ISO1643DW [TI]

ISO164x Hot-Swappable Bidirectional I2C Isolators with Enhanced EMC and GPIOs;
ISO1643DW
型号: ISO1643DW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

ISO164x Hot-Swappable Bidirectional I2C Isolators with Enhanced EMC and GPIOs

文件: 总55页 (文件大小:3095K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
ISO164x Hot-Swappable Bidirectional I2C Isolators with Enhanced EMC and GPIOs  
1 Features  
3 Description  
Robust Isolated Bidirectional, I2C Compatible,  
Communication  
– ISO1640: Bidirectional SDA and SCL  
communication  
– ISO1641: Bidirectional SDA and unidirectional  
SCL communication  
– ISO1642/3/4: Bidirectional SDA and SCL  
communication with either 2 or 3 unidirectional  
GPIO channels  
– Hot-Swappable SDA and SCL  
Bidirectional data transfer up to 1.7 MHz Operation  
Up to 3 additional unidirectional isolated GPIO  
channels supporting 50 Mbps speed  
Robust isolation barrier with enhanced EMC:  
– >100-year projected lifetime at 450 VRMS  
working voltage (D-8) and 1500 VRMS working  
voltage (DW-16)  
– Up to 5000 VRMS isolation rating per UL1577  
– Up to 10 kV reinforced surge capability  
– ±100 kV/μs typical CMTI  
– ±8 kV IEC-ESD 61000-4-2 contact discharge  
protection across isolation barrier  
– Same side ±8 kV IEC-ESD unpowered contact  
discharge on SCL2 and SDA2 (Side 2)  
Supply range: 3 V to 5.5 V (Side 1) and 2.25 V to  
5.5 V (Side 2)  
The ISO1640, ISO1641, ISO1642, ISO1643 and  
ISO1644 (ISO164x) devices are hot swappable, low-  
power, bidirectional isolators that are compatible  
with I2C interfaces. The ISO164x supports UL 1577  
isolation ratings of 5000 VRMS in the 16-DW package,  
and 3000 VRMS in the 8-D package. Each I2C  
isolation channel in this low emissions device has  
a logic input and open drain output separated by  
a double capacitive silicon dioxide (SiO2) insulation  
barrier. The ISO1642 and ISO1643 intregrates 2  
unidirectional CMOS isolation channels, while the  
ISO1644 intregrates 3 unidirectional CMOS isolation  
channels which can be used for static GPIO isolation  
or to isolate a Serial Peripheral Interface (SPI) bus.  
This family includes basic and reinforced insulation  
devices certified by VDE, UL, CSA, TUV and CQC.  
The ISO1640/2/3/4 have two isolated bidirectional  
channels for clock and data lines and the ISO1641  
has a bidirectional data and a unidirectional clock  
channel. The ISO164x family integrates logic required  
to support bidirectional channels, providing a much  
simpler design and smaller footprint when compared  
to optocoupler-based solutions.  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
ISO1640BD  
ISO1641BD  
SOIC (8)  
4.90 mm × 3.91 mm  
Open-drain outputs with 3.5-mA (Side 1) and 50-  
mA (Side 2) current-sink capability  
Max capacitive load: 80 pF (Side 1) and 400 pF  
(Side 2)  
16-SOIC (DW-16) and 8-SOIC (D-8) Package  
Options  
–40°C to +125°C Operating Temperature  
Safety-Related Certifications (planned):  
– UL 1577 Component Recognition Program  
– DIN VDE V 0884-11  
ISO1640DW  
ISO1641DW  
ISO1642DW  
ISO1643DW  
ISO1644DW  
SOIC (16)  
10.30 mm × 7.50 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Isolation Options  
– IEC 62368-1, IEC 61010-1, IEC 60601-1 and  
GB4943.1-2011 certifications  
PART NUMBER  
Protection Level  
Surge Test Voltage  
Isolation Rating  
ISO164xBD  
ISO164xDW  
Reinforced  
10000 VPK  
5000 VRMS  
Basic  
2 Applications  
6500 VPK  
3000 VRMS  
Isolated I2C Buses  
Isolated I2C and SPI Buses  
SMBus and PMBus Interfaces  
Power Over Ethernet (PoE)  
Motor Control Systems  
Battery Management  
.
450 VRMS / 637 1500 VRMS / 2121  
VPK VPK  
Working Voltage  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 8  
6.1 Absolute Maximum Ratings ....................................... 8  
6.2 ESD Ratings .............................................................. 8  
6.3 Recommended Operating Conditions ........................8  
6.4 Thermal Information ...................................................9  
6.5 Power Ratings ..........................................................10  
6.6 Insulation Specifications ...........................................11  
6.7 Safety-Related Certifications ................................... 13  
6.8 Safety Limiting Values ..............................................13  
6.9 Electrical Characteristics ..........................................14  
6.10 Supply Current Characteristics .............................. 15  
6.11 Timing Requirements ............................................. 18  
6.12 I2C Switching Characteristics ................................ 19  
6.13 GPIO Switching Characteristics .............................21  
6.14 Insulation Characteristics Curves........................... 22  
6.15 Typical Characteristics............................................23  
7 Parameter Measurement Information..........................27  
7.1 Parameter Measurement Information....................... 27  
8 Detailed Description......................................................30  
8.1 Overview...................................................................30  
8.2 Functional Block Diagrams....................................... 30  
8.3 Isolation Technology Overview................................. 31  
8.4 Feature Description...................................................31  
8.5 Isolator Functional Principle......................................32  
8.6 Device Functional Modes..........................................34  
9 Application and Implementation..................................35  
9.1 Application Information............................................. 35  
9.2 Typical Application.................................................... 36  
9.3 Insulation Lifetime ....................................................42  
10 Power Supply Recommendations..............................44  
11 Layout...........................................................................45  
11.1 Layout Guidelines................................................... 45  
11.2 Layout Example...................................................... 45  
12 Device and Documentation Support..........................46  
12.1 Documentation Support.......................................... 46  
12.2 Receiving Notification of Documentation Updates..46  
12.3 Support Resources................................................. 46  
12.4 Trademarks.............................................................46  
12.5 Electrostatic Discharge Caution..............................46  
12.6 Glossary..................................................................46  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 46  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (June 2021) to Revision D (September 2021)  
Page  
Added ISO1641DW, ISO1642DW and ISO1643DW to the datasheet............................................................... 1  
Changes from Revision B (May 2021) to Revision C (June 2021)  
Page  
Added ISO1644DW to the datasheet................................................................................................................. 1  
Changes from Revision A (December 2020) to Revision B (May 2021)  
Page  
Added ISO1641B to the datasheet.....................................................................................................................1  
Changed minimum input threshold low to 480 mV........................................................................................... 14  
Changed tpLH1-2, tpLH2-1, tLOOP1 max to a lower value for all operating voltages.............................................. 19  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
5 Pin Configuration and Functions  
1
2
3
4
8
7
6
5
VCC1  
SDA1  
SCL1  
GND1  
VCC2  
SDA2  
SCL2  
GND2  
Side 2  
Side 1  
Not to scale  
Figure 5-1. ISO1640B Package 8-Pin SOIC Top View  
1
2
3
4
8
7
6
5
VCC1  
SDA1  
SCL1  
GND1  
VCC2  
SDA2  
SCL2  
GND2  
Side 2  
Side 1  
Not to scale  
Figure 5-2. ISO1641B Package 8-Pin SOIC Top View  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
GND1  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND2  
NC  
VCC1  
NC  
VCC2  
NC  
SDA1  
SCL1  
GND1  
NC  
SDA2  
SCL2  
NC  
GND2  
Side 1  
Not to scale  
Side 2  
Figure 5-3. ISO1640 Package 16-Pin SOIC Top View  
GND1  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND2  
NC  
VCC1  
NC  
VCC2  
NC  
SDA1  
SCL1  
GND1  
NC  
SDA2  
SCL2  
NC  
GND2  
Side 1  
Not to scale  
Side 2  
Figure 5-4. ISO1641 Package 16-Pin SOIC Top View  
VCC1  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCC2  
NC  
SDA1  
INA  
SDA2  
OUTA  
INB  
OUTB  
SCL1  
NC  
SCL2  
NC  
GND1  
GND2  
Side 1  
Not to scale  
Side 2  
Figure 5-5. ISO1642 Package 16-Pin SOIC Top View  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
VCC1  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCC2  
NC  
SDA1  
INA  
SDA2  
OUTA  
OUTB  
SCL2  
NC  
INB  
SCL1  
NC  
GND1  
GND2  
Side 1  
Not to scale  
Side 2  
Figure 5-6. ISO1643 Package 16-Pin SOIC Top View  
VCC1  
GND1  
SDA1  
INA  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCC2  
GND2  
SDA2  
OUTA  
OUTB  
SCL2  
INC  
INB  
SCL1  
OUTC  
GND1  
GND2  
Side 1  
Not to scale  
Side 2  
Figure 5-7. ISO1644 Package 16-Pin SOIC Top View  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
Table 5-1. Pin Functions — ISO1640 and ISO1641  
PIN  
8-D  
NO.  
4
16-DW  
NO.  
I/O  
DESCRIPTION  
NAME  
GND1  
GND2  
1, 7  
Ground, side 1  
Ground, side 2  
No Connection  
5
9, 16  
2, 4, 8, 10,  
13, 15  
NC  
3
Serial clock input / output, side 1 (ISO1640 only)  
Serial clock input, side 1 (ISO1641 only)  
SCL1  
6
I/O  
I/O  
Serial clock input / output, side 2 (ISO1640 only)  
Serial clock output, side 2 (ISO1641 only)  
SCL2  
6
11  
SDA1  
SDA2  
VCC1  
VCC2  
2
7
1
8
5
12  
3
I/O  
I/O  
Serial data input / output, side 1  
Serial data input / output, side 2  
Supply voltage, side 1  
14  
Supply voltage, side 2  
Table 5-2. Pin Functions — ISO1642 and ISO1643  
PIN  
16-DW  
I/O  
DESCRIPTION  
NAME  
GND1  
GND2  
INA  
NO.  
8
I
Ground, side 1  
Ground, side 2  
Input, channel A  
9
4
Input, channel B (ISO1642)  
Output, channel B (ISO1643)  
INB/OUTB  
12  
NC  
2, 7, 10, 15  
13  
O
No Connect  
OUTA  
Output, channel A  
Output, channel B (ISO1642)  
Input, channel B (ISO1643)  
OUTB/INB  
5
SCL1  
SCL2  
SDA1  
SDA2  
VCC1  
VCC2  
6
11  
3
I/O  
I/O  
I/O  
I/O  
Serial clock input / output, side 1  
Serial clock input / output, side 2  
Serial data input / output, side 1  
Serial data input / output, side 2  
Supply voltage, side 1  
14  
1
16  
Supply voltage, side 2  
Table 5-3. Pin Functions — ISO1644  
PIN  
16-DW  
NO.  
2, 8  
9, 15  
4
I/O  
DESCRIPTION  
NAME  
GND1  
GND2  
INA  
I
Ground, side 1  
Ground, side 2  
Input, channel A  
Input, channel B  
Input, channel C  
INB  
5
I
I
INC  
10  
13  
12  
7
OUTA  
OUTB  
O
O
O
Output, channel A  
Output, channel B  
Output, channel C  
OUTC  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
Table 5-3. Pin Functions — ISO1644 (continued)  
PIN  
16-DW  
I/O  
DESCRIPTION  
NAME  
SCL1  
SCL2  
SDA1  
SDA2  
VCC1  
VCC2  
NO.  
6
I/O  
I/O  
I/O  
I/O  
Serial clock input / output, side 1  
Serial clock input / output, side 2  
Serial data input / output, side 1  
Serial data input / output, side 2  
Supply voltage, side 1  
11  
3
14  
1
16  
Supply voltage, side 2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
–0.5  
–0.5  
–0.5  
-0.5  
0
MAX  
UNIT  
Supply Voltage  
VCC1, VCC2  
6
VCCX + 0.5(3)  
VCCX + 0.5(3)  
VCCX + 0.5  
20  
V
SDA1, SCL1  
Input/Output Voltage  
SDA2, SCL2  
V
INx (ISO1642/3/4 only)  
SDA1, SCL1  
Input/Output Current  
Temperature  
SDA2, SCL2  
0
100  
mA  
IIO (ISO1642/3/4 only)  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
-15  
15  
150  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to the local ground pin (GND1 or GND2) and are peak voltage values.  
(3) During powered off hotswap, the I2C bus pins can be 0 V < SDAx, SCLx < 6 V.  
6.2 ESD Ratings  
VALUE  
±6000  
±10000  
±14000  
±8000  
±8000  
±1500  
±8000  
UNIT  
All pins  
V
V
V
V
V
V
V
ISO1640/1: Bus pins (SDA1, SCL1)  
ISO1640/1: Bus pins (SDA2, SCL2)  
ISO1642/3/4: Bus pins (SDA1, SCL1)  
ISO1642/3/4: Bus pins (SDA2, SCL2)  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC specification JS-002(2)  
Contact discharge per IEC 61000-4-2; Isolation barrier withstand test(3) (4)  
Same side unpowered IEC ESD  
contact discharge per IEC 61000-4-2;  
Side 2  
ISO1640/1: SCL2, SDA2  
±8000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
(4) Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device.  
6.3 Recommended Operating Conditions  
MIN  
NOM  
2.7  
2.6  
2
MAX UNIT  
VCC1(UVLO+)  
VCC1(UVLO-)  
VCC2(UVLO+)  
VCC2(UVLO-)  
UVLO threshold when supply voltage is rising on Side 1  
UVLO threshold when supply voltage is falling on Side 1  
UVLO threshold when supply voltage is rising on Side 2  
UVLO threshold when supply voltage is falling on Side 2  
Supply voltage UVLO hysteresis, Side 1  
2.9  
V
V
V
V
2.3  
2.25  
1.7  
1.8  
VHYS1(UVLO)  
VHYS2(UVLO)  
100  
150  
150  
mV  
mV  
Supply voltage UVLO hysteresis, Side 2  
100  
VCC1  
VCC2  
Supply voltage, Side 1  
Supply voltage, Side 2  
3.0  
5.5  
5.5  
V
V
2.25  
VSDA1  
VSCL1  
,
I2C Input and output signal voltages, Side 1  
0
VCC1  
V
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
 
 
 
 
 
 
 
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
MIN  
NOM  
MAX UNIT  
VSDA2  
VSCL2  
,
I2C Input and output signal voltages, Side 2  
0
VCC2  
V
VIL1  
VIH1  
VIL2  
VIH2  
IOL1  
IOL2  
C1  
I2C Low-level input voltage, Side 1  
I2C High-level input voltage, Side 1  
I2C Low-level input voltage, Side 2  
I2C High-level input voltage, Side 2  
I2C Output current, Side 1  
0
0.7 × VCC1  
0
480  
VCC1  
mV  
V
0.3 × VCC2  
VCC2  
V
0.5 × VCC2  
0.5  
V
3.5  
mA  
mA  
pF  
pF  
MHz  
V
I2C Output current, Side 2  
0.5  
50  
Capacitive load, Side 1  
80  
C2  
Capacitive load, Side 2  
400  
fMAX  
VILIO  
VIHIO  
I2C Operating frequency(1)  
1.7  
Low-level input voltage, GPIO pins (ISO1642/3/4 only)  
High-level input voltage, GPIO pins (ISO1642/3/4 only)  
0
0.3 × VCC2  
VCC1  
0.7 × VCC1  
V
GPIO High-level output current, VCCO = 5 V (ISO1642/3/4  
only)  
-4  
-2  
-1  
mA  
mA  
mA  
mA  
mA  
mA  
GPIO High-level output current, VCCO = 3.3 V (ISO1642/3/4  
only)  
IOHIO  
GPIO High-level output current, VCCO = 2.5 V (ISO1642/3/4  
only)  
GPIO Low-level output current, VCCO = 5 V (ISO1642/3/4  
only)  
4
2
1
GPIO Low-level output current, VCCO = 3.3 V (ISO1642/3/4  
only)  
IOLIO  
GPIO Low-level output current, VCCO = 2.5 V (ISO1642/3/4  
only)  
fDR  
TA  
GPIO maximum data rate frequency (ISO1642/3/4 only)  
Ambient temperature  
50 Mbps  
125 °C  
–40  
25  
(1) Maximum frequency is a function of the RC time constant on the bus. If the system has less bus capacitance, then higher frequencies  
can be achieved.  
6.4 Thermal Information  
ISO1642/3/  
ISO1640/1  
4
THERMAL METRIC(1)  
UNIT  
D (SOIC) DW (SOIC) DW (SOIC)  
8 PINS  
106.3  
38.5  
52.5  
8.2  
16 PINS  
62.4  
29.5  
33.5  
11.7  
32.4  
-
16 PINS  
58.3  
25.5  
29.7  
8.9  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
51.8  
-
28.5  
-
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISO1640  
Maximum power dissipation (both  
sides)  
PD  
96  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, C1 = 20 pF, C2 = 400 pF, R1 =  
1.4 kΩ, R2 = 94 Ω, Input a 1.7-MHz 50% duty-cycle clock signal  
PD1  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
43  
53  
mW  
mW  
PD2  
ISO1641  
Maximum power dissipation (both  
sides)  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, C1 = 20 pF, C2 = 400 pF, R1 =  
1.4 kΩ, R2 = 94 Ω, Input a 1.7-MHz 50% duty-cycle clock signal  
PD  
87  
40  
47  
mW  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, C1 = 20 pF, C2 = 400 pF, R1 =  
1.4 kΩ, R2 = 94 Ω, Input a 1.7-MHz 50% duty-cycle clock signal  
PD1  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, C1 = 20 pF, C2 = 400 pF, R1 =  
1.4 kΩ, R2 = 94 Ω, Input a 1.7-MHz 50% duty-cycle clock signal  
PD2  
ISO1642  
PD  
Maximum power dissipation (both  
sides)  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, C1 = 20 pF, C2 = 400 pF, R1 =  
1.4 kΩ, R2 = 94 Ω, Input a 1.7-MHz 50% duty-cycle clock signal  
INA = INB = Input at 25-MHz 50% duty cycle square wave, CL =  
15pF  
185  
mW  
PD1  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
83  
mW  
mW  
PD2  
102  
ISO1643  
Maximum power dissipation (both  
sides)  
PD  
185  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, C1 = 20 pF, C2 = 400 pF, R1 =  
1.4 kΩ, R2 = 94 Ω, Input a 1.7-MHz 50% duty-cycle clock signal  
INA = INB = Input at 25-MHz 50% duty cycle square wave, CL =  
15pF  
PD1  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
67  
mW  
mW  
PD2  
118  
ISO1644  
Maximum power dissipation (both  
sides)  
PD  
210  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, C1 = 20 pF, C2 = 400 pF, R1 =  
1.4 kΩ, R2 = 94 Ω, Input a 1.7-MHz 50% duty-cycle clock signal  
INA = INB = INC = Input at 25-MHz 50% duty cycle square wave,  
CL = 15pF  
PD1  
PD2  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
88  
mW  
mW  
122  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
6.6 Insulation Specifications  
PARAMETER  
SPECIFICATIONS  
TEST CONDITIONS  
UNIT  
DW  
D
IEC 60664-1  
CLR  
CPG  
External clearance(1)  
Side 1 to side 2 distance through air  
>8  
>8  
4
mm  
mm  
Side 1 to side 2 distance across package  
surface  
External Creepage(1)  
4
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
IEC 60112; UL 746A  
>17  
>600  
I
>17  
µm  
V
>400  
II  
According to IEC 60664-1  
Rated mains voltage ≤ 150 VRMS  
Rated mains voltage ≤ 300 VRMS  
Rated mains voltage ≤ 600 VRMS  
Rated mains voltage ≤ 1000 VRMS  
I-IV  
I-IV  
I-IV  
I-III  
I-IV  
I-III  
n/a  
n/a  
Overvoltage category  
DIN V VDE V 0884-11:2017-01(2)  
VIORM Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
2121  
1500  
2121  
7071  
637  
450  
637  
4242  
VPK  
VRMS  
VDC  
AC voltage (sine wave); time-dependent  
dielectric breakdown (TDDB) test;  
VIOWM  
Maximum isolation working voltage  
Maximum transient isolation voltage  
DC voltage  
VTEST = VIOTM , t = 60 s (qualification); VTEST  
= 1.2 × VIOTM, t = 1 s (100% production)  
VIOTM  
VPK  
Test method per IEC 62368-1, 1.2/50 µs  
waveform, VTEST = 1.3 × VIOSM = 6,500 VPK  
(Basic qualification) Test method per IEC  
62368-1, 1.2/50 µs waveform, VTEST = 1.6 ×  
VIOSM = 10,000 VPK (Reinforced qualification)  
VIOSM  
Maximum surge isolation voltage(3)  
6250  
5000  
VPK  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM  
tm = 10 s  
,
≤ 5  
≤ 5  
≤ 5  
≤ 5  
Method a: After environmental tests subgroup  
1, Vini = VIOTM, tini = 60 s;  
qpd  
Apparent charge(4)  
pC  
Vpd(m) = 1.6 × VIORM , tm = 10 s  
Method b1: At routine test (100% production)  
and preconditioning (type test), Vini = VIOTM  
tini = 1 s;  
,
≤ 5  
≤ 5  
Vpd(m) = 1.875 × VIORM , tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance, input to output(5)  
VIO = 0.4 × sin (2 πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
1
1
pF  
Ω
> 1012  
> 1011  
> 109  
2
> 1012  
> 1011  
> 109  
2
VIO = 500 V, 100°C ≤ TA ≤ 150°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
40/125/  
21  
40/125/  
21  
UL 1577  
VTEST = VISO , t = 60 s (qualification); VTEST  
1.2 × VISO , t = 1 s (100% production)  
=
VISO  
Withstand isolation voltage  
5000  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal  
in certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these  
specifications.  
(2) ISO164xDW is suitable for safe electrical insulation and ISO164xBD is suitable for basic electrical insulation only within the safety  
ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
6.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to IEC  
61010-1, IEC 62368-1 and Component Recognition  
IEC 60601-1  
Recognized under UL 1577  
Certified according to EN  
61010-1:2010/A1:2019, and EN  
62368-1:2014  
Certified according to DIN  
VDE V 0884-11:2017-01  
Certified according to  
GB4943.1-2011  
Program  
DW-16: 600 VRMS  
5000 VRMS (DW-16) and 3000  
DW-16: Reinforced Insulation, VRMS (D-8) Reinforced insulation  
Maximum transient isolation  
voltage, 7071 VPK (DW-16),  
and 4242 VPK (D-8);  
Maximum repetitive peak  
isolation voltage, 1500 VPK  
(DW-16), and 637 VPK (D-8);  
Maximum surge isolation  
voltage, 6250 VPK (DW-16),  
and 5000 VPK (D-8)  
reinforced insulation per  
CSA 62368-1:19 and IEC  
62368-1:2018 , (pollution  
degree 2, material group I) 5000 VRMS  
D-8: 400 VRMS basic  
insulation per CSA  
62368-1:19 and IEC  
62368-1:2018, (pollution  
degree 2, material group III)  
Altitude ≤ 5000 m, Tropical  
Climate,700 VRMS maximum  
working voltage;  
per EN 61010- 1:2010/A1:2019 up  
to working voltage of 600 VRMS  
(DW-16) and 300 VRMS (D-8)  
DW-16: Single protection,  
;
D-8: Single protection, 3000 D-8: Basic Insulation, Altitude 5000 VRMS (DW-16) and 3000 VRMS  
VRMS  
≤ 5000 m, Tropical Climate,  
250 VRMS maximum working  
voltage  
(D-8) Reinforced insulation per EN  
62368-1:2014 up to working voltage  
of 600 VRMS (DW-16) and 400 VRMS  
(D-8)  
Master contract number  
(ISO164xBD): 220991  
Certification planned (All  
others)  
File number (ISO164xBD):  
E181974  
Certification planned (All  
others)  
Certification planned  
Certification planned  
Certification planned  
6.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISO1640/1 D-8 PACKAGE  
RθJA = 106.3 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
RθJA = 106.3 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C  
214  
327  
Safety input, output, or supply  
IS  
mA  
current(1)  
Safety input, output, or total  
power(1)  
PS  
TS  
RθJA = 106.3 °C/W, TJ = 150°C, TA = 25°C  
1176  
150  
mW  
°C  
Safety temperature(1)  
ISO1640/1 DW-16 PACKAGE  
RθJA = 62.4 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
RθJA = 62.4 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C  
365  
557  
Safety input, output, or supply  
IS  
mA  
current(1)  
Safety input, output, or total  
power(1)  
PS  
TS  
RθJA = 62.4 °C/W, TJ = 150°C, TA = 25°C,  
2004  
150  
mW  
°C  
Safety temperature(1)  
ISO1642/3/4 DW-16 Package  
RθJA = 58.3 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
RθJA = 58.3 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C  
390  
596  
mA  
mA  
Safety input, output, or supply  
IS  
current(1)  
Safety input, output, or total  
power(1)  
PS  
TS  
RθJA = 58.3 °C/W, TJ = 150°C, TA = 25°C  
2145  
150  
mW  
°C  
Safety temperature(1)  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The  
IS and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
6.9 Electrical Characteristics  
over recommended operating conditions, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SIDE 1  
Voltage input threshold low  
(SDA1 and SCL1)  
VILT1  
480  
560  
620  
mV  
Voltage input threshold high  
(SDA1 and SCL1)  
VIHT1  
VHYST1  
VOL1  
520  
50  
mV  
mV  
mV  
Voltage input hysteresis  
VIHT1 – VILT1  
60  
Low-level output voltage(1)  
(SDA1 and SCL1)  
0.5 mA ≤ (ISDA1 and ISCL1) ≤ 3.5 mA  
570  
650  
710  
Low-level output voltage to high-level input  
voltage threshold difference, SDA1 and  
SCL1(2) (3)  
ΔVOIT1  
0.5 mA ≤ (ISDA1 and ISCL1) ≤ 3.5 mA  
50  
mV  
SIDE 2  
Voltage input threshold low  
(SDA2 and SCL2)  
VILT2  
0.3 × VCC2  
0.4 × VCC2  
0.5 × VCC2  
V
Voltage input threshold high  
(SDA2 and SCL2)  
VIHT2  
VHYST2  
VOL2  
0.4 × VCC2  
V
V
V
Voltage input hysteresis  
VIHT2 – VILT2  
0.05 × VCC2  
Low-level output voltage  
(SDA2 and SCL2)  
0.5 mA ≤ (ISDA2 and ISCL2) ≤ 50 mA  
0.4  
10  
BOTH SIDES  
Input leakage currents  
(SDA1, SCL1, SDA2, and SCL2)  
VSDA1, VSCL1 = VCC1  
VSDA2, VSCL2 = VCC2  
,
|II|  
0.01  
10  
µA  
pF  
Input capacitance to local ground  
(SDA1, SCL1, SDA2, and SCL2)  
CI  
VI = 0.4 × sin(2e6*πt) + VDDx / 2  
VCM = 1000 V, see Common-Mode  
Transient Immunity Test Circuit  
CMTI  
Common-mode transient immunity  
50  
100  
kV/µs  
GPIO Channels  
VCCx = 5 V, IOH = -4 mA; ISO1642/3/4 only  
VCCO - 0.4  
VCCO - 0.3  
V
V
VCCx = 3.3 V, IOH = -2 mA; ISO1642/3/4  
only  
VIOOH  
High-level output voltage  
VCC1 = 2.5 V, IOH = -1 mA; ISO1642/3/4  
only  
VCCO - 0.2  
V
VCCx = 5 V, IOH = 4 mA; ISO1642/3/4 only  
VCCx = 3.3 V, IOH = 2 mA; ISO1642/3/4 only  
VCC1 = 2.5 V, IOH = 1 mA; ISO1642/3/4 only  
ISO1642/3/4 only  
0.4  
0.3  
0.2  
V
V
VIOOL  
Low-level output voltage  
V
(1)  
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
Rising input switching threshold  
Falling input switching threshold  
Input threshold voltage hysteresis  
High-level input current  
0.7 x VCCI  
V
ISO1642/3/4 only  
0.3 x VCCI  
0.1 x VCCI  
V
ISO1642/3/4 only  
V
VIH = VCCI (1) at INx. ISO1642/3/4 only  
VIL = 0 V at INx. ISO1642/3/4 only  
10  
µA  
µA  
IIL  
Low-level input current  
-10  
(1) This parameter does not apply to the SCL1 line of the ISO1641 device because it is unidirectional.  
(2) ∆VOIT1 = VOL1 – VIHT1. This value represents the minimum difference between a threshold for the low-level output voltage and  
a threshold for the high-level input voltage to prevent a permanent latch condition that would otherwise occur with bidirectional  
communication.  
(3) Any supply voltages on either side that are less than the minimum value make sure that the device does a lockout. Both supply  
voltages that are greater than the maximum value keep the device from a lockout.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
6.10 Supply Current Characteristics  
over recommended operating conditions, unless otherwise noted. See Test Diagram for more information.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2.25 V ≤ VCC2 ≤ 2.75 V  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
4.9  
2.7  
3.8  
2.7  
6.6  
3.5  
5.2  
3.5  
mA  
mA  
mA  
mA  
Supply current,  
Side 2  
ICC2  
ISO1640  
ISO1641  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
Supply current,  
Side 2  
ICC2  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
6.3  
5.5  
4.3  
7.5  
6.8  
4.9  
4.8  
6.9  
6.8  
6
9.2  
7.8  
6.0  
10.5  
9.9  
7.3  
6.7  
9.8  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
Supply current,  
Side 2  
ICC2  
ICC2  
ICC2  
ISO1642  
ISO1643  
ISO1644  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
Supply current,  
Side 2  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
8.7  
6.7  
11.2  
Supply current,  
Side 2  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
4.8  
7.9  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
3 V ≤ VCC1, VCC2 ≤ 3.6 V  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
5.2  
3
7.1  
4
mA  
mA  
mA  
mA  
Supply current,  
Side 1  
ICC1  
ISO1640  
ISO1641  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
4.6  
2.4  
6.1  
3.2  
Supply current,  
Side 1  
ICC1  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
over recommended operating conditions, unless otherwise noted. See Test Diagram for more information.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
7.3  
9.6  
8.3  
mA  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
5.8  
4.7  
8.4  
6.9  
6.5  
4.3  
9
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Supply current,  
Side 1  
ICC1  
ICC1  
ICC1  
ISO1642  
ISO1643  
ISO1644  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
6.6  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
11.6  
8.9  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
8.9  
Supply current,  
Side 1  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
5.9  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
12.3  
10.1  
9.6  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
7.3  
6.9  
4.7  
9.5  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
Supply current,  
Side 1  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
6.6  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
13.1  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
4.9  
2.8  
3.9  
2.8  
6.7  
3.5  
5.2  
3.5  
mA  
mA  
mA  
mA  
Supply current,  
Side 2  
ICC2  
ISO1640  
ISO1641  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
Supply current,  
Side 2  
ICC2  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
6.4  
5.6  
4.4  
7.6  
9.2  
7.8  
mA  
mA  
mA  
mA  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
Supply current,  
Side 2  
ICC2  
ISO1642  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
6.0  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
10.5  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
over recommended operating conditions, unless otherwise noted. See Test Diagram for more information.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
6.8  
9.9  
mA  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
4.9  
4.8  
6.9  
6.8  
6
7.3  
6.7  
9.8  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Supply current,  
Side 2  
ICC2  
ISO1643  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
8.4  
6.7  
11.3  
Supply current,  
Side 2  
ICC2  
ISO1644  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
4.8  
8
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
4.5 V ≤ VCC1, VCC2 ≤ 5.5 V  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
5.3  
3
7.2  
4.1  
6.2  
3.2  
mA  
mA  
mA  
mA  
Supply current,  
Side 1  
ICC1  
ISO1640  
ISO1641  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
4.7  
2.5  
Supply current,  
Side 1  
ICC1  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
7.6  
5.9  
4.7  
8.7  
7.2  
6.5  
4.3  
9.3  
10.4  
8.2  
6.7  
12  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
Supply current,  
Side 1  
ICC1  
ISO1642  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
9.7  
8.9  
6
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
Supply current,  
Side 1  
ICC1  
ISO1643  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
12.7  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
over recommended operating conditions, unless otherwise noted. See Test Diagram for more information.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
7.6  
10.4  
9.7  
mA  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
7
4.7  
9.6  
mA  
mA  
mA  
Supply current,  
Side 1  
ICC1  
ISO1644  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
6.7  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
13.5  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
5
2.8  
3.9  
2.8  
6.8  
3.6  
5.3  
3.6  
mA  
mA  
mA  
mA  
Supply current,  
Side 2  
ICC2  
ISO1640  
ISO1641  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
Supply current,  
Side 2  
ICC2  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
6.5  
5.6  
4.5  
7.7  
6.9  
5
9.1  
7.7  
6.1  
10.7  
9.8  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
Supply current,  
Side 2  
ICC2  
ICC2  
ICC2  
ISO1642  
ISO1643  
ISO1644  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
Supply current,  
Side 2  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
4.9  
7
6.8  
10  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
6.9  
6.1  
4.9  
8.1  
9.8  
8.5  
6.8  
11.5  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
Supply current,  
Side 2  
VSDA1, VSCL1 = VCC1, VSDA2, VSCL2 = VCC2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 0  
VSDA1, VSCL1 = GND1, VSDA2, VSCL2 = GND2,  
R1 and R2 = Open, C1 and C2 = Open  
GPIOs = 1  
6.11 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
VCC1 > VCC1(UVLO+) or VCC2 > VCC2(UVLO+), I2C bus Idle.  
see tUVLO Test Circuit and Timing Diagrams  
tUVLO  
Time to recover from UVLO  
36  
95  
151  
µs  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
6.12 I2C Switching Characteristics  
over recommended operating conditions, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2.25 V ≤ VCC2 ≤ 2.75 V, 3 V ≤ VCC1 ≤ 3.6 V  
0.7 × VCC2 ≥ VO ≥ 0.3 × VCC2, R2 = 72 Ω,  
C2 = 400 pF, see Test Diagram  
16  
38  
26.5  
53.3  
20  
40  
78  
Output signal fall time  
(SDA2 and SCL2)  
tf2  
ns  
0.9 × VCC2 ≥ VO ≥ 400 mV, R2 = 72Ω,  
C2 = 400 pF, see Test Diagram  
Low-to-high propagation delay, side 1  
to side 2  
VI = 535 mV, VO = 0.7 × VCC2, R1 = 953 Ω, R2 = 72 Ω, C1  
and C2 = 10 pF, VCC1 = 3.3 V, see Test Diagram  
tpLH1-2  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
High-to-low propagation delay, side 1 to VI = 550 mV, VO = 0.3 × VCC2, R1 = 953 Ω, R2 = 72 Ω, C1  
tpHL1-2  
tpLH2-1  
tpHL2-1  
PWD1-2  
PWD2-1  
tLOOP1  
80  
130  
48  
side 2  
and C2 = 10 pF, VCC1 = 3.3 V, see Test Diagram  
Low-to-high propagation delay, side 2  
to side 1(1)  
VI = 0.4 x VCC2, VO = 0.7 x VCC1, R1 = 953 Ω, R2 = 72 Ω, C1  
and C2 = 10 pF, VCC1 = 3.3 V, see Test Diagram  
40  
High-to-low propagation delay, side 2 to VI = 0.4 x VCC2, VO = 0.3 × VCC1, R1 = 953 Ω, R2 = 72 Ω, C1  
70  
100  
104  
55  
side 1(1)  
and C2 = 10 pF, VCC1 = 3.3 V, see Test Diagram  
Pulse width distortion  
R1 = 953 Ω, R2 = 72 Ω, C1 and C2 = 10 pF, VCC1 = 3.3 V  
see Test Diagram  
60  
|tpHL1-2 – tpLH1-2  
|
Pulse width distortion(1)  
R1 = 953 Ω, R2 = 72 Ω, C1 and C2 = 10 pF, VCC1 = 3.3 V  
see Test Diagram  
25  
|tpHL2-1 – tpLH2-1  
|
Round-trip propagation delay on side  
1(1)  
0.4 V ≤ VI ≤ 0.3 × VCC1, R1 = 953 Ω,  
C1 = 40 pF, R2 = 72 Ω, C2 = 400 pF, see Test Diagram  
62  
74  
3 V ≤ VCC1, VCC2 ≤ 3.6 V  
0.7 × VCC1 ≥ VO ≥ 0.3 × VCC1, R1 = 953 Ω,  
C1 = 40 pF, R2 = 95.3 Ω, C2 = 400 pF, see Test Diagram  
8
15  
14  
30  
17  
25  
23  
50  
21  
59  
40  
70  
39  
25  
65  
29  
48  
Output signal fall time  
(SDA1 and SCL1)  
tf1  
ns  
ns  
0.9 × VCC1 ≥ VO ≥ 900 mV, R1 = 953 Ω,  
C1 = 40 pF, see Test Diagram  
0.7 × VCC2 ≥ VO ≥ 0.3 × VCC2, R2 = 95.3 Ω,  
C2 = 400 pF, see Test Diagram  
47  
Output signal fall time  
(SDA2 and SCL2)  
tf2  
0.9 × VCC2 ≥ VO ≥ 400 mV, R2 = 95.3 Ω,  
C2 = 400 pF, see Test Diagram  
100  
29  
Low-to-high propagation delay, side 1  
to side 2  
VI = 535 mV, VO = 0.7 × VCC2, R1 = 953 Ω, R2 = 95.3 Ω, C1  
and C2 = 10 pF, see Test Diagram  
tpLH1-2  
tpHL1-2  
tpLH2-1  
tpHL2-1  
PWD1-2  
PWD2-1  
tLOOP1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
High-to-low propagation delay, side 1 to VI = 550 mV, VO = 0.3 × VCC2, R1 = 953 Ω, R2 = 95.3 Ω, C1  
88  
side 2  
and C2 = 10 pF, see Test Diagram  
Low-to-high propagation delay, side 2  
to side 1(1)  
VI = 0.4 x VCC2, VO = 0.7 x VCC1, R1 = 953 Ω, R2 = 95.3 Ω,  
C1 and C2 = 10 pF, see Test Diagram  
47  
High-to-low propagation delay, side 2 to VI = 0.4 x VCC2, VO = 0.3 × VCC1, R1 = 953 Ω, R2 = 95.3 Ω,  
100  
61  
side 1(1)  
C1 and C2 = 10 pF, see Test Diagram  
Pulse width distortion  
R1 = 953 Ω, R2 = 95.3 Ω, C1 and C2 = 10 pF,  
see Test Diagram  
|tpHL1-2 – tpLH1-2  
|
Pulse width distortion(1)  
R1 = 953 Ω, R2 = 95.3 Ω, C1 and C2 = 10 pF,  
see Test Diagram  
48  
|tpHL2-1 – tpLH2-1  
|
Round-trip propagation delay on side  
1(1)  
0.4 V ≤ VI ≤ 0.3 × VCC1, R1 = 953 Ω,  
C1 = 40 pF, R2 = 95.3 Ω, C2 = 400 pF, see Test Diagram  
78  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
www.ti.com  
UNIT  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
over recommended operating conditions, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
4.5 V ≤ VCC1, VCC2 ≤ 5.5 V  
0.7 × VCC1 ≥ VO ≥ 0.3 × VCC1, R1 = 1430 Ω,  
C1 = 40 pF, R2 = 95.3 Ω, C2 = 400 pF, see Test Diagram  
6
13  
10  
28  
16  
32  
24  
48  
21  
51  
51  
60  
30  
10  
84  
22  
48  
30  
76  
28  
70  
57  
88  
45  
34  
96  
Output signal fall time  
(SDA1 and SCL1)  
tf1  
ns  
ns  
0.9 × VCC1 ≥ VO ≥ 900 mV, R1 = 1430 Ω,  
C1 = 40 pF, see Test Diagram  
0.7 × VCC2 ≥ VO ≥ 0.3 × VCC2, R2 = 143 Ω,  
C2 = 400 pF, see Test Diagram  
Output signal fall time  
(SDA2 and SCL2)  
tf2  
0.9 × VCC2 ≥ VO ≥ 400 mV, R2 = 143 Ω,  
C2 = 400 pF, see Test Diagram  
Low-to-high propagation delay, side 1  
to side 2  
VI = 535 mV, VO = 0.7 × VCC2, R1 = 1430 Ω, R2 = 143 Ω, C1  
and C2 = 10 pF, see Test Diagram  
tpLH1-2  
tpHL1-2  
tpLH2-1  
tpHL2-1  
PWD1-2  
PWD2-1  
tLOOP1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
High-to-low propagation delay, side 1 to VI = 550 mV, VO = 0.3 × VCC2, R1 = 1430 Ω, R2 = 143 Ω, C1  
side 2  
and C2 = 10 pF, see Test Diagram  
Low-to-high propagation delay, side 2  
to side 1(1)  
VI = 0.4 x VCC2, VO = 0.7 x VCC1, R1 = 1430 Ω, R2 = 143 Ω,  
C1 and C2 = 10 pF, see Test Diagram  
High-to-low propagation delay, side 2 to VI = 0.4 x VCC2, VO = 0.3 × VCC1, R1 = 1430 Ω, R2 = 143 Ω,  
side 1(1)  
C1 and C2 = 10 pF, see Test Diagram  
Pulse width distortion  
R1 = 1430 Ω, R2 = 143 Ω, C1 and C2 = 10 pF,  
see Test Diagram  
|tpHL1-2 – tpLH1-2  
|
Pulse width distortion(1)  
R1 = 1430 Ω, R2 = 143 Ω, C1 and C2 = 10 pF,  
see Test Diagram  
|tpHL2-1 – tpLH2-1  
|
Round-trip propagation delay on side  
1(1)  
0.4 V ≤ VI ≤ 0.3 × VCCI, R1 = 1430 Ω,  
C1 = 40 pF, R2 = 143 Ω, C2 = 400 pF, see Test Diagram  
(1) This parameter does not apply to the SCL1 line of the ISO1641 device because it is unidirectional.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
6.13 GPIO Switching Characteristics  
over recommended operating conditions, unless otherwise noted. ISO1644 only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
3 V ≤ VCC1, VCC2 ≤ 3.6 V  
tPLH, tPHL  
tP(dft)  
tUI  
Propagation delay time  
Propagation delay drift  
Minimum pulse width  
See Test Diagram  
See Test Diagram  
11  
20  
ns  
ps/  
ns  
9.2  
20  
PWD  
tsk(o)  
tsk(p-p)  
tr  
Pulse width distortion  
7
6
ns  
Channel to channel output skew time  
Part to part skew time  
Output signal rise time  
Output signal fall time  
Same direction channels  
ns  
6
ns  
See Test Diagram  
See Test Diagram  
6.5  
6.5  
ns  
tf  
ns  
Default output delay time from input  
power loss  
Measured from the time VCC goes below 1.2V. See Test  
Diagram  
tDO  
tie  
0.1  
0.8  
0.3  
us  
ns  
Time interval error  
4.5 V ≤ VCC1, VCC2 ≤ 5.5 V  
tPLH, tPHL  
tP(dft)  
tUI  
Propagation delay time  
See Test Diagram  
11  
8
18  
ns  
ps/℃  
ns  
Propagation delay drift  
Minimum pulse width  
20  
PWD  
tsk(o)  
tsk(p-p)  
tr  
Pulse width distortion  
See Test Diagram  
7
6
6
6
6
ns  
Channel to channel output skew time  
Part to part skew time  
Output signal rise time  
Output signal fall time  
Same direction channels  
ns  
ns  
See Test Diagram  
See Test Diagram  
ns  
tf  
ns  
Default output delay time from input  
power loss  
Measured from the time VCC goes below 1.2V. See Test  
Diagram  
tDO  
tie  
0.1  
0.8  
0.3  
us  
ns  
Time interval error  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
6.14 Insulation Characteristics Curves  
350  
1200  
1000  
800  
600  
400  
200  
0
VCC1 = VCC2 = 3.3V  
VCC1 = VCC2 = 5.5V  
300  
250  
200  
150  
100  
50  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
SLLS  
SLLS  
Figure 6-2. ISO164xB Thermal Derating Curve for  
Safety Limiting Power for D-8 Package  
Figure 6-1. ISO164xB Thermal Derating Curve for  
Safety Limiting Current for D-8 Package  
Figure 6-4. ISO1640/1 Thermal Derating Curve for  
Safety Limiting Power for DW-16 Package  
Figure 6-3. ISO1640/1 Thermal Derating Curve for  
Safety Limiting Current for DW-16 Package  
Figure 6-6. ISO1642/3/4 Thermal Derating Curve for  
Safety Limiting Power for DW-16 Package  
Figure 6-5. ISO1642/3/4 Thermal Derating Curve for  
Safety Limiting Current for DW-16 Package  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
6.15 Typical Characteristics  
0.78  
20  
18  
16  
14  
12  
10  
8
VCC1 = 3.3 V, IOL1 = 3.5 mA  
VCC1 = 3.3 V, IOL1 = 0.5 mA  
VCC1 = 5 V, IOL1 = 3.5 mA  
VCC1 = 5 V, IOL1 = 0.5 mA  
0.74  
0.7  
0.66  
0.62  
0.58  
6
C1 = 80 pF, R1 = 1.43 kW  
C1 = 80 pF, R1 = 2.2 kW  
C1 = 40 pF, R1 = 1.43 kW  
C1 = 40 pF, R1 = 2.2 kW  
4
2
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
SLLS  
SLLS  
TA = 25°C  
VCC1 = 5 V  
Figure 6-7. Side 1: Output Low Voltage vs Free-Air  
Temperature  
Figure 6-8. Side 1: Output Fall Time vs Free-Air  
Temperature  
24  
22  
20  
18  
16  
14  
12  
10  
8
25  
R2 = 143 W  
R2 = 2.2 kW  
20  
15  
10  
5
C1 - 80 pF, R1 = 953 kW  
6
C1 = 80 pF, R1 = 2.2 kW  
4
C1 - 40 pF, R1 = 953 kW  
C1 = 40 pF, R1 = 2.2 kW  
2
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
SLLS  
SLLS  
VCC1 = 3.3 V  
VCC2 = 5 V  
C2 = 400 pF  
Figure 6-9. Side 1: Output Fall Time vs Free-Air  
Temperature  
Figure 6-10. Side 2: Output Fall Time vs Free-Air  
Temperature  
25  
30  
R2 = 95.3  
R2 = 2.2 k  
R2 = 71.4 W  
R2 = 2.2 kW  
25  
20  
15  
10  
5
20  
15  
10  
5
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
SLLS  
SLLS  
VCC2 = 3.3 V  
C2 = 400 pF  
VCC2 = 2.5 V  
C2 = 400 pF  
Figure 6-11. Side 2: Output Fall Time vs Free-Air  
Temperature  
Figure 6-12. Side 2: Output Fall Time vs Free-Air  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
100  
90  
80  
70  
60  
50  
40  
30  
590  
585  
580  
575  
570  
565  
560  
VCC1 and VCC2 = 3.3 V, R1 and R2 = 2.2 kW  
VCC1 and VCC2 = 5 V, R1 and R2 = 2.2 kW  
20  
VCC1 and VCC2 = 3.3 V, R1 = 953 W, R2 = 95.3 W  
VCC1 and VCC2 = 5 V, R1 = 1430 W, R2 = 143 W  
10  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
SLLS  
SLLS  
C1 = 80 pF  
C2 = 400 pF  
C1 = 80 pF  
C2 = 400 pF  
Figure 6-13. tLOOP1 vs Free-Air Temperature  
Figure 6-14. tLOOP1 vs Free-Air Temperature  
30  
1200  
1180  
1160  
1140  
1120  
1100  
1080  
1060  
25  
20  
15  
10  
1040  
5
VCC1 and VCC2 = 5 V, R2 = 2.2 kW, C2 = 400 pF  
VCC1 and VCC2 = 5 V, R2 = 143 W, C2 = 10pF  
1020  
VCC1 and VCC2 = 3.3 V, R2 = 2.2 kW, C2 = 400 pF  
VCC1 and VCC2 = 3.3 V, R2 = 143 W, C2 = 10pF  
1000  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
SLLS  
SLLS  
Figure 6-16. tPLH1-2 Propagation Delay vs Free-Air  
Temperature  
Figure 6-15. tPLH1-2 Propagation Delay vs Free-Air  
Temperature  
70  
60  
50  
40  
30  
20  
70  
60  
50  
40  
30  
20  
10  
10  
VCC1 and VCC2 = 5 V, R2 = 143 W, C2 = 10 pF  
VCC1 and VCC2 = 3.3 V, R2 = 143 W, C2 = 10 pF  
VCC1 and VCC2 = 5 V, R2 = 2.2 kW, C2 = 400 pF  
VCC1 and VCC2 = 3.3 V, R2 = 2.2 kW, C2 = 400 pF  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110120  
Free-Air Temperature (èC)  
SLLS  
SLLS  
Figure 6-17. tPHL1-2 Propagation Delay vs Free-Air  
Temperature  
Figure 6-18. tPHL1-2 Propagation Delay vs Free-Air  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
70  
60  
50  
40  
30  
20  
10  
0
150  
140  
130  
120  
110  
100  
90  
VCC1 and VCC2 = 5 V, R1 = 2.2 kW, C1 = 40 pF  
VCC1 and VCC2 = 3.3 V, R1 = 2.2 kW, C1 = 40 pF  
VCC1 and VCC2 = 5 V, R1 = 143 W, C1 = 10 pF  
VCC1 and VCC2 = 3.3 V, R1 = 143 W, C1 = 10 pF  
80  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
SLLS  
SLLS  
Figure 6-20. tPLH2-1 Propagation Delay vs Free-Air  
Temperature  
Figure 6-19. tPLH2-1 Propagation Delay vs Free-Air  
Temperature  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
VCC1 and VCC2 = 5 V, R1 = 143 W, C1 = 10 pF  
VCC1 and VCC2 = 3.3 V, R1 = 143 W, C1 = 10 pF  
VCC1 and VCC2 = 5 V, R1 = 2.2 kW, C1 = 40 pF  
VCC1 and VCC2 = 3.3 V, R1 = 2.2 kW, C1 = 40 pF  
10  
0
10  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
SLLS  
SLLS  
Figure 6-21. tPHL2-1 Propagation Delay vs Free-Air  
Temperature  
Figure 6-22. tPHL2-1 Propagation Delay vs Free-Air  
Temperature  
8.1  
9.5  
ICC1, I2C = 100 kbps  
ICC1, I2C = 400 kbps  
ICC1, I2C = 1.7 Mbps  
ICC2, I2C = 100 kbps  
ICC1, I2C = 100 kbps  
ICC1, I2C = 400 kbps  
ICC1, I2C = 1.7 Mbps  
ICC2, I2C = 100 kbps  
7.8  
9
7.5  
7.2  
6.9  
6.6  
6.3  
6
8.5  
8
ICC2, I2C = 400 kbps  
ICC2, I2C = 1.7 Mbps  
ICC2, I2C = 400 kbps  
ICC2, I2C = 1.7 Mbps  
7.5  
7
6.5  
6
0
5
10  
15  
20  
GPIO Speed (Mbps)  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
GPIO Speed (Mbps)  
25  
30  
35  
40  
45  
50  
D020  
D021  
Figure 6-23. ISO1642: ICC vs GPIO Speed at 3.3V  
Figure 6-24. ISO1642: ICC vs GPIO Speed at 5V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
9
10.5  
10  
9.5  
9
ICC1, I2C = 100 kbps  
ICC1, I2C = 400 kbps  
ICC1, I2C = 1.7 Mbps  
ICC2, I2C = 100 kbps  
ICC2, I2C = 400 kbps  
ICC2, I2C = 1.7 Mbps  
ICC1, I2C = 100 kbps  
ICC1, I2C = 400 kbps  
ICC1, I2C = 1.7 Mbps  
ICC2, I2C = 100 kbps  
ICC2, I2C = 400 kbps  
ICC2, I2C = 1.7 Mbps  
8.5  
8
7.5  
7
8.5  
8
7.5  
7
6.5  
6
6.5  
6
5.5  
5.5  
0
5
10  
15  
20  
GPIO Speed (Mbps)  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
GPIO Speed (Mbps)  
25  
30  
35  
40  
45  
50  
D022  
D023  
Figure 6-25. ISO1643: ICC vs GPIO Speed at 3.3V  
Figure 6-26. ISO1643: ICC vs GPIO Speed at 5V  
9.5  
11  
ICC1, I2C = 100 kbps  
ICC1, I2C = 400 kbps  
ICC1, I2C = 1.7 Mbps  
ICC2, I2C = 100 kbps  
ICC1, I2C = 100 kbps  
ICC1, I2C = 400 kbps  
ICC1, I2C = 1.7 Mbps  
ICC2, I2C = 100 kbps  
10.5  
9
10  
8.5  
8
ICC2, I2C = 400 kbps  
ICC2, I2C = 1.7 Mbps  
ICC2, I2C = 400 kbps  
ICC2, I2C = 1.7 Mbps  
9.5  
9
8.5  
8
7.5  
7
7.5  
7
6.5  
6
6.5  
6
0
5
10  
15  
20  
GPIO Speed (MHz)  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
GPIO Speed (Mbps)  
25  
30  
35  
40  
45  
50  
D024  
D025  
Figure 6-27. ISO1644: ICC vs GPIO Speed at 3.3V  
Figure 6-28. ISO1644: ICC vs GPIO Speed at 5V  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
7 Parameter Measurement Information  
7.1 Parameter Measurement Information  
œ
+
œ
+
VCC2  
VCC1  
R1  
R1  
R2  
R2  
SDA1  
SCL1  
SDA2  
SCL2  
ISO164x  
C1  
C1  
C2  
C2  
Figure 7-1. Test Diagram  
VCC2  
VCC1  
VCC1  
R1  
GND1  
t
LOOP1  
SDA1 or  
SCL1  
Output  
0.3 VCC1  
SDA1  
SCL1 (ISO1640 only)  
C1  
0.4 V  
GND1  
Figure 7-2. tLoop1 Setup and Timing Diagram  
VCCx  
VCCy  
2 k  
2 kꢀ  
Input  
+
Output  
œ
GNDx  
GNDy  
V
CMTI  
Figure 7-3. Common-Mode Transient Immunity Test Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
VCCx  
VCCx  
VCCy  
Side x, Side y VCCx,VCCy  
Ry  
1, 2  
2, 1  
3.3 V, 3.3 V 95.3 Ω  
3.3 V, 3.3 V 953 Ω  
Ry  
0 V  
SDAx or  
SCLx  
+
Output  
-
GNDx  
GNDy  
or  
VCCx  
VCCy  
VCCy  
Ry  
SDAx or  
SCLx  
0 V  
+
Output  
GNDx  
GNDy  
VCCx or  
VCCy  
VCCx (UVLO+)  
t
UVLO  
0.9 V  
Output  
V
CCI  
V
I
50%  
50%  
IN  
OUT  
0 V  
V
t
t
PHL  
PLH  
Input  
Generator  
(See Note A)  
C
L
V
I
V
50  
O
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
Copyright © 2016, Texas Instruments Incorporated  
A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3ns, ZO  
50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application.  
=
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 7-4. GPIO Channel Switching Characteristics Test Circuit and Voltage Waveforms  
V
I
See Note B  
V
CC  
V
CC  
V
1.4 V  
I
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. Power Supply Ramp Rate = 10 mV/ns  
Figure 7-5. GPIO Channel Default Output Delay Time Test Circuit and Voltage Waveforms  
Figure 7-4. tUVLO Test Circuit and Timing Diagrams  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The I2C bus consists of a two-wire communication bus that supports bidirectional data transfer between a master  
device and several slave devices. The master, or processor, controls the bus, specifically the serial clock (SCL)  
line. Data is transferred between the master and slave through a serial data (SDA) line. This data can be  
transferred in four speeds: standard mode (0 to 100 kbps), fast mode (0 to 400 kbps), fast-mode plus (0 to 1  
Mbps), and high-speed mode (0 to 3.4 Mbps).  
The I2C bus operates in bidirectional, half-duplex mode, using open collector outputs to allow for multiple  
devices to share the bus. When a specific device is ready to communicate on the bus, it can take control pulling  
the lines low accordingly in order to transmit data. A standard digital isolator or optocoupler is designed to  
transfer data in a single direction. In order to support an I2C bus, external circuitry is required to separate the  
bidirectional bus into two unidirectional signal paths. The ISO164x devices internally handle the separation and  
partitioning of the transmit and receive signals, integrating the external circuitry needed and provide the open-  
collector signals. They provide high electromagnetic immunity and low emissions at low power consumption.  
Each isolation channel has a logic input and output buffer separated by TI's double capacitive silicon dioxide  
(SiO2) insulation barrier. When used in conjunction with isolated power supplies, these devices block high  
voltages, isolate grounds, and prevent noise currents from entering the local ground and interfering with or  
damaging sensitive circuitry.  
8.2 Functional Block Diagrams  
VCC1  
VCC2  
SDA2  
SDA1  
V
REF  
SCL2  
SCL1  
GND1  
GND2  
V
REF  
Figure 8-1. ISO1640 Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
VCC2  
VCC1  
SDA1  
SDA2  
V
REF  
SCL1  
SCL2  
GND1  
GND2  
Figure 8-2. ISO1641 Block Diagram  
8.3 Isolation Technology Overview  
The ISO164x family of devices has an ON-OFF keying (OOK) modulation scheme to transmit the digital data  
across a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier  
to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates  
the signal after advanced signal conditioning and produces the output through a buffer stage. These devices  
also incorporate advanced circuit techniques to maximize the CMTI performance and minimize the radiated  
emissions due the high frequency carrier and switching.  
8.4 Feature Description  
The device enables a complete isolated I2C interface to be implemented within a small form factor having the  
features listed in Table 8-1.  
Table 8-1. Features List  
I2C MAXIMUM  
FREQUENCY  
GPIO MAXIMUM  
FREQUENCY  
PART NUMBER  
CHANNEL DIRECTION  
RATED ISOLATION(1)  
5000 VRMS (16DW) 7071  
VPK (16DW) 3000 VRMS  
(8D) 4242 VPK (8D)  
Bidirectional SCL  
Bidirectional SDA  
ISO1640  
1.7 MHz  
1.7 MHz  
NA  
5000 VRMS (16DW) 7071  
VPK (16DW) 3000 VRMS  
(8D) 4242 VPK (8D)  
Unidirectional (SCL)  
Bidirectional (SDA)  
ISO1641  
ISO1642  
ISO1643  
Bidirectional SCL  
Bidirectional SDA  
5000 VRMS (16DW) 7071  
VPK (16DW)  
50 Mbps  
ISO1644  
(1) See for detailed Isolation specifications.  
8.4.1 Hot Swap  
The ISO164x includes Hot Swap circuitry on Side 2 of the isolator to prevent loading on the I2C bus lines while  
VCC2 is either unpowered or in the process of being powered on. While VCC2 is below the UVLO threshold,  
the ISO164x bus lines will not load the bus to avoid disrupting or corrupting an active I2C bus. If the isolator  
is plugged into a live backplane using a staggered connector, where VCC2 and GND2 make connection first  
followed by the bus lines, the SDA and SCL lines are pre-charged to VCC2 / 2 to minimize the current required  
to charge the parasitic capacitance of the device. Once the device is fully powered on, the device bus pins  
become active providing bidirectional, isolated, SCL and SDA lines.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
8.4.2 Protection Features  
Features are integrated in the ISO164x to help protect the device from high current events. Enhanced ESD  
protection cells are designed on the I2C bus pins to support 10 kV HBM ESD on side 1 and 14 kV HBM ESD on  
side 2. The I2C bus pins on side 2 are designed to withstand an unpowered IEC-ESD strike of 8 kV, improving  
robustness and system reliability in hot swap applications. In addition to the improved ESD performance, a short  
circuit protection circuit is included on side 2 to protect the bus pins (SDA2 and SCL2) against strong short  
circuits of 5 ohms or less to VCC2.  
Thermal shutdown is integrated in the ISO164x to protect the device from high current events. If the junction  
temperature of the device exceeds the thermal shutdown threshold of 190°C (typical), the device turns  
off, disabling the I2C circuits and releasing the bus. The shutdown condition is cleared when the junction  
temperature drops at least the thermal shutdown hysteresis temperature of 10°C (typical) below the thermal  
shutdown temperature of the device.  
8.4.3 GPIO Channels  
The ISO1642, ISO1643 and ISO1644 intregrate unidirectional isolation channels, in addition to the bidirectional  
isolated I2C lines, to support system signals. The ISO1642 includes two channels in opposing directions (1/1  
configuration) and the ISO1643 include two channels in the same direction (2/0 configuration). The ISO1644  
includes three GPIO channels, two in one direction and one in the opposite direction (2/1 configuration) making  
it possible to use with a Serial Peripheral Interface (SPI). The conceptual block diagram of a unidirectional digital  
capacitive isolator channel is shown in Figure 8-3.  
Transmitter  
Receiver  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
Figure 8-3. Conceptual Block Diagram of the GPIO Channels  
8.5 Isolator Functional Principle  
To isolate a bidirectional signal path (SDA or SCL), the ISO1640 internally splits a bidirectional line into two  
unidirectional signal lines, each of which is isolated through a single-channel digital isolator. Each channel output  
is made open-drain to comply with the open-drain technology of I2C. Side 1 of the ISO1640 connects to a  
low-capacitance I2C node (up to 80 pF), while side 2 is designed for connecting to a fully loaded I2C bus with up  
to 400 pF of capacitance.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
VCC1  
VCC2  
A
VC-out  
RPU2  
RPU1  
B
C
SDA1  
SDA2  
ISO164x  
40 mV  
50 mV  
Cnode  
Cbus  
VSDA1  
D
VILT1  
VIHT1  
VOL1  
GND1  
GND2  
VREF  
Figure 8-4. SDA Channel Design and Voltage Levels at SDA1  
At first sight, the arrangement of the internal buffers suggests a closed signal loop that is prone to latch-up.  
However, this loop is broken by implementing an output buffer (B) whose output low-level is raised by a diode  
drop to approximately 0.65 V, and the input buffer (C) that consists of a comparator with defined hysteresis.  
The comparator’s upper and lower input thresholds then distinguish between the proper low-potential of 0.4 V  
(maximum) driven directly by SDA1 and the buffered output low-level of B.  
Figure 8-5 demonstrate the switching behavior of the I2C isolator, ISO164x, between a master node at SDA1  
and a heavy loaded bus at SDA2.  
VCC2  
VCC2  
VCC1  
VCC1  
VOL1  
SDA1  
50%  
SDA2  
VIHT1  
30%  
Receive  
Delay  
Receive  
Delay  
Transmit  
Delay  
Receive  
Delay  
VCC1  
VCC2  
VIHT2  
VCC1  
VCC2  
Transmit  
Delay  
SDA2  
50%  
SDA1  
30%  
VOL1  
Figure 8-5. SDA Channel Timing in Receive and Transmit Directions  
8.5.1 Receive Direction (Left Diagram of Figure 8-5)  
When the I2C bus drives SDA2 low, SDA1 follows after a certain delay in the receive path. The output low is the  
buffered output of VOL1 = 0.65 V, which is sufficiently low to be detected by Schmitt-trigger inputs with a minimum  
input-low voltage of VIL = 0.9 V at 3 V supply levels.  
When SDA2 is released, its voltage potential increases towards VCC2 following the time-constant formed  
by RPU2 and Cbus. After the receive delay, SDA1 is released and also rises towards VCC1, following the  
time-constant RPU1 × Cnode. Because of the significant lower time-constant, SDA1 may reach VCC1 before  
SDA2 reaches VCC2 potential.  
8.5.2 Transmit Direction (Right Diagram of Figure 8-5)  
When a master drives SDA1 low, SDA2 follows after a certain delay in the transmit direction. When SDA2 turns  
low it also causes the output of buffer B to turn low but at a higher 0.65 V level. This level cannot be observed  
immediately as it is overwritten by the lower low-level of the master.  
However, when the master releases SDA1, the voltage potential increases and first must pass the upper input  
threshold of the comparator, VIHT1, to release SDA2. SDA1 then increases further until it reaches the buffered  
output level of VOL1 = 0.65 V, maintained by the receive path. When comparator C turns high, SDA2 is released  
after the delay in transmit direction. It takes another receive delay until B’s output turns high and fully releases  
SDA1 to move toward VCC1 potential.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
8.6 Device Functional Modes  
Table 8-2 lists the ISO164x functional modes.  
Table 8-2. I2C Function Table(1)  
POWER STATE  
I2C INPUT  
I2C OUTPUT  
VCC1 < 2.3 V or VCC2 < 1.7 V  
VCC1 > 2.9 V and VCC2 > 2.25 V  
VCC1 > 2.9 V and VCC2 > 2.25 V  
VCC1 > 2.9 V and VCC2 > 2.25 V  
X
L
Z
L
Z
H
Z(2)  
Undetermined  
(1) H = High Level; L = Low Level; Z = High Impedance or Float; X = Irrelevant  
(2) Invalid input condition as an I2C system requires that a pullup resistor to VCC is connected.  
Table 8-3. GPIO Function Table (ISO1642, ISO1643 and ISO1644 only)(1)  
GPIO INPUT  
(INx)  
GPIO OUTPUT  
(OUTx)  
VCCI  
VCCO  
COMMENTS  
H
L
H
L
Normal Operation:  
A channel output assumes the logic state of the input.  
PU  
PU  
Default mode: When INx is open, the corresponding channel output goes to  
the default low logic state.  
Open  
L
Default mode: When VCCI is unpowered, a channel output assumes the low  
default logic state.  
When VCCI transitions from unpowered to powered-up, a channel output  
assumes the logic state of the input.  
When VCCI transitions from powered-up to unpowered, channel output  
assumes the low default state.  
PD  
X
PU  
PD  
X
L
When VCCO is unpowered, a channel output is undetermined.  
X
Undetermined(2) When VCCO transitions from unpowered to powered-up, a channel output  
assumes the logic state of the input  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC1 ≥ 2.9 V or VCC2 ≥ 2.25 V); PD = Powered down (VCC1 ≤ 2.3 V  
or VCC2 ≤ 1.7 V); X = Irrelevant; H = High level; L = Low level  
(2) A strongly driven input signal can weakly power the floating VCC via an internal protection diode and cause undetermined output.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
 
 
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and  
TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 I2C Bus Overview  
The inter-integrated circuit (I2C) bus is a single-ended, multi-master, 2-wire bus for efficient inter-IC  
communication in half-duplex mode.  
I2C uses open-drain technology, requiring two lines, serial data (SDA) and serial clock (SCL), to be connected  
to VDD by resistors (see Figure 9-1). Pulling the line to ground is considered a logic zero while letting the line  
float is a logic one. This logic is used as a channel access method. Transitions of logic states must occur while  
the SCL pin is low. Transitions while the SCL pin is high indicate START and STOP conditions. Typical supply  
voltages are 3.3 V and 5 V, although systems with higher or lower voltages are allowed.  
V
DD  
R
R
PU  
R
R
R
R
PU  
PU  
R
R
PU  
PU  
PU  
PU  
PU  
SDA  
SCL  
SDA  
SDA  
SCL  
SDA  
SDA  
SCL  
SCL  
SCL  
GND  
GND  
GND  
GND  
C  
Master  
C  
Slave  
ADC  
Slave  
DAC  
Slave  
Figure 9-1. Example I2C Bus  
I2C communication uses a 7-bit address space with 16 reserved addresses, so a theoretical maximum of 112  
nodes can communicate on the same bus. In practice, however, the number of nodes is limited by the specified,  
total bus capacitance of 400 pF, which also restricts communication distances to a few meters.  
The specified signaling rates for the ISO164x devices are 100 kbps (standard mode), 400 kbps (fast mode), 1.7  
Mbps (fast mode plus).  
The bus has two roles for nodes: master and slave. A master node issues the clock and slave addresses,  
and also initiates and ends data transactions. A slave node receives the clock and addresses and responds to  
requests from the master. Figure 9-2 shows a typical data transfer between master and slave.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
7-bit  
8-bit  
8-bit  
ACK /  
NACK  
R/W  
ACK  
ACK  
SDA  
SCL  
ADDRESS  
DATA  
DATA  
1 - 7  
8
9
1 - 8  
9
1 - 8  
9
S
P
START  
STOP  
Condition  
condition  
Figure 9-2. Timing Diagram of a Complete Data Transfer  
The master initiates a transaction by creating a START condition, following by the 7-bit address of the slave  
it wishes to communicate with. This is followed by a single read and write (R/W) bit, representing whether the  
master wishes to write to (0), or to read from (1) the slave. The master then releases the SDA line to allow the  
slave to acknowledge the receipt of data.  
The slave responds with an acknowledge bit (ACK) by pulling the SDA pin low during the entire high time of the  
9th clock pulse on the SCL signal, after which the master continues in either transmit or receive mode (according  
to the R/W bit sent), while the slave continues in the complementary mode (receive or transmit, respectively).  
The address and the 8-bit data bytes are sent most significant bit (MSB) first. The START bit is indicated by  
a high-to-low transition of SDA while SCL is high. The STOP condition is created by a low-to-high transition of  
SDA while SCL is high.  
If the master writes to a slave, it repeatedly sends a byte with the slave sending an ACK bit. In this case, the  
master is in master-transmit mode and the slave is in slave-receive mode.  
If the master reads from a slave, it repeatedly receives a byte from the slave, while acknowledging (ACK) the  
receipt of every byte but the last one (see Figure 9-3). In this situation, the master is in master-receive mode and  
the slave is in slave-transmit mode.  
The master ends the transmission with a STOP bit, or may send another START bit to maintain bus control for  
further transfers.  
A = acknowledge  
S Slave Address W A  
DATA  
A
DATA  
A P  
A P  
A = not acknowledge  
S = Start  
From Master to Slave  
From Slave to Master  
Master Transmitter writing to Slave Receiver  
P = Stop  
R = Read  
S Slave Address R A  
DATA  
A
DATA  
W = Write  
Master Receiver reading from Slave Transmitter  
Figure 9-3. Transmit or Receive Mode Changes During a Data Transfer  
When writing to a slave, a master mainly operates in transmit-mode and only changes to receive-mode when  
receiving acknowledgment from the slave.  
When reading from a slave, the master starts in transmit-mode and then changes to receive-mode after sending  
a READ request (R/W bit = 1) to the slave. The slave continues in the complementary mode until the end of a  
transaction.  
Note  
The master ends a reading sequence by not acknowledging (NACK) the last byte received. This  
procedure resets the slave state machine and allows the master to send the STOP command.  
9.2 Typical Application  
In Figure 9-4, the ultra low-power microcontroller, MSP430G2132, controls the I2C data traffic of configuration  
data and conversion results for the analog inputs and outputs. In Figure 9-5, the TMS320F28035 controls both  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
the I2C interface, for communication to a DAC for analog outputs, and a SPI interface, for communication to an  
ADC for analog inputs.  
Low-power data converters build the analog interface to sensors and actuators. The ISO164x device provides  
the required isolation between different ground potentials of the system controller, remote sensor, and actuator  
circuitry to prevent ground loop currents that otherwise may falsify the acquired data.  
The entire circuit operates from a single 3.3-V supply. A low-power push-pull converter, SN6501, drives a  
center-tapped transformer with an output that is rectified and linearly regulated to provide a stable 5-V supply for  
the data converters.  
V
S
0.1 μF  
3.3V  
2
MBR0520L  
1:2.2  
5V  
ISO  
0.1μF  
3
1
1
3
5
2
Vcc  
D2  
IN  
OUT  
8
10 μF  
LP2981-50  
VDD  
SN6501  
10μF 0.1μF  
9
10  
1
4
SDA  
AIN0  
ON  
GND  
4 Analog  
Inputs  
D1  
SCL  
GND  
4,5  
ADS1115  
GND RDY  
1Ω  
10μF  
MBR0520L  
ADDR  
AIN3  
7
3
2
5V  
ISO  
5V  
ISO  
-
ISO BARRIER  
6
2
VIN  
REF5040  
GND  
VOUT  
5V  
ISO  
0.1μF  
22 μF  
1μF  
4
0.1μF  
0.1 μF  
8
3
15  
A2 VDD  
SDA  
4
12  
0.1 μF  
H
1.5 kΩ  
1.5 kΩ  
IOVDD VREF  
1.5 kΩ  
1.5 kΩ  
1
11  
10  
9
1
2
DVcc  
VOUT  
A
SCL  
LDAC  
A1  
VCC1  
VCC2  
4 Analog  
Outputs  
DAC8574  
5
6
9
8
2
3
7
6
XOUT  
SDA  
SCL  
SDA1  
SCL1  
SDA2  
MSP430  
G2132  
DVss  
ISO164x  
14  
VOUT  
D
SCL2  
GND2  
5
XIN  
8
VREF  
L
A0 A3 GND  
GND1  
4
13 16  
6
5
4
Figure 9-4. Isolated I2C Data Acquisition System  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
VS  
0.1 F  
3.3 V  
MBR0520L  
Vcc  
1:2.2  
5VISO  
D2  
D1  
IN  
OUT  
GND  
TPS76750  
SN6501  
10 F  
0.1 F  
10 F  
EN  
10 F  
MBR0520L  
ISO Barrier  
GND  
GND  
5VISO  
5VISO  
VOUT  
REF5040  
GND  
VIN  
22 F  
5VISO  
1 F  
1.5 kꢁ  
1.5 kꢁ  
0.1 F  
1.5 kꢁ  
0.1 F  
1.5 kꢁ  
0.1 F  
1
8
VDD  
VCC1  
VCC2  
VREFH  
A2 IOVDD VDD  
SDA  
2
7
6
SDA  
SDA1  
SDA2  
X1  
X2  
VOUT  
A
3
4 Analog  
Outputs  
SCL  
SCL  
LDAC  
A1  
SCL1  
SCL2  
OUTA  
OUTB  
INC  
DAC8574  
TMS320F28035  
VOUT  
VREFL  
D
SCLK  
DOUT  
DIN  
INA  
ISO1644  
INB  
A0 A3 GND  
OUTC  
VSS  
GND2  
GND1  
5VISO  
0.1 F  
DVDD AVDD  
AIN0  
SCLK  
4 Analog  
Inputs  
DIN  
ADS1220  
DOUT  
/CS  
AIN4  
DGND AVSS  
Figure 9-5. Isolated I2C and SPI Data Acquisition System  
9.2.1 Design Requirements  
The recommended power supply voltages must be from 3 V to 5.5 V for VCC1 and 2.25 V to 5.5 V for VCC2. A  
recommended decoupling capacitor with a value of 0.1 µF is required between both the VCC1 and GND1 pins,  
and the VCC2 and GND2 pins to support of power supply voltage transients and to ensure reliable operation at  
all data rates.  
9.2.2 Detailed Design Procedure  
Although the ISO1640 features bidirectional data channels, the device performs optimally when side 1 (SDA1  
and SCL1) is connected to a single controller or node of an I2C network while side 2 (SDA2 and SCL2) is  
connected to the I2C bus. The maximum load permissible on the input lines, SDA1 and SCL1, is ≤ 80 pF and  
on the output lines, SDA2 and SCL2, is ≤ 400 pF. In addition to the bidirectional data and clock channels for the  
I2C network, the ISO1644 includes 3 GPIOs which can be used for static I/O lines or for a 3 wire SPI interface.  
These lines are designed to support up to 50 Mbps data transfer rate.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
The power-supply capacitor with a value of 0.1-µF must be placed as close to the power supply pins as possible.  
The recommended placement of the capacitors must be 2-mm maximum from input and output power supply  
pins (VCC1 and VCC2).  
The minimum pullup resistors on the input lines, SDA1 and SCL1 to VCC1 must be selected in such a way that  
input current drawn is ≤ 3.5 mA. The minimum pullup resistors on the input lines, SDA2 and SCL2, to VCC2  
must be selected in such a way that output current drawn is ≤ 50 mA. The maximum pullup resistors on the  
bus lines (SDA1 and SCL1) to VCC1 and on bus lines (SDA2 and SCL2) to VCC2, depends on the load and  
rise time requirements on the respective lines to comply with I2C protocols. For more information, see I2C Bus  
Pullup Resistor Calculation.  
The output waveforms for SDA1 and SCL1 are captured on the oscilloscope focusing on the low VOL1 voltage  
offset offered with the ISO164x. This voltage offset is due to the output low level on side 1 designed to prevent a  
latch-up state mentioned in Section 8.5.  
ISO1640  
2 mm  
maximum  
2 mm  
maximum  
VCC1  
VCC2  
8
1
0.01 F  
0.01 F  
3.3 k  
3.3 kꢀ  
3.3 kꢀ  
3.3 k  
SDA2  
SDA1  
2
7
SCL1  
SCL2  
3
4
6
5
GND1  
GND2  
Side 1  
Side 2  
Figure 9-6. Typical ISO1640 Circuit Hookup  
ISO1641  
2 mm  
maximum  
2 mm  
maximum  
VCC1  
VCC2  
8
1
0.01 F  
0.01 F  
3.3 k  
3.3 kꢀ  
3.3 kꢀ  
3.3 kꢀ  
SDA2  
SDA1  
2
7
SCL1  
SCL2  
3
6
5
GND1  
GND2  
4
Side 1  
Side 2  
Figure 9-7. Typical ISO1641 Circuit Hookup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
9.2.3 Application Curve  
VOL1 = 650 mV  
GND  
Figure 9-8. Side 1 ISO1640: Low-to-High Transition  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
Figure 9-9. Side 1 ISO1644: Low-to-High Transition With Toggling GPIO lines  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
9.3 Insulation Lifetime  
Insulation lifetime projection data is collected by using the industry-standard Time Dependent Dielectric  
Breakdown (TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a  
two-terminal device and high voltage is applied between the two sides; see Figure 9-10 for TDDB test setup. The  
insulation breakdown data is collected at various high voltages switching at 60 Hz over temperature. For basic  
insulation, VDE standard requires the use of a TDDB projection line with failure rate of less than 1000 part per  
million (ppm). For reinforced insulation, VDE standard requires the use of a TDDB projection line with failure rate  
of less than 1 part per million (ppm).  
Even though the expected minimum insulation lifetime is 20 years, at the specified working isolation voltage,  
VDE basic and reinforced certifications require additional safety margin of 20% for working voltage. For basic  
certification, device lifetime requires a safety margin of 30% translating to a minimum required insulation lifetime  
of 26 years at a working voltage that is 20% higher than the specified value. For reinforced insulation, device  
lifetime requires a safety margin of 87.5% translating to a minimum required insulation lifetime of 37.5 years at a  
working voltage that is 20% higher than the specified value.  
Insulation Lifetime Projection Data for ISO164x in 8-D Package and Insulation Lifetime Projection Data for  
ISO164x in 16-DW Package show the intrinsic capability of the isolation barrier to withstand high voltage stress  
over its lifetime. Based on the TDDB data, the intrinsic capability of the insulation is 450 VRMS with a lifetime  
in excess of 100 years in the 8-D package and 1500 VRMS with a lifetime in excess of 135 years in the 16-DW  
package. Other factors, such as package size, pollution degree, material group, etc. can further limit the working  
voltage of the component. At the lower working voltages, the corresponding insulation lifetime is much longer  
than 100 years in the 8-D package and 135 years in the 16-DW package.  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
Figure 9-10. Test Setup for Insulation Lifetime Measurement  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
1.E+11  
1.E+10  
1.E+09  
1.E+08  
1.E+07  
1.E+06  
1.E+05  
1.E+04  
1.E+03  
1.E+02  
1.E+01  
>>100Yrs  
Operating Zone  
TDDB Line (< 1000 ppm Fail Rate)  
VDE Safety Margin Zone  
20%  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
8000  
Applied Voltage (VRMS  
)
TA upto 150 oC  
Operating Life Time = >>100 Years  
Stress Voltage Frequency = 60 Hz  
Isolation Working Voltage = 450 VRMS  
Figure 9-11. Insulation Lifetime Projection Data for ISO164x in 8-D Package  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
Figure 9-12. Insulation Lifetime Projection Data for ISO164x in 16-DW Package  
10 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, TI recommends connecting a 0.1-µF bypass  
capacitor at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the  
supply pins as possible. If only a single, primary-side power supply is available in an application, isolated power  
can be generated for the secondary-side with the help of a transformer driver such as TI's SN6501 device. For  
such applications, detailed power supply design and transformer selection recommendations are available in  
SN6501 Transformer Driver for Isolated Power Supplies. (SLLSEA0).  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 11-1). Layer stacking  
should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-  
frequency signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system  
to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping.  
Also the power and ground plane of each power system can be placed closer together, thus increasing the  
high-frequency bypass capacitance significantly.  
For detailed layout recommendations, see the Digital Isolator Design Guide (SLLA284)  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength  
and stiffness, and the self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
0 ~ 4.5  
r
Power plane  
Low-speed traces  
Figure 11-1. Recommended Layer Stack  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
 
 
ISO1640, ISO1641, ISO1642, ISO1643, ISO1644  
SLLSFC2D – DECEMBER 2020 – REVISED SEPTEMBER 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, How Do Isolated I2C Buffers with Hot-Swap Capability and IEC ESD Improve Isolated  
I2C?  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, How to use isolation to improve ESD, EFT and Surge immunity in industrial systems  
application report  
Texas Instruments, Isolation Glossary  
Texas Instruments, What is EMC? 4 questions about EMI, radiated emissions, ESD and EFT in isolated  
systems  
Texas Instruments, SN6501 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, SN6505x Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, I2C Bus Pullup Resistor Calculation  
Texas Instruments, ISO1640DEVM Evaluation Module Users Guide  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ISO1640 ISO1641 ISO1642 ISO1643 ISO1644  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO1640BDR  
ISO1640DWR  
ISO1641BDR  
ISO1641DWR  
ISO1642DWR  
ISO1643DWR  
ISO1644DWR  
XISO1640DWR  
XISO1644DWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
8
3000 RoHS & Green  
2000 RoHS & Green  
3000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1640B  
DW  
D
16  
8
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Call TI  
ISO1640  
1641B  
DW  
DW  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
16  
16  
ISO1641  
ISO1642  
ISO1643  
ISO1644  
2000  
2000  
TBD  
TBD  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF ISO1640 :  
Automotive : ISO1640-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO1640BDR  
ISO1640DWR  
ISO1641BDR  
ISO1641DWR  
ISO1642DWR  
ISO1643DWR  
ISO1644DWR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
8
3000  
2000  
3000  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
24.4  
12.4  
24.4  
24.4  
24.4  
24.4  
6.4  
10.9  
6.4  
5.2  
10.7  
5.2  
2.1  
2.7  
2.1  
2.7  
2.7  
2.7  
2.7  
8.0  
12.0  
8.0  
12.0  
24.0  
12.0  
24.0  
24.0  
24.0  
24.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
DW  
D
16  
8
DW  
DW  
DW  
DW  
16  
16  
16  
16  
10.9  
10.9  
10.9  
10.9  
10.7  
10.7  
10.7  
10.7  
12.0  
12.0  
12.0  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO1640BDR  
ISO1640DWR  
ISO1641BDR  
ISO1641DWR  
ISO1642DWR  
ISO1643DWR  
ISO1644DWR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
8
3000  
2000  
3000  
2000  
2000  
2000  
2000  
853.0  
367.0  
853.0  
367.0  
367.0  
367.0  
367.0  
449.0  
367.0  
449.0  
367.0  
367.0  
367.0  
367.0  
35.0  
45.0  
35.0  
45.0  
45.0  
45.0  
45.0  
DW  
D
16  
8
DW  
DW  
DW  
DW  
16  
16  
16  
16  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DW 16  
7.5 x 10.3, 1.27 mm pitch  
SOIC - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224780/A  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY