ISO5500DWR [TI]

2.5 A Isolated IGBT, MOSFET Gate Driver; 2.5 A隔离式IGBT , MOSFET栅极驱动器
ISO5500DWR
型号: ISO5500DWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.5 A Isolated IGBT, MOSFET Gate Driver
2.5 A隔离式IGBT , MOSFET栅极驱动器

驱动器 MOSFET驱动器 栅极 驱动程序和接口 接口集成电路 MOSFET栅极驱动 光电二极管 双极性晶体管
文件: 总40页 (文件大小:1308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
2.5 A Isolated IGBT, MOSFET Gate Driver  
Check for Samples: ISO5500  
1
FEATURES  
2.5 A Maximum Peak Output Current  
Drives IGBTs up to IC = 150 A, VCE = 1200 V  
Capacitive Isolated Fault Feedback  
CMOS/TTL Compatible Inputs  
Wide VCC1 Range: 3 V to 5.5 V  
Wide VCC2 Range: 15 V to 30 V  
Operating Temperature: –40°C to 125°C  
Wide-body SO-16 Package  
300 ns Maximum Propagation Delay  
Soft IGBT Turn-off  
±50 kV/us Transient Immunity Typical  
6000 VPeak Isolation  
Integrated Fail-safe IGBT Protection  
Regulatory Approvals: UL1577 Approved;  
CSA, DIN EN 60747-5-2, IEC 60950-1 and  
61010-1 Pending  
High VCE (DESAT) Detection  
Under-Voltage Lockout (UVLO) Protection  
with Hysteresis  
APPLICATIONS  
User Configurable Functions  
Isolated IGBT and MOSFET Drives in  
Inverting, Non-inverting Inputs  
Auto-Reset  
Motor Control  
Motion Control  
Auto-Shutdown  
Industrial Inverters  
Switched-Mode Power Supplies  
DESCRIPTION  
The ISO5500 is an isolated gate driver for IGBTs and MOSFETs with power ratings of up to IC = 150 A and  
VCE = 1200 V. Input TTL logic and output power stage are separated by a capacitive, silicon dioxide (SiO2),  
isolation barrier. When used in conjunction with isolated power supplies, the device blocks high voltage, isolates  
ground, and prevents noise currents from entering the local ground and interfering with or damaging sensitive  
circuitry.  
The device provides over-current protection (DESAT) to an IGBT or MOSFET while an Undervoltage Lockout  
circuit (UVLO) monitors the output power supply to ensure sufficient gate drive voltage. If the output supply drops  
below 12 V, the UVLO turns the power transistor off by driving the gate drive output to a logic low state.  
For a DESAT fault, the ISO5500 initiates a soft shutdown procedure that slowly reduces the IGBT/MOSFET  
current to zero while preventing large di/dt induced voltage spikes. A fault signal is then transmitted across the  
isolation barrier, actively driving the open-drain FAULT output low and disabling the device inputs. The inputs are  
blocked as long as the FAULT-pin is low. FAULT remains low until the inputs are configured for an output low  
state, followed by a logic low input on the RESET pin.  
The ISO5500 is available in a 16-pin SOIC package and is specified for operating temperatures from –40°C to  
125°C.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
 
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
FUNCTIONAL BLOCK DIAGRAM  
VREG  
ISO5500  
V
CC1  
-
V
CC2  
UVLO  
V
IN+  
+
V
C
V
+
-
DESAT  
IN-  
Gate  
Drive  
DESAT  
12.3V  
DELAY  
and  
7.2V  
Q1a  
Q1b  
Fault  
Logic  
Q4  
V
OUT  
FAULT  
Q
S
R
V
E
RESET  
GND1  
Q3  
Q2b  
Q2a  
V
V
EE-P  
EE-L  
2
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
VIN+  
VIN-  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VE  
VEE-L  
DESAT  
VCC2  
VC  
VCC1  
GND1  
RESET  
FAULT  
NC  
VOUT  
VEE-L  
GND1  
VEE-P  
PIN FUNCTIONS  
PIN  
DESCRIPTION  
NO.  
1
NAME  
VIN+  
Non-inverting gate drive voltage control input  
Inverting gate drive voltage control input  
Positive input supply (3 V to 5.5 V)  
Input ground  
2
VIN–  
3
VCC1  
4,8  
5
GND1  
RESET  
FAULT  
NC  
FAULT reset input  
6
Open-drain output. Connect to 3.3k pull-up resistor  
Not connected  
7
9
VEE-P  
Most negative output-supply potential of the power output. Connect externally to pin 10.  
Most negative output-supply potential of the logic circuitry. Pin 10 and 15 are internally connected. Connect at least  
pin 10 externally to pin 9. Pin 15 can be floating.  
10, 15 VEE-L  
11  
12  
13  
14  
16  
VOUT  
VC  
Gate drive output voltage  
Gate driver supply. Connect to VCC2  
.
VCC2  
DESAT  
VE  
Most positive output supply potential  
Desaturation voltage input  
Gate drive common. Connect to IGBT Emitter.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s) :ISO5500  
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
MIN  
UNIT  
MAX  
Supply voltage, VCC1  
–0.5  
–0.5  
6
V
V
V
Total output supply voltage, VOUT(total)  
Positive output supply Voltage, VOUT+  
Negative output supply voltage, VOUT-  
(VCC2 – VEE-P  
)
35  
35 –  
(VCC2 – VE)  
–0.5  
(VE – VEE-P  
)
(VE – VEE-P  
)
–0.5  
VE – 0.5  
–0.5  
VCC2  
VCC2  
6
V
DESAT  
Voltage at  
VIN+, VIN–, RESET  
Vo(peak)  
V
V
Peak gate drive output voltage  
Collector voltage, VC  
–0.5  
VCC2  
VCC2  
±2.8  
±20  
±4  
–0.5  
V
(1)  
Output current , IO  
A
FAULT output current, IFL  
mA  
kV  
kV  
V
Human Body Model  
Electrostatic  
ESDA / JEDEC JS-001-2012  
Discharge,  
Charged Device Model JEDEC JESD22-C101E  
All pins  
±1.5  
±200  
170  
150  
ESD  
Machine Model  
JEDEC JESD22-A115-A  
Maximum junction temperature, TJ  
Maximum storage temperature, TSTG  
°C  
°C  
-65  
(1) Maximum pulse width = 10 μs, maximum duty cycle = 0.2%.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
TYP  
MAX UNIT  
VCC1  
Supply voltage  
5.5  
30  
V
V
V
VOUT(total) Total output supply voltage (VCC2 – VEE-P  
)
15  
30V –  
VOUT+  
Positive output supply voltage (VCC2 – VE)  
15  
(VE – VEE-P  
)
VOUT–  
VC  
Negative output supply voltage (VE – VEE-P  
)
0
15  
V
V
Collector voltage  
VEE-P + 8  
VCC2  
tui  
Input pulse width  
0.1  
0.1  
2
μs  
μs  
V
tuiR  
RESET Input pulse width  
VIH  
High-level input voltage (VIN+, VIN–, RESET)  
Low-level input voltage (VIN+, VIN–, RESET)  
VCC  
0.8  
VIL  
0
V
fINP  
VSUP_SR  
TJ  
Input frequency  
520(1)  
kHz  
(2)  
Supply Slew Rate (VCC1 or VCC2 – VEE-P  
)
75 V/ms  
Junction temperature  
–40  
-40  
150  
125  
°C  
°C  
TA  
Ambient temperature  
25  
(1) If TA = 125°C, VCC1= 5.5 V, VCC2 = 30 V, RG = 10 , CL = 1 nF  
(2) If VCC1 skew is faster than 75 V/ms (especially for the falling edge) then VCC2 must be powered up after VCC1 and powered down before  
VCC1 to avoid output glitches.  
4
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
ELECTRICAL CHARACTERISTICS  
All typical values are at TA = 25°C, VCC1 = 5 V, VCC2 – VE = 30 V, VE – VEE-P = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
5.5  
5.7  
8.4  
9
MAX  
8.5  
8.7  
12  
UNIT  
Quiescent  
300 kHz  
VI = VCC1 or 0 V, No load, See Figure 1,  
Figure 2, Figure 28, and Figure 29  
ICC1  
ICC2  
ICH  
Supply current  
mA  
Quiescent  
300 kHz  
VI = VCC1 or 0 V, No load, See Figure 3  
through Figure 5, Figure 30, and Figure 31  
Supply current  
mA  
mA  
14  
IOUT = 0, See Figure 27 and Figure 30  
IOUT = –650 μA, See Figure 27 and Figure 30  
See Figure 27 and Figure 31  
1.3  
1.9  
0.4  
High-level collector current  
Low-level collector current  
ICL  
IEH  
IEL  
IIH  
mA  
mA  
mA  
VE High-level supply current  
VE Low-level supply current  
High-level input leakage  
Low-level input leakage  
See Figure 6 and Figure 40  
–0.5  
–0.8  
–0.3  
See Figure 6 and Figure 41  
–0.53  
10  
10  
IN from 0 to VCC  
μA  
IIL  
–10  
–10  
VFAULT = VCC1, no pull-up,  
See Figure 33  
IFH  
High-level FAULT pin output current  
μA  
IFL  
Low-level FAULT pin output current  
Positive-going UVLO threshold voltage  
Negative-going UVLO threshold voltage  
VFAULT = 0.4 V, no pull-up, See Figure 34  
5
12  
12.3  
11.1  
1.2  
mA  
VIT+(UVLO)  
VIT–(UVLO)  
VHYS (UVLO)  
11.6  
13.5  
12.4  
See Figure 32  
V
A
UVLO Hysteresis voltage (VIT+ – VIT–  
)
0.7  
–1  
VOUT = VCC2 – 4 V(1), See Figure 7 and  
Figure 35  
VOUT = VCC2 – 15 V(2), See Figure 7 and  
Figure 35  
VOUT = VEE-P + 2.5 V(1), See Figure 8 and  
Figure 36  
VOUT = VEE-P + 15 V(2), See Figure 8 and  
Figure 36  
–1.6  
IOH  
High-level output current  
–2.5  
1
1.8  
IOL  
Low-level output current  
Output-low fault current  
High-level output voltage  
Low-level output voltage  
A
mA  
V
2.5  
VOUT – VEE-P = 14 V, See Figure 9 and  
Figure 37  
IOF  
90  
140  
VC-0.8  
VC-0.05  
0.2  
230  
IOUT = –100 mA, See Figure 10, Figure 11  
and Figure 38  
VC-1.5  
VC-0.15  
VOH  
IOUT = –650 μA, See Figure 10, Figure 11 and  
Figure 38  
IOUT = 100 mA, See Figure 12, Figure 13 and  
Figure 39  
VOL  
0.5  
V
VDESAT = 0 V to 6 V, See Figure 14 and  
Figure 42  
ICHG  
Blanking capacitor charging current  
Blanking capacitor discharge current  
DESAT threshold voltage  
–180  
20  
–270  
45  
–380  
μA  
mA  
V
IDSCHG  
VDSTH  
VDESAT = 8 V, See Figure 42  
(VCC2 – VE) > VTH-(UVLO), See Figure 15 and  
Figure 42  
6.7  
7.2  
7.7  
VI = VCC1 or 0 V, VCM at 1500 V,  
See Figure 43 though Figure 46  
CMTI  
Common mode transient immunity  
25  
50  
kV/μS  
(1) Maximum pulse width is 50 μs, maximum duty cycle is 0.5%  
(2) Maximum pulse width is 10 μs, maximum duty cycle is 0.2%  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s) :ISO5500  
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
SWITCHING CHARACTERISTICS  
All typical values are at TA = 25°C, VCC1 = 5 V, VCC2 – VE = 30 V, VE – VEE-P = 0 V (unless otherwise noted)  
PARAMETER  
Propagation Delay  
TEST CONDITIONS  
MIN  
TYP  
200  
1.7  
MAX UNIT  
tPLH, tPHL  
tsk-p  
150  
300  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
RG = 10 , CG = 10 nF,  
50 % duty cycle, 10 kHz input,  
VCC2 – VEE = 30 V,  
VE – VEE = 0 V, See Figure 16  
through Figure 19, Figure 26,  
Figure 47, Figure 49, and  
Figure 50  
Pulse Skew |tPHL – tPLH  
Part-to-part skew(1)  
Part-to-part skew(2)  
Output signal rise time  
Output signal fall time  
|
tsk-pp  
45  
tsk2-pp  
–50  
50  
tr  
55  
10  
tf  
tDESAT (90%)  
tDESAT (10%)  
tDESAT (FAULT)  
DESAT sense to 90% VOUT delay  
DESAT sense to 10% VOUT delay  
DESAT sense to FAULT low output delay  
300  
1.8  
290  
550  
2.3  
RG = 10 , CG = 10 nF,  
VCC2 – VEE-P = 30 V,  
VE – VEE-P = 0 V, See Figure 20  
through Figure 25, Figure 48 and  
Figure 51  
550  
DESAT sense to DESAT low propagation  
delay  
tDESAT (LOW)  
180  
ns  
tRESET (FAULT)  
tUVLO (ON)  
RESET to high-level FAULT signal delay  
UVLO to VOUT high delay  
3
8.2  
4
13  
μs  
μs  
μs  
1ms ramp from 0 V to 30 V  
1ms ramp from 30 V to 0 V  
tUVLO (OFF)  
UVLO to VOUT low delay  
6
Failsafe output delay time from input power  
loss  
tFS  
2.8  
μs  
(1) tsk-pp is the maximum difference in same edge propagation delay times (either VIN+ to VOUT or VIN– to VOUT) between two devices  
operating at the same supply voltage, same temperature, and having identical packages and test circuits.  
ì
ü
é
ù
tPHL-max  
V
CC1,VCC2,TA - t  
V
CC1,VCC2,TA  
,
(
)
(
)
PHL-min  
VCC1,VCC2,TA  
PLH-min  
ïë  
í
û ï  
ý
i.e. max  
é
ù
tPLH-max  
VCC1,VCC2,TA - t  
ï
(
)
(
)û ï  
ë
î
þ
(2) tsk2-pp is the propagation delay difference in high-to-low to low-to-high transition ( any of the combinations VIN+ to VOUT or VIN– to VOUT  
between two devices operating at the same supply voltage, same temperature, and having identical packages and test circuits.  
)
i.e.  
min = tPHL-min  
V
CC1,VCC2,TA - t  
VCC1,VCC2,TA  
(
)
CC1,VCC2,TA - t  
(
)
)
PLH-max  
max = tPHL-max  
V
(
VCC1,VCC2,TA  
(
)
PLH-min  
6
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
TYPICAL CHARACTERISTICS  
VCC1 SUPPLY CURRENT vs. TEMPERATURE  
VCC1 SUPPLY CURRENT vs. FREQUENCY  
8
7
7
6
5
4
3
6
5
4
3
2
1
V
V
V
= 4.5 V  
= 5 V  
VCC1 = 3 V  
CC1  
CC1  
CC1  
2
1
V
V
= 3.3 V  
V
V
= 3.3 V  
CC1  
CC1  
CC1  
= 5 V  
= 5.5 V  
= 3.6 V  
CC1  
0
-40 -20  
0
20  
40  
60  
80  
100 120 140  
0
50  
100  
150  
200  
250  
300  
Ambient Temperature (oC)  
Input Frequency (KHz)  
Figure 1.  
Figure 2.  
VCC2 SUPPLY CURRENT vs. TEMPERATURE  
VCC2 SUPPLY CURRENT vs. FREQUENCY  
12  
11  
12  
No Load  
11  
10  
9
10  
9
8
7
8
6
5
V
V
V
= 15 V  
= 20 V  
= 30 V  
V
V
V
= 15 V  
= 20 V  
= 30 V  
CC2  
CC2  
CC2  
CC2  
CC2  
CC2  
7
6
4
-40 -20  
0
20  
40  
60  
80  
100 120 140  
0
50  
100  
150  
200  
250  
300  
Ambient Temperature (oC)  
Input Frequency (KHz)  
Figure 3.  
Figure 4.  
VCC2 SUPPLY CURRENT vs. LOAD CAPACITANCE  
VE SUPPLY CURRENT vs. TEMPERATURE  
70  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
R
f
= 10 W  
G
= 20 kHz  
60 INP  
50  
40  
30  
20  
I
I
I
I
, V - V = 0 V  
EE  
EH  
E
, V - V = 15 V  
EE  
EH  
E
10  
V
V
= 15 V  
= 30 V  
CC2  
, V - V = 0 V  
EE  
EL  
EL  
E
CC2  
, V - V = 15 V  
EE  
E
0
0
20  
40  
60  
80  
100  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (oC)  
Load Capacitance (nF)  
Figure 5.  
Figure 6.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s) :ISO5500  
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
OUTPUT DRIVE CURRENT vs. TEMPERATURE  
OUTPUT SINK CURRENT vs. TEMPERATURE  
0
8
V
V
= 2.5 V  
OUT  
OUT  
= 15 V  
-0.5  
-1  
7
6
5
-1.5  
-2  
-2.5  
-3  
4
3
2
1
0
-3.5  
-4  
-4.5  
-5  
V
V
= V - 4 V  
C
OUT  
= V - 15 V  
C
OUT  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (oC)  
Ambient Temperature (oC)  
Figure 7.  
Figure 8.  
OUTPUT SINK CURRENT DURING A FAULT CONDITION  
vs. OUTPUT VOLTAGE  
HIGH OUTPUT VOLTAGE DROP vs. TEMPERATURE  
0.1  
160  
150  
-0.1  
-0.3  
140  
130  
-0.5  
-0.7  
-0.9  
120  
110  
100  
-1.1  
T
T
T
= -40oC  
= 25oC  
= 125oC  
A
A
A
I
I
= -650 mA  
90  
80  
-1.3  
-1.5  
OUT  
= -100 mA  
OUT  
0
5
10  
15  
20  
25  
30  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
Output Voltage (V)  
Ambient Temperature (oC)  
Figure 9.  
Figure 10.  
HIGH OUTPUT VOLTAGE vs. OUTPUT DRIVE CURRENT  
LOW OUTPUT VOLTAGE vs. TEMPERATURE  
30  
0.35  
0.3  
T
T
T
= -40oC  
= 25oC  
= 125oC  
A
A
A
I
= 100 mA  
OUT  
29.5  
29  
28.5  
0.25  
28  
27.5  
27  
0.2  
0.15  
0.1  
26.5  
26  
25.5  
25  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4 1.5  
Ambient Temperature (oC)  
Output Drive Current (A)  
Figure 11.  
Figure 12.  
8
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
TYPICAL CHARACTERISTICS (continued)  
BLANKING CAPACITANCE CHARGING CURRENT vs.  
LOW OUTPUT VOLTAGE vs. OUTPUT SINK CURRENT  
6
TEMPERATURE  
-0.15  
-0.17  
-0.19  
-0.21  
-0.23  
-0.25  
-0.27  
-0.29  
-0.31  
-0.33  
-0.35  
5
4
3
2
1
0
T
T
T
= -40oC  
= 25oC  
= 125oC  
A
A
A
0
0.5  
1
1.5  
2
2.5  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
Output Sink Current (A)  
Ambient Temperature (oC)  
Figure 13.  
Figure 14.  
DESAT THRESHOLD vs. TEMPERATURE  
PROPAGATION DELAY vs. TEMPERATURE  
7.9  
7.7  
7.5  
7.3  
240  
R
= 10 W,  
G
L
C
= 10 nF  
230  
220  
210  
200  
7.1  
6.9  
6.7  
6.5  
t
t
t
t
at V  
at V  
= 3.3 V  
= 3.3 V  
= 5 V  
PLH  
PHL  
PLH  
PHL  
CC1  
CC1  
190  
180  
at V  
at V  
CC1  
= 5 V  
CC1  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (oC)  
Ambient Temperature (oC)  
Figure 15.  
Figure 16.  
PROPAGATION DELAY vs. VCC1 SUPPLY VOLTAGE  
225  
PROPAGATION DELAY vs. VCC2 SUPPLY VOLTAGE  
230  
R
C
= 10 W,  
R
C
= 10 W,  
G
L
G
L
225  
220  
215  
210  
= 10 nF  
= 10 nF  
220  
215  
210  
205  
200  
195  
190  
t
t
t
t
at V  
at V  
at V  
at V  
= 3.3 V  
= 3.3 V  
= 5 V  
PLH  
PHL  
PLH  
PHL  
CC1  
CC1  
CC1  
CC1  
205  
200  
t
t
PLH  
= 5 V  
PHL  
3
3.5  
4
4.5  
5
5.5  
14  
16  
18  
20  
22  
24  
26  
28  
30  
VCC1 Supply Voltage (V)  
VCC2 Supply Voltage (V)  
Figure 17.  
Figure 18.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s) :ISO5500  
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
PROPAGATION DELAY vs. LOAD CAPACITANCE  
1400  
DESAT SENSE to 90% VOUT DELAY vs TEMPERATURE  
450  
R
= 10 W  
R
C
= 10 W,  
G
G
L
= 10 nF  
1200  
400  
350  
1000  
800  
300  
250  
200  
150  
600  
400  
t
t
t
t
at V  
at V  
at V  
at V  
= 3.3 V  
= 3.3 V  
= 5 V  
PLH  
PHL  
PLH  
PHL  
CC1  
CC1  
CC1  
CC1  
V
V
= 15 V  
= 30 V  
200  
0
CC2  
= 5 V  
CC2  
0
10  
20 30  
40  
50 60 70  
80  
90 100  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
Load Capacitance (nF)  
Ambient Temperature (oC)  
Figure 19.  
Figure 20.  
DESAT SENSE to 90% VOUT DELAY vs LOAD  
CAPACITANCE  
DESAT SENSE to 10% VOUT DELAY vs TEMPERATURE  
2.5  
1600  
1400  
R
= 10 W  
R
C
= 10 W,  
G
G
L
= 10 nF  
2
1200  
1000  
800  
1.5  
1
600  
400  
200  
0
0.5  
V
V
= 15 V  
= 30 V  
V
V
= 15 V  
= 30 V  
CC2  
CC2  
CC2  
CC2  
0
0
10  
20 30  
40  
50  
60 70  
80  
90 100  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
Load Capacitance (nF)  
Ambient Temperature (oC)  
Figure 21.  
Figure 22.  
DESAT SENSE to 10% VOUT DELAY vs LOAD  
CAPACITANCE  
DESAT SENSE to FAULT LOW DELAY vs TEMPERATURE  
450  
18  
15  
14  
12  
10  
8
R
= 10 W  
G
400  
350  
300  
250  
200  
6
4
2
V
V
= 15 V  
= 30 V  
V
V
= 15 V  
= 30 V  
CC2  
CC2  
CC2  
CC2  
0
150  
-40 -20  
0
10  
20 30  
40  
50  
60 70  
80  
90 100  
0
20  
40  
60  
80  
100 120 140  
Load Capacitance (nF)  
Ambient Temperature (oC)  
Figure 23.  
Figure 24.  
10  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
TYPICAL CHARACTERISTICS (continued)  
RESET to FAULT DELAY vs TEMPERATURE  
OUTPUT WAVEFORM  
10  
9.5  
9
V
- V = 30 V  
EE  
CC2  
R
C
= 0 W,  
G
L
= 10 nF  
8.5  
8
7.5  
7
VCC1 = 3 V  
V
V
V
V
V
= 3.3 V  
= 3.6 V  
= 4.5 V  
= 5 V  
CC1  
CC1  
CC1  
CC1  
CC1  
6.5  
6
5.5  
5
= 5.5 V  
Time 125 ns / div  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (oC)  
Figure 25.  
Figure 26.  
VC SUPPLY CURRENT vs. TEMPERATURE  
3
2.5  
2
1.5  
1
I
I
I
I
, I  
= -500 mA  
= -1 mA  
= -1 mA  
= -2 mA  
CH OUT  
, I  
CH OUT  
, I  
CL OUT  
0.5  
0
, I  
CL OUT  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (oC)  
Figure 27.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s) :ISO5500  
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION  
TEST CIRCUITS  
SPACER  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
0.1  
µF  
0.1  
µF  
5.5 V  
5.5 V  
VIN-  
VIN-  
VCC1  
GND1  
RESET  
FAULT  
NC  
VCC1  
GND1  
RESET  
FAULT  
NC  
VC  
VC  
VOUT  
VEE-L  
VEE-P  
VOUT  
VEE-L  
VEE-P  
GND1  
GND1  
Figure 28. ICC1H Test Circuit  
Figure 29. ICC1L Test Circuit  
SPACER  
SPACER  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
16  
1
2
3
4
5
6
7
8
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
0.1  
µF  
15  
14  
13  
12  
11  
10  
9
5 V  
VIN-  
VIN-  
VCC1  
GND1  
RESET  
FAULT  
NC  
VCC1  
ICC2  
IC  
ICC2  
IC  
GND1  
RESET  
FAULT  
NC  
VC  
VC  
30 V  
0.1  
µ F  
0.1  
µF  
30 V  
VOUT  
VEE-L  
VOUT  
VEE-L  
VEE-P  
IOUT  
GND1  
GND1  
VEE-P  
Figure 30. ICC2H, ICH Test Circuit  
Figure 31. ICC2L, ICL Test Circuit  
SPACER  
SPACER  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
0.1  
µF  
0.1  
µF  
0.1  
µF  
5 V  
5.5 V  
VIN-  
VIN-  
V1  
Sweep  
VCC1  
GND1  
RESET  
FAULT  
NC  
VCC1  
GND1  
RESET  
FAULT  
NC  
0.1  
µF  
VC  
VC  
V2  
0.1  
µF  
VOUT  
5.5 V  
0.1  
µF  
30 V  
VOUT  
VEE-L  
VEE-P  
VOUT  
VEE-L  
VEE-P  
IFAULT  
GND1  
GND1  
Figure 32. VIT(UVLO) Test Circuit  
Figure 33. IFH Test Circuit  
SPACER  
12  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
PARAMETER MEASUREMENT INFORMATION (continued)  
SPACER  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
0.1  
µF  
0.1  
µF  
3 V  
5 V  
VIN-  
VIN-  
VCC1  
GND1  
RESET  
FAULT  
NC  
VCC1  
GND1  
RESET  
FAULT  
NC  
VPULSE  
VC  
VC  
0.1 4.7  
µF µF  
30 V  
0.4 V  
0.1  
µF  
30 V  
VOUT  
VEE-L  
VEE-P  
VOUT  
VEE-L  
VEE-P  
IFAULT  
IOUT  
GND1  
GND1  
Figure 34. IFL Test Circuit  
Figure 35. IOH Test Circuit  
SPACER  
SPACER  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
0.1  
µF  
5 V  
VIN-  
VIN-  
VCC1  
GND1  
RESET  
FAULT  
NC  
VCC1  
GND1  
RESET  
FAULT  
NC  
0.1  
µF  
VC  
VC  
0.1 4.7  
µF µF  
30 V  
30 V  
IOUT  
VPULSE  
IOUT  
VOUT  
VEE-L  
VOUT  
VEE-L  
VEE-P  
14 V  
GND1  
GND1  
VEE-P  
Figure 36. IOL Test Circuit  
Figure 37. IOF Test Circuit  
SPACER  
SPACER  
1
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
0.1  
µF  
0.1  
µF  
2
3
4
5
6
7
8
5 V  
5 V  
VIN-  
VIN-  
VCC1  
GND1  
RESET  
FAULT  
NC  
VCC1  
GND1  
RESET  
FAULT  
NC  
0.1  
µF  
0.1  
µF  
100  
mA  
VOUT  
VC  
VC  
30 V  
30 V  
VOUT  
VEE-L  
VEE-P  
VOUT  
VEE-L  
VEE-P  
VOUT  
IOUT  
GND1  
GND1  
Figure 38. VOH Test Circuit  
Figure 39. VOL Test Circuit  
SPACER  
SPACER  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s) :ISO5500  
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
IE  
IE  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
0.1  
µF  
0.1  
µF  
0.1  
µF  
0.1  
µF  
5 V  
5 V  
VIN-  
VIN-  
VCC1  
GND1  
RESET  
FAULT  
NC  
VCC1  
GND1  
RESET  
FAULT  
NC  
V1  
V1  
0.1  
µF  
0.1  
µF  
VC  
VC  
V2  
V2  
0.1  
µF  
0.1  
µF  
VOUT  
VEE-L  
VEE-P  
VOUT  
VEE-L  
VEE-P  
GND1  
GND1  
Figure 40. IEH Test Circuit  
Figure 41. IEL Test Circuit  
SPACER  
SPACER  
1
16  
15  
14  
13  
12  
11  
10  
9
1
16  
15  
14  
13  
12  
11  
10  
9
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
SWEEP  
0.1  
µF  
0.1  
µF  
2
3
4
5
6
7
8
2
3
4
5
6
7
8
0.1  
µF  
5 V  
5 V  
VIN-  
VIN-  
VCC1  
GND1  
RESET  
FAULT  
NC  
VCC1  
V1  
IDESAT  
0.1  
µF  
GND1  
RESET  
FAULT  
NC  
3 k  
VC  
VC  
V2  
0.1  
µF  
0.1 4.7  
µF  
30 V  
µF  
SCOPE  
VOUT  
VEE-L  
VEE-P  
VOUT  
VEE-L  
VEE-P  
10 W  
100 pF  
10  
nF  
GND1  
GND1  
VCM  
Figure 42. ICHG, IDSCHG, VDSTH Test Circuit  
Figure 43. CMTI VFH Test Circuit  
SPACER  
SPACER  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
0.1  
µF  
0.1  
µF  
5 V  
5 V  
VIN-  
VIN-  
VCC1  
GND1  
RESET  
FAULT  
NC  
VCC1  
GND1  
RESET  
FAULT  
NC  
3 k  
3 k  
SCOPE  
VC  
VC  
0.1 4.7  
µF µF  
0.1 4.7  
µF  
30 V  
30 V  
µF  
SCOPE  
100 pF  
VOUT  
VEE-L  
VEE-P  
VOUT  
VEE-L  
VEE-P  
100 pF  
10 W  
10 W  
10  
nF  
10  
nF  
GND1  
GND1  
VCM  
VCM  
Figure 44. CMTI VFL Test Circuit  
Figure 45. CMTI VOH Test Circuit  
SPACER  
14  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
PARAMETER MEASUREMENT INFORMATION (continued)  
SPACER  
1
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VIN  
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
VIN+  
VE  
VEE-L  
DESAT  
VCC2  
0.1  
µF  
2
3
4
5
6
7
8
5 V  
GND1  
VIN-  
VIN-  
VCC1  
VCC1  
GND1  
RESET  
FAULT  
NC  
GND1  
RESET  
FAULT  
NC  
0.1  
µF  
VOUT  
5 V  
3 k  
SCOPE  
VC  
0.1 4.7  
µF µF  
VC  
V1  
0.1 4.7  
µF µF  
30 V  
3 k  
VOUT  
VEE-L  
VEE-P  
VOUT  
VEE-L  
VEE-P  
10 W  
10  
100 pF  
10 W  
nF  
10  
nF  
GND1  
GND1  
VCM  
Figure 46. CMTI VOL Test Circuit  
Figure 47. tPLH, tPHL, tr, tf Test Circuit  
SPACER  
1
2
3
4
5
6
7
8
16  
VIN+  
VE  
100  
pF  
VIN  
15  
14  
13  
12  
11  
10  
9
0.1  
µF  
VIN-  
VEE-L  
DESAT  
VCC2  
VCC1  
GND1  
0.1  
V1  
µF  
DESAT  
VOUT  
0.1 4.7  
µF µF  
RESET  
FAULT  
NC  
VC  
V2  
VOUT  
VEE-L  
VEE-P  
5 V  
3 k  
10 W  
10  
0.1  
µF  
nF  
GND1  
Figure 48. tDESAT, tRESET Test Circuit  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s) :ISO5500  
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
V
V
0V  
IN-  
IN-  
50 %  
50 %  
50 %  
50 %  
V
V
IN+  
CC1  
IN+  
t
t
f
t
t
f
r
r
90%  
50%  
10%  
90%  
50%  
10%  
V
V
OUT  
OUT  
t
t
t
t
PLH  
PHL  
PLH  
PHL  
Figure 49. VOUT Propagation Delay, Non-inverting  
Configuration  
Figure 50. VOUT Propagation Delay, Inverting  
Configuration  
t
DESAT (FAULT)  
t
DESAT (10%)  
t
DESAT (LOW)  
7.2V  
V
V
DESAT  
OUT  
50%  
t
DESAT (90%)  
90%  
10%  
FAULT  
RESET  
50 %  
50 %  
50%  
t
RESET (FAULT)  
Figure 51. DESAT, VOUT, FAULT, RESET Delays  
16  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
PARAMETER MEASUREMENT INFORMATION (continued)  
PACKAGE CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Shortest terminal to terminal distance  
through air  
L(I01)  
L(I02)  
Minimum air gap (clearance(1)  
Minimum external tracking (creepage(1)  
Minimum internal gap (internal clearance)  
)
8.3  
mm  
Shortest terminal to terminal distance  
across the package surface  
)
8.1  
mm  
Distance through the insulation  
0.012  
400  
mm  
V
CTI  
RIO  
CIO  
Tracking resistance (comparative tracking index) DIN IEC 60112 / VDE 0303 Part 1  
Isolation resistance  
Input to output, VIO = 500 V(2)  
VIO = 0.4 sin (2πft), f = 1 MHz(2)  
>1012  
1.25  
Barrier capacitance input-to-output  
pF  
VI = VCC/2 + 0.4 sin (2π ft), f = 2 MHz,  
VCC = 5V  
CI  
Input capacitance to ground  
2
pF  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed circuit board do not reduce this distance.space  
Creepage and clearance on a printed circuit board become equal according to the measurement techniques shown in the isolation  
glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase their specification.  
(2) All pins on each side of the barrier tied together creating a two-terminal device  
INSULATION CHARACTERISTICS FOR DW-16 PACKAGE  
Over recommended operating conditions (unless noted otherwise)  
PARAMETER  
TEST CONDITIONS  
SPECIFICATION  
UNIT  
Maximum working insulation voltage per DIN  
EN 60747-5-2  
VIORM  
1200/848  
After Input/Output safety test subgroup 2/3,  
VPR = 1.2 x VIORM, t = 10 sec,  
Partial discharge < 5 pC  
1440/1018  
1920/1358  
Method a, After environmental tests subgroup 1,  
VPR = 1.6 × VIORM, t = 10 sec (qualification)  
Partial discharge < 5pC  
Input to output test voltage per DIN EN  
60747-5-2  
VPR  
VPEAK  
VRMS  
/
Method b1, 100% Production test,  
VPR = 1.875 × VIORM, t = 1 sec  
Partial discharge < 5pC  
2250/1591  
6000/4243  
VTEST = VIOTM, t = 60 sec (qualification), t = 1 sec  
(100% production)  
VIOTM Transient overvoltage per DIN EN 60747-5-2  
VTEST = VISO, t = 60 sec (qualification)  
VTEST = 1.2 × VISO, t = 1 sec (100% production)  
VIO = 500 V at TS = 150°C  
6000/4243  
7200/5092  
> 109  
VISO  
RS  
Isolation voltage per UL 1577  
Insulation resistance  
Pollution degree  
2
REGULATORY INFORMATION  
VDE  
CSA  
UL  
Certified according to DIN EN 60747-5-2 and Approved under CSA Component  
Recognized under 1577 Component  
Recognition Program  
EN 61010-1  
Acceptance Notice 5A  
Basic Insulation  
Maximum Transient Overvoltage, 6000 VPK  
Maximum Working Voltage, 1200 VPK  
Basic and Reinforced Insulation per CSA  
60950-1-07 and IEC 60950-1 (2nd Ed)  
(1)  
Single Protection, 4243 VRMS  
File Number: pending  
File Number: pending  
File Number: E181974  
(1) Production tested 5092 VRMS for 1 second in accordance with UL 1577.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s) :ISO5500  
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
IEC 60664-1 RATING TABLE  
PARAMETER  
TEST CONDITIONS  
SPECIFICATION  
Basic Isolation Group  
Material Group  
Rated Mains Voltage 300 VRMS  
II  
I-IV  
I-III  
I-II  
Installation Classification  
Rated Mains Voltage 600 VRMS  
Rated Mains Voltage 848 VRMS  
IEC SAFETY LIMITING VALUES  
Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry.  
A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate  
sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system  
failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
530  
347  
64  
UNIT  
mA  
θJA = 76°C/W, VI = 3.6 V, TJ = 170°C, TA = 25°C  
θJA = 76°C/W, VI = 5.5 V, TJ = 170°C, TA = 25°C  
θJA = 76°C/W, VI = 30 V, TJ = 170°C, TA = 25°C  
IS  
Safety Limiting Current  
Case Temperature  
TS  
150  
°C  
The safety-limiting constraint is the absolute-maximum junction temperature specified in the Absolute Maximum  
Ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the  
application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the  
Thermal Information table is that of a device installed in the High-K Test Board for Leaded Surface-Mount  
Packages. The power is the recommended maximum input voltage times the current. The junction temperature is  
then the ambient temperature plus the power times the junction-to-air thermal resistance.  
600  
500  
VCC1 = 3.6V  
400  
300  
VCC1 = 5.5V  
200  
VCC2 - VEE-P = 30 V  
100  
0
0
50  
100  
150  
200  
Case Temperature - oC  
Figure 52. DW-16 θJC Thermal Derating Curve per IEC 60747-5.2  
18  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
THERMAL INFORMATION  
ISO5500  
UNITS  
THERMAL METRIC(1)  
DW (16) PIN  
θJA  
Junction-to-ambient thermal resistance  
76  
34  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
36  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8
ψJB  
35  
θJCbot  
TSHDN+  
TSHDN-  
TSHDN-HYS  
PD  
n/a  
185  
173  
12  
°C  
°C  
Thermal Shutdown  
Thermal Shutdown Hysteresis  
°C  
Power Dissipation See Equation 2 through Equation 6  
592  
mW  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s) :ISO5500  
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
BEHAVIORAL MODEL  
Figure 53 and Figure 54 show the detailed behavioral model of the ISO5500 for a non-inverting input  
configuration and its corresponding timing diagram for normal operation, fault condition, and Reset.  
+HV  
ISO5500  
DESAT 14  
+
V
V
IN+  
1
2
PWM  
C
BLK  
-
DIS  
ISO  
7.2V  
270 μA  
IN-  
V
CC2  
13  
12  
-
UVLO  
μC  
VREG  
DELAY  
+
12.3V  
V
CC1  
3
6
V
C
3.3V  
to  
5V  
15V  
Q1a  
Q1b  
V
OUT  
11  
16  
FAULT  
I/P  
FAULT  
Q
S
R
V
E
RESET  
GND1  
5
Q3  
O/P  
Q2b  
Q2a  
15V  
4,8  
V
EE-P  
VREG  
V
CC2  
9
V
EE-L  
10,15  
-HV  
Figure 53. ISO5500 Behavioral Model  
Normal Operation  
Fault Condition  
Reset  
Normal Operation  
5
V
IN+  
ISO  
4
7.2V  
V
V
DESAT  
OUT  
FAULT  
DIS  
3
2
1
FAULT  
RESET  
6
Figure 54. Complete Timing Diagram  
20  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
 
 
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
DEVICE INFORMATION  
POWER SUPPLIES  
VCC1 and GND1 are the power supply input and output for the input side of the ISO5500. The supply voltage at  
VCC1 can range from 3 V up to 5.5 V with respect to GND1, thus supporting the direct interface to state-of-the-art  
3.3 V low-power controllers as well as legacy 5 V controllers.  
VCC2, VEE-P and VEE-L are the power supply input and supply returns for the output side of the ISO5500. VEE-P is  
the supply return for the output driver and VEE-L is the return for the logic circuitry. With VEE-P as the main  
reference potential, VEE-L should always be directly connected to VEE-P. The supply voltage at VCC2 can range  
from 15 V up to 30 V with respect to VEE-P  
.
A third voltage input, VE, serves as reference voltage input for the internal UVLO and DESAT comparators. VE  
also represents the common return path for the gate voltage of the external power device. The ISO5500 is  
designed for driving MOSFETs and IGBTs. Because MOSFETs do not require a negative gate-voltage, the  
voltage potential at VE with respect to VEE-P can range from 0 V for MOSFETs and up to 15 V for IGBTs.  
ISO5500  
ISO5500  
V
V
CC2  
CC2  
+15 V  
15V  
+15 V  
V
V
V
V
C
CC1  
C
CC1  
15 V-30 V  
3 V - 5.5 V  
3 V - 5.5 V  
Power Device  
Common  
Power Device  
Common  
V
V
E
E
0 V-15 V  
0-(-15 V)  
GND1  
GND1  
0 V-15 V  
-15 V  
V
V
EE-P  
EE-P  
V
V
EE-L  
EE-L  
Figure 55. Power Supply Configurations  
The output supply configuration on the left uses symmetrical ±15 V supplies for VCC2 and VEE-P with respect to  
VE. This configuration is mostly applied when deriving the output supply from the input supply via an isolated DC-  
DC converter with symmetrical voltage outputs. The configuration on the right, having both supplies referenced to  
VEE-P, is found in applications where the device output supply is derived from the high-voltage IGBT supplies.  
CONTROL SIGNAL INPUTS  
The two digital, TTL control inputs, VIN+ and VIN–, allow for inverting and non-inverting control of the gate driver  
output. In the non-inverting configuration VIN+ receives the control input signal and VIN– is connected to GND1. In  
the inverting configuration VIN– is the control input while VIN+ is connected to VCC1  
.
ISO5500  
ISO5500  
VIN+  
VIN-  
VCC1  
VCC1  
VCC1  
VIN+  
VIN-  
3 V - 5.5 V  
PWM  
3 V - 5.5 V  
GND1  
VIN+  
VIN-  
VIN+  
VIN-  
PWM  
GND1  
GND1  
VOUT  
VOUT  
Figure 56. Non-inverting (left) and Inverting (right) Input Configurations  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s) :ISO5500  
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
OUTPUT STAGE  
The output stage provides the actual IGBT gate drive by switching the output voltage pin, VOUT, between the  
most positive potential, typically VCC2, and the most negative potential, VEE-P  
.
V
CC2  
ISO5500  
V
C
V
IN+  
15V  
Q1a  
Q1b  
30V  
On  
Q3  
V
OUT  
V
OUT  
Q1  
Q2  
Q1  
Gate  
Drive  
Off  
0V  
Q2  
V
GE  
V
E
Q3  
+15V  
Slow  
Off  
Q2b  
Q2a  
15V  
V
E
V
E
V
GE  
V
EE-P  
-15V  
V
EE-L  
Figure 57. Output Stage Design and Timing  
This stage consists of an upper transistor pair (Q1a and Q1b) turning the IGBT on, and a lower transistor pair  
(Q2a and Q2b) turning the IGBT off. Each transistor pair possesses a bipolar transistor for high current drive and  
a MOSFET for close-to-rail switching capability.  
An additional, weak MOSFET (Q3) is used to softly turn-off the IGBT in the event of a short circuit fault to  
prevent large di/dt voltage transients which potentially could damage the output circuitry.  
The output control signals, On, Off, and Slow-Off are provided by the gate-drive and fault-logic circuit which also  
includes a break-before-make function to prevent both transistor pairs from conducting at the same time.  
By introducing the reference potential for the IGBT emitter, VE, the final IGBT gate voltage, VGE, assumes  
positive and negative values with respect to VE.  
A positive VGE of typically 15 V is required to switch the IGBT well into saturation while assuring the survival of  
short circuit currents of up to 5–10 times the rated collector current over a time span of up to 10 μs.  
Negative values of VE, ranging from a required minimum of –5 V up to a recommended –15 V, are necessary to  
keep the IGBT turned off and to prevent it from unintentional conducting due to noise transients, particularly  
during short circuit faults. As previously mentioned, MOSFETs do not require a negative gate-voltage and thus  
allow the VE-pin to be directly connected to VEE-P  
.
The timing diagram in Figure 57 shows that during normal operation VOUT follows the switching sequence of VIN+  
(here shown for the non-inverting input configuration), and only the Q1 and Q2 transistor pairs applying VCC2 and  
VEE-P potential to the VOUT-pin respectively.  
In the event of a short circuit fault, however, while the IGBT is actively driven, the Q1 pair is turned off and Q3  
turns on to slowly reduce VOUT in a controlled manner down to a level of approximately 2 V above VEE-P. At this  
voltage level, the strong Q2 pair then conducts holding VOUT at VEE-P potential.  
UNDER VOLTAGE LOCKOUT (UVLO)  
The Under Voltage Lockout feature prevents the application of insufficient gate voltage (VGE-ON) to the power  
device by forcing VOUT low (VOUT = VEE-P) during power-up and whenever else VCC2 – VE drops below 12.3 V.  
IGBTs and MOSFETs typically require gate voltages of VGE = 15 V to achieve their rated, low saturation voltage,  
VCES. At gate voltages below 13 V typically, their VCE-ON increases drastically, especially at higher collector  
currents. At even lower voltages, i.e. VGE < 10 V, an IGBT starts operating in the linear region and quickly  
overheats. Figure 58 shows the principle operation of the UVLO feature.  
22  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
 
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
12.3V  
2V  
V
CC2  
V
CC2  
-
11.1V  
UVLO  
On  
V
C
+
15V  
V
IN+  
12.3V  
Q1a  
Q1b  
Gate  
Drive  
V
OUT  
Failsafe  
Low  
V
GE  
Q1  
Q2  
Q1 Q2  
Q1  
V
OUT  
V
E
0V  
Off  
R
Q2  
PD  
V
E
Q2b  
Q2a  
15V  
+15V  
V
EE-P  
V
E
ISO5500  
V
GE  
V
EE-L  
-15V  
Figure 58. Under Voltage Lockout (UVLO) Function  
Because VCC2 with respect to VE represents the gate-on voltage, VGE-ON = VCC2 – VE, the UVLO comparator  
compares VCC2 to a 12.3 V reference voltage that is also referenced to VE via the connection of the ISO5500 VE-  
pin to the emitter potential of the power device.  
The comparator hysteresis is 1.2 V typical and the typical values for the positive and negative going input  
threshold voltages are VTH+ = 12.3 V and VTH– = 11.1 V.  
The timing diagram shows that at VCC2 levels below 2 V VOUT is 0 V. Because none of the internal circuitry  
operates at such low supply levels, an internal 100 kpull-down resistor is used to pull VOUT down to VEE-P  
potential. This initial weak clamping, known as failsafe-low output, strengthens with rising VCC2. Above 2 V the  
Q2-pair starts conducting gradually until VCC2 reaches 12.3 V at which point the logic states of the control inputs  
VIN+ and VIN– begin to determine the state of VOUT  
.
Another UVLO event takes place should VCC2 drop slightly below 11 V while the IGBT is actively driven. At that  
moment the UVLO comparator output causes the gate-drive logic to turn off Q1 and turn on Q2. Now VOUT is  
clamped hard to VEE-P. This condition remains until VCC2 returns to above 12.3 V and normal operation  
commences.  
NOTE  
An Under Voltage Lockout does not indicate a Fault condition.  
DESATURATION FAULT DETECTION (DESAT)  
The DESAT fault detection prevents IGBT destruction due to excessive collector currents during a short circuit  
fault. Short circuits caused by user misconnect, bad wiring, or overload conditions induced by the load can cause  
a rapid increase in IGBT current, leading to excessive power dissipation and heating. IGBTs become damaged  
when the current load approaches the saturation current of the device and the collector-emitter voltage, VCE  
,
rises above the saturation voltage level, VCE-sat. The drastically increased power dissipation overheats and  
destroys the IGBT.  
To prevent damage to IGBT applications, the implemented fault detection slowly reduces the overcurrent in a  
controlled manner during the fault condition.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s) :ISO5500  
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
V
CC2  
V
C
15V  
ISO5500  
DESAT  
V
IN+  
+
DESAT  
-
C
7.2V  
BLK  
On  
V
Q4  
DESAT  
Gate  
Drive  
7.2V  
Q1a  
Q1b  
V
OUT  
V
CE  
Dschg  
Q4  
V
OUT  
V
E
Fault Off  
Slow  
Off  
Q3  
Q2b  
Q2a  
15V  
Fault  
V
EE-P  
V
EE-L  
Figure 59. DESAT Fault Detection and Protection  
The DESAT fault detection involves a comparator that monitors the IGBT’s VCE and compares it to an internal 7.2  
V reference. If VCE exceeds this reference voltage, the comparator causes the gate-drive and fault-logic to initiate  
a fault shutdown sequence. This sequence starts with the immediate generation of a fault signal, which is  
transmitted across the isolation barrier towards the Fault indicator circuit at the input side of the ISO5500.  
At the same time the fault logic turns off the power-pair Q1 and turns on the small discharge MOSFETs, Q3 and  
Q4. Q3 slowly discharges the IGBT gate voltage which causes the high short-circuit current through the IGBT to  
gradually decrease, thereby preventing large di/dt induced voltage transients. Q4 discharges the blanking  
capacitor. Once VOUT is sufficiently close to VEE-P potential (at approximately 2 V), the large Q2-pair turns on in  
addition to Q3 to clamp the IGBT gate to VEE-P  
.
NOTE  
The DESAT detection circuit is only active when the IGBT is turned on. When the IGBT is  
turned off, and its VCE is at maximum, the fault detection is simply disabled to prevent  
false triggering of fault signals.  
DESAT BLANKING TIME  
The DESAT fault detection must remain disabled for a short time period following the turn-on of the IGBT to allow  
its collector voltage to drop below the 7.2 V DESAT threshold. This time period, called the DESAT blanking time,  
tBLK, is controlled by an internal charge current of ICHG = 270 μA, the 7.2 V DESAT threshold, VDSTH, and an  
external blanking capacitor, CBLK  
.
The nominal blanking time with a recommended capacitor value of CBLK = 100 pF is calculated with:  
CBLK ´ VDSTH  
100 pF ´ 7.2 V  
tBLK  
=
=
= 2.7 μs  
ICHG  
270 μA  
(1)  
The capacitor value can be scaled slightly to adjust the blanking time. However, because the blanking capacitor  
and the DESAT diode capacitance build a voltage divider that attenuates large voltage transients at DESAT,  
CBLK values smaller than 100 pF are not recommended. The nominal blanking time also represents the ISO5500  
maximum response time to a DESAT fault condition.  
If a short circuit condition exists prior to the turn-on of the IGBT, (causing the IGBT switching into a short) the soft  
shutdown sequence begins after approximately 3 μs. However, if a short circuit condition occurs while the IGBT  
is already on, the response time is significantly shorter due to the parasitic parallel capacitance of the DESAT  
diode. The recommended value of 100 pF however, provides sufficient blanking and fault response times for  
most applications.  
24  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
 
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
The timing diagram in Figure 59 shows the DESAT function for both, normal operation and a short-circuit fault  
condition. The use of VIN+ as control input implies non-inverting input configuration.  
During normal operation VDESAT will display a small sawtooth waveform every time VIN+ goes high. The ramp of  
the sawtooth is caused by the internal current source charging the blanking capacitor. Once the IGBT collector  
has sufficiently dropped below the capacitor voltage, the DESAT diode conducts and discharges CBLK through  
the IGBT.  
In the event of a short circuit fault; however, high IGBT collector voltage prevents the diode from conducting and  
the voltage at the blanking capacitor continues to rise until it reaches the DESAT threshold. When the output of  
the DESAT comparator goes high, the gate-drive and fault-logic circuit initiates the soft shutdown sequence and  
also produces a Fault signal that is fed back to the input side of the ISO5500.  
FAULT ALARM  
The Fault alarm unit consists of three circuit elements, a RS flip-flop to store the fault signal received from the  
gate-drive and fault-logic, an open-drain MOSFET output signaling the fault condition to the micro controller, and  
a delay circuit blocking the control inputs after the soft shutdown sequence of the IGBT has been completed.  
Figure 60 shows the ISO5500 in a non-inverting input configuration. Because the FAULT-pin is an open-drain  
output, it requires a pull-up resistor, RPU, in the order of 3.3 kto 10 k. The internal signals DIS, ISO, and  
FAULT represent the input-disable signal, the isolator output signal, and the fault feedback signal respectively.  
V
CC1  
“IGBT  
On”  
ISO5500  
5
3.3V  
V
IN+  
V
V
IN+  
IN-  
PWM  
ISO  
FAULT  
DIS  
DIS  
ISO  
4
R
PU  
µC  
3
DELAY  
2
1
FAULT  
I/P  
FAULT  
Q
S
R
FAULT  
RESET  
RESET  
GND1  
O/P  
6
Figure 60. Fault Alarm Circuitry and Timing Sequence  
The timing diagram shows that the micro controller initiates an IGBT-on command by taking VIN+ high. After  
propagating across the isolation barrier ISO goes high, activating the output stage.  
1. Upon a short circuit condition the gate-drive and fault-logic feeds back a fault signal (FAULT = high) which  
sets the RS-FF driving the FAULT output active-low.  
2. After a delay of approximately 3 μs, the time required to shutdown the IGBT, DIS becomes high and blocks  
the control inputs  
3. This in turn drives ISO low  
4. which, after propagating through the output fault-logic, drives FAULT low.  
At this time both flip-flop inputs are low and the fault signal is stored.  
5. Once the failure cause has been removed the micro controller must set the control inputs into an "Output-  
low" state before applying the Reset pulse.  
6. Taking the RESET-input low resets the flip-flop, which removes the fault signal from the controller by pulling  
FAULT high and releases the control inputs by driving DIS low  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s) :ISO5500  
 
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
APPLICATION INFORMATION  
TYPICAL APPLICATION  
Figure 61 shows the typical application of a three-phase inverter using six ISO5500 isolated gate drivers. Three-  
phase inverters are used for variable-frequency drives to control the operating speed of AC motors and for high  
power applications such as High-Voltage DC (HVDC) power transmission.  
The basic three-phase inverter consists of three single-phase inverter switches each comprising two ISO5500  
devices that are connected to one of the three load terminals. The operation of the three switches is coordinated  
so that one switch operates at each 60 degree point of the fundamental output waveform, thus creating a six-  
step line-to-line output waveform. In this type of applications carrier-based PWM techniques are applied to retain  
waveform envelope and cancel harmonics.  
ISOLATION BARRIER  
ISO 5500  
ISO 5500  
1
2
3
PWM  
4
ISO 5500  
5
6
3-PHASE  
INPUT  
µC  
M
ISO 5500  
ISO 5500  
ISO 5500  
FAULT  
Figure 61. Typical Motor Drive Application  
RECOMMENDED ISO5500 APPLICATION CIRCUIT  
The ISO5500 has both, inverting and non-inverting gate control inputs, an active low reset input, and an open  
drain fault output suitable for wired-OR applications. The recommended application circuit in Figure 62 illustrates  
a typical gate drive implementation using the ISO5500.  
The four 0.1 μF supply bypass capacitors provide the large transient currents necessary during a switching  
transition. Because of the transient nature of the charging currents, low current (20 mA) power supplies for VCC2  
and VEE-P suffice. The 100 pF blanking capacitor disables DESAT detection during the off-to-on transition of the  
power device. The DESAT diode and its 100 series resistor are important external protection components for  
the fault detection circuitry. The 10 gate resistor limits the gate charge current and indirectly controls the IGBT  
collector voltage rise and fall times. The open-drain fault output has a passive 3.3 kpull-up resistor and a  
330pF filtering capacitor. In this application, the IGBT gate driver will shut down when a fault is detected and will  
not resume switching until the micro-controller applies a reset signal.  
26  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
 
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
ISO5500  
VIN+  
VE  
VEE -L  
100 0.1 0.1  
pF μF μF  
DS (opt.)  
VIN-  
DDESAT  
100 Ω  
DESAT  
VCC1  
-
0.1  
μF  
+
3.3V  
μC  
VF  
3.3  
kΩ  
GND1  
RESET  
FAULT  
NC  
VCC2  
VC  
Q1  
Q2  
+
-
4.7  
μF  
15V  
15V  
VCE  
Rg  
VOUT  
VEE -L  
VEE-P  
0.1  
μF  
3-PHASE  
OUTPUT  
330 pF  
+
-
GND1  
VCE  
Figure 62. Recommended Application Circuit  
FAULT PIN CIRCUITRY  
The FAULT pin is an open-drain output requiring a 3.3 kpull-up resistor to provide logic high when FAULT is  
inactive.  
Because fast common mode transients can alter the FAULT-pin voltage during high state, a 330 pF capacitor  
connected between FAULT and GND1 is recommended to provide sufficient noise margin at the specified CMTI  
of 50 kV/μs. The added capacitance does not increase the FAULT response time during a fault condition.  
1
ISO5500  
VIN+  
2
VIN-  
3
VCC1  
0.1  
5 V  
µC  
µF  
4
GND1  
RESET  
FAULT  
NC  
3.3  
kW  
5
6
7
8
330 pF  
GND1  
Figure 63. FAULT Pin Circuitry for High CMTI  
DRIVING THE CONTROL INPUTS  
The amount of common-mode transient immunity (CMTI) is primarily determined by the capacitive coupling from  
the high-voltage output circuit to the low-voltage input side of the ISO5500. For maximum CMTI performance, the  
digital control inputs, VIN+ and VIN–, must be actively driven by standard CMOS or TTL, push-pull drive circuits.  
This type of low-impedance signal source provides active drive signals that prevent unwanted switching of the  
ISO5500 output under extreme common-mode transient conditions. Passive drive circuits, such as open-drain  
configurations using pull-up resistors, must be avoided.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s) :ISO5500  
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
LOCAL SHUTDOWN AND RESET  
In applications with local shutdown and reset, the FAULT output of each gate driver is polled separately, and the  
individual reset lines are asserted low independently to reset the motor controller after a fault condition.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
ISO5500  
ISO5500  
VIN+  
VIN+  
VIN-  
VIN-  
VCC1  
GND1  
RESET  
FAULT  
NC  
VCC1  
GND1  
RESET  
FAULT  
NC  
µC  
µC  
RF  
RF  
GND1  
GND1  
Figure 64. Local Shutdown and Reset for Non-inverting (left) and Inverting Input Configuration (right)  
GLOBAL-SHUTDOWN AND RESET  
When configured for inverting operation, the ISO5500 can be configured to shutdown automatically in the event  
of a fault condition by tying the FAULT output to VIN+. For high reliability drives, the open drain FAULT outputs of  
multiple ISO5500 devices can be wired together forming a single, common fault bus for interfacing directly to the  
micro-controller. When any of the six gate drivers of a three-phase inverter detects a fault, the active low FAULT  
output disables all six gate drivers simultaneously; thereby, providing protection against further catastrophic  
failures.  
1
ISO5500  
VIN+  
2
VIN-  
3
VCC1  
µC  
4
GND1  
5
RESET  
6
FAULT  
7
NC  
8
GND1  
to other  
RESETs  
to other  
FAULTs  
Figure 65. Global Shutdown with Inverting Input Configuration  
AUTO-RESET  
Connecting RESET to the active control input (VIN+ for non-inverting, or VIN– for inverting operation) configures  
the ISO5500 for automatic reset capability. In this case, the gate control signal at VIN is also applied to the  
RESET input to reset the fault latch every switching cycle. During normal IGBT operation, asserting RESET low  
has no effect on the output. For a fault condition, however, the gate driver remains in the latched fault state until  
the gate control signal changes to the 'gate low' state and resets the fault latch.  
If the gate control signal is a continuous PWM signal, the fault latch will always be reset before VIN+ goes high  
again. This configuration protects the IGBT on a cycle by cycle basis and automatically resets before the next  
'on' cycle. When the ISO5500 is configured for Auto Reset, the specified minimum FAULT signal pulse width is  
3 μs.  
28  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
1
2
3
4
5
6
7
8
1
ISO5500  
ISO5500  
VIN+  
VIN+  
2
VIN-  
VIN-  
3
VCC1  
GND1  
RESET  
FAULT  
NC  
VCC1  
µC  
µC  
4
GND1  
5
RESET  
6
FAULT  
7
NC  
8
GND1  
GND1  
Figure 66. Auto Reset for Non-inverting and Inverting Input Configuration  
RESETTING FOLLOWING A FAULT CONDITION  
To resume normal switching operation following a fault condition (FAULT output low), the gate control signal  
must be driven into a 'gate low' state before asserting RESET low. This can be accomplished with a micro-  
controller, or an additional logic gate that synchronizes the RESET signal with the appropriate input signal.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
ISO5500  
ISO5500  
VIN+  
VIN+  
VIN-  
VIN-  
VCC1  
GND1  
RESET  
FAULT  
NC  
VCC1  
GND1  
RESET  
FAULT  
NC  
µC  
µC  
GND1  
GND1  
Figure 67. Auto Reset with Prior Gate-low Assertion for Non-inverting and Inverting Input Configuration  
DESAT PIN PROTECTION  
Switching inductive loads causes large instantaneous forward voltage transients across the freewheeling diodes  
of IGBTs. These transients result in large negative voltage spikes on the DESAT pin which draw substantial  
current out of the device. To limit this current below damaging levels, a 100 to 1 kresistor is connected in  
series with the DESAT diode. The added resistance neither alters the DESAT threshold nor the DESAT blanking  
time.  
Further protection is possible through an optional Schottky diode, whose low forward voltage assures clamping of  
the DESAT input to VE potential at low voltage levels.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s) :ISO5500  
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
16  
15  
14  
13  
12  
11  
10  
9
ISO5500  
VE  
+
100  
pF  
DS (opt.)  
VFW  
VEE-L  
DESAT  
VCC2  
DDESAT  
RS  
-
-
15V  
15V  
VC  
VFW-inst  
Rg  
+
VOUT  
VEE-L  
VEE-P  
Figure 68. DESAT Pin Protection with Series Resistor and Optional Schottky Diode  
DESAT DIODE AND DESAT THRESHOLD  
The DESAT diode’s function is to conduct forward current, allowing sensing of the IGBT’s saturated collector-to-  
emitter voltage, VCESAT, (when the IGBT is "on") and to block high voltages (when the IGBT is "off"). During the  
short transition time when the IGBT is switching, there is commonly a high dVCE/dt voltage ramp rate across the  
IGBT. This results in a charging current ICHARGE = CD-DESAT x dVCE/dt, charging the blanking capacitor.  
To minimize this current and avoid false DESAT triggering, fast switching diodes with low capacitance are  
recommended. As the diode capacitance builds a voltage divider with the blanking capacitor, large collector  
voltage transients appear at DESAT attenuated by the ratio of 1+ CBLANK / CD-DESAT  
.
Table 1 lists a number of fast-recovery diodes suitable for the use as DESAT diodes.  
Because the sum of the DESAT diode forward-voltage and the IGBT collector-emitter voltage make up the  
voltage at the DESAT-pin, VF + VCE = VDESAT, the VCE level, which triggers a fault condition, can be modified by  
adding multiple DESAT diodes in series: VCE-FAULT(TH) = 7.2 V – n x VF (where n is the number of DESAT  
diodes).  
When using two diodes instead of one, diodes with half the required maximum reverse-voltage rating may be  
chosen.  
Table 1. Recommended DESAT Diodes  
PART NUMBER  
STTH112  
MUR100E  
MURS160T3  
UF4007  
MANUFACTURER  
STM  
trr (ns)  
75  
VRRM-max (V)  
1200  
PACKAGE  
SMA, SMB, DO-41  
59-04 (axial leaded)  
Case 403A (SMD)  
Motorola  
Motorola  
General Semi.  
Philips  
75  
1000  
75  
600  
75  
1000  
DO-204AL (axial leaded)  
SOD64 (axial leaded)  
SOD57 (axial leaded)  
SOD87 (axial leaded)  
BYM26E  
75  
1000  
BYV26E  
Philips  
75  
1000  
BYV99  
Philips  
75  
600  
30  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
 
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
DETERMINING THE MAXIMUM AVAILABLE, DYNAMIC OUTPUT POWER, POD-max  
The ISO5500 total power consumption of PD = 592 mW consists of the total input power, PID, the total output  
power, POD, and the output power under load, POL  
:
PD = PID + POD + POL  
(2)  
(3)  
(4)  
(5)  
With: PID = VCC1-max × ICC1-max = 5.5 V × 8.5 mA = 47 mW,  
and: POD = (VCC2 – VEE-P) x ICC2-q = 30 V × 14 mA = 420 mW,  
then: POL = PD – PID – POD = 592 mW – 47 mW – 420 mW = 125 mW.  
In comparison to POL, the actual dynamic output power under worst case condition, POL-WC, depends on a variety  
of parameters:  
æ
ç
ö
÷
ron-max  
+ RG  
roff-max  
POL-WC = 0.5 ´ fINP ´ QG  
´
V
- VEE-P  
´
+
(
)
CC2  
r
roff-max + RG ø  
è on-max  
(6)  
Where  
fINP = signal frequency at the control input VIN(±)  
QG = power device gate charge  
VCC2 = positive output supply with respect to VE  
VEE-P = negative output supply with respect to VE  
ron-max = worst case output resistance in the on-state: 4Ω  
roff-max = worst case output resistance in the off-state: 2.5Ω  
RG = gate resistor  
Once RG is determined, Equation 6 is to be used to verify whether POL-WC < POL. Figure 69 shows a simplified  
output stage model for calculating POL-WC  
.
ISO5500  
VCC2  
VC  
15 V  
r
r
on-max  
RG  
VOUT  
QG  
off-max  
15 V  
VEE-P  
Figure 69. Simplified Output Model for Calculating POL-WC  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s) :ISO5500  
 
 
 
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
DETERMINING GATE RESISTOR, RG  
The value of the gate resistor determines the peak charge and discharge currents, ION-PK and IOFF-PK. Due to the  
transient nature of these currents, their peak values only occur during the on-to-off and off-to-on transitions of the  
gate voltage. In order to calculate RG for the maximum peak current, ron and roff must be assumed zero. The  
resulting charge and discharge models are shown in Figure 70.  
ISO5500  
ISO5500  
VCC2  
VC  
VCC2  
VC  
15 V  
15 V  
VCC2 - VEE-P  
VCC2 - VEE-P  
I
on  
I
off  
VOUT  
VOUT  
RG  
RG  
CG  
CG  
VE  
VE  
15 V  
15 V  
VEE-P  
VEE-P  
Figure 70. Simplified Gate Charge and Discharge Model  
Off-to-On Transition  
In the off-state, the upper plate of the gate capacitance, CG, assumes a steady-state potential of –VEE-P with  
respect to VE. When turning on the power device, VCC2 is applied to VOUT and the voltage drop across RG results  
in a peak charge current of ION-PK = (VCC2 – VEE-P)/RG. Solving for RG then provides the necessary resistor value  
for a desired on-current via:  
VCC2 - VEE-P  
RG  
=
ION-PK  
(7)  
On-to-Off Transition  
When turning the power device off, the current and voltage relations are reversed but the equation for calculating  
RG remains the same.  
Once RG has been calculated, it is necessary to check whether the resulting, worst-case power consumption,  
POD-WC, (derived in Equation 6) is below the calculated maximum, POL = 125 mW (calculated in Equation 5).  
Example  
The example below considers an IGBT drive with the following parameters:  
ION-PK = 2 A, QG = 650 nC, fINP = 20 kHz, VCC2 = 15V, VEE-P = –5 V  
Applying Equation 7, the value of the gate resistor is calculated with  
15V - ( - 5V)  
RG  
=
= 10 Ω  
2A  
(8)  
Then, calculating the worst-case output power consumption as a function of RG, using Equation 6 yields  
4 Ω  
2.5 Ω  
æ
ö
POL-WC = 0.5 ´20 kHz´650 nC´ 15 V - ( - 5V) ´  
+
4 Ω + 10Ω 2.5 Ω + 10 Ω  
= 63 mW  
(
)
ç
è
÷
ø
(9)  
=
Because POL-WC = 63 mW is well below the calculated maximum of POL = 125 mW, the resistor value of RG  
10is fully suitable for this application.  
32  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
 
 
ISO5500  
www.ti.com  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
DETERMINING COLLECTOR RESISTOR, RC  
Despite equal charge and discharge currents, many power devices possess longer turn-off propagation and fall  
times than turn-on propagation and rise times. In order to compensate for the difference in switching times, it  
might be necessary to significantly reduce the charge current, ION-PK, versus the discharge current, IOFF-PK  
.
Reducing ION-PK is accomplished by inserting an external resistor, RC, between the VC- pin and the VCC2- pin of  
the ISO5500.  
ISO5500  
ISO5500  
VCC2  
VC  
VCC2  
VC  
RC  
V
C
15 V  
C
2
-
V
E
E
15 V  
-
P
VCC2 - VEE-P  
I
I
off-pk  
on-pk  
VOUT  
VOUT  
RG  
RG  
CG  
CG  
VE  
VE  
15 V  
15 V  
VEE-P  
VEE-P  
Figure 71. Reducing ION-PK by Inserting Resistor RC  
Figure 71 (right) shows that during the on-transition, the (VCC2 – VEE-P) voltage drop occurs across the series  
resistance of RC + RG, thus reducing the peak charge current to: ION-PK = (VCC2 – VEE-P) /(RC + RG). Solving for RC  
provides:  
VCC2 - VEE-P  
RC  
=
- RG  
ION-PK  
(10)  
(11)  
To stay below the maximum output power consumption, RG must be calculated first via:  
VCC2 - VEE-P  
RG  
=
IOFF-PK  
and the necessary comparison of POL-WC versus POL must be completed.  
Once RG is determined, calculate RC for a desired on-current using Equation 10.  
Another method is to insert Equation 11 into Equation 10 and arriving at:  
æ
ç
è
ö
IOFF-PK  
RC = RG  
´
- 1  
÷
ION-PK  
ø
(12)  
(13)  
Example  
Reducing the peak charge current from the previous example to ION-PK = 1.5 A, requires a RC value of:  
2 A  
æ
ç
è
ö
RC = 10 Ω ´  
- 1 = 3.33 Ω  
÷
1.5 A  
ø
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s) :ISO5500  
 
 
 
ISO5500  
SLLSE64A SEPTEMBER 2011REVISED JULY 2012  
www.ti.com  
HIGHER OUTPUT CURRENT USING AN EXTERNAL CURRENT BUFFER  
To increase the IGBT gate drive current, a non-inverting current buffer (such as the npn/pnp buffer shown in  
Figure 72) may be used. Inverting types are not compatible with the desaturation fault protection circuitry and  
must be avoided. The MJD44H11/MJD45H11 pair is appropriate for currents up to 8 A, the D44VH10/ D45VH10  
pair for up to 15 A maximum.  
16  
ISO5500  
VE  
15  
100 pF  
VEE-L  
14  
DESAT  
13  
12  
11  
10  
9
MJD44H11  
or  
D44VH10  
VCC2  
VC  
15 V  
4.5 W  
10 W  
VOUT  
VEE-L  
VEE-P  
2.5 W  
MJD45H11  
or  
D45VH10  
15 V  
Figure 72. Current Buffer for Increased Drive Current  
REVISION HISTORY  
Spacer  
Changes from Original (September 2011) to Revision A  
Page  
Changed the device From: Product Preview To: Production ................................................................................................ 1  
34  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
Product Folder Link(s) :ISO5500  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Aug-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
ISO5500DW  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DW  
DW  
16  
16  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
ISO5500DWR  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Aug-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO5500DWR  
SOIC  
DW  
16  
2000  
330.0  
16.4  
10.75 10.7  
2.7  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Aug-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC DW 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
ISO5500DWR  
2000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY