MCU  
GPIO2  
RE  
ISO1500  
12  
DE  
A
6
L1 3.3V  
NC 11  
GPIO3  
DGND  
D
Optional bus  
protection  
N
PSU  
7
8
NC  
0V  
PE  
9,15  
GND1  
GND2  
Galvanic  
Isolation Barrier  
Protective Chasis  
Ground  
Digital  
Ground  
ISO  
Ground  
Earth  
32. Typical Application  
9.2.1 Design Requirements  
Unlike an optocoupler-based solution, which requires several external components to improve performance,  
provide bias, or limit current, the ISO1500 device only requires external bypass capacitors to operate.  
9.2.2 Detailed Design Procedure  
The RS-485 bus is a robust electrical interface suitable for long-distance communications. The RS-485 interface  
can be used in a wide range of applications with varying requirements of distance of communication, data rate,  
and number of nodes.  
9.2.2.1 Data Rate and Bus Length  
The RS-485 standard has typical curves similar to those shown in 33. These curves show the inverse  
relationship between signaling rate and cable length. If the data rate of the payload between two nodes is lower,  
the cable length between the nodes can be longer.  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Application (接下页)  
10000  
5%, 10%, and 20% Jitter  
1000  
100  
10  
Conservative  
Characteristics  
100  
1k  
10k  
100 k  
1M  
10M  
100 M  
Data Rate (bps)  
33. Cable Length vs Data Rate Characteristics  
Applications can increase the cable length at slower data rates compared to what is shown in 33 by allowing  
for jitter of 5% or higher. Use 33 as a guideline for cable selection, data rate, cable length and subsequent  
jitter budgeting.  
9.2.2.2 Stub Length  
In an RS-485 network, the distance between the transceiver inputs and the cable trunk is known as the stub. The  
stub should be as short as possible when a node is connected to the bus. Stubs are a non-terminated piece of  
bus line that can introduce reflections of varying phase as the length of the stub increases. The electrical length,  
or round-trip delay, of a stub should be less than one-tenth of the rise time of the driver as a general guideline.  
Therefore, the maximum physical stub length (L(STUB)) is calculated as shown in 公式 3.  
L(STUB) 0.1 × tr × v × c  
where  
tr is the 10/90 rise time of the driver.  
c is the speed of light (3 × 108 m/s).  
v is the signal velocity of the cable or trace as a factor of c.  
(3)  
9.2.2.3 Bus Loading  
The current supplied by the driver must supply into a load because the output of the driver depends on this  
current. Add transceivers to the bus to increase the total bus loading. The RS-485 standard specifies a  
hypothetical term of a unit load (UL) to estimate the maximum number of possible bus loads. The UL represents  
a load impedance of approximately 12 kΩ. Standard-compliant drivers must be able to drive 32 of these ULs.  
The ISO1500 device has 1/8 UL impedance transceiver and can connect up to 256 nodes to the bus.  
10 Power Supply Recommendations  
To make sure device operation is reliable at all data rates and supply voltages, a 0.1-μF bypass capacitor is  
recommended at the logic and transceiver supply pins (VCC1 and VCC2). The capacitors should be placed as near  
to the supply pins as possible. Side 2 requires one VCC2 decoupling capacitor on each VCC2 pin. If only one  
primary-side power supply is available in an application, isolated power can be generated for the secondary-side  
with the help of a transformer driver such as TI's SN6505B device. For such applications, detailed power supply  
design and transformer selection recommendations are available in the SN6505 Low-Noise 1-A Transformer  
Drivers for Isolated Power Supplies data sheet.  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ISO1500  
www.ti.com.cn  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 34). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
35 shows the recommended placement and routing of the device bypass capacitors and optional TVS diodes.  
Put the two VCC2 bypass capacitors on the top layer and as near to the device pins as possible. Do not use vias  
to complete the connection to the VCC2 and GND2 pins. If an additional supply voltage plane or signal layer is  
needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack  
mechanically stable and prevents it from warping. Also the power and ground plane of each power system can  
be placed closer together, thus increasing the high-frequency bypass capacitance significantly.  
Refer to the Digital Isolator Design Guide for detailed layout recommendations.  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and the self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this space  
FR-4  
free from planes,  
traces, pads, and  
vias  
40 mils  
0r ~ 4.5  
Power plane  
10 mils  
Low-speed traces  
Figure 34. Recommended Layer Stack  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
ISO1500  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Layout Example (接下页)  
Minimize  
distance to  
supply pins  
VCC1  
VCC2  
Optional bus  
protection  
VCC1  
VCC2  
GND2  
NC  
0.1 µF  
C
C
0.1 µF  
GND1  
R
MCU  
RE  
B
D1  
RS-485  
DE  
A
D
NC  
NC  
VCC2  
GND2  
0.1 µF  
C
GND1  
GND1  
Plane  
GND2  
Plane  
35. Layout Example  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
ISO1500  
www.ti.com.cn  
ZHCSIV2C SEPTEMBER 2018REVISED SEPTEMBER 2019  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《数字隔离器设计指南》  
德州仪器 (TI)《隔离相关术语》  
德州仪器 (TI)ISO1500 隔离式 RS-485 半双工评估模块》用户指南  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO1500DBQ  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
DBQ  
DBQ  
16  
16  
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
1500  
1500  
ISO1500DBQR  
2500 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO1500DBQR  
SSOP  
DBQ  
16  
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SSOP DBQ 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
ISO1500DBQR  
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DBQ SSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO1500DBQ  
16  
75  
505.46  
6.76  
3810  
4
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ISO1500DBQR

1Mbps、半双工、3kVrms 超小型隔离式 RS-485 和 RS-422 收发器 | DBQ | 16 | -40 to 125
TI

ISO150AP

Dual, Isolated, Bi-Directional DIGITAL COUPLER
BB

ISO150AU

Dual, Isolated, Bi-Directional DIGITAL COUPLER
BB

ISO150AU

Dual, Isolated, Bi-Directional Digital Coupler 12-SOP -40 to 85
TI

ISO150AUG4

Dual, Isolated, Bi-Directional Digital Coupler 12-SOP -40 to 85
TI

ISO15170

Cannon APD Series ISO 15170 Connectors
ITT

ISO1540

Low-Power Bidirectional I2C Isolators
TI

ISO1540-Q1

汽车类 2.5kVrms、隔离式双向时钟、双向 I2C 隔离器
TI

ISO1540D

Low-Power Bidirectional I2C Isolators
TI

ISO1540DR

Low-Power Bidirectional I2C Isolators
TI

ISO1540QDQ1

汽车类 2.5kVrms、隔离式双向时钟、双向 I2C 隔离器 | D | 8 | -40 to 125
TI

ISO1540QDRQ1

汽车类 2.5kVrms、隔离式双向时钟、双向 I2C 隔离器 | D | 8 | -40 to 125
TI