ISO6721B [TI]

ISO672x General Purpose Basic Dual-Channel Digital Isolators with Robust EMC;
ISO6721B
型号: ISO6721B
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

ISO672x General Purpose Basic Dual-Channel Digital Isolators with Robust EMC

文件: 总43页 (文件大小:3763K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
ISO672x General Purpose Basic Dual-Channel Digital Isolators with Robust EMC  
1 Features  
3 Description  
Functional Safety-Capable  
The ISO672xB devices are high-performance, dual-  
channel digital isolators ideal for cost sensitive  
applications requiring up to 3000 VRMS (D package)  
isolation ratings per UL 1577. These devices are also  
certified by VDE, TUV, CSA, and CQC.  
– Documentation available to aid functional safety  
system design: ISO6720, ISO6721  
50-Mbps data rate  
Robust isolation barrier:  
– High lifetime at 450 VRMS working voltage  
– Up to 3000 VRMS isolation rating  
– ±75 kV/μs typical CMTI  
Wide supply range: 1.71 V to 1.89 V and 2.25 V to  
5.5 V  
1.71-V to 5.5-V level translation  
Default output High (ISO672xB) and Low  
(ISO672xFB) Options  
Wide temperature range: –40°C to +125°C  
1.8 mA per channel typical at 1 Mbps  
Low propagation delay: 11 ns typical  
Robust electromagnetic compatibility (EMC)  
– System-Level ESD, EFT, and surge immunity  
– ±8 kV IEC 61000-4-2 contact discharge  
protection across isolation barrier  
– Low emissions  
The ISO672xB devices provide high electromagnetic  
immunity and low emissions at low power  
consumption, while isolating CMOS or LVCMOS  
digital I/Os. Each isolation channel has a logic  
input and output buffer separated by TI's double  
capacitive silicon dioxide (SiO2) insulation barrier.  
The ISO6720B device has 2 isolation channels with  
both channels in the same direction. The ISO6721B  
device has 2 isolation channels with 1 channel in  
each direction. In the event of input power or signal  
loss, the default output is high for devices without  
suffix F and low for devices with suffix F. See Device  
Functional Modes section for further details.  
Used in conjunction with isolated power supplies,  
these devices help prevent noise currents on data  
buses, such as UART, SPI, RS-485, RS-232, and  
CAN from damaging sensitive circuitry. Through  
innovative chip design and layout techniques,  
the electromagnetic compatibility of the ISO672xB  
devices has been significantly enhanced to ease  
system-level ESD, EFT, surge, and emissions  
compliance. The ISO672xB family of devices is  
available in a 8-pin SOIC narrow-body (D) package  
and is a pin-to-pin upgrade to the older generations.  
For reinforced isolation requirements, refer to the  
ISO672x-Q1.  
Narrow-SOIC (D-8) package  
Safety-Related Certifications:  
– DIN VDE V 0884-11:2017-01  
– UL 1577 component recognition program  
– IEC 62368-1, IEC 61010-1, IEC 60601-1  
– GB 4943.1-2011 (pending)  
2 Applications  
Power supplies  
Grid, Electricity meter  
Motor drives  
Factory automation  
Building automation  
Lighting  
Table 3-1. Device Information  
PART NUMBER(1)  
PACKAGE  
BODY SIZE (NOM)  
ISO6720B,  
ISO6720FB  
Appliances  
D (8)  
4.90 mm x 3.91 mm  
ISO6721B,  
ISO6721FB  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
VCCO  
VCCI  
Series Isolation  
Capacitors  
INx  
OUTx  
GNDI  
GNDO  
Copyright © 2016, Texas Instruments Incorporated  
VCCI=Input supply, VCCO=Output supply  
GNDI=Input ground, GNDO=Output ground  
Simplified Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................6  
6.5 Power Ratings ............................................................6  
6.6 Insulation Specifications ............................................ 7  
6.7 Safety-Related Certifications ..................................... 8  
6.8 Safety Limiting Values ................................................8  
6.9 Electrical Characteristics—5-V Supply ...................... 9  
6.10 Supply Current Characteristics—5-V Supply ...........9  
6.11 Electrical Characteristics—3.3-V Supply ................10  
6.12 Supply Current Characteristics—3.3-V Supply ......10  
6.13 Electrical Characteristics—2.5-V Supply ...............11  
6.14 Supply Current Characteristics—2.5-V Supply ...... 11  
6.15 Electrical Characteristics—1.8-V Supply ............... 12  
6.16 Supply Current Characteristics—1.8-V Supply ......12  
6.17 Switching Characteristics—5-V Supply ..................13  
6.18 Switching Characteristics—3.3-V Supply ...............13  
6.19 Switching Characteristics—2.5-V Supply ...............14  
6.20 Switching Characteristics—1.8-V Supply ...............14  
6.21 Insulation Characteristics Curves........................... 15  
6.22 Typical Characteristics............................................16  
7 Parameter Measurement Information..........................17  
8 Detailed Description......................................................18  
8.1 Overview...................................................................18  
8.2 Functional Block Diagram.........................................18  
8.3 Feature Description...................................................19  
8.4 Device Functional Modes..........................................20  
9 Application and Implementation..................................21  
9.1 Application Information............................................. 21  
9.2 Typical Application.................................................... 22  
10 Power Supply Recommendations..............................26  
11 Layout...........................................................................27  
11.1 Layout Guidelines................................................... 27  
11.2 Layout Example...................................................... 28  
12 Device and Documentation Support..........................29  
12.1 Device Support....................................................... 29  
12.2 Documentation Support.......................................... 29  
12.3 Receiving Notification of Documentation Updates..29  
12.4 Support Resources................................................. 29  
12.5 Trademarks.............................................................29  
12.6 Electrostatic Discharge Caution..............................29  
12.7 Glossary..................................................................29  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 29  
13.1 Package Option Addendum....................................33  
13.2 Tape and Reel Information......................................34  
4 Revision History  
Changes from Revision B (March 2021) to Revision C (May 2021)  
Page  
Updated Safety-Related Certifications table.......................................................................................................8  
Updated test conditions in all Switching Characteristics tables........................................................................13  
Updated CISPR 22 to CISPR 32...................................................................................................................... 19  
Updated Insulation Lifetime Projection Data image..........................................................................................24  
Updated Power Supply Recommendations document references................................................................... 26  
Added the Device Support section................................................................................................................... 29  
Changes from Revision A (December 2020) to Revision B (March 2021)  
Page  
Switched the line colors for VCC at 2.5 V and VCC at 3.3 V in ..........................................................................16  
Switched the labels for VCC1 falling and VCC2 rising in the graph legend of Power Supply Undervoltage  
Threshold vs Free-Air Temperature .................................................................................................................16  
Changes from Revision * (July 2020) to Revision A (December 2020)  
Page  
Changed device status to Production Data........................................................................................................ 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
5 Pin Configuration and Functions  
VCC1  
INA  
1
2
3
4
8
7
6
5
VCC2  
OUTA  
OUTB  
GND2  
INB  
GND1  
Not to scale  
Figure 5-1. ISO6720B D Package 8-Pin SOIC Top View  
VCC1  
OUTA  
INB  
1
2
3
4
8
7
6
5
VCC2  
INA  
OUTB  
GND2  
GND1  
Not to scale  
Figure 5-2. ISO6721B D Package 8-Pin SOIC Top View  
Table 5-1. Pin Functions  
PIN  
D PACKAGE  
I/O  
DESCRIPTION  
NAME  
ISO6720B  
ISO6721B  
GND1  
GND2  
INA  
4
5
2
3
7
6
1
8
4
5
7
3
2
6
1
8
I
Ground connection for VCC1  
Ground connection for VCC2  
Input, channel A  
INB  
I
Input, channel B  
OUTA  
OUTB  
VCC1  
VCC2  
O
O
Output, channel A  
Output, channel B  
Power supply, VCC1  
Power supply, VCC2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISO6720 ISO6721  
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
See(1)  
MIN  
-0.5  
-0.5  
-0.5  
-0.5  
-15  
MAX  
UNIT  
VCC1 to GND1  
Supply Voltage (2)  
6
V
V
VCC2 to GND2  
6
VCCX + 0.5 (3)  
VCCX + 0.5 (3)  
15  
INx to GNDx  
Input/Output  
Voltage  
OUTx to GNDx  
Output Current  
Io  
mA  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
Temperature  
-65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±6000  
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
V(ESD)  
Electrostatic discharge  
±1500  
±8000  
V
Contact discharge per IEC 61000-4-2;  
Isolation barrier withstand test(3) (4)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
(4) Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
 
 
 
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
6.3 Recommended Operating Conditions  
MIN  
1.71  
2.25  
1.71  
2.25  
NOM  
MAX  
1.89  
5.5  
UNIT  
(1)  
VCC1  
VCC1  
VCC2  
VCC2  
VCC  
Supply Voltage Side 1  
Supply Voltage Side 1  
Supply Voltage Side 2  
Supply Voltage Side 2  
VCC = 1.8 V (3)  
V
V
V
V
(1)  
(1)  
(1)  
VCC = 2.5 V to 5 V (3)  
VCC = 1.8 V (3)  
1.89  
5.5  
VCC = 2.5 V to 5 V (3)  
UVLO threshold when supply voltage is rising  
UVLO threshold when supply voltage is falling  
Supply voltage UVLO hysteresis  
1.53  
1.41  
0.13  
1.71  
V
V
V
V
(UVLO+)  
VCC  
1.1  
(UVLO-)  
Vhys  
0.08  
(UVLO)  
0.7 x VCC(2I)  
VIH  
VIL  
High level Input voltage  
VCCI  
Low level Input voltage  
0
-4  
-2  
-1  
-1  
0.3 x VCCI  
V
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Mbps  
°C  
(2)  
VCCO  
= 5 V  
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 1.8 V  
VCCO = 5 V  
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 1.8 V  
IOH  
High level output current  
Low level output current  
4
2
IOL  
1
1
DR  
TA  
Data Rate  
0
50  
125  
Ambient temperature  
-40  
25  
(1) VCC1 and VCC2 can be set independent of one another  
(2) VCCI = Input-side VCC; VCCO = Output-side VCC  
(3) The channel outputs are in undetermined state when 1.89 V < VCC1, VCC2 < 2.25 V and 1.05 V < VCC1, VCC2 < 1.71 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
ISO6720, ISO6721  
www.ti.com  
UNIT  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
6.4 Thermal Information  
ISO672xB  
D (SOIC)  
8 PINS  
104.6  
48.9  
THERMAL METRIC (1)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
52.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.9  
ψJB  
52.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISO6720B  
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
71.2  
19.3  
51.9  
mW  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL =  
15 pF, Input a 25-MHz 50% duty cycle  
square wave  
PD1  
PD2  
ISO6721B  
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
72.7  
36.35  
36.35  
mW  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL =  
15 pF, Input a 25-MHz 50% duty cycle  
square wave  
PD1  
PD2  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
6.6 Insulation Specifications  
PARAMETER  
VALUE  
UNIT  
8-D  
TEST CONDITIONS  
IEC 60664-1  
CLR  
CPG  
External clearance(1)  
Side 1 to side 2 distance through air  
4
4
mm  
mm  
Side 1 to side 2 distance across package  
surface  
External creepage(1)  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
IEC 60112; UL 746A  
>17  
>400  
II  
µm  
V
According to IEC 60664-1  
Rated mains voltage ≤ 150 VRMS  
Rated mains voltage ≤ 300 VRMS  
I-IV  
I-III  
Overvoltage category  
DIN VDE V 0884-11:2017-01(2)  
VIORM Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
637  
VPK  
AC voltage (sine wave); time-dependent  
dielectric breakdown (TDDB) test. See Figure 450  
9-8  
VRMS  
VIOWM  
Maximum isolation working voltage  
DC voltage  
637  
VDC  
VPK  
VTEST = VIOTM , t = 60 s (qualification); VTEST  
= 1.2 × VIOTM, t = 1 s (100% production)  
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
4242  
Test method per IEC 62368-1, 1.2/50 µs  
waveform, VTEST = 1.3 × VIOSM = 6500 VPK  
(qualification)  
VIOSM  
5000  
≤ 5  
VPK  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM  
tm = 10 s  
,
Method a: After environmental tests subgroup  
1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 ×  
VIORM , tm = 10 s  
qpd  
Apparent charge(4)  
≤ 5  
pC  
Method b: At routine test (100% production)  
and preconditioning (type test), Vini = VIOTM  
,
≤ 5  
tini = 1 s; Vpd(m) = 1.5 × VIORM , tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance, input to output(5)  
VIO = 0.4 × sin (2 πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
~0.5  
pF  
Ω
> 1012  
> 1011  
> 109  
2
VIO = 500 V, 100°C ≤ TA ≤ 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
40/125/21  
UL 1577  
VTEST = VISO , t = 60 s (qualification); VTEST  
1.2 × VISO , t = 1 s (100% production)  
=
VISO  
Withstand isolation voltage  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal  
in certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these  
specifications.  
(2) ISO672x is suitable for basic electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
6.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to IEC Certified according to  
62368-1, IEC 61010-1 and UL 1577 Component  
Certified according to  
EN 61010-1:2010/A1:2019  
and EN 62368-1:2014  
Certified according to DIN  
VDE V 0884-11:2017- 01  
Plan to certify according to  
GB4943.1-2011  
IEC 60601  
Recognition Program  
3000 VRMS (D-8) basic  
insulation per EN  
61010-1:2010/A1:2019 up  
Maximum transient  
isolation voltage, 4242  
400 VRMS basic insulation  
per CSA 62368-1:19  
Basic insulation, Altitude ≤ to working voltage of 300  
5000 m, Tropical Climate, VRMS (D-8)  
VPK  
;
Single protection,  
3000 VRMS  
Maximum repetitive peak and IEC 62368-1:2018,  
isolation voltage, 637 VPK (pollution degree 2,  
Maximum surge isolation material group III)  
voltage, 5000 VPK  
250 VRMS maximum  
working voltage  
3000 VRMS (D-8) basic  
insulation per EN  
62368-1:2014 up to  
working voltage of 400  
VRMS (D-8)  
;
Certificate number:  
40047657  
Master contract number:  
220991  
File number: E181974  
Certificate planned  
Client ID number: 77311  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
D-8 PACKAGE  
RθJA =104.6°C/W, VI = 5.5 V, TJ = 150°C,  
TA = 25°C  
See Figure 6-1  
217.2  
332  
mA  
mA  
mA  
mA  
RθJA = 104.6°C/W, VI = 3.6 V, TJ = 150°C,  
TA = 25°C  
See Figure 6-1  
IS  
Safety input, output, or supply current (1)  
RθJA = 104.6°C/W, VI = 2.75 V, TJ =  
150°C, TA = 25°C  
See Figure 6-1  
434.5  
628.9  
RθJA = 104.6°C/W, VI = 1.89 V, TJ =  
150°C, TA = 25°C  
See Figure 6-1  
RθJA = 104.6°C/W, TJ = 150°C, TA = 25°C  
See Figure 6-2  
PS  
TS  
Safety input, output, or total power (1)  
Maximum safety temperature (1)  
1195  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The  
IS and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
6.9 Electrical Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -4 mA; See Figure 7-1  
IOL = 4 mA; See Figure 7-1  
MIN  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
VCCO - 0.4  
V
VOL  
0.4  
V
V
(1)  
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
Rising input switching threshold  
Falling input switching threshold  
Input threshold voltage hysteresis  
High-level input current  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
V
V
VIH = VCCI (1) at INx  
10  
µA  
µA  
kV/us  
IIL  
Low-level input current  
VIL = 0 V at INx  
-10  
50  
CMTI  
Common mode transient immunity  
VI = VCC or 0 V, VCM = 1200 V  
75  
VI = VCC/ 2 + 0.4×sin(2πft), f = 2  
MHz, VCC = 5 V ; See Figure 7-3  
Ci  
Input Capacitance (2)  
2.8  
pF  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.10 Supply Current Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISO6720B  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
1.1  
1.3  
3.2  
1.4  
2.1  
1.5  
2.2  
2.7  
2.5  
7.9  
1.7  
2.1  
4.6  
2.3  
VI = VCCI (ISO6720B), VI = 0 V (ISO6720B with F  
suffix)  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
Supply current - DC signal  
Supply current - AC signal  
VI = 0V (ISO6720B), VI = VCC1 (ISO6720B with F  
suffix)  
3.1  
mA  
2.3  
1 Mbps  
3.2  
3.6  
3.6  
9.5  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
50 Mbps  
ISO6721B  
VI = VCCI (ISO6721B); VI = 0 V (ISO6721B with F  
suffix)  
ICC1, ICC2  
ICC1, ICC2  
1.2  
2.3  
2.1  
Supply current - DC signal  
VI = 0 V (ISO6721B); VI = VCCI (ISO6721B with F  
suffix)  
3.5  
mA  
2.9  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
1.9  
2.5  
5.2  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
10 Mbps  
3.6  
6.7  
50 Mbps  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
6.11 Electrical Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -2mA ; See Figure 7-1  
IOL = 2mA ; See Figure 7-1  
MIN  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
Rising input switching threshold  
Falling input switching threshold  
VCCO - 0.2  
V
VOL  
0.2  
V
V
V
(1)  
VIT+(IN)  
VIT-(IN)  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
Input threshold voltage  
hysteresis  
VI(HYS)  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
10  
µA  
µA  
-10  
50  
Common mode transient  
immunity  
CMTI  
Ci  
VI = VCC or 0 V, VCM = 1200 V  
75  
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
2 MHz, VCC = 3.3 V ; See Figure  
7-3  
Input Capacitance(2)  
2.8  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.12 Supply Current Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISO6720B  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
1.1  
1.3  
3.2  
1.4  
2.1  
1.4  
2.2  
2.3  
2.4  
6
1.6  
2
VI = VCCI (ISO6720B), VI = 0 V (ISO6720B with F  
suffix)  
Supply current - DC signal  
Supply current - DC signal  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
4.5  
2.2  
VI = 0V (ISO6720B), VI = VCC1 (ISO6720B with F  
suffix)  
3.1  
mA  
2.2  
1 Mbps  
3.1  
3.2  
3.4  
7.3  
All channels switching with square  
10 Mbps  
Supply current - AC signal  
wave clock input; CL = 15 pF  
50 Mbps  
ISO6721B  
VI = VCCI (ISO6721B); VI = 0 V (ISO6721B with F  
suffix)  
Supply current - DC signal  
ICC1, ICC2  
ICC1, ICC2  
1.2  
2.3  
2.1  
VI = 0 V (ISO6721B);  
VI = VCCI (ISO6721B with F suffix)  
Supply current - DC signal  
Supply current - AC signal  
3.5  
mA  
2.8  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
1.8  
2.3  
4.2  
All channels switching with square  
wave clock input; CL = 15 pF  
10 Mbps  
3.3  
5.5  
50 Mbps  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
6.13 Electrical Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -1mA ; See Figure 7-1  
IOL = 1mA ; See Figure 7-1  
MIN  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
Rising input switching threshold  
Falling input switching threshold  
VCCO - 0.1  
V
VOL  
0.1  
V
V
V
(1)  
VIT+(IN)  
VIT-(IN)  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
Input threshold voltage  
hysteresis  
VI(HYS)  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
10  
µA  
µA  
-10  
50  
Common mode transient  
immunity  
CMTI  
Ci  
VI = VCC or 0 V, VCM = 1200 V  
75  
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
2 MHz, VCC = 2.5 V ; See Figure  
7-3  
Input Capacitance(2)  
2.8  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.14 Supply Current Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISO6720B  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
1.1  
1.3  
3.1  
1.4  
2.1  
1.4  
2.1  
2
1.6  
2
VI = VCCI (ISO6720B), VI = 0 V (ISO6720B with F  
suffix)  
Supply current - DC signal  
Supply current - DC signal  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
4.5  
2.2  
VI = 0V (ISO6720B), VI = VCC1 (ISO6720B with F  
suffix)  
1 Mbps  
1 Mbps  
3.1  
mA  
2.2  
10 Mbps  
10 Mbps  
50 Mbps  
50 Mbps  
3.1  
2.9  
3.3  
6
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
2.3  
4.8  
ISO6721B  
VI = VCCI (ISO6721B); VI = 0 V (ISO6721B with F  
suffix)  
Supply current - DC signal  
ICC1, ICC2  
ICC1, ICC2  
1.2  
2.3  
2.1  
VI = 0 V (ISO6721B); VI = VCCI (ISO6721B with F  
suffix)  
Supply current - DC signal  
Supply current - AC signal  
3.5  
mA  
2.8  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
1.8  
2.1  
3.6  
All channels switching with square  
wave clock input; CL = 15 pF  
10 Mbps  
3.2  
4.9  
50 Mbps  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
6.15 Electrical Characteristics—1.8-V Supply  
VCC1 = VCC2 = 1.8 V ± 5% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -1mA ; See Figure 7-1  
IOL = 1mA ; See Figure 7-1  
MIN  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
VCCO - 0.1  
V
VOL  
0.1  
V
V
(1)  
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
Rising input switching threshold  
Falling input switching threshold  
Input threshold voltage hysteresis  
High-level input current  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
V
V
VIH = VCCI (1) at INx  
10  
µA  
µA  
kV/us  
IIL  
Low-level input current  
VIL = 0 V at INx  
-10  
50  
CMTI  
Common mode transient immunity  
VI = VCC or 0 V, VCM = 1200 V  
75  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
2 MHz, VCC = 1.8 V ; See Figure  
7-3  
Ci  
Input Capacitance(2)  
2.8  
pF  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.16 Supply Current Characteristics—1.8-V Supply  
VCC1 = VCC2 = 1.8 V ± 5% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISO6720B  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
0.8  
1.2  
2.8  
1.3  
1.8  
1.3  
1.8  
1.8  
2
1.5  
2.1  
4.3  
2.2  
VI = VCCI (ISO6720B), VI = 0 V (ISO6720B with F  
suffix)  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
Supply current - DC signal  
Supply current - AC signal  
VI = 0V (ISO6720B), VI = VCC1 (ISO6720B with F  
suffix)  
2.9  
mA  
2.2  
1 Mbps  
2.9  
2.7  
3.1  
4.9  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
50 Mbps  
3.8  
ISO6721B  
VI = VCCI (ISO6721B); VI = 0 V (ISO6721B with F  
suffix)  
ICC1, ICC2  
ICC1, ICC2  
1.1  
2.1  
2
Supply current - DC signal  
VI = 0 V (ISO6721B); VI = VCCI (ISO6721B with F  
suffix)  
3.4  
mA  
2.7  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
1.6  
1.9  
3
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
10 Mbps  
3
50 Mbps  
4.2  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
6.17 Switching Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
11  
MAX  
UNIT  
ns  
tPLH, tPHL  
tP(dft)  
Propagation delay time  
Propagation delay drift  
Minimum pulse width  
See Figure 7-1  
18  
8
ps/  
ns  
tUI  
See Figure 7-1  
See Figure 7-1  
20  
PWD  
Pulse width distortion(1) |tPHL – tPLH  
|
0.2  
7
6
ns  
Channel-to-channel output skew time  
tsk(o)  
Same direction channels  
ns  
(2)  
tsk(p-p)  
Part-to-part skew time (3)  
Output signal rise time  
6
4.5  
ns  
ns  
ns  
us  
tr  
2.6  
2.6  
See Figure 7-1  
tf  
Output signal fall time  
4.5  
tPU  
Time from UVLO to valid output data  
300  
Default output delay time from input  
power loss  
Measured from the time VCC goes  
below 1.2V. See Figure 7-2  
tDO  
tie  
0.1  
1
0.3  
us  
ns  
Time interval error  
216 – 1 PRBS data at 50 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.18 Switching Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
11  
MAX  
UNIT  
ns  
tPLH, tPHL  
tP(dft)  
Propagation delay time  
Propagation delay drift  
Minimum pulse width  
See Figure 7-1  
18  
9.2  
ps/℃  
ns  
tUI  
See Figure 7-1  
See Figure 7-1  
20  
PWD  
Pulse width distortion(1) |tPHL – tPLH  
|
0.5  
7
6
ns  
Channel-to-channel output skew time  
tsk(o)  
Same direction channels  
ns  
(2)  
tsk(p-p)  
Part-to-part skew time (3)  
Output signal rise time  
6
3.2  
ns  
ns  
ns  
us  
tr  
1.6  
1.6  
See Figure 7-1  
tf  
Output signal fall time  
3.2  
tPU  
Time from UVLO to valid output data  
300  
Default output delay time from input  
power loss  
Measured from the time VCC goes  
below 1.2V. See Figure 7-2  
tDO  
tie  
0.1  
1
0.3  
us  
ns  
Time interval error  
216 – 1 PRBS data at 50 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
 
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
6.19 Switching Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
12  
MAX  
UNIT  
ns  
tPLH, tPHL  
tP(dft)  
Propagation delay time  
Propagation delay drift  
Minimum pulse width  
See Figure 7-1  
20.5  
14.3  
ps/℃  
ns  
tUI  
See Figure 7-1  
See Figure 7-1  
20  
PWD  
Pulse width distortion(1) |tPHL – tPLH  
|
0.6  
7.1  
6
ns  
Channel-to-channel output skew  
time(2)  
tsk(o)  
Same direction channels  
ns  
tsk(p-p)  
Part-to-part skew time(3)  
Output signal rise time  
Output signal fall time  
6.1  
4
ns  
ns  
ns  
us  
tr  
2
2
See Figure 7-1  
tf  
4
tPU  
Time from UVLO to valid output data  
300  
Default output delay time from input  
power loss  
Measured from the time VCC goes  
below 1.2V. See Figure 7-2  
tDO  
tie  
0.1  
1
0.3  
us  
ns  
Time interval error  
216 – 1 PRBS data at 50 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.20 Switching Characteristics—1.8-V Supply  
VCC1 = VCC2 = 1.8 V ± 5% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
15  
MAX  
UNIT  
ns  
tPLH, tPHL  
tP(dft)  
Propagation delay time  
Propagation delay drift  
Minimum pulse width  
See Figure 7-1  
24  
15.2  
ps/℃  
ns  
tUI  
See Figure 7-1  
See Figure 7-1  
20  
PWD  
Pulse width distortion(1) |tPHL – tPLH  
|
0.7  
8.2  
6
ns  
Channel-to-channel output skew  
time(2)  
tsk(o)  
Same direction channels  
ns  
tsk(p-p)  
Part-to-part skew time(3)  
Output signal rise time  
Output signal fall time  
8.8  
5.3  
ns  
ns  
ns  
us  
tr  
2.7  
2.7  
See Figure 7-1  
tf  
5.3  
tPU  
Time from UVLO to valid output data  
300  
Default output delay time from input  
power loss  
Measured from the time VCC goes  
below 1.2V. See Figure 7-2  
tDO  
tie  
0.1  
1
0.3  
us  
ns  
Time interval error  
216 – 1 PRBS data at 50 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
 
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
6.21 Insulation Characteristics Curves  
650  
Vcc = 5.5 V  
Vcc = 3.6 V  
Vcc = 2.75 V  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Vcc = 1.89 V  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
Ambient Temperature (C)  
Figure 6-1. Thermal Derating Curve for Safety  
Limiting Current for D-8 Package  
Figure 6-2. Thermal Derating Curve for Safety  
Limiting Power for D-8 Package  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISO6720 ISO6721  
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
6.22 Typical Characteristics  
7.5  
4
3.5  
3
ICC1 at 1.8 V  
ICC2 at 1.8 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC1 at 1.8 V  
ICC2 at 1.8 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
6
4.5  
3
ICC2 at 5 V  
ICC2 at 5 V  
2.5  
2
1.5  
0
1.5  
1
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Data Rate (Mbps)  
Data Rate (Mbps)  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 6-3. ISO6720B Supply Current vs Data Rate Figure 6-4. ISO6720B Supply Current vs Data Rate  
(With 15-pF Load)  
(With No Load)  
4.8  
4
3
2.7  
2.4  
2.1  
1.8  
1.5  
ICC1 at 1.8 V  
ICC2 at 1.8 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC1 at 1.8 V  
ICC2 at 1.8 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
3.2  
2.4  
1.6  
0.8  
ICC2 at 5 V  
ICC2 at 5 V  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Data Rate (Mbps)  
Data Rate (Mbps)  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 6-5. ISO6721B Supply Current vs Data Rate Figure 6-6. ISO6721B Supply Current vs Data Rate  
(With 15-pF Load)  
(With No Load)  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VCC1 at 1.8 V  
VCC2 at 2.5 V  
VCC1 at 3.3 V  
VCC2 at 5 V  
VCC1 at 1.8 V  
VCC2 at 2.5 V  
VCC1 at 3.3 V  
VCC2 at 5 V  
0
5
10  
15  
0
5
10  
15  
Low-Level Output Current (mA)  
Low-Level Output Current (mA)  
TA = 25°C  
TA = 25°C  
Figure 6-7. High-Level Output Voltage vs High-level Figure 6-8. Low-Level Output Voltage vs Low-Level  
Output Current Output Current  
1.6  
1.575  
1.55  
15  
14  
13  
12  
11  
10  
9
1.525  
1.5  
1.475  
1.45  
1.425  
1.4  
VCC1  
+
-
+
-
VCC1  
VCC2  
VCC2  
tPHL at 1.8 V  
tPLH at 1.8 V  
tPHL at 2.5 V  
tPLH at 2.5 V  
tPHL at 3.3 V  
tPLH at 3.3 V  
tPHL at 5 V  
tPLH at 5V  
1.375  
1.35  
8
-55  
-5  
45  
95  
125  
-55  
-5  
45  
95  
125  
Free-Air Temperature (C)  
Free-Air Temperature (C)  
Figure 6-9. Power Supply Undervoltage Threshold  
vs Free-Air Temperature  
Figure 6-10. Propagation Delay Time vs Free-Air  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
7 Parameter Measurement Information  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
t
t
PHL  
PLH  
Input Generator  
(See Note A)  
C
L
V
I
V
50  
O
V
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3 ns, ZO  
50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
=
Figure 7-1. Switching Characteristics Test Circuit and Voltage Waveforms  
V
I
See Note B  
V
CC  
V
CC  
V
1.4 V  
I
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. Power Supply Ramp Rate = 10 mV/ns  
Figure 7-2. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CCO  
CCI  
C = 0.1 µF 1%  
C = 0.1 µF 1%  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
V
OH  
or V  
OL  
C
L
œ
See Note A  
GNDI  
GNDO  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 7-3. Common-Mode Transient Immunity Test Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The ISO672xB family of devices has an ON-OFF keying (OOK) modulation scheme to transmit the digital data  
across a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier  
to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates  
the signal after advanced signal conditioning and produces the output through a buffer stage. These devices  
also incorporate advanced circuit techniques to maximize the CMTI performance and minimize the radiated  
emissions due the high frequency carrier and IO buffer switching. The conceptual block diagram of a digital  
capacitive isolator, Figure 8-1, shows a functional block diagram of a typical channel.  
8.2 Functional Block Diagram  
Transmitter  
Receiver  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
Figure 8-1. Conceptual Block Diagram of a Digital Capacitive Isolator  
Figure 8-2 shows a conceptual detail of how the OOK scheme works.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
Figure 8-2. On-Off Keying (OOK) Based Modulation Scheme  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
8.3 Feature Description  
The ISO672xB family of devices is available in two channel configurations and default output state options to  
enable a variety of application uses. Table 8-1 lists the device features of the ISO672xB devices.  
Table 8-1. Device Features  
MAXIMUM DATA  
RATE  
DEFAULT OUTPUT  
STATE  
PART NUMBER  
CHANNEL DIRECTION  
PACKAGE  
RATED ISOLATION(1)  
ISO6720B  
ISO6720FB  
ISO6721B  
ISO6721FB  
50 Mbps  
50 Mbps  
50 Mbps  
50 Mbps  
2 Forward, 0 Reverse  
2 Forward, 0 Reverse  
1 Forward, 1 Reverse  
1 Forward, 1 Reverse  
High  
Low  
High  
Low  
D-8  
D-8  
D-8  
D-8  
3000 VRMS / 4242 VPK  
3000 VRMS / 4242 VPK  
3000 VRMS / 4242 VPK  
3000 VRMS / 4242 VPK  
(1) See Safety-Related Certifications for detailed isolation ratings.  
8.3.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 32. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO672xB  
family of devices incorporates many chip-level design improvements for overall system robustness. Some of  
these improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
8.4 Device Functional Modes  
Table 8-2 lists the functional modes for the ISO672xB devices.  
Table 8-2. Function Table  
INPUT  
(INx)(2)  
OUTPUT  
(OUTx)  
(1)  
VCCI  
VCCO  
COMMENTS  
H
L
H
L
Normal Operation: A channel output assumes the logic state of the input.  
PU  
PU  
Default mode: When INx is open, the corresponding channel output goes  
to the default logic state. The default is High for ISO672xB and Low for  
ISO672xB with F suffix.  
Open  
Default  
Default mode: When VCCI is unpowered, a channel output assumes the logic  
state based on the selected default option. The default is High for ISO672xB  
and Low for ISO672xB with F suffix.  
PD  
X
PU  
PD  
X
X
Default  
When VCCI transitions from unpowered to powered-up, a channel output  
assumes the logic state of the input.  
When VCCI transitions from powered-up to unpowered, channel output  
assumes the selected default state.  
When VCCO is unpowered, a channel output is undetermined(3)  
.
Undetermined  
When VCCO transitions from unpowered to powered-up, a channel output  
assumes the logic state of the input  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC ≥ 1.71V); PD = Powered down (VCC ≤ 1.05 V); X = Irrelevant;  
H = High level; L = Low level  
(2) A strongly driven input signal can weakly power the floating VCC via an internal protection diode and cause undetermined output.  
(3) The outputs are in undetermined state when 1.89 V < VCCI, VCCO < 2.25 V and 1.05 V < VCCI, VCCO < 1.71 V  
8.4.1 Device I/O Schematics  
Input (Devices with F suffix)  
Input (Devices without F suffix)  
V
V
V
CCI  
V
CCI  
CCI  
CCI  
V
V
V
CCI  
CCI  
CCI  
1.5 M  
985 ꢀ  
985 ꢀ  
INx  
INx  
1.5 Mꢀ  
Output  
V
CCO  
~20 ꢀ  
OUTx  
Figure 8-3. Device I/O Schematics  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and  
TI does not warrant the accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The ISO672xB devices are high-performance, dual-channel digital isolators. The devices use single-ended  
CMOS-logic switching technology. The supply voltage range is from 1.71 V to 5.5 V for both supplies, VCC1  
and VCC2. Since an isolation barrier separates the two sides, each side can be sourced independently with any  
voltage within recommended operating conditions. As an example, it is possible to supply ISO672xB VCC1 with  
3.3 V (which is within 1.71 V to 1.89 V and 2.25 V to 5 V) and VCC2 with 5 V (which is also within 1.71 V to  
1.89 V and 2.25 V to 5 V). You can use the digital isolator as a logic-level translator in addition to providing  
isolation. When designing with digital isolators, keep in mind that because of the single-ended design structure,  
digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended  
CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, MCU or  
FPGA), and a data converter or a line transceiver, regardless of the interface type or standard.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISO6720 ISO6721  
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
9.2 Typical Application  
For industrial applications, the ISO672xB device can be used with Texas Instruments' mixed signal  
microcontroller, digital-to-analog converter, transformer driver, and voltage regulator to create an isolated 4-mA  
to 20-mA current loop.  
V
S
0.1 F  
3.3 V  
2
MBR0520L  
1:1.33  
3.3VISO  
3
1
1
3
5
2
V
CC  
D2  
D1  
IN  
OUT  
GND  
10 F  
TPS76333  
SN6501  
10 F 0.1 F  
EN  
GND  
4, 5  
10 F  
MBR0520L  
ISO Barrier  
0.1 F  
0.1 F  
20 ꢁ  
LOOP+  
15  
VA  
3
0.1 F  
0.1 F  
0.1 F  
VD  
10  
16  
LOW  
BASE  
OUT  
0.1 F 1 F  
1
8
8
2
ERRLVL  
V
V
CC1  
CC2  
DAC161P997  
DV  
CC  
5
4
5
6
22 ꢁ  
7
6
INA  
OUTB  
DBACK  
DIN  
11  
12  
2
3
XOUT  
XIN  
P3.0  
P3.1  
OUTA  
INB  
9
ISO6721B  
MSP430G2132  
LOOPœ  
C1 C2 C3 COMA COMD  
GND1  
GND2  
5
14 13 12  
1
2
DV  
SS  
3 × 2.2 nF  
4
4
Figure 9-1. Isolated 4-mA to 20-mA Current Loop  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
9.2.1 Design Requirements  
To design with these devices, use the parameters listed in Table 9-1.  
Table 9-1. Design Parameters  
PARAMETER  
VALUE  
Supply voltage, VCC1 and VCC2  
1.71 V to 1.89 V and 2.25 V to 5.5 V  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
0.1 µF  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,  
the ISO672xB devices only require two external bypass capacitors to operate.  
2 mm maximum  
from VCC2  
2 mm maximum  
from VCC1  
VCC2  
VCC1  
GND1  
GND2  
1
8
0.1uF  
0.1 µF  
2
3
7
6
INA  
OUTA  
INB  
OUTB  
GND2  
GND1  
5
4
Figure 9-2. Typical ISO672xB Circuit Hook-up  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISO6720 ISO6721  
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
9.2.3 Application Curve  
The following typical eye diagrams of the ISO672xB family of devices indicate low jitter and wide open eye at the  
maximum data rate of 50 Mbps.  
Time = 5 ns / div  
Figure 9-4. Eye Diagram at 50 Mbps PRBS 216 – 1,  
3.3 V and 25°C  
Time = 5 ns / div  
Figure 9-3. Eye Diagram at 50 Mbps PRBS 216 – 1,  
5 V and 25°C  
Time = 5 ns / div  
Figure 9-5. Eye Diagram at 50 Mbps PRBS 216 – 1,  
2.5 V and 25°C  
Time = 5 ns / div  
Figure 9-6. Eye Diagram at 50 Mbps PRBS 216 – 1,  
1.8 V and 25°C  
9.2.3.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See Figure 9-7 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For basic insulation,  
VDE standard requires the use of TDDB projection line with failure rate of less than 1000 part per million (ppm).  
For reinforced insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1  
part per million (ppm).  
Even though the expected minimum insulation lifetime is 20 years, at the specified working isolation voltage,  
VDE basic and reinforced certifications require additional safety margin of 20% for working voltage. For basic  
certification, device lifetime requires a safety margin of 30% translating to a minimum required insulation lifetime  
of 26 years at a working voltage that is 20% higher than the specified value.  
Figure 9-8 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the intrinsic capability of the insulation is 450 VRMS with a lifetime of >100 years in  
the 8D package . Other factors, such as package size, pollution degree, material group, etc. can further limit the  
working voltage of the component. At the lower working voltages, the corresponding insulation lifetime is much  
longer than 100 years in the 8-D package.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
Figure 9-7. Test Setup for Insulation Lifetime Measurement  
87.5 %  
1.E+11  
>>100Yrs  
1.E+10  
1.E+09  
1.E+08  
1.E+07  
1.E+06  
1.E+05  
1.E+04  
1.E+03  
1.E+02  
1.E+01  
Operating Zone  
TDDB Line (< 1000 ppm Fail Rate)  
VDE Safety Margin Zone  
20%  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
8000  
Applied Voltage (VRMS  
)
TA upto 150 oC  
Operating Life Time = >>100 Years  
Stress Voltage Frequency = 60 Hz  
Isolation Working Voltage = 450 VRMS  
Figure 9-8. Insulation Lifetime Projection Data  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISO6720 ISO6721  
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
10 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended  
at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply  
pins as possible. If only a single primary-side power supply is available in an application, isolated power  
can be generated for the secondary-side with the help of a transformer driver. For industrial applications,  
please use Texas Instruments' SN6501 or SN6505B. For such applications, detailed power supply design  
and transformer selection recommendations are available in SN6501 Transformer Drivers for Isolated Power  
Supplies or SN6505B-Q1 Low-noise, 1-A Transformer Drivers for Isolated Power Supplies.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
A minimum of two layers is required to accomplish a cost optimized and low EMI PCB design. To further improve  
EMI, a four layer board can be used (see Section 11.2). Layer stacking for a four layer board should be in the  
following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal  
layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system  
to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping.  
Also the power and ground plane of each power system can be placed closer together, thus increasing the  
high-frequency bypass capacitance significantly.  
For detailed layout recommendations, refer to the Digital Isolator Design Guide.  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength  
and stiffness, and the self-extinguishing flammability-characteristics.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISO6720 ISO6721  
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
11.2 Layout Example  
Solid supply islands reduce  
inductance because large peak  
currents flow into the VCC pin  
2 mm  
maximum  
from VCC1  
2 mm  
maximum  
from VCC2  
VCC1  
VCC2  
1
8
2
3
4
7
6
5
0.1 F  
0.1 F  
GND2  
GND1  
Solid ground islands help  
dissipate heat through PCB  
Figure 11-1. Layout Example  
High-speed traces  
Ground plane  
10 mils  
Keep this  
FR-4  
0 ~ 4.5  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
r
Power plane  
10 mils  
Low-speed traces  
Figure 11-2. Four Layer Board Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
For development support, refer to:  
Isolated CAN Flexible Data (FD) Rate Repeater Reference Design  
Isolated 16-Channel AC Analog Input Module Reference Design Using Dual Simultaneously Sampled ADCs  
Polyphase Shunt Metrology with Isolated AFE Reference Design  
Reference Design for Power-Isolated Ultra-Compact Analog Output Module  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, How to use isolation to improve ESD, EFT and Surge immunity in industrial systems  
application report  
Texas Instruments, Isolation Glossary  
Texas Instruments, Enabling high voltage signal isolation quality and reliability  
Texas Instruments, DAC161P997 Single-Wire 16-bit DAC for 4- to 20-mA Loops data sheet  
Texas Instruments, MSP430G2132 Mixed Signal Microcontroller data sheet  
Texas Instruments, SN6501 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, TPS76333 Low-Power 150-mA Low-Dropout Linear Regulators data sheet  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISO6720 ISO6721  
 
 
 
 
 
 
 
 
 
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
ALL AROUND  
.0028 MIN  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISO6720 ISO6721  
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
13.1 Package Option Addendum  
Packaging Information  
Orderable  
Device  
Status(1)  
Package Type Package  
Drawing  
Pins  
Package Qty  
Eco Plan(2)  
Lead/Ball  
Finish(6)  
MSL Peak  
Op Temp (°C) Device  
Marking(4) (5)  
Temp(3)  
ACTIVE  
SOIC  
D
8
3000  
Green (RoHS & NIPDAU  
no Sb/Br)  
Level-2-260C-1 -40 to 125  
YEAR  
6720B  
ISO6720BDR  
ISO6720FBDR  
NIPDAU  
Level-2-260C-1 -40 to 125  
YEAR  
6720FB  
ACTIVE  
SOIC  
D
8
3000  
Green (RoHS &  
no Sb/Br)  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
3000  
3000  
Green (RoHS & NIPDAU  
no Sb/Br)  
Level-2-260C-1 -40 to 125  
YEAR  
6721B  
ISO6721BDR  
ISO6721FBDR  
NIPDAU  
Level-2-260C-1 -40 to 125  
YEAR  
6721FB  
Green (RoHS &  
no Sb/Br)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ISO6720 ISO6721  
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
13.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
P1 Pitch between successive cavity centers  
W
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
ISO6720BDR  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
3000  
3000  
3000  
3000  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
6.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
ISO6720FBDR  
ISO6721BDR  
ISO6721FBDR  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ISO6720 ISO6721  
 
ISO6720, ISO6721  
SLLSFJ0C – JANUARY 2020 – REVISED MAY 2021  
www.ti.com  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
Length (mm) Width (mm)  
Height (mm)  
43.0  
ISO6720BDR  
SOIC  
D
D
D
D
8
8
8
8
3000  
350.0  
350.0  
350.0  
350.0  
ISO6720FBDR  
43.0  
SOIC  
SOIC  
SOIC  
3000  
3000  
3000  
ISO6721BDR  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
ISO6721FBDR  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ISO6720 ISO6721  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO6720BDR  
ISO6720FBDR  
ISO6721BDR  
ISO6721FBDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
6720B  
NIPDAU  
NIPDAU  
NIPDAU  
6720FB  
6721B  
6721FB  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jul-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF ISO6720, ISO6721 :  
Automotive : ISO6720-Q1, ISO6721-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jul-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO6720BDR  
ISO6720FBDR  
ISO6721BDR  
ISO6721FBDR  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
3000  
3000  
3000  
3000  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
6.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jul-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO6720BDR  
ISO6720FBDR  
ISO6721BDR  
ISO6721FBDR  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
3000  
3000  
3000  
3000  
853.0  
853.0  
853.0  
853.0  
449.0  
449.0  
449.0  
449.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY