ISO6742FQDWRQ1 [TI]

ISO674x-Q1 General-Purpose Reinforced Quad-Channel Automotive Digital Isolators with Robust EMC;
ISO6742FQDWRQ1
型号: ISO6742FQDWRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

ISO674x-Q1 General-Purpose Reinforced Quad-Channel Automotive Digital Isolators with Robust EMC

文件: 总46页 (文件大小:3358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
ISO674x-Q1 General-Purpose Reinforced Quad-Channel Automotive Digital Isolators  
with Robust EMC  
1 Features  
3 Description  
AEC-Q100 qualified with the following results:  
– Device temperature Grade 1: –40°C to +125°C  
ambient operating temperature range  
Meets VDA320 isolation requirements  
50 Mbps data rate  
The ISO674x-Q1 devices are high-performance,  
quad-channel digital isolators ideal for cost-sensitive  
applications requiring up to 5000 VRMS isolation  
ratings per UL 1577. These devices are also certified  
by VDE, TUV, CSA, and CQC.  
Robust isolation barrier:  
The  
ISO674x-Q1  
devices  
provide  
high  
electromagnetic immunity and low emissions at low  
power consumption, while isolating CMOS or  
LVCMOS digital I/Os. Each isolation channel has a  
logic input and output buffer separated by TI's double  
capacitive silicon dioxide (SiO2) insulation barrier.  
These devices come with enable pins which can be  
used to put the respective outputs in high impedance  
for multi-master driving applications. The ISO6741-Q1  
device has three forward and one reverse-direction  
channels. In the event of input power or signal loss,  
the default output is high for devices without suffix F  
and low for devices with suffix F. See Device  
Functional Modes section for further details.  
– High lifetime at 1060 VRMS working voltage  
– Up to 5000 VRMS isolation rating  
– Up to 10 kV surge capability  
– ±75 kV/μs typical CMTI  
Wide supply range: 1.71 V to 1.89 V and 2.25 V to  
5.5 V  
1.71 V to 5.5 V level translation  
Default output high (ISO674x-Q1) and low  
(ISO674xF-Q1) options  
1.6 mA per channel typical at 1 Mbps  
Low propagation delay: 11 ns typical  
Robust electromagnetic compatibility (EMC)  
– System-level ESD, EFT, and surge immunity  
– ±8 kV IEC 61000-4-2 contact discharge  
protection across isolation barrier  
– Low emissions  
Used in conjunction with isolated power supplies,  
these devices help prevent noise currents on data  
buses, such as CAN and LIN from damaging sensitive  
circuitry. Through innovative chip design and layout  
techniques, the electromagnetic compatibility of the  
ISO674x-Q1 devices has been significantly enhanced  
to ease system-level ESD, EFT, surge, and emissions  
compliance. The ISO674x-Q1 family of devices is  
available in a 16-pin SOIC wide-body (DW) package  
and is a pin-to-pin upgrade to the older generations.  
Wide-SOIC (DW-16) Package  
Safety-Related Certifications (pending):  
– DIN V VDE 0884-11:2017-01  
– UL 1577 component recognition program  
– IEC 60950-1, IEC 62368-1, IEC 61010-1,  
IEC60601-1 and GB 4943.1-2011 certifications  
Device Information  
PART NUMBER(1)  
PACKAGE  
BODY SIZE (NOM)  
2 Applications  
ISO6740-Q1, ISO6740F-Q1 SOIC (DW)  
ISO6741-Q1, ISO6741F-Q1  
ISO6742-Q1, ISO6742F-Q1  
10.30 mm × 7.50 mm  
Hybrid, electric and power train system (EV/HEV)  
Battery management system (BMS)  
On-board charger  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Traction inverter  
DC/DC converter  
Inverter and motor control  
VCCO  
VCCI  
Series Isolation  
Capacitors  
INx  
OUTx  
ENx  
GNDI  
GNDO  
Copyright © 2016, Texas Instruments Incorporated  
VCCI=Input supply, VCCO=Output supply  
GNDI=Input ground, GNDO=Output ground  
Simplified Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change  
without notice.  
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................6  
6.4 Thermal Information ...................................................7  
6.5 Power Ratings ............................................................7  
6.6 Insulation Specifications ............................................ 8  
6.7 Safety-Related Certifications ..................................... 9  
6.8 Safety Limiting Values ................................................9  
6.9 Electrical Characteristics—5-V Supply .................... 10  
6.10 Supply Current Characteristics—5-V Supply .........10  
6.11 Electrical Characteristics—3.3-V Supply ................12  
6.12 Supply Current Characteristics—3.3-V Supply ......12  
6.13 Electrical Characteristics—2.5-V Supply .............. 14  
6.14 Supply Current Characteristics—2.5-V Supply ......14  
6.15 Electrical Characteristics—1.8-V Supply ............... 16  
6.16 Supply Current Characteristics—1.8-V Supply ......16  
6.17 Switching Characteristics—5-V Supply ..................18  
6.18 Switching Characteristics—3.3-V Supply ...............19  
6.19 Switching Characteristics—2.5-V Supply ...............20  
6.20 Switching Characteristics—1.8-V Supply ...............21  
6.21 Insulation Characteristics Curves........................... 22  
6.22 Typical Characteristics............................................23  
7 Parameter Measurement Information..........................24  
8 Detailed Description......................................................26  
8.1 Overview...................................................................26  
8.2 Functional Block Diagram.........................................26  
8.3 Feature Description...................................................27  
8.4 Device Functional Modes..........................................28  
9 Application and Implementation..................................29  
9.1 Application Information............................................. 29  
9.2 Typical Application.................................................... 29  
10 Power Supply Recommendations..............................33  
11 Layout...........................................................................34  
11.1 Layout Guidelines................................................... 34  
11.2 Layout Example...................................................... 35  
12 Device and Documentation Support..........................36  
12.1 Documentation Support.......................................... 36  
12.2 Receiving Notification of Documentation Updates..36  
12.3 Support Resources................................................. 36  
12.4 Trademarks.............................................................36  
12.5 Electrostatic Discharge Caution..............................36  
12.6 Glossary..................................................................36  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 36  
13.1 Package Option Addendum....................................37  
13.2 Tape and Reel Information......................................38  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision * (August 2020) to Revision A (January 2021)  
Page  
Added ISO674x-Q1 to APL data sheet. .............................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
5 Pin Configuration and Functions  
VCC1  
GND1  
INA  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCC2  
GND2  
OUTA  
OUTB  
OUTC  
OUTD  
EN2  
INB  
INC  
IND  
NC  
GND1  
GND2  
Not to scale  
Figure 5-1. ISO6740-Q1 DW Package 16-Pin SOIC-WB Top View  
VCC1  
GND1  
INA  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCC2  
GND2  
OUTA  
OUTB  
OUTC  
IND  
INB  
INC  
OUTD  
EN1  
EN2  
GND1  
GND2  
Not to scale  
Figure 5-2. ISO6741-Q1 DW Package 16-Pin SOIC-WB Top View  
VCC1  
GND1  
INA  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCC2  
GND2  
OUTA  
OUTB  
INC  
INB  
OUTC  
OUTD  
EN1  
IND  
EN2  
GND1  
GND2  
Not to scale  
Figure 5-3. ISO6742-Q1 DW Package 16-Pin SOIC-WB Top View  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
ISO6740-Q1  
ISO6741-Q1  
ISO6742-Q1  
Output enable 1. Output pins on side 1 are enabled when EN1  
is high or open and in high-impedance state when EN1 is low.  
For ISO6740, this pin needs to be floating.  
EN1  
-
7
7
I
I
Output enable 2. Output pins on side 2 are enabled when EN2  
is high or open and in high-impedance state when EN2 is low.  
EN2  
10  
10  
10  
GND1  
GND2  
INA  
2, 8  
9, 15  
3
2,8  
9,15  
3
2,8  
9,15  
3
Ground connection for VCC1  
Ground connection for VCC2  
Input, channel A  
I
I
I
I
INB  
4
4
4
Input, channel B  
INC  
5
5
12  
11  
-
Input, channel C  
IND  
6
11  
-
Input, channel D  
NC  
7
Not connected  
OUTA  
OUTB  
OUTC  
OUTD  
VCC1  
VCC2  
14  
13  
12  
11  
1
14  
13  
12  
6
14  
13  
5
O
O
Output, channel A  
Output, channel B  
Output, channel C  
Output, channel D  
Power supply, side 1  
Power supply, side 2  
O
6
O
1
1
16  
16  
16  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
See(1)  
MIN  
MAX  
UNIT  
Supply voltage (2) VCC1, VCC2  
-0.5  
6
V
Voltage at INx,  
V
-0.5  
-15  
VCCX + 0.5 (3)  
V
OUTx, ENx  
Output current  
Temperature  
Io  
15  
150  
150  
mA  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
-65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±6000  
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
V(ESD)  
Electrostatic discharge  
±1500  
±8000  
V
Contact discharge per IEC 61000-4-2;  
Isolation barrier withstand test(3) (4)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
(4) Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
 
 
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.71  
2.25  
1.71  
2.25  
NOM  
MAX  
1.89  
5.5  
UNIT  
(1)  
VCC1  
VCC1  
VCC2  
VCC2  
Supply Voltage Side 1  
Supply Voltage Side 1  
Supply Voltage Side 2  
Supply Voltage Side 2  
VCC = 1.8 V  
V
V
V
V
(1)  
(1)  
(1)  
VCC = 2.5 V to 5 V  
VCC = 1.8 V  
1.89  
5.5  
VCC = 2.5 V to 5 V  
Vcc (UVLO  
+)  
UVLO threshold when supply voltage is rising  
UVLO threshold when supply voltage is falling  
Supply voltage UVLO hysteresis  
1.53  
1.41  
0.13  
1.71  
V
V
V
V
Vcc  
(UVLO-)  
1.1  
Vhys  
(UVLO)  
0.08  
0.7 x VCC(2I)  
VIH  
VIL  
High level Input voltage  
VCCI  
Low level Input voltage  
VCCO = 5 V (2)  
0
-4  
-2  
-1  
-1  
0.3 x VCCI  
V
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Mbps  
°C  
VCCO = 3.3 V  
High level output current  
IOH  
VCCO = 2.5 V  
VCCO = 1.8 V  
VCCO = 5 V  
4
2
VCCO = 3.3 V  
Low level output current  
IOL  
VCCO = 2.5 V  
1
VCCO = 1.8 V  
1
DR  
TA  
Data Rate  
0
50  
125  
Ambient temperature  
-40  
25  
(1) VCC1 and VCC2 can be set independent of one another  
(2) VCCI = Input-side VCC; VCCO = Output-side VCC  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
6.4 Thermal Information  
ISO674x  
THERMAL METRIC(1)  
DW (SOIC)  
16 PINS  
73  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
36.1  
40.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
17  
ψJB  
39.9  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISO6740  
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
130.9  
33  
mW  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15  
pF, Input a 25-MHz 50% duty cycle  
square wave  
PD1  
PD2  
97.9  
ISO6741  
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
134.9  
50.8  
84.1  
mW  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15  
pF, Input a 25-MHz 50% duty cycle  
square wave  
PD1  
PD2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
www.ti.com  
UNIT  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
6.6 Insulation Specifications  
VALUE  
DW-16  
PARAMETER  
TEST CONDITIONS  
CLR  
CPG  
External clearance(1)  
External creepage(1)  
Shortest terminal-to-terminal distance through air  
>8  
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
>8  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
>17  
>600  
I
um  
V
Rated mains voltage ≤ 600 VRMS  
Rated mains voltage ≤ 1000 VRMS  
I-IV  
I-III  
Overvoltage category per IEC 60664-1  
DIN VDE V 0884-11:2017-01 (2)  
VIORM Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
1500  
1060  
1500  
VPK  
VRMS  
VDC  
AC voltage; Time dependent dielectric breakdown  
(TDDB) Test; See Figure 9-8  
VIOWM  
Maximum working isolation voltage  
DC voltage  
VTEST = VIOTM  
t = 60 s (qualification);  
VTEST = 1.2 x VIOTM  
,
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
7071  
VPK  
,
t= 1 s (100% production)  
Test method per IEC 62368-1, 1.2/50 µs waveform,  
VTEST = 1.6 x VIOSM (qualification)  
VIOSM  
6250  
≤5  
VPK  
Method a, After Input-output safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.2 x VIORM, tm = 10 s  
Method a, After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 x VIORM, tm = 10 s  
≤5  
≤5  
qpd  
Apparent charge(4)  
pC  
Method b; At routine test (100% production) and  
preconditioning (type test)  
Vini = 1.2 x VIOTM, tini = 1 s;  
Vpd(m) = 1.875 x VIORM, tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Isolation resistance(5)  
VIO = 0.4 x sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
~1  
pF  
Ω
>1012  
>1011  
>109  
2
VIO = 500 V, 100°C ≤ TA ≤ 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
40/125/21  
UL 1577  
VISO  
VTEST = VISO , t = 60 s (qualification),  
VTEST = 1.2 x VISO , t = 1 s (100% production)  
Maximum withstanding isolation voltage  
5000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves and/or ribs on a printed-circuit board are used to help increase these  
specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
6.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Plan to certify according to  
EN 61010-1:2010/  
A1:2019, EN  
60950-1:2006/A2:2013  
and EN 62368-1:2014  
Plan to certify according to Plan to certify according to Plan to certify according to  
Plan to certify according to  
GB4943.1-2011  
DIN VDE V 0884-11:2017- IEC 60950-1 and IEC  
UL 1577 Component  
Recognition Program  
01  
62368-1  
5000 VRMS insulation per  
CSA 60950-1-07+A1+A2,  
IEC 60950-1 2nd  
Maximum transient  
isolation voltage,  
5000 VRMS insulation per  
EN 61010-1:2010 (3rd Ed)  
up to working voltage of  
600 VRMS  
5000 VRMS insulation per  
EN 60950- 1:2006/  
7071 VPK  
;
Reinforced insulation,  
Altitude ≤ 5000 m, Tropical  
Climate,  
700 VRMS maximum  
working voltage  
Ed.+A1+A2, CSA  
Maximum repetitive peak  
isolation voltage, 1500  
62368-1- 14 and IEC  
62368-1:2014 800 VRMS  
(DW-16) maximum  
working voltage (pollution  
degree 2, material group I)  
Single protection,  
5000 VRMS  
VPK  
;
Maximum surge isolation  
voltage,  
6250 VPK  
A2:2013 up to working  
voltage of 800 VRMS  
Certificate planned  
Certificate planned  
Certificate planned  
Certificate planned  
Certificate planned  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DW-16 PACKAGE  
RθJA =73°C/W, VI = 5.5 V, TJ = 150°C, TA  
= 25°C  
311.4  
475.7  
622  
mA  
RθJA = 73°C/W, VI = 3.6 V, TJ = 150°C, TA  
= 25°C  
IS  
Safety input, output, or supply current  
mA  
RθJA = 73°C/W, VI = 2.75 V, TJ = 150°C,  
TA = 25°C  
RθJA = 73°C/W, VI = 1.89 V, TJ = 150°C,  
TA = 25°C  
905.1  
mA  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
RθJA = 73°C/W, TJ = 150°C, TA = 25°C  
1712.4  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
6.9 Electrical Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -4 mA; See Figure 7-1  
IOL = 4 mA; See Figure 7-1  
MIN  
TYP  
MAX UNIT  
VOH  
VOL  
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
High-level output voltage  
Low-level output voltage  
Rising input switching threshold  
Falling input switching threshold  
Input threshold voltage hysteresis  
High-level input current  
VCCO - 0.4 (1)  
V
0.4  
V
V
(1)  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
V
V
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
10  
28  
µA  
µA  
uA  
uA  
IIL  
Low-level input current  
-10  
IIH  
High-level input current  
VIH = VCCI (1) at ENx  
IIL  
Low-level input current  
VIL = 0 V at ENx  
-28  
50  
VI = VCC or 0 V, VCM = 1200 V;  
See Figure 7-4  
CMTI  
Ci  
Common mode transient immunity  
Input Capacitance (2)  
75  
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f = 2  
MHz, VCC = 5 V  
2.8  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.10 Supply Current Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISO6740  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VI = VCC1 (1)(ISO6740); VI = 0 V (ISO6740 with F  
suffix)  
ICC1  
1.6  
2.1  
5.8  
2.3  
3.7  
2.4  
3.8  
4.8  
4.4  
15  
2.2  
3.4  
8
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
Supply current - DC signal  
(2)  
VI = 0 V (ISO6740); VI = VCC1 (ISO6740 with F suffix)  
1 Mbps  
3.7  
5.1  
mA  
3.8  
5.3  
6.4  
6
Supply current - AC signal All channels switching with square  
10 Mbps  
50 Mbps  
(3)  
wave clock input; CL = 15 pF  
17.8  
ISO6741  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.9  
2.2  
5.1  
3.4  
3.6  
3
2.8  
3.5  
7.2  
5.1  
VI = VCCI (1)(ISO6741); VI = 0 V (ISO6741 with F suffix)  
VI = 0 V (ISO6741); VI = VCCI (ISO6741 with F suffix)  
1 Mbps  
Supply current - DC signal  
(2)  
5.1  
mA  
4.5  
4.2  
4.8  
7.3  
12.6  
5.8  
6.5  
Supply current - AC signal All channels switching with square  
10 Mbps  
50 Mbps  
(3)  
wave clock input; CL = 15 pF  
9.3  
15.3  
(1) VCCI = Input-side VCC  
(2) Supply current valid for ENx = VCCx and ENx = 0V  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
(3) Supply current valid for ENx = VCCx  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
6.11 Electrical Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -2mA; See Figure 7-1  
IOL = 2mA; See Figure 7-1  
MIN  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
Rising input switching threshold  
Falling input switching threshold  
VCCO - 0.2 (1)  
V
VOL  
0.2  
V
V
V
(1)  
VIT+(IN)  
VIT-(IN)  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
Input threshold voltage  
hysteresis  
VI(HYS)  
V
IIH  
IIL  
IIH  
IIL  
High-level input current  
Low-level input current  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
10  
30  
µA  
µA  
uA  
uA  
-10  
VIH = VCCI (1) at ENx  
VIL = 0 V at ENx  
-30  
50  
Common mode transient  
immunity  
VI = VCC or 0 V, VCM = 1200  
V; See Figure 7-4  
CMTI  
Ci  
75  
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f = 2  
MHz, VCC = 3.3 V  
Input Capacitance (2)  
2.8  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.12 Supply Current Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISO6740  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
1.6  
2.1  
5.7  
2.3  
3.7  
2.4  
3.8  
4
2.2  
3.3  
8
EN2 = VCC2; VI = VCC1 (ISO6740); VI = 0 V (ISO6740  
with F suffix)  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
Supply current - DC signal  
EN2 = VCC2; VI = 0 V (ISO6740); VI = VCC1 (ISO6740  
with F suffix)  
3.6  
5.1  
mA  
3.7  
1 Mbps  
10 Mbps  
10 Mbps  
50 Mbps  
50 Mbps  
5.2  
5.6  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
4.2  
11.2  
5.7  
13.8  
ISO6741  
VI = VCCI (1)(ISO6741); VI = 0 V (ISO6741 with F  
suffix)  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.9  
2.2  
5
2.7  
3.4  
7.1  
5.1  
Supply current - DC signal  
(2)  
VI = 0 V (ISO6741); VI = VCCI (ISO6741 with F suffix)  
1 Mbps  
3.4  
3.5  
2.9  
4
5
mA  
4.4  
5.5  
5.8  
8
Supply current - AC signal All channels switching with square  
10 Mbps  
50 Mbps  
(3)  
wave clock input; CL = 15 pF  
4.2  
6.1  
9.7  
12.1  
(1) VCCI = Input-side VCC  
(2) Supply current valid for ENx = VCCx and ENx = 0V  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
(3) Supply current valid for ENx = VCCx  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
6.13 Electrical Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -1mA; See Figure 7-1  
IOL = 1mA; See Figure 7-1  
MIN  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
Rising input switching threshold  
Falling input switching threshold  
VCCO - 0.1 (1)  
V
VOL  
0.1  
V
V
V
(1)  
VIT+(IN)  
VIT-(IN)  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
Input threshold voltage  
hysteresis  
VI(HYS)  
V
IIH  
IIL  
IIH  
IIL  
High-level input current  
Low-level input current  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
10  
30  
µA  
µA  
uA  
uA  
-10  
VIH = VCCI (1) at ENx  
VIL = 0 V at ENx  
-30  
50  
Common mode transient  
immunity  
VI = VCC or 0 V, VCM = 1200  
V; See Figure 7-4  
CMTI  
Ci  
75  
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f = 2  
MHz, VCC = 2.5 V  
Input Capacitance (2)  
2.8  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.14 Supply Current Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISO6740  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
1.6  
2.1  
5.7  
2.3  
3.7  
2.3  
3.7  
3.5  
4.1  
9
2.2  
3.3  
7.9  
3.6  
EN2 = VCC2; VI = VCC1 (ISO6740); VI = 0 V (ISO6740  
with F suffix)  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
Supply current - DC signal  
EN2 = VCC2; VI = 0 V (ISO6740); VI = VCC1 (ISO6740  
with F suffix)  
5.1  
mA  
3.6  
1 Mbps  
10 Mbps  
10 Mbps  
50 Mbps  
50 Mbps  
5.1  
5.1  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
5.6  
11.2  
ISO6741  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.9  
2.2  
5
2.7  
3.4  
7.1  
5.1  
VI = VCCI (1)(ISO6741); VI = 0 V (ISO6741 with F suffix)  
VI = 0 V (ISO6741); VI = VCCI (ISO6741 with F suffix)  
1 Mbps  
Supply current - DC signal  
(2)  
3.4  
3.5  
2.9  
3.9  
3.8  
5.5  
8.1  
5
mA  
4.4  
5.4  
5.4  
Supply current - AC signal All channels switching with square  
10 Mbps  
50 Mbps  
(3)  
wave clock input; CL = 15 pF  
7.2  
10.2  
(1) VCCI = Input-side VCC  
(2) Supply current valid for ENx = VCCx and ENx = 0V  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
(3) Supply current valid for ENx = VCCx  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
6.15 Electrical Characteristics—1.8-V Supply  
VCC1 = VCC2 = 1.8 V ±5% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -1mA; See Figure 7-1  
IOL = 1mA; See Figure 7-1  
MIN  
TYP  
MAX UNIT  
VOH  
VOL  
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
High-level output voltage  
Low-level output voltage  
Rising input switching threshold  
Falling input switching threshold  
Input threshold voltage hysteresis  
High-level input current  
VCCO - 0.1 (1)  
V
0.1  
V
V
(1)  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
V
V
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
10  
30  
µA  
µA  
µA  
µA  
IIL  
Low-level input current  
-10  
IIH  
High-level input current  
VIH = VCCI (1) at ENx  
IIL  
Low-level input current  
VIL = 0 V at ENx  
-30  
50  
VI = VCC or 0 V, VCM = 1200 V;  
See Figure 7-4  
CMTI  
Ci  
Common mode transient immunity  
Input Capacitance (2)  
75  
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f = 2  
MHz, VCC = 1.8 V  
2.8  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.16 Supply Current Characteristics—1.8-V Supply  
VCC1 = VCC2 = 1.8 V ±5% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISO6740  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
1.2  
2
1.8  
3.4  
7.6  
3.7  
EN2 = VCC2; VI = VCC1 (ISO6740); VI = 0 V (ISO6740  
with F suffix)  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
Supply current - DC signal  
5.1  
2.2  
3.1  
2.2  
3.2  
3.1  
3.4  
7
EN2 = VCC2; VI = 0 V (ISO6740); VI = VCC1 (ISO6740  
with F suffix)  
4.7  
mA  
3.7  
1 Mbps  
10 Mbps  
10 Mbps  
50 Mbps  
50 Mbps  
4.8  
4.6  
5.1  
8.9  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
ISO6741  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.5  
2
2.4  
3.4  
6.9  
5
VI = VCCI (1)(ISO6741); VI = 0 V (ISO6741 with F suffix)  
VI = 0 V (ISO6741); VI = VCCI (ISO6741 with F suffix)  
1 Mbps  
Supply current - DC signal  
(2)  
4.5  
3.2  
3.1  
2.7  
3.3  
3.4  
4.5  
6.4  
4.7  
mA  
4.3  
5
5
Supply current - AC signal All channels switching with square  
10 Mbps  
50 Mbps  
(3)  
wave clock input; CL = 15 pF  
6.3  
8.3  
(1) VCCI = Input-side VCC  
(2) Supply current valid for ENx = VCCx and ENx = 0V  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
(3) Supply current valid for ENx = VCCx  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
www.ti.com  
MAX UNIT  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
6.17 Switching Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
11  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
18  
7
ns  
ns  
ns  
ns  
ns  
ns  
@100kbps  
See Figure 7-1  
|
0.2  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
6
6
Output signal rise time  
2.6  
2.6  
4.5  
4.5  
See Figure 7-1  
See Figure 7-2  
tf  
Output signal fall time  
Disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
tPZH  
tPZL  
18.6  
18.6  
14.2  
14.2  
25.8  
25.8  
21.1  
ns  
ns  
ns  
Disable propagation delay, low-to-high impedance  
output  
Enable propagation delay, high impedance-to-high  
output for ISO674x  
Enable propagation delay, high impedance-to-low  
output for ISO674x  
21.1  
300  
0.3  
ns  
us  
us  
ns  
Time from UVLO to valid output data  
Default output delay time from input power loss  
Time interval error  
tPU  
Measured from the time VCC goes  
below 1.2V. See Figure 7-3  
tDO  
0.1  
1
tie  
216 – 1 PRBS data at 50 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
6.18 Switching Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
11  
MAX UNIT  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
18  
7
ns  
ns  
ns  
ns  
ns  
ns  
@100kbps  
See Figure 7-1  
|
0.5  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
6
7
Output signal rise time  
1.6  
1.6  
3.2  
3.2  
See Figure 7-1  
See Figure 7-2  
tf  
Output signal fall time  
Disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
tPZH  
tPZL  
23.2  
23.2  
16.6  
16.6  
34.4  
34.4  
23  
ns  
ns  
ns  
Disable propagation delay, low-to-high impedance  
output  
Enable propagation delay, high impedance-to-high  
output for ISO674x  
Enable propagation delay, high impedance-to-low  
output for ISO674x  
23  
300  
0.3  
ns  
us  
us  
ns  
Time from UVLO to valid output data  
Default output delay time from input power loss  
Time interval error  
tPU  
Measured from the time VCC goes  
below 1.2V. See Figure 7-3  
tDO  
0.1  
1
tie  
216 – 1 PRBS data at 50 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
www.ti.com  
MAX UNIT  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
6.19 Switching Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
12  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
20.5  
7.1  
6
ns  
ns  
ns  
ns  
ns  
ns  
@100kbps  
See Figure 7-1  
|
0.6  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
7
Output signal rise time  
2
2
4
See Figure 7-1  
See Figure 7-2  
tf  
Output signal fall time  
4
Disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
tPZH  
tPZL  
28.1  
28.1  
20.4  
20.4  
43  
43  
ns  
ns  
ns  
Disable propagation delay, low-to-high impedance  
output  
Enable propagation delay, high impedance-to-high  
output for ISO674x  
36.3  
Enable propagation delay, high impedance-to-low  
output for ISO674x  
36.3  
300  
0.3  
ns  
us  
us  
ns  
Time from UVLO to valid output data  
Default output delay time from input power loss  
Time interval error  
tPU  
Measured from the time VCC goes  
below 1.2V. See Figure 7-3  
tDO  
0.1  
1
tie  
216 – 1 PRBS data at 50 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
6.20 Switching Characteristics—1.8-V Supply  
VCC1 = VCC2 = 1.8 V ±5% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
15  
MAX UNIT  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
24  
8.2  
6
ns  
ns  
ns  
ns  
ns  
ns  
@100kbps  
See Figure 7-1  
|
0.7  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
8.8  
5.3  
5.3  
Output signal rise time  
2.7  
2.7  
See Figure 7-1  
See Figure 7-2  
tf  
Output signal fall time  
Disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
tPZH  
tPZL  
40.3  
40.3  
30  
63  
63  
ns  
ns  
ns  
Disable propagation delay, low-to-high impedance  
output  
Enable propagation delay, high impedance-to-high  
output for ISO674x  
51.4  
Enable propagation delay, high impedance-to-low  
output for ISO674x  
30  
51.4  
300  
0.3  
ns  
us  
us  
ns  
Time from UVLO to valid output data  
Default output delay time from input power loss  
Time interval error  
tPU  
Measured from the time VCC goes  
below 1.2V. See Figure 7-3  
tDO  
0.1  
1
tie  
216 – 1 PRBS data at 50 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
6.21 Insulation Characteristics Curves  
1000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
Vcc = 5.5 V  
Vcc = 3.6 V  
Vcc = 2.75 V  
Vcc = 1.89 V  
800  
600  
400  
200  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
Ambient Temperature (C)  
Ambient Temperature (C)  
Figure 6-1. Thermal Derating Curve for Safety  
Limiting Current for DW-16 Package  
Figure 6-2. Thermal Derating Curve for Safety  
Limiting Power for DW-16 Package  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
6.22 Typical Characteristics  
10.5  
9
ICC1 at 1.8 V  
ICC2 at 1.8 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
7.5  
6
ICC2 at 5 V  
4.5  
3
1.5  
0
10  
20  
30  
40  
50  
Data Rate (Mbps)  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 6-3. ISO6741-Q1 Supply Current vs Data  
Rate (With 15-pF Load)  
Figure 6-4. ISO6741-Q1 Supply Current vs Data  
Rate (With No Load)  
8
0.8  
VCC1 at 1.8 V  
VCC1 at 1.8 V  
VCC2 at 2.5 V  
VCC1 at 3.3 V  
VCC2 at 5 V  
VCC2 at 2.5 V  
VCC1 at 3.3 V  
VCC2 at 5 V  
7
6
5
4
3
2
1
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-15  
-10  
-5  
0
0
5
10  
15  
High-Level Output Current (mA)  
Low-Level Output Current (mA)  
TA = 25°C  
TA = 25°C  
Figure 6-5. High-Level Output Voltage vs High-level Figure 6-6. Low-Level Output Voltage vs Low-Level  
Output Current Output Current  
1.625  
1.6  
17  
16  
15  
14  
13  
12  
11  
10  
9
1.575  
1.55  
1.525  
1.5  
1.475  
1.45  
1.425  
1.4  
1.375  
1.35  
1.325  
1.3  
VCC1 +  
VCC1 -  
VCC2 +  
VCC2 -  
tPHL at 1.8 V  
tPLH at 1.8 V  
tPHL at 2.5 V  
tPLH at 2.5 V  
tPHL at 3.3 V  
tPLH at 3.3 V  
tPHL at 5 V  
tPLH at 5 V  
8
1.275  
7
-55  
-5  
45  
95  
125  
-55  
-5  
45  
95  
125  
Free-Air Temperature (C)  
Free-Air Temperature (C)  
Figure 6-7. Power Supply Undervoltage Threshold  
vs Free-Air Temperature  
Figure 6-8. Propagation Delay Time vs Free-Air  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
7 Parameter Measurement Information  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
V
t
t
PHL  
PLH  
Input  
Generator  
(See Note A)  
C
L
V
I
V
50  
O
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
Copyright © 2016, Texas Instruments Incorporated  
A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3ns, ZO = 50  
Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 7-1. Switching Characteristics Test Circuit and Voltage Waveforms  
V
CCO  
V
CC  
R
L
= 1 k1%  
V
/ 2  
CC  
V
/ 2  
CC  
V
I
IN  
OUT  
0 V  
V
0 V  
O
t
t
PLZ  
PZL  
V
OH  
EN  
0.5 V  
V
V
O
50%  
C
L
OL  
See Note B  
Input  
Generator  
(See Note A)  
V
I
50 ꢀ  
V
CC  
V
O
IN  
OUT  
3 V  
V / 2  
CC  
V
/ 2  
CC  
V
I
0 V  
t
PZH  
EN  
See Note B  
R
L
= 1 k1%  
V
OH  
C
L
50%  
Input  
Generator  
(See Note A)  
0.5 V  
V
O
V
I
0 V  
t
50 ꢀ  
PHZ  
Copyright © 2016, Texas Instruments Incorporated  
A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 10 kHz, 50% duty cycle,  
tr ≤ 3 ns, tf ≤ 3 ns, ZO = 50 Ω.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 7-2. Enable/Disable Propagation Delay Time Test Circuit and Waveform  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
V
I
See Note B  
V
CC  
V
CC  
V
1.4 V  
I
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. Power Supply Ramp Rate = 10 mV/ns  
Figure 7-3. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CCO  
CCI  
C = 0.1 µF 1%  
C = 0.1 µF 1%  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
C
L
V
or V  
OL  
OH  
See Note A  
œ
GNDO  
GNDI  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 7-4. Common-Mode Transient Immunity Test Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The ISO674x-Q1 family of devices have an ON-OFF keying (OOK) modulation scheme to transmit the digital  
data across a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the  
barrier to represent one digital state and sends no signal to represent the other digital state. The receiver  
demodulates the signal after advanced signal conditioning and produces the output through a buffer stage. If the  
ENx pin is low then the output goes to high impedance. The ISO674x-Q1 devices also incorporate advanced  
circuit techniques to maximize the CMTI performance and minimize the radiated emissions due to the high  
frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, Figure  
8-1, shows a functional block diagram of a typical channel.  
8.2 Functional Block Diagram  
Transmitter  
Receiver  
EN  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
Copyright © 2016, Texas Instruments Incorporated  
Figure 8-1. Conceptual Block Diagram of a Digital Capacitive Isolator  
Figure 8-2 shows a conceptual detail of how the ON-OFF keying scheme works.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
Figure 8-2. On-Off Keying (OOK) Based Modulation Scheme  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
8.3 Feature Description  
Table 8-1 provides an overview of the device features.  
Table 8-1. Device Features  
MAXIMUM DATA  
RATE  
DEFAULT  
OUTPUT  
PART NUMBER  
ISO6740-Q1  
ISO6740F-Q1  
ISO6741-Q1  
ISO6741F-Q1  
ISO6742-Q1  
ISO6742F-Q1  
CHANNEL DIRECTION  
PACKAGE  
DW-16  
DW-16  
DW-16  
DW-16  
DW-16  
DW-16  
RATED ISOLATION(1)  
5000 VRMS / 8000 VPK  
5000 VRMS / 8000 VPK  
5000 VRMS / 8000 VPK  
5000 VRMS / 8000 VPK  
5000 VRMS / 8000 VPK  
5000 VRMS / 8000 VPK  
4 Forward,  
0 Reverse  
50 Mbps  
50 Mbps  
50 Mbps  
50 Mbps  
50 Mbps  
50 Mbps  
High  
Low  
High  
Low  
High  
Low  
4 Forward,  
0 Reverse  
3 Forward,  
1 Reverse  
3 Forward,  
1 Reverse  
2 Forward,  
2 Reverse  
2 Forward,  
2 Reverse  
(1) See for detailed isolation ratings.  
8.3.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 25. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO674x-  
Q1 family of devices incorporates many chip-level design improvements for overall system robustness. Some of  
these improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
8.4 Device Functional Modes  
Table 8-2 lists the functional modes for the ISO674x-Q1 devices.  
Table 8-2. Function Table  
OUTPUT  
ENABLE  
(ENx)  
INPUT  
OUTPUT  
(OUTx)  
(1)  
VCCI  
VCCO  
COMMENTS  
(INx) (3)  
H
L
H or open  
H or open  
H
L
Normal Operation: A channel output assumes the logic state of its  
input.  
PU  
X
PU  
PU  
PU  
Default mode: When INx is open, the corresponding channel output  
goes to its default logic state. Default is High for ISO674x-Q1 and  
Low for ISO674x-Q1 with F suffix.  
Open  
X
H or open  
L
Default  
Z
A low value of output enable causes the outputs to be high-  
impedance.  
Default mode: When VCCI is unpowered, a channel output assumes  
the logic state based on the selected default option. Default is High  
for ISO674x-Q1 and Low for ISO674x-Q1 with F suffix. When VCCI  
transitions from unpowered to powered-up, a channel output assumes  
the logic state of the input. When VCCI transitions from powered-up to  
unpowered, channel output assumes the selected default state.  
PD  
X
X
H or open  
Default  
When VCCO is unpowered, a channel output is undetermined(2). When  
Undetermined VCCO transitions from unpowered to powered-up, a channel output  
assumes the logic state of the input.  
X
PD  
X
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC ≥ 1.71 V); PD = Powered down (VCC ≤ 1.05 V); X = Irrelevant;  
H = High level; L = Low level ; Z = High Impedance  
(2) The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V and 1.05 V < VCCI, VCCO < 1.71 V  
(3) A strongly driven input signal can weakly power the floating VCC through an internal protection diode and cause undetermined output  
8.4.1 Device I/O Schematics  
Input (Devices with F suffix)  
Input (Devices without F suffix)  
V
V
V
CCI  
V
CCI  
CCI  
CCI  
V
V
V
CCI  
CCI  
CCI  
1.5 M  
985 ꢀ  
985 ꢀ  
INx  
INx  
1.5 Mꢀ  
Output  
Enable  
V
CCO  
V
V
V
CCI  
V
CCI  
CCI  
CCI  
550 kꢀ  
~20 ꢀ  
20 kꢀ  
985 ꢀ  
OUTx  
INx  
Figure 8-3. Device I/O Schematics  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The ISO674x-Q1 devices are high-performance, quad-channel digital isolators. These devices come with enable  
pins on each side which can be used to put the respective outputs in high impedance for multi master driving  
applications. The ISO674x-Q1 devices use single-ended CMOS-logic switching technology. The supply voltage  
range is from 1.71 V to 5.5 V for both supplies, VCC1 and VCC2. Since an isolation barrier separates the two  
sides, each side can be sourced independently with any voltage within recommended operating conditions. As  
an example, it is possible to supply ISO674x-Q1 VCC1 with 3.3 V (which is within 1.71 V to 5.5 V) and VCC2 with  
5V (which is also within 1.71 V to 5.5 V). You can use the digital isolator as a logic-level translator in addition to  
providing isolation. When designing with digital isolators, keep in mind that because of the single-ended design  
structure, digital isolators do not conform to any specific interface standard and are only intended for isolating  
single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that  
is, μC or UART), and a data converter or a line transceiver, regardless of the interface type or standard.  
9.2 Typical Application  
Figure 9-1 shows ISO6741-Q1 in a belt starter generator application.  
48 V Side  
12 V Side  
WAKE  
nSTB  
MCU  
TMS570  
EN TCAN1043  
ISO6741-Q1  
CANH  
CANL  
TXD  
RXD  
Figure 9-1. Belt Starter Generator Application  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
9.2.1 Design Requirements  
To design with these devices, use the parameters listed in Table 9-1.  
Table 9-1. Design Parameters  
PARAMETER  
VALUE  
Supply voltage, VCC1 and VCC2  
1.71 V to 1.89 V and 2.25 V to 5.5 V  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
0.1 µF  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,  
the ISO674x-Q1 family of devices only require two external bypass capacitors to operate.  
2 mm maximum  
from VCC1  
2 mm maximum  
from VCC2  
0.1 µF  
0.1 µF  
VCC2  
VCC1  
1
16  
GND1  
GND2  
2
3
15  
14  
INA  
INB  
INC  
OUTA  
OUTB  
OUTC  
13  
4
12  
11  
10  
9
5
6
7
8
IND  
OUTD  
EN2  
EN1  
GND2  
GND1  
Figure 9-2. Typical ISO674x-Q1 Circuit Hook-up  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
9.2.3 Application Curve  
The following typical eye diagrams of the ISO674x-Q1 family of devices indicates low jitter and wide open eye at  
the maximum data rate of 50 Mbps.  
Time = 5 ns / div  
Time = 5 ns / div  
Figure 9-4. Eye Diagram at 50 Mbps PRBS 216 – 1,  
3.3 V and 25°C  
Figure 9-3. Eye Diagram at 50 Mbps PRBS 216 – 1,  
5 V and 25°C  
Time = 5 ns / div  
Time = 5 ns / div  
Figure 9-5. Eye Diagram at 50 Mbps PRBS 216 – 1, Figure 9-6. Eye Diagram at 50 Mbps PRBS 216 – 1,  
2.5 V and 25°C 1.8 V and 25°C  
9.2.3.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See Figure 9-7 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation  
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for  
lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20%  
higher than the specified value.  
Figure 9-8 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the intrinsic capability of the insulation is 1060 VRMS with a lifetime of 220 years. Other  
factors, such as package size, pollution degree, material group, etc. can further limit the working voltage of the  
component. The working voltage of DW-16 package is specified upto 1060 VRMS. At the lower working voltages,  
the corresponding insulation lifetime is much longer than 220 years.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
Figure 9-7. Test Setup for Insulation Lifetime Measurement  
Figure 9-8. Insulation Lifetime Projection Data  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
10 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended  
at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins  
as possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver. For automotive applications, please use  
SN6501-Q1 or SN6505A-Q1. For such applications, detailed power supply design and transformer selection  
recommendations are available in SN6501-Q1 Transformer Driver for Isolated Power Supplies or SN6505A-Q1  
Low-Noise 1-A Transformer Drivers for Isolated Power Supplies.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
A minimum of two layers is required to accomplish a cost optimized and low EMI PCB design. To further improve  
EMI, a four layer board can be used (see Figure 11-2). Layer stacking for a four layer board should be in the  
following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal  
layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/inch2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
For detailed layout recommendations, refer to the Digital Isolator Design Guide.  
11.1.1 PCB Material  
For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of  
up to 10 inches, use standard FR-4 UL94V-0 printed circuit boards. This PCB is preferred over cheaper  
alternatives due to its lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and self-extinguishing flammability-characteristics.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
11.2 Layout Example  
Solid supply islands reduce  
inductance because large peak  
currents flow into the VCC pin  
2 mm  
maximum  
from VCC1  
2 mm  
maximum  
from VCC2  
VCC1  
VCC2  
1
16  
0.1 F  
GND2  
0.1 F  
GND1  
2
3
15  
14  
4
13  
5
6
12  
11  
EN1  
EN2  
7
8
10  
9
GND2  
GND1  
Solid ground islands help  
dissipate heat through PCB  
Figure 11-1. Layout Example  
High-speed traces  
Ground plane  
10 mils  
Keep this  
FR-4  
0 ~ 4.5  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
r
Power plane  
10 mils  
Low-speed traces  
Figure 11-2. Layout Example Schematic  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, ADS79xx 12/10/8-Bit, 1 MSPS, 16/12/8/4-Channel, Single-Ended, MicroPower, Serial  
Interface ADCs data sheet  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, Isolation Glossary  
Texas Instruments, How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems  
application report  
Texas Instruments, SN6501-Q1 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, SN65HVD231Q 3.3-V CAN Transceivers data sheet  
Texas Instruments, TPS763xx-Q1 Low-Power, 150-mA, Low-Dropout Linear Regulators data sheet  
Texas Instruments, TMS320F2803x Piccolo™ Microcontrollers data sheet  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
 
 
 
 
 
 
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
13.1 Package Option Addendum  
Packaging Information  
Orderable  
Device  
Status(1)  
Package Type Package  
Drawing  
Pins  
16  
Package Qty  
2000  
Eco Plan(2)  
Lead/Ball  
Finish(6)  
MSL Peak  
Temp(3)  
Op Temp (°C) Device  
Marking(4) (5)  
ISO6740QDWR ACTIVE  
Q1  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
DW  
DW  
DW  
Green (RoHS & NIPDAU  
no Sb/Br)  
Level-2-260C-1 --40 to 125  
YEAR  
ISO6740  
ISO6740FQDW ACTIVE  
RQ1  
16  
2000  
Green (RoHS & NIPDAU  
no Sb/Br)  
Level-2-260C-1 --40 to 125  
YEAR  
ISO6740F  
ISO6741  
ISO6741F  
ISO6742  
ISO6742F  
ISO6741QDWR ACTIVE  
Q1  
16  
2000  
Green (RoHS & NIPDAU  
no Sb/Br)  
Level-2-260C-1 --40 to 125  
YEAR  
ISO6741FQDW ACTIVE  
RQ1  
16  
2000  
Green (RoHS & NIPDAU  
no Sb/Br)  
Level-2-260C-1 --40 to 125  
YEAR  
ISO6742QDWR ACTIVE  
Q1  
16  
2000  
Green (RoHS & NIPDAU  
no Sb/Br)  
Level-2-260C-1 --40 to 125  
YEAR  
ISO6742FQDW ACTIVE  
RQ1  
16  
2000  
Green (RoHS & NIPDAU  
no Sb/Br)  
Level-2-260C-1 --40 to 125  
YEAR  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
13.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
P1 Pitch between successive cavity centers  
W
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
ISO6740QDWRQ1  
ISO6740FQDWRQ1  
ISO6741QDWRQ1  
ISO6741FQDWRQ1  
ISO6742QDWRQ1  
ISO6742FQDWRQ1  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
16  
16  
2000  
2000  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
10.9  
10.9  
10.9  
10.9  
10.9  
10.9  
10.7  
10.7  
10.7  
10.7  
10.7  
10.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
 
ISO6740-Q1, ISO6741-Q1, ISO6742-Q1  
SLLSFG4A – AUGUST 2020 – REVISED JANUARY 2021  
www.ti.com  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
SOIC  
Package Drawing Pins  
SPQ  
2000  
2000  
2000  
2000  
2000  
2000  
Length (mm) Width (mm)  
Height (mm)  
45.0  
ISO6740QDWRQ1  
ISO6740FQDWRQ1  
ISO6741QDWRQ1  
ISO6741FQDWRQ1  
ISO6742QDWRQ1  
ISO6742FQDWRQ1  
DW  
DW  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
16  
16  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
SOIC  
45.0  
SOIC  
45.0  
SOIC  
45.0  
SOIC  
45.0  
SOIC  
45.0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ISO6740-Q1 ISO6741-Q1 ISO6742-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO6740FQDWRQ1  
ISO6740QDWRQ1  
PREVIEW  
SOIC  
SOIC  
DW  
16  
16  
2000 RoHS (In work)  
& Non-Green  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
PREVIEW  
DW  
2000 RoHS (In work)  
& Non-Green  
Call TI  
ISO6741FQDWRQ1  
ISO6741QDWRQ1  
ISO6742FQDWRQ1  
PREVIEW  
PREVIEW  
PREVIEW  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
16  
16  
16  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
Call TI  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
ISO6741F  
ISO6741  
2000 RoHS (In work)  
& Non-Green  
ISO6742QDWRQ1  
XISO6740FQDWRQ1  
XISO6740QDWRQ1  
XISO6741FQDWRQ1  
XISO6741QDWRQ1  
PREVIEW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
16  
2000 RoHS (In work)  
& Non-Green  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2000 RoHS (In work)  
& Non-Green  
2000 RoHS (In work)  
& Non-Green  
2000 RoHS (In work)  
& Non-Green  
2000 RoHS (In work)  
& Non-Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2021  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF ISO6740-Q1, ISO6741-Q1, ISO6742-Q1 :  
Catalog: ISO6740, ISO6741, ISO6742  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DW 16  
7.5 x 10.3, 1.27 mm pitch  
SOIC - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224780/A  
www.ti.com  
PACKAGE OUTLINE  
DW0016A  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A B  
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4220721/A 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016A  
SOIC - 2.65 mm max height  
SOIC  
16X (2)  
SEE  
DETAILS  
SYMM  
1
16  
16X (0.6)  
SYMM  
14X (1.27)  
R0.05 TYP  
9
8
(9.3)  
LAND PATTERN EXAMPLE  
SCALE:7X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220721/A 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016A  
SOIC - 2.65 mm max height  
SOIC  
16X (2)  
SYMM  
1
16  
16X (0.6)  
SYMM  
14X (1.27)  
R0.05 TYP  
8
9
(9.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:7X  
4220721/A 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY