ISO1540-Q1 [TI]

汽车类 2.5kVrms、隔离式双向时钟、双向 I2C 隔离器;
ISO1540-Q1
型号: ISO1540-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 2.5kVrms、隔离式双向时钟、双向 I2C 隔离器

时钟
文件: 总36页 (文件大小:1533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
ISO154x-Q1 低功耗双I2C 隔离器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性  
– 器件温度等140°C +125°C 的工作环  
境温度范围  
– 器HBM ESD 分类等3A  
– 器CDM ESD 分类等C6  
提供功能安全  
ISO1540-Q1 ISO1541-Q1 器件均为兼容 I2C 接口  
的低功耗双向隔离器。凭借德州仪器 (TI) 电容隔离技  
术使用这些器件的逻辑输入和输出缓冲器由二氧化硅  
(SiO2) 绝缘栅进行隔离。与隔离式电源搭配使用时这  
些器件可阻断高电压、隔离接地并防止噪声电流进入本  
地接地端以至于干扰或损坏敏感电路。  
与光电耦合器相比这项隔离技术在功能、性能、尺  
寸、功耗方面具有一定优势。ISO1540-Q1 和  
ISO1541-Q1 器件支持将一个完全隔离的 I2C 接口融入  
小型封装中。  
– 可帮助进行功能安全系统设计的文档:  
ISO1540-Q1, ISO1541-Q1  
• 隔离式双I2C 兼容型通信  
• 支持高1MHz 的工作频率  
3V 5.5V 电源电压范围  
• 开漏输出1 侧灌电流3.5mA2 侧灌电流为  
35mA  
ISO1540-Q1 具有两条隔离式双向通道分别应用于时  
钟和数据线ISO1541-Q1 具有一条双向数据通道  
和一条单向时钟通道。ISO1541-Q1 在具有一个控制器  
的应用中非常实用ISO1540-Q1 适用于多控制器应  
用。对于目标可能需要时钟延展的应用使用  
ISO1540-Q1 器件。  
±50kV/µs 瞬态抗扰度典型值)  
• 安全相关认证:  
– 符DIN EN IEC 60747-17 (VDE 0884-17) 标  
4242VPK 隔离  
– 符UL 1577 标准且持续时长1 分钟的  
这些器件通过将 1 侧低电平输出电压偏移至高于 1 侧  
高电平输入电压的方式实现隔离式双向通信从而避免  
标准数字隔离器发生内部逻辑锁存。  
2500VRMS 隔离  
– 根IEC 62368-1 终端设备标准CSA 认  
– 根GB4943.1-2011 标准CQC 基本绝  
器件信息  
封装尺寸标称值)  
器件型号  
ISO1540-Q1  
封装  
SOIC (8)  
4.90mm × 3.91mm  
ISO1541-Q1  
2 应用  
VCC1  
VCC2  
• 电动和混合动力汽车  
• 隔离I2C 总线  
SMBus PMBus 接口  
• 开漏网络  
• 电机控制系统  
• 电池管理  
I2C 电平转换  
SDA1  
or SCL1  
SDA2  
or SCL2  
GND1  
GND2  
VREF  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEX0  
 
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.1 Overview...................................................................18  
7.2 Functional Block Diagrams....................................... 18  
7.3 Feature Description...................................................19  
7.4 Isolator Functional Principle......................................19  
7.5 Device Functional Modes..........................................20  
8 Application and Implementation..................................21  
8.1 Application Information............................................. 21  
8.2 Typical Application.................................................... 23  
9 Power Supply Recommendations................................25  
10 Layout...........................................................................26  
10.1 Layout Guidelines................................................... 26  
10.2 Layout Example...................................................... 26  
11 Device and Documentation Support..........................27  
11.1 Documentation Support.......................................... 27  
11.2 Related Links.......................................................... 27  
11.3 Receiving Notification of Documentation Updates..27  
11.4 Community Resources............................................27  
11.5 Trademarks............................................................. 27  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Power Ratings.............................................................6  
6.6 Insulation Specifications............................................. 7  
6.7 Safety-Related Certifications...................................... 8  
6.8 Safety Limiting Values.................................................8  
6.9 Electrical Characteristics.............................................9  
6.10 Supply Current Characteristics............................... 10  
6.11 Timing Requirements.............................................. 10  
6.12 Switching Characteristics........................................11  
6.13 Insulation Characteristics Curves........................... 12  
6.14 Typical Characteristics............................................13  
7 Detailed Description......................................................18  
Information.................................................................... 27  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (November 2021) to Revision D (December 2022)  
Page  
• 将提I2C 的旧术语实例通篇更改为控制器和目标。......................................................................................... 1  
• 通篇进行了编辑性和修饰性更改......................................................................................................................... 1  
Updated electrical and switching parameters.....................................................................................................5  
Updated 'DIN VDE V 0884-11:2017-01' to 'DIN EN IEC 60747-17 (VDE 0884-17)' and removed references to  
'CSA/IEC 60950-1'..............................................................................................................................................8  
Changes from Revision B (October 2020) to Revision C (November 2021)  
Page  
Changed scaling on mutiple images.................................................................................................................23  
Changes from Revision A ( March 2019) to Revision B (October 2020)  
Page  
• 为“功能安全信息”添加了1 要点..................................................................................................................1  
Changes from Revision * ( November 2016) to Revision A (March 2019)  
Page  
VDE 标准名称从“DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12”更改DIN VDE V  
0884-11:2017-01位于1............................................................................................................................1  
• 将1 要点从“CSA 元件验收通5AIEC 60950-1 IEC 61010-1 终端设备标准”更改为“根IEC  
60950-1 IEC 62368-1 终端设备标准CSA 认证”............................................................................... 1  
• 删除了1 要点UL 1577 认证其他全部认证纳入规划......................................................................... 1  
Updated certifications approval status, numbers, standard names, and details according to the latest agency  
certificates in 6.7 table................................................................................................................................... 8  
Changed both bypass capacitors From: 10 µF To: 0.1 µF in . Even though larger capacitors can be used, 0.1  
µF is the minimum recommended bypass capacitor size.................................................................................23  
Changed both bypass capacitors From: 10 µF To: 0.1 µF in . Even though larger capacitors can be used, 0.1  
µF is the minimum recommended bypass capacitor size.................................................................................23  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
2
3
4
8
7
6
5
VCC1  
SDA1  
SCL1  
GND1  
VCC2  
SDA2  
SCL2  
GND2  
Side 2  
Side 1  
Not to scale  
5-1. ISO1540-Q1 D Package 8-Pin SOIC Top View  
5-1. Pin FunctionsISO1540-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
GND1  
GND2  
SCL1  
SCL2  
SDA1  
SDA2  
VCC1  
VCC2  
NO.  
4
Ground, side 1  
5
Ground, side 2  
3
I/O  
I/O  
I/O  
I/O  
Serial clock input / output, side 1  
Serial clock input / output, side 2  
Serial data input / output, side 1  
Serial data input / output, side 2  
Supply voltage, side 1  
6
2
7
1
8
Supply voltage, side 2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
1
2
3
4
8
7
6
5
VCC1  
SDA1  
SCL1  
GND1  
VCC2  
SDA2  
SCL2  
GND2  
Side 2  
Side 1  
Not to scale  
5-2. ISO1541-Q1 D Package 8-Pin SOIC Top View  
5-2. Pin FunctionsISO1541-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
GND1  
GND2  
SCL1  
SCL2  
SDA1  
SDA2  
VCC1  
VCC2  
NO.  
4
Ground, side 1  
I
5
Ground, side 2  
3
Serial clock input, side 1  
Serial clock output, side 2  
Serial data input / output, side 1  
Serial data input / output, side 2  
Supply voltage, side 1  
Supply voltage, side 2  
6
O
2
I/O  
I/O  
7
1
8
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.5  
0.5  
0.5  
0
MAX  
UNIT  
VCC1, VCC2  
6
VCC1 + 0.5(3)  
VCC2 + 0.5(3)  
20  
Voltage  
SDA1, SCL1  
SDA2, SCL2  
SDA1, SCL1  
SDA2, SCL2  
V
IO  
Output current  
mA  
0
100  
TJ(MAX)  
Tstg  
Maximum junction temperature  
Storage temperature  
150  
°C  
°C  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values here within are with respect to the local ground pin (GND1 or GND2) and are peak voltage values.  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
±4000  
±8000  
±1500  
UNIT  
All pins except bus pins  
Bus pins  
Human-body model (HBM), per AEC  
Q100-002(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
5.5  
UNIT  
VCC1, VCC2  
Supply voltage  
3
V
V
VSDA1, VSCL1  
Input and output signal voltages, side 1  
Input and output signal voltages, side 2  
Low-level input voltage, side 1  
High-level input voltage, side 1  
Low-level input voltage, side 2  
High-level input voltage, side 2  
Output current, side 1  
0
VCC1  
VCC2  
0.5  
VSDA2, VSCL2  
VIL1  
VIH1  
VIL2  
VIH2  
IOL1  
0
V
0
V
0.7 × VCC1  
VCC1  
0.3 × VCC2  
VCC2  
3.5  
V
0
0.7 × VCC2  
0.5  
V
V
mA  
mA  
pF  
pF  
MHz  
°C  
°C  
°C  
IOL2  
Output current, side 2  
0.5  
35  
C1  
Capacitive load, side 1  
40  
C2  
Capacitive load, side 2  
400  
fMAX  
TA  
Operating frequency(1)  
1
Ambient temperature  
125  
40  
40  
139  
TJ  
Junction temperature  
136  
TSD  
Thermal shutdown  
197  
(1) This represents the maximum frequency with the maximum bus load (C) and the maximum current sink (IO). If the system has less bus  
capacitance, then higher frequencies can be achieved.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
 
 
 
 
 
 
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
6.4 Thermal Information  
ISO154x-Q1  
D (SOIC)  
8 PINS  
114.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
69.6  
55.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
27.2  
ψJT  
54.7  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
105  
37  
UNIT  
mW  
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side-1)  
VCC1 = VCC2 = 5.5 V, TJ = 150 °C, C1 =  
20 pF, C2 = 400 pF; R1 = 1.4 kΩ, R2 = 94  
Ω; Input a 1-MHz 50% duty cycle clock  
signal  
PD1  
mW  
PD2  
Maximum power dissipation (side-2)  
68  
mW  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Insulation Specifications  
PARAMETER  
GENERAL  
TEST CONDITIONS  
VALUE  
UNIT  
CLR  
CPG  
External clearance(1)  
Shortest terminal-to-terminal distance through air  
>4  
>4  
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
External creepage(1)  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
0.014  
>400  
II  
mm  
V
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
IIV  
IIII  
Overvoltage category  
DIN EN IEC 60747-17 (VDE 0884-17)(2)  
VIORM Maximum repetitive peak isolation voltage AC voltage (bipolar)  
566  
VPK  
VPK  
VTEST = VIOTM  
VIOTM  
Maximum transient isolation voltage  
t = 60 s (qualification)  
t = 1 s (100% production)  
4242  
Method a: After I/O safety test subgroup 2/3, Vini  
=
VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM = 680 VPK, tm  
= 10 s  
<5  
<5  
<5  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM = 906  
VPK, tm = 10 s  
qpd  
Apparent charge(3)  
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test) Vini = VIOTM, tini = 1 s;  
Vpd(m) = 1.875 × VIORM = 1062 VPK, tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(4)  
Isolation resistance, input to output(4)  
~1  
>1012  
>1011  
>109  
pF  
VIO = 0.4 sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
40/125/21  
UL 1577  
VTEST = VISO = 2500 VRMS, t = 60 s (qualification);  
VTEST = 1.2 × VISO = 3000 VRMS, t = 1 s (100%  
production)  
VISO  
Withstand isolation voltage  
2500  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these  
specifications.  
(2) This coupler is suitable for basic electrical insulation only within the maximum operating ratings. Compliance with the safety ratings  
shall be ensured by means of suitable protective circuits.  
(3) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(4) All pins on each side of the barrier tied together creating a two-terminal device  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
 
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
Certified according to DIN EN IEC  
60747-17 (VDE 0884-17) and DIN  
EN 61010-1 (VDE 0411-1)  
Recognized under UL 1577  
Component Recognition  
Program  
Certified according to CSA/IEC  
62368-1  
Certified according to  
GB4943.1-2011  
Basic Insulation  
Maximum Transient Overvoltage,  
2.5-kVRMS Insulation Rating;  
300 VRMS Basic Insulation  
working voltage per CSA  
Basic Insulation, Altitude 5000  
m, Tropical Climate, 250 VRMS  
maximum working voltage  
4242 VPK  
;
Single protection, 2500 VRMS  
Maximum Repetitive Peak Voltage, 62368-1-14 and IEC  
566 VPK  
62368-1:2014  
Certificate number:  
CQC14001109540  
Certificate number: 40047657  
Master contract number: 220991 File number: E181974  
6.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of  
the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier, potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
R
θJA = 114.6°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C,  
198  
mA  
303  
see 6-1  
θJA = 114.6°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C,  
see 6-1  
Safety input, output, or supply  
current  
IS  
R
TS  
Safety temperature  
150  
°C  
The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power  
dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines  
the junction temperature. The assumed junction-to-air thermal resistance in the 6.4 table is that of a device  
installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum  
input voltage times the current. The junction temperature is then the ambient temperature plus the power times  
the junction-to-air thermal resistance.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
6.9 Electrical Characteristics  
over recommended operating conditions, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SIDE 1 (ONLY)  
Voltage input threshold low, SDA1  
and SCL1  
VILT1  
VIHT1  
480  
550  
660  
700  
mV  
Voltage input threshold high, SDA1  
and SCL1  
520  
40  
610  
60  
mV  
mV  
mV  
VHYST1 Voltage input hysteresis  
V
IHT1 VILT1  
Low-level output voltage, SDA1 and  
VOL1  
570  
800  
0.5 mA (ISDA1 and ISCL1) 3.5 mA  
0.5 mA (ISDA1 and ISCL1) 3.5 mA  
SCL1(1)  
Low-level output voltage to high-  
level input voltage threshold  
50  
mV  
ΔVOIT1  
difference, SDA1 and SCL1(1) (2)  
SIDE 2 (ONLY)  
Voltage input threshold low, SDA2  
VILT2  
0.3 × VCC2  
0.4 × VCC2  
0.5 × VCC2  
V
and SCL2  
Voltage input threshold high, SDA2  
and SCL2  
VIHT2  
0.4 × VCC2  
V
V
V
VHYST2 Voltage input hysteresis  
Low-level output voltage, SDA2 and  
0.05 × VCC2  
V
IHT2 VILT2  
VOL2  
0.4  
10  
0.5 mA (ISDA2 and ISCL2) 35 mA  
SCL2  
BOTH SIDES  
Input leakage currents, SDA1,  
SCL1, SDA2, and SCL2  
VSDA1, VSCL1 = VCC1;  
VSDA2, VSCL2 = VCC2  
|II|  
0.01  
µA  
Input capacitance to local ground,  
SDA1, SCL1, SDA2, and SCL2  
CI  
7
50  
pF  
kV/µs  
V
VI = 0.4 × sin(2E6πt) + 2.5 V  
See 7-3  
CMTI  
VCCUV  
Common-mode transient immunity  
25  
VCC undervoltage lockout  
threshold(3)  
1.7  
2.5  
2.9  
(1) This parameter does not apply to the ISO1541-Q1 SCL1 line as it is unidirectional.  
(2) VOIT1 = VOL1 VIHT1. This represents the minimum difference between a Low-Level Output Voltage and a High-Level Input Voltage  
Threshold to prevent a permanent latch condition that would otherwise exist with bidirectional communication.  
(3) Any VCC voltages, on either side, less than the minimum will ensure device lockout. Both VCC voltages greater than the maximum will  
prevent device lockout.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
6.10 Supply Current Characteristics  
over recommended operating conditions, unless otherwise noted. For more information, see 7-1.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
3 V VCC1, VCC2 3.6 V  
VSDA1, VSCL1 = GND1; VSDA2, VSCL2 = GND2;  
R1, R2 = Open; C1, C2 = Open  
2.4  
2.5  
2.1  
2.3  
1.7  
1.9  
7.1  
4
ISO1540-Q1  
VSDA1, VSCL1 = VCC1; VSDA2, VSCL2 = VCC2;  
R1, R2 = Open; C1, C2 = Open  
ICC1 Supply current, side 1  
mA  
VSDA1, VSCL1 = GND1; VSDA2, VSCL2 = GND2;  
R1, R2 = Open; C1, C2 = Open  
6.1  
3.6  
6.7  
3.5  
ISO1541-Q1  
VSDA1, VSCL1 = VCC1; VSDA2, VSCL2 = VCC2;  
R1, R2 = Open; C1, C2 = Open  
VSDA1, VSCL1 = GND1; VSDA2, VSCL2 = GND2;  
R1, R2 = Open; C1, C2 = Open  
ISO1540-Q1 and  
ISO1541-Q1  
ICC2 Supply current, side 2  
mA  
VSDA1, VSCL1 = VCC1; VSDA2, VSCL2 = VCC2;  
R1, R2 = Open; C1, C2 = Open  
4.5 V VCC1, VCC2 5.5 V  
VSDA1, VSCL1 = GND1; VSDA2, VSCL2 = GND2;  
R1,R2 = Open; C1,C2 = Open  
3.1  
3.1  
2.8  
2.9  
2.3  
2.5  
7.2  
4.7  
6.2  
4.5  
6.8  
4
ISO1540-Q1  
ISO1541-Q1  
VSDA1, VSCL1 = VCC1; VSDA2, VSCL2 = VCC2;  
R1, R2 = Open; C1, C2 = Open  
ICC1 Supply current, side 1  
mA  
mA  
VSDA1, VSCL1 = GND1; VSDA2, VSCL2 = GND2;  
R1, R2 = Open; C1, C2 = Open  
VSDA1, VSCL1 = VCC1; VSDA2, VSCL2 = VCC2;  
R1, R2 = Open; C1, C2 = Open  
VSDA1, VSCL1 = GND1; VSDA2, VSCL2 = GND2;  
R1, R2 = Open; C1, C2 = Open  
ISO1540-Q1 and  
ISO1541-Q1  
ICC2 Supply current, side 2  
VSDA1, VSCL1 = VCC1; VSDA2, VSCL2 = VCC2;  
R1, R2 = Open; C1, C2 = Open  
6.11 Timing Requirements  
MIN  
NOM  
MAX UNIT  
151 µs  
tUVLO  
Time to recover from UVLO  
30  
50  
2.7 V to 0.9 V; See 7-4  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
6.12 Switching Characteristics  
over recommended operating conditions, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
3 V VCC1, VCC2 3.6 V  
0.7 × VCC1 to 0.3 × VCC1  
0.9 × VCC1 to 900 mV  
0.7 × VCC2 to 0.3 × VCC2  
0.9 × VCC2 to 400 mV  
8
16  
14  
35  
17  
29  
23  
50  
29  
48  
See 7-1  
R1 = 953 Ω,  
C1 = 40 pF  
Output Signal Fall Time  
(SDA1, SCL1)  
tf1  
ns  
ns  
47  
See 7-1  
R2 = 95.3 Ω,  
C2 = 400 pF  
Output Signal Fall Time  
(SDA2, SCL2)  
tf2  
100  
Low-to-High Propagation  
Delay, Side 1 to Side 2  
tpLH1-2  
tPHL1-2  
PWD1-2  
0.55 V to 0.7 × VCC2  
0.7 V to 0.4 V  
33  
90  
55  
47  
67  
20  
65  
181  
123  
68  
ns  
ns  
ns  
ns  
ns  
ns  
High-to-Low Propagation  
Delay, Side 1 to Side 2  
Pulse Width Distortion  
See 7-1  
|tpHL1-2 tpLH1-2  
|
R1 = 953 Ω,  
R2 = 95.3 Ω,  
C1, C2 = 10 pF  
Low-to-High Propagation  
Delay, Side 2 to Side 1  
(1)  
tPLH2-1  
0.4 × VCC2 to 0.7 × VCC1  
0.4 × VCC2 to 0.9 V  
High-to-Low Propagation  
Delay, Side 2 to Side 1  
(1)  
tPHL2-1  
109  
49  
Pulse Width Distortion  
(1)  
PWD2-1  
|tpHL2-1 tpLH2-1  
|
See 7-2;  
R1 = 953 Ω, C1 = 40 pF  
R2 = 95.3 Ω, C2 = 400 pF  
Round-trip propagation  
delay on Side 1  
(1)  
tLOOP1  
0.4 V to 0.3 × VCC1  
100  
165  
ns  
4.5 V VCC1, VCC2 5.5 V  
Output Signal Fall Time  
0.7 × VCC1 to 0.3 × VCC1  
0.9 × VCC1 to 900 mV  
0.7 × VCC2 to 0.3 × VCC2  
0.9 × VCC2 to 400 mV  
6
13  
10  
28  
11  
21  
18  
41  
22  
48  
35  
76  
See 7-1  
R1 = 1430 Ω,  
C1 = 40 pF  
tf1  
ns  
ns  
(SDA1, SCL1)  
See 7-1  
R2 = 143 Ω,  
C2 = 400 pF  
Output Signal Fall Time  
(SDA2, SCL2)  
tf2  
Low-to-High Propagation  
Delay, Side 1 to Side 2  
tpLH1-2  
tPHL1-2  
PWD1-2  
0.55 V to 0.7 × VCC2  
0.7 V to 0.4 V  
31  
70  
38  
55  
47  
8
62  
139  
80  
ns  
ns  
ns  
ns  
ns  
ns  
High-to-Low Propagation  
Delay, Side 1 to Side 2  
Pulse Width Distortion  
See 7-1  
|tpHL1-2 tpLH1-2  
|
R1 = 1430 Ω,  
R2 = 143 Ω,  
C1,2 = 10 pF  
Low-to-high propagation  
delay, side 2 to side 1  
(1)  
tPLH2-1  
0.4 × VCC2 to 0.7 × VCC1  
0.4 × VCC2 to 0.9 V  
80  
High-to-low propagation  
delay, Side 2 to side 1  
(1)  
tPHL2-1  
85  
Pulse Width Distortion  
(1)  
PWD2-1  
34  
|tpHL2-1 tpLH2-1  
|
See 7-2;  
R1 = 1430 Ω, C1 = 40 pF  
R2 = 143 Ω, C2 = 400 pF  
Round-trip propagation  
delay on side 1  
(1)  
tLOOP1  
0.4 V to 0.3 × VCC1  
110  
180  
ns  
(1) This parameter does not apply to the ISO1541-Q1 SCL1 line as it is unidirectional.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
6.13 Insulation Characteristics Curves  
350  
300  
250  
200  
150  
100  
50  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
0
0
50  
100  
Ambient Temperature (èC)  
150  
200  
6-1. Thermal Derating Curve for Limiting Current per VDE  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
6.14 Typical Characteristics  
0.800  
0.780  
0.760  
0.740  
0.720  
0.700  
0.680  
0.660  
0.640  
3.0  
I
= 3.5 mA  
OL1  
I
= 0.5 mA  
2.5  
2.0  
1.5  
OL1  
1.0  
0.5  
0.0  
-0.5  
0.620  
0.600  
0
0.1 0.2  
0.3  
0.4  
0.5  
0.6 0.7  
0.8  
0.9  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Applied Voltage, VSDA1, VSCL1 (V)  
Free−Air Temperature (°C)  
TA = 25°C  
6-2. Side 1: Output Low Voltage vs Free-Air  
6-3. Side 1: Output Low Current vs SDA1 or SCL1  
Temperature  
Applied Voltage  
20  
18  
16  
14  
12  
10  
8
20  
R1 = 1430 W  
R1 = 2.2 kW  
18  
16  
14  
12  
10  
8
6
6
4
4
R1= 953 W  
R1= 2.2 kW  
2
2
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
D001  
D002  
VCC1 = 3.3 V  
C1 = 40 pF  
VCC1 = 5 V  
C1 = 40 pF  
Fall time measured from 70% to 30% VCC1  
Fall time measured from 70% to 30% VCC1  
6-4. Side 1: Output Fall Time vs Free-Air  
6-5. Side 1: Output Fall Time vs Free-air  
Temperature  
Temperature  
30  
25  
20  
15  
10  
30  
25  
20  
15  
10  
5
5
R2 = 95.3 W  
R2 = 2.2 kW  
R2 = 143 W  
R2 = 2.2 kW  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
D003  
D004  
VCC2 = 3.3 V  
C2 = 400 pF  
VCC2 = 5 V  
C2 = 400 pF  
Fall time measured from 70% to 30% VCC2  
Fall time measured from 70% to 30% VCC2  
6-6. Side 2: Output Fall Time vs Free-Air  
6-7. Side 2: Output Fall Time vs Free-Air  
Temperature  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
45  
40  
35  
30  
25  
20  
15  
10  
120  
100  
80  
60  
40  
20  
0
VCC1 and VCC2 = 3.3 V, R2 = 95.3 W  
VCC1 and VCC2 = 3.3 V, R2 = 95.3 W  
VCC1 and VCC2 = 5 V, R2 = 143 W  
5
0
VCC1 and VCC2 = 5 V, R2 = 143 W  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
D006  
D005  
C2 = 10 pF  
C2 = 10 pF  
6-9. tPHL1-2 Propagation Delay vs Free-Air  
6-8. tPLH1-2 Propagation Delay vs Free-Air  
Temperature  
Temperature  
1050  
90  
80  
70  
60  
50  
40  
30  
20  
VCC1 and VCC2 = 3.3 V  
VCC1 and VCC2 = 5 V  
1045  
1040  
1035  
1030  
1025  
1020  
1015  
1010  
1005  
1000  
VCC1 and VCC2 = 3.3 V  
VCC1 and VCC2 = 5 V  
10  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
D007  
D008  
C2 = 400 pF  
R2 = 2.2 kΩ  
C2 = 400 pF  
R2 = 2.2 kΩ  
6-10. tPLH1-2 Propagation Delay vs Free-Air  
6-11. tPHL1-2 Propagation Delay vs Free-Air  
Temperature  
Temperature  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
10  
10  
VCC1 and VCC2 = 3.3 V, R1 = 953 W  
VCC1 and VCC2 = 5 V, R1 = 1430 W  
VCC1 and VCC2 = 3.3 V, R1 = 953 W  
VCC1 and VCC2 = 5 V, R1 = 1430 W  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
D009  
D010  
C1 = 10 pF  
C1 = 10 pF  
6-12. tPLH2-1 Propagation Delay vs Free-Air  
6-13. tPHL2-1 Propagation Delay vs Free-Air  
Temperature  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
148  
146  
144  
142  
140  
138  
136  
134  
132  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCC1 and VCC2 = 3.3 V  
VCC1 and VCC2 = 5 V  
VCC1 and VCC2 = 3.3 V  
VCC1 and VCC2 = 5 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (°C)  
D011  
C1 = 40 pF  
R1 = 2.2 kΩ  
C1 = 40 pF  
R1 = 2.2 kΩ  
6-14. tPLH2-1 Propagation Delay vs Free-Air  
6-15. tPHL2-1 Propagation Delay vs Free-Air  
Temperature  
Temperature  
140  
120  
100  
80  
600  
595  
590  
585  
580  
60  
40  
20  
VCC1 and VCC2 = 3.3 V, R1 = 953 W, R2 = 95.3 W  
VCC1 and VCC2 = 3.3 V  
VCC1 and VCC2 = 5 V  
VCC1 and VCC2 = 5 V, R1 = 1430 W, R2 = 143 W  
0
575  
-40 -25 -10  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
D013  
D014  
C1 = 40 pF  
C2 = 400 pF  
C1 = 40 pF  
C2 = 400 pF  
R1 = 2.2 kΩ  
R2 = 2.2 kΩ  
6-16. tLOOP1 vs Free-Air Temperature  
6-17. tLOOP1 vs Free-Air Temperature  
70  
60  
50  
40  
30  
20  
10  
0
VCC1 and VCC2 = 3.3 V  
VCC1 and VCC2 = 5 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
D015  
6-18. CMTI vs Free-Air Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
Parameter Measurement Information  
œ
+
œ
+
VCC2  
VCC1  
R1  
R1  
R2  
R2  
SDA1  
SCL1  
SDA2  
SCL2  
ISO1540  
ISO1541  
C1  
C1  
C2  
C2  
Copyright © 2016, Texas Instruments Incorporated  
7-1. Test Diagram  
VCC2  
VCC1  
VCC1  
R1  
GND1  
t
LOOP1  
SDA1 or  
SCL1  
Output  
0.3 VCC1  
SDA1  
SCL1 (ISO1540 Only)  
C1  
0.4 V  
GND1  
Copyright © 2016, Texas Instruments Incorporated  
7-2. tLoop1 Setup and Timing Diagram  
VCCx  
VCCy  
2 k  
2 kꢀ  
Input  
+
Output  
œ
GNDx  
GNDy  
V
CMTI  
7-3. Common-Mode Transient Immunity Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
VCCx  
VCCy  
Side x, Side y VCCx,VCCy  
Ry  
1, 2  
2, 1  
3.3 V, 3.3 V 95.3 Ω  
3.3 V, 3.3 V 953 Ω  
VCCx  
Ry  
0 V  
SDAx or  
SCLx  
+
Output  
-
GNDx  
GNDy  
or  
VCCx  
VCCy  
VCCy  
Ry  
SDAx or  
SCLx  
0 V  
+
Output  
GNDx  
GNDy  
VCCx or  
VCCy  
VCCx (UVLO+)  
t
UVLO  
0.9 V  
Output  
7-4. tUVLO Test Circuit and Timing Diagrams  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The I2C bus is used in a wide range of applications because it is simple to use. The bus consists of a two-wire  
communication bus that supports bidirectional data transfer between a controller device and several target  
devices. The controller, or processor, controls the bus, specifically the serial clock (SCL) line. Data is transferred  
between the controller and target through a serial data (SDA) line. This data can be transferred in four speeds:  
standard mode (0 to 100 kbps), fast mode (0 to 400 kbps), fast-mode plus (0 to 1 Mbps), and high-speed mode  
(0 to 3.4 Mbps). The most common speeds are the standard and fast modes.  
The I2C bus operates in bidirectional, half-duplex mode, while standard digital isolators are unidirectional  
devices. To make efficient use of one technology supporting the other, external circuitry is required that  
separates the bidirectional bus into two unidirectional signal paths without introducing significant propagation  
delay. These devices have their logic input and output buffers separated by TI's capacitive isolation technology  
using a silicon dioxide (SiO2) barrier. When used in conjunction with isolated power supplies, these devices  
block high voltages, isolate grounds, and prevent noise currents from entering the local ground and interfering  
with or damaging sensitive circuitry.  
7.2 Functional Block Diagrams  
VCC1  
VCC2  
SDA2  
SDA1  
V
REF  
SCL2  
SCL1  
GND1  
GND2  
V
REF  
7-1. ISO1540-Q1 Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
VCC2  
VCC1  
SDA1  
SDA2  
V
REF  
SCL1  
SCL2  
GND1  
GND2  
7-2. ISO1541-Q1 Block Diagram  
7.3 Feature Description  
The device enables a complete isolated I2C interface to be implemented within a small form factor having the  
features listed in 7-1.  
7-1. Features List  
PART NUMBER  
CHANNEL DIRECTION  
RATED ISOLATION(1)  
MAXIMUM FREQUENCY  
Bidirectional (SCL)  
Bidirectional (SDA)  
ISO1540-Q1  
2500 VRMS  
4242 VPK  
1 MHz  
Unidirectional (SCL)  
Bidirectional (SDA)  
ISO1541-Q1  
(1) See 6.7 for detailed Isolation specifications.  
7.4 Isolator Functional Principle  
To isolate a bidirectional signal path (SDA or SCL), the ISO1540-Q1 internally splits a bidirectional line into two  
unidirectional signal lines, each of which is isolated through a single-channel digital isolator. Each channel output  
is made open-drain to comply with the open-drain technology of I2C. Side 1 of the ISO1540-Q1 connects to a  
low-capacitance I2C node, while side 2 is designed for connecting to a fully loaded I2C bus with up to 400 pF of  
capacitance.  
VCC1  
VCC2  
A
VC-out  
RPU2  
RPU1  
B
C
SDA1  
SDA2  
ISO1540  
40 mV  
50 mV  
Cnode  
Cbus  
VSDA1  
D
VILT1  
VIHT1  
VOL1  
GND1  
GND2  
VREF  
7-3. SDA Channel Design and Voltage Levels at SDA1  
At first sight, the arrangement of the internal buffers suggests a closed signal loop that is prone to latch-up.  
However, this loop is broken by implementing an output buffer (B) whose output low-level is raised by a diode  
drop to approximately 0.75 V, and the input buffer (C) that consists of a comparator with defined hysteresis. The  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
comparators upper and lower input thresholds then distinguish between the proper low-potential of 0.4 V  
(maximum) driven directly by SDA1 and the buffered output low-level of B.  
7-4 demonstrate the switching behavior of the I2C isolator, ISO1540-Q1, between a controller node at SDA1  
and a heavy loaded bus at SDA2.  
VCC2  
VCC2  
VCC1  
VCC1  
VOL1  
SDA1  
50%  
SDA2  
VIHT1  
30%  
Receive  
Delay  
Receive  
Delay  
Transmit  
Delay  
Receive  
Delay  
VCC1  
VCC2  
VIHT2  
VCC1  
VCC2  
Transmit  
Delay  
SDA2  
50%  
SDA1  
30%  
7-4. SDA Channel Timing in Receive and Transmit Directions  
7.4.1 Receive Direction (Left Diagram of )  
When the I2C bus drives SDA2 low, SDA1 follows after a certain delay in the receive path. The output low is the  
buffered output of VOL1 = 0.75 V, which is sufficiently low to be detected by Schmitt-trigger inputs with a minimum  
input-low voltage of VIL = 0.9 V at 3 V supply levels.  
When SDA2 is released, its voltage potential increases towards VCC2 following the time-constant formed by  
RPU2 and Cbus. After the receive delay, SDA1 is released and also rises towards VCC1, following the time-  
constant RPU1 × Cnode. Because of the significant lower time-constant, SDA1 may reach VCC1 before SDA2  
reaches VCC2 potential.  
7.4.2 Transmit Direction (Right Diagram of )  
When a controller drives SDA1 low, SDA2 follows after a certain delay in the transmit direction. When SDA2  
turns low it also causes the output of buffer B to turn low but at a higher 0.75 V level. This level cannot be  
observed immediately as it is overwritten by the lower low-level of the controller.  
However, when the controller releases SDA1, the voltage potential increases and first must pass the upper input  
threshold of the comparator, VIHT1, to release SDA2. SDA1 then increases further until it reaches the buffered  
output level of VOL1 = 0.75 V, maintained by the receive path. When comparator C turns high, SDA2 is released  
after the delay in transmit direction. It takes another receive delay until Bs output turns high and fully releases  
SDA1 to move toward VCC1 potential.  
7.5 Device Functional Modes  
7-2 lists the ISO154x-Q1 functional modes.  
7-2. Function Table  
POWER STATE  
INPUT  
OUTPUT  
VCC1 or VCC2 < 2.1 V  
VCC1 and VCC2 > 2.8 V  
VCC1 and VCC2 > 2.8 V  
VCC1 and VCC2 > 2.8 V  
X
L
Z
L
Z
?
H
Z(1)  
(1) Invalid input condition as an I2C system requires that a pullup resistor to VCC is connected.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 I2C Bus Overview  
The inter-integrated circuit (I2C) bus is a single-ended, multi-controller, 2-wire bus for efficient inter-IC  
communication in half-duplex mode.  
I2C uses open-drain technology, requiring two lines, serial data (SDA) and serial clock (SCL), to be connected to  
VDD by resistors (see 8-1). Pulling the line to ground is considered a logic zero while letting the line float is a  
logic one. This logic is used as a channel access method. Transitions of logic states must occur while the SCL  
pin is low. Transitions while the SCL pin is high indicate START and STOP conditions. Typical supply voltages  
are 3.3 V and 5 V, although systems with higher or lower voltages are allowed.  
V
DD  
R
R
PU  
R
R
R
R
PU  
PU  
R
R
PU  
PU  
PU  
PU  
PU  
SDA  
SCL  
SDA  
SDA  
SCL  
SDA  
SDA  
SCL  
SCL  
SCL  
GND  
GND  
GND  
GND  
C
ADC  
Target  
DAC  
Target  
C
Target  
Controller  
8-1. I2C Bus  
I2C communication uses a 7-bit address space with 16 reserved addresses, so a theoretical maximum of 112  
nodes can communicate on the same bus. In praxis, however, the number of nodes is limited by the specified,  
total bus capacitance of 400 pF, which restricts communication distances to a few meters.  
The specified signaling rates for the ISO1540-Q1 and ISO1541-Q1 devices are 100 kbps (standard mode), 400  
kbps (fast mode), 1 Mbps (fast mode plus).  
The bus has two roles for nodes: controller and target. A controller node issues the clock and target addresses,  
and also initiates and ends data transactions. A target node receives the clock and addresses and responds to  
requests from the controller. 8-2 shows a typical data transfer between controller and target.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
7-bit  
8-bit  
8-bit  
ACK /  
NACK  
R/W  
ACK  
ACK  
SDA  
SCL  
ADDRESS  
DATA  
DATA  
1 - 7  
8
9
1 - 8  
9
1 - 8  
9
S
P
START  
STOP  
Condition  
condition  
8-2. Timing Diagram of a Complete Data Transfer  
The controller initiates a transaction by creating a START condition, following by the 7-bit address of the target it  
wishes to communicate with. This is followed by a single read and write (R/W) bit, representing whether the  
controller wishes to write to 0, or to read from 1 the target. The controller then releases the SDA line to allow the  
target to acknowledge the receipt of data.  
The target responds with an acknowledge bit (ACK) by pulling the SDA pin low during the entire high time of the  
9th clock pulse on the SCL signal, after which the controller continues in either transmit or receive mode  
(according to the R/W bit sent), while the target continues in the complementary mode (receive or transmit,  
respectively).  
The address and the 8-bit data bytes are sent most significant bit (MSB) first. The START bit is indicated by a  
high-to-low transition of SDA while SCL is high. The STOP condition is created by a low-to-high transition of  
SDA while SCL is high.  
If the controller writes to a target, it repeatedly sends a byte with the target sending an ACK bit. In this case, the  
controller is in controller-transmit mode and the target is in target-receive mode.  
If the controller reads from a target, it repeatedly receives a byte from the target, while acknowledging (ACK) the  
receipt of every byte but the last one (see 8-3). In this situation, the controller is in controller-receive mode  
and the target is in target-transmit mode.  
The controller ends the transmission with a STOP bit, or may send another START bit to maintain bus control for  
further transfers.  
A = acknowledge  
S Target Address W A  
DATA  
A
DATA  
A P  
A P  
A = not acknowledge  
S = Start  
From Controller to Target  
From Target to Controller  
Controller Transmitter writing to Target Receiver  
P = Stop  
R = Read  
S Target Address R A  
DATA  
A
DATA  
W = Write  
Controller Receiver reading from Target Transmitter  
8-3. Transmit or Receive Mode Changes During a Data Transfer  
When writing to a target, a controller mainly operates in transmit-mode and only changes to receive-mode when  
receiving acknowledgment from the target.  
When reading from a target, the controller starts in transmit-mode and then changes to receive-mode after  
sending a READ request (R/W bit = 1) to the target. The target continues in the complementary mode until the  
end of a transaction.  
备注  
The controller ends a reading sequence by not acknowledging (NACK) the last byte received. This  
procedure resets the target state machine and allows the controller to send the STOP command.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2 Typical Application  
8-4 shows isolated I2C data acquisition system built with TI microcontroller, analog-to-digital converter, and  
I2C isolator, ISO1541-Q1.  
The entire circuit operates from a single 3.3-V supply. A low-power push-pull converter, SN6501-Q1, drives a  
center-tapped transformer with an output that is rectified and linearly regulated to provide a stable 5-V supply for  
the data converter.  
VS  
0.1 F  
3.3 V  
2
MBR0520L  
Vcc  
1:2.2  
3
1
6,7  
13,14  
3
5VISO  
D2  
D1  
IN  
OUT  
TPS76750-Q1  
SN6501-Q1  
10 F  
0.1 F  
10 F  
5
EN  
GND  
10 F  
MBR0520L  
ISO Barrier  
GND  
GND  
4
5
1.5 kꢁ  
1.5 kꢁ  
0.1 F  
1.5 kꢁ  
0.1 F  
1.5 kꢁ  
5VISO  
0.1 F  
8
43  
VDD  
1
8
VDD  
4
7
VCC1  
VCC2  
2
2
7
6
9
AIN0  
AIN3  
SDA  
41  
40  
SDA  
SDA1  
SDA2  
X1  
X2  
4 Analog  
Inputs  
ADS1115-Q1  
ISO1541-Q1  
3
10  
TMS320F28035PAGQ  
3
SCL  
SCL  
SCL1  
SCL2  
1
ADDR  
GND2  
5
GND  
3
GND1  
4
VSS  
42  
Copyright © 2016, Texas Instruments Incorporated  
8-4. Isolated I2C Data Acquisition System  
8.2.1 Design Requirements  
The recommended power supply voltages (VCC1 and VCC2) must be from 3 V to 5.5 V. A recommended  
decoupling capacitor with a value of 0.1 µF is required between both the VCC1 and GND1 pins, and the VCC2  
and GND2 pins to support of power supply voltages transient and to ensure reliable operation at all data rates.  
8.2.2 Detailed Design Procedure  
The power-supply capacitor with a value of 0.1-µF must be placed as close to the power supply pins as possible.  
The recommended placement of the capacitors must be 2-mm maximum from input and output power supply  
pins (VCC1 and VCC2).  
The maximum load permissible on the input lines, SDA1 and SCL1, is 40 pF and on the output lines, SDA2  
and SCL2, is 400 pF.  
The minimum pullup resistors on the input lines, SDA1 and SCL1 to VCC1 must be selected in such a way that  
input current drawn is 3.5 mA. The minimum pullup resistors on the input lines, SDA2 and SCL2, to VCC2  
must be selected in such a way that output current drawn is 35 mA. The maximum pullup resistors on the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
input lines (SDA1 and SCL1) to VCC1 and on output lines (SDA1 and SCL1) to VCC2, depends on the load and  
rise time requirements on the respective lines.  
ISO1540-Q1  
2mm  
maximum  
2 mm  
maximum  
VCC1  
SDA1  
SCL1  
VCC2  
8
1
0.1 F  
0.1 F  
1 k  
1 kꢀ  
1 kꢀ  
1 kꢀ  
SDA2  
2
7
SCL2  
3
4
6
5
GND2  
GND1  
Side 1  
Side 2  
8-5. Typical ISO1540-Q1 Circuit Hookup  
ISO1541-Q1  
2mm  
maximum  
2 mm  
maximum  
VCC1  
SDA1  
SCL1  
VCC2  
8
1
0.1 F  
0.1 F  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
SDA2  
SCL2  
2
7
3
4
6
5
GND1  
GND2  
Side 1  
Side 2  
8-6. Typical ISO1541-Q1 Circuit Hookup  
8.2.3 Application Curve  
T
= 25oC  
A
VCC1 = 3.6 V  
900 mV  
VOL1  
GND1  
Time - 50 ns/div  
8-7. Side 1: Low-to-High Transition  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, TI recommends connecting a 0.1-µF bypass  
capacitor at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the  
supply pins as possible. If only a single, primary-side power supply is available in an application, isolated power  
can be generated for the secondary-side with the help of a transformer driver such as TI's SN6501-Q1 device.  
For such applications, detailed power supply design and transformer selection recommendations are available in  
SN6501-Q1 Transformer Driver for Isolated Power Supplies (SLLSEF3).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see 10-1). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
For detailed layout recommendations, see the Digital Isolator Design Guide (SLLA284)  
10.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength  
and stiffness, and the self-extinguishing flammability-characteristics.  
10.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
0 ~ 4.5  
r
Power plane  
Low-speed traces  
10-1. Recommended Layer Stack  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
 
 
ISO1540-Q1, ISO1541-Q1  
ZHCSFS4D NOVEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
备注  
TI is transitioning to use more inclusive terminology. Some language may be different than what you  
would expect to see for certain technology areas.  
11.1.1 Related Documentation  
For related documentation see the following:  
Digital Isolator Design Guide (SLLA284)  
TI Isolation Glossary (SLLA353)  
SN6501-Q1 Transformer Driver for Isolated Power Supplies. (SLLSEF3)  
TPS767xx-Q1 Fast-Transient-Response 1-A Low-Dropout Voltage Regulators (SGLS009)  
ADS1115-Q1 Low-Power, 16-Bit Analog-to-Digital Converter With Internal Reference (SBAS563)  
TMS320F2803x PiccoloMicrocontrollers (TMS320F2803x Piccolo™ Microcontrollers)  
11.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
11-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
ISO1540-Q1  
ISO1541-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.4 Community Resources  
11.5 Trademarks  
Piccolois a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISO1540-Q1 ISO1541-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO1540QDQ1  
ISO1540QDRQ1  
ISO1541QDQ1  
ISO1541QDRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
I1540Q  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
I1540Q  
I1541Q  
I1541Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Apr-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF ISO1540-Q1, ISO1541-Q1 :  
Catalog : ISO1540, ISO1541  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO1540QDRQ1  
ISO1540QDRQ1  
ISO1541QDRQ1  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
2500  
2500  
2500  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO1540QDRQ1  
ISO1540QDRQ1  
ISO1541QDRQ1  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
2500  
2500  
2500  
350.0  
356.0  
350.0  
350.0  
356.0  
350.0  
43.0  
35.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Mar-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO1540QDQ1  
ISO1541QDQ1  
D
D
SOIC  
SOIC  
8
8
75  
75  
505.46  
505.46  
6.76  
6.76  
3810  
3810  
4
4
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY