ISO6763F-Q1 [TI]

ISO676x-Q1 General-Purpose Six-Channel Automotive Reinforced Digital Isolators with Robust EMC;
ISO6763F-Q1
型号: ISO6763F-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

ISO676x-Q1 General-Purpose Six-Channel Automotive Reinforced Digital Isolators with Robust EMC

文件: 总37页 (文件大小:1874K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
ISO676x-Q1 General-Purpose Six-Channel Automotive Reinforced Digital Isolators  
with Robust EMC  
1 Features  
3 Description  
AEC-Q100 qualified with the following results:  
– Device temperature Grade 1: –40°C to +125°C  
ambient operating temperature range  
Meets VDA320 isolation requirements  
50 Mbps data rate  
The ISO676x-Q1 devices are high-performance,  
six-channel digital isolators ideal for cost-sensitive  
applications requiring up to 5000 VRMS isolation  
ratings per UL 1577. These devices are also certified  
by VDE, TUV, CSA, and CQC.  
Robust isolation barrier:  
The  
ISO676x-Q1  
devices  
provide  
high  
– High lifetime at 1500 VRMS working voltage  
– Up to 5000 VRMS isolation rating  
– Up to 10 kV surge capability  
– ±75 kV/μs typical CMTI  
Wide supply range: 1.71 V to 1.89 V and 2.25 V to  
5.5 V  
1.71 V to 5.5 V level translation  
Default output high (ISO676x-Q1) and low  
(ISO676xF-Q1) options  
1.6 mA per channel typical at 1 Mbps  
Low propagation delay: 11 ns typical  
Robust electromagnetic compatibility (EMC)  
– System-level ESD, EFT, and surge immunity  
– Low emissions  
electromagnetic immunity and low emissions at  
low power consumption, while isolating CMOS or  
LVCMOS digital I/Os. Each isolation channel has a  
logic input and output buffer separated by TI's double  
capacitive silicon dioxide (SiO2) insulation barrier. The  
ISO676x family of devices is available in all possible  
pin configurations such that all six channels are in the  
same direction, or one, two, or three channels are in  
reverse direction while the remaining channels are in  
forward direction. In the event of input power or signal  
loss, the default output is high for devices without  
suffix F and low for devices with suffix F. See Device  
Functional Modes section for further details.  
Used in conjunction with isolated power supplies,  
these devices help prevent noise currents on data  
buses, such as CAN and LIN from damaging sensitive  
circuitry. Through innovative chip design and layout  
techniques, the electromagnetic compatibility of the  
ISO6763-Q1 devices has been significantly enhanced  
to ease system-level ESD, EFT, surge, and emissions  
compliance. The ISO676x-Q1 family of devices is  
available in a 16-pin SOIC wide-body (DW) package  
and is a pin-to-pin upgrade to the older generations.  
Wide-SOIC (DW-16) Package  
Safety-Related Certifications (pending):  
– DIN V VDE 0884-11:2017-01  
– UL 1577 component recognition program  
– IEC 60950-1, IEC 62368-1, IEC 61010-1,  
IEC60601-1 and GB 4943.1-2011 certifications  
2 Applications  
Hybrid, electric and power train system (EV/HEV)  
Battery management system (BMS)  
On-board charger  
Device Description  
DC/DC converter  
Inverter and motor control  
Part Number  
ISO6763-Q1,  
Package  
Body Size  
10.30 mm × 7.50  
mm  
SOIC (DW)  
ISO6763F-Q1  
VCCO  
VCCI  
Series Isolation  
Capacitors  
INx  
OUTx  
GNDI  
GNDO  
Copyright © 2016, Texas Instruments Incorporated  
VCCI=Input supply, VCCO=Output supply  
GNDI=Input ground, GNDO=Output ground  
Simplified Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change  
without notice.  
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................6  
6.5 Power Ratings ............................................................6  
6.6 Insulation Specifications ............................................ 7  
6.7 Safety-Related Certifications ..................................... 8  
6.8 Safety Limiting Values ................................................8  
6.9 Electrical Characteristics—5-V Supply ...................... 9  
6.10 Supply Current Characteristics—5-V Supply ...........9  
6.11 Electrical Characteristics—3.3-V Supply ................10  
6.12 Supply Current Characteristics—3.3-V Supply ......10  
6.13 Electrical Characteristics—2.5-V Supply ...............11  
6.14 Supply Current Characteristics—2.5-V Supply ...... 11  
6.15 Electrical Characteristics—1.8-V Supply ............... 12  
6.16 Supply Current Characteristics—1.8-V Supply ......12  
6.17 Switching Characteristics—5-V Supply ..................13  
6.18 Switching Characteristics—3.3-V Supply ...............14  
6.19 Switching Characteristics—2.5-V Supply ...............15  
6.20 Switching Characteristics—1.8-V Supply ...............16  
7 Parameter Measurement Information..........................17  
8 Detailed Description......................................................18  
8.1 Overview...................................................................18  
8.2 Functional Block Diagram.........................................18  
8.3 Feature Description...................................................19  
8.4 Device Functional Modes..........................................20  
9 Layout.............................................................................26  
9.1 Layout Guidelines..................................................... 26  
9.2 Layout Example........................................................ 27  
10 Device and Documentation Support..........................28  
10.1 Documentation Support.......................................... 28  
10.2 Receiving Notification of Documentation Updates..28  
10.3 Support Resources................................................. 28  
10.4 Trademarks.............................................................28  
10.5 Electrostatic Discharge Caution..............................28  
10.6 Glossary..................................................................28  
11 Mechanical, Packaging, and Orderable  
Information.................................................................... 28  
11.1 Package Option Addendum.................................... 31  
11.2 Tape and Reel Information......................................32  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Date  
Revision  
Notes  
August 2021  
*
Initial Release  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
5 Pin Configuration and Functions  
VCC1  
INA  
1
2
3
4
5
6
16  
15  
14  
13  
12  
11  
10  
9
VCC2  
OUTA  
OUTB  
OUTC  
IND  
INB  
INC  
OUTD  
OUTE  
INE  
INF  
OUTF  
GND1  
7
8
GND2  
Not to scale  
Figure 5-1. ISO6763-Q1 DW Package 16-Pin SOIC-WB Top View  
Table 5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND1  
GND2  
INA  
ISO6763-Q1  
8
Ground connection for VCC1  
Ground connection for VCC2  
Input, channel A  
9
2
I
I
I
I
INB  
3
Input, channel B  
INC  
4
Input, channel C  
IND  
12  
Input, channel D  
INE  
INF  
11  
10  
I
I
Input, channel E  
Input, channel F  
OUTA  
OUTB  
OUTC  
15  
14  
13  
5
O
O
O
O
Output, channel A  
Output, channel B  
Output, channel C  
Output, channel D  
OUTD  
OUTE  
OUTF  
6
7
O
Output, channel E  
O
Output, channel F  
VCC1  
VCC2  
1
Power supply, side 1  
Power supply, side 2  
16  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISO6763-Q1  
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
See(1)  
MIN  
-0.5  
-0.5  
-0.5  
-0.5  
-15  
MAX  
UNIT  
VCC1 to GND1  
Supply Voltage (2)  
6
V
V
VCC2 to GND2  
6
VCCX + 0.5 (3)  
VCCX + 0.5 (3)  
15  
INx to GNDx  
Input/Output  
Voltage  
OUTx to GNDx  
Output Current  
Io  
mA  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
Temperature  
-65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
(1) (2)  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±6000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
 
 
 
 
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
6.3 Recommended Operating Conditions  
MIN  
1.71  
2.25  
1.71  
2.25  
NOM  
MAX  
1.89  
5.5  
UNIT  
(1)  
VCC1  
VCC1  
VCC2  
VCC2  
Vcc  
Supply Voltage Side 1 (3)  
Supply Voltage Side 1 (3)  
Supply Voltage Side 2 (3)  
Supply Voltage Side 2 (3)  
V
V
V
V
(1)  
(1)  
(1)  
1.89  
5.5  
UVLO threshold when supply voltage is rising  
UVLO threshold when supply voltage is falling  
Supply voltage UVLO hysteresis  
1.53  
1.41  
0.13  
1.71  
V
V
V
V
(UVLO+)  
Vcc  
1.1  
(UVLO-)  
Vhys  
0.08  
(UVLO)  
0.7 x VCC(2I)  
VIH  
VIL  
High level Input voltage  
VCCI  
Low level Input voltage  
0
-4  
-2  
-1  
-1  
0.3 x VCCI  
V
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Mbps  
°C  
(2)  
VCCO  
= 5 V  
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 1.8 V  
VCCO = 5 V  
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 1.8 V  
IOH  
High level output current  
Low level output current  
4
2
IOL  
1
1
DR  
TA  
Data Rate  
0
50  
125  
Ambient temperature  
-40  
25  
(1) VCC1 and VCC2 can be set independent of one another  
(2) VCCI = Input-side VCC; VCCO = Output-side VCC  
(3) The channel outputs are in undetermined state when 1.89 V < VCC1, VCC2 < 2.25 V and 1.05 V < VCC1, VCC2 < 1.71 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISO6763-Q1  
 
 
 
 
ISO6763-Q1  
www.ti.com  
UNIT  
SLLSFK2 – AUGUST 2021  
6.4 Thermal Information  
ISO676x  
DW (SOIC)  
16 PINS  
68.8  
THERMAL METRIC (1)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
31.8  
32.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
13.5  
ψJB  
32.1  
RθJC(bot)  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISO6763  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL =  
Maximum power dissipation (both sides) 15 pF, Input a 25-MHz 50% duty cycle  
square wave  
PD  
196  
98  
mW  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL =  
PD1  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
15 pF, Input a 25-MHz 50% duty cycle  
square wave  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL =  
15 pF, Input a 25-MHz 50% duty cycle  
square wave  
PD2  
98  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
6.6 Insulation Specifications  
VALUE  
UNIT  
DW-16  
PARAMETER  
TEST CONDITIONS  
CLR  
CPG  
External clearance(1)  
External creepage(1)  
Shortest terminal-to-terminal distance through air  
>8  
>8  
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
>17  
>600  
I
um  
V
Rated mains voltage ≤ 600 VRMS  
Rated mains voltage ≤ 1000 VRMS  
I-IV  
I-III  
Overvoltage category per IEC 60664-1  
DIN VDE V 0884-11:2017-01(2)  
VIORM Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
2121  
1500  
2121  
VPK  
VRMS  
VDC  
AC voltage; Time dependent dielectric breakdown  
(TDDB) Test;  
See Figure 9-4  
VIOWM  
Maximum working isolation voltage  
DC voltage  
VTEST = VIOTM  
t = 60 s (qualification);  
VTEST = 1.2 x VIOTM  
,
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
7071  
VPK  
,
t= 1 s (100% production)  
Test method per IEC 62368-1, 1.2/50 µs waveform,  
VTEST = 1.6 x VIOSM = 10,000 VPK (qualification)  
VIOSM  
6250  
≤5  
VPK  
Method a, After Input-output safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.2 x VIORM, tm = 10 s  
Method a, After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 x VIORM, tm = 10 s  
≤5  
≤5  
qpd  
Apparent charge(4)  
pC  
Method b1; At routine test (100% production) and  
preconditioning (type test)  
Vini = 1.2 x VIOTM, tini = 1 s;  
Vpd(m) = 1.875 x VIORM, tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Isolation resistance(5)  
VIO = 0.4 x sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
~1  
pF  
Ω
>1012  
>1011  
>109  
2
VIO = 500 V, 100°C ≤ TA ≤ 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
40/125/21  
UL 1577  
VTEST = VISO , t = 60 s (qualification),  
VTEST = 1.2 x VISO , t = 1 s (100% production)  
VISO  
Maximum withstanding isolation voltage  
5000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of  
the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become  
equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed-circuit board are used to help increase these  
specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISO6763-Q1  
 
 
 
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
6.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Plan to certify according  
Plan to certify according to to EN 61010-1:2010/  
Plan to certify according to Plan to certify according to Plan to certify according  
DIN VDE V 0884-11:2017- IEC 62368-1, IEC 61010-1 to UL 1577 Component  
GB4943.1-2011  
A1:2019 and EN  
62368-1:2014  
01  
and IEC 60601  
Recognition Program  
5000 VRMS insulation  
per CSA 62368-1:19,  
IEC 62368-1:2018, CSA  
61010-1-12+A1 and IEC  
61010-1 3rd Ed., 1000  
VRMS basic and 600  
Maximum transient  
isolation  
5000 VRMS reinforced  
insulation per EN  
61010-1:2010/A1:2019  
and EN 62368-1:2014 up  
to working voltage of 600  
VRMS  
Reinforced insulation,  
Altitude ≤ 5000 m, Tropical  
Climate,  
700 VRMS  
maximum working voltage  
voltage, 7071 VPK  
;
Maximum repetitive peak VRMS reinforced working  
Single protection,  
5000 VRMS  
isolation  
voltage (pollution degree  
2, material group I);  
Maximum surge isolation 5000 VRMS insulation per  
voltage, 2121 VPK  
;
voltage, 6250 VPK  
CSA 60601-1-14 and  
IEC 60601-1 Ed.3+A1, 2  
MOPP for 250 VRMS  
Certificate planned  
Certificate planned  
Certificate planned  
Certificate planned  
Certificate planned  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DW-16 PACKAGE  
RθJA =68.8°C/W, VI = 5.5 V, TJ = 150°C,  
TA = 25°C  
330  
504  
660  
956  
mA  
mA  
mA  
mA  
RθJA = 68.8°C/W, VI = 3.6 V, TJ = 150°C,  
TA = 25°C  
IS  
Safety input, output, or supply current (1)  
RθJA = 68.8°C/W, VI = 2.75 V, TJ = 150°C,  
TA = 25°C  
RθJA = 68.8°C/W, VI = 1.89 V, TJ = 150°C,  
TA = 25°C  
PS  
TS  
Safety input, output, or total power (1)  
Maximum safety temperature (1)  
RθJA = 68.8°C/W, TJ = 150°C, TA = 25°C  
1820  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The  
IS and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
6.9 Electrical Characteristics—5-V Supply  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
IOH = -4 mA; See Figure 7-1  
IOL = 4 mA; See Figure 7-1  
VCCO - 0.4  
V
VOL  
0.4  
V
V
(1)  
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
Rising input switching threshold  
Falling input switching threshold  
Input threshold voltage hysteresis  
High-level input current  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
V
V
VIH = VCCI (1) at INx  
10  
µA  
µA  
kV/us  
IIL  
Low-level input current  
VIL = 0 V at INx  
-10  
50  
CMTI  
Common mode transient immunity  
VI = VCC or 0 V, VCM = 1200 V  
75  
VI = VCC/ 2 + 0.4×sin(2πft), f = 2  
MHz, VCC = 5 V ; See Figure 7-3  
Ci  
Input Capacitance (2)  
2.8  
pF  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.10 Supply Current Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted).  
SUPPLY  
CURRENT  
PARAMETER  
ISO6763  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VI = VCCI (ISO6763); VI = 0 V (ISO6763 with F suffix)  
VI = 0 V (ISO6763); VI = VCCI (ISO6763 with F suffix)  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
3
6.3  
4.7  
9
Supply current - DC signal  
4.8  
7
9
mA  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
10 Mbps  
6.6  
50 Mbps  
14.4  
17.8  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISO6763-Q1  
 
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
6.11 Electrical Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
IOH = -2mA ; See Figure 7-1  
IOL = 2mA ; See Figure 7-1  
MIN  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
Rising input switching threshold  
Falling input switching threshold  
VCCO - 0.2  
V
VOL  
0.2  
V
V
V
(1)  
VIT+(IN)  
VIT-(IN)  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
Input threshold voltage  
hysteresis  
VI(HYS)  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
10  
µA  
µA  
-10  
50  
Common mode transient  
immunity  
CMTI  
Ci  
VI = VCC or 0 V, VCM = 1200 V  
75  
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
2 MHz, VCC = 3.3 V ; See Figure  
7-3  
Input Capacitance(2)  
2.8  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.12 Supply Current Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted).  
SUPPLY  
CURRENT  
PARAMETER  
ISO6763  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VI = VCCI (ISO6763); VI = 0 V (ISO6763 with F suffix)  
VI = 0 V (ISO6763); VI = VCCI (ISO6763 with F suffix)  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
3
6.2  
4.8  
6
4.6  
8.9  
Supply current - DC signal  
6.9  
8.4  
mA  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
10 Mbps  
50 Mbps  
11.6  
14.7  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
6.13 Electrical Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
IOH = -1mA ; See Figure 7-1  
IOL = 1mA ; See Figure 7-1  
MIN  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
Rising input switching threshold  
Falling input switching threshold  
VCCO - 0.1  
V
VOL  
0.1  
V
V
V
(1)  
VIT+(IN)  
VIT-(IN)  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
Input threshold voltage  
hysteresis  
VI(HYS)  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
10  
µA  
µA  
-10  
50  
Common mode transient  
immunity  
CMTI  
Ci  
VI = VCC or 0 V, VCM = 1200 V  
75  
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
2 MHz, VCC = 2.5 V ; See Figure  
7-3  
Input Capacitance(2)  
2.8  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.14 Supply Current Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted).  
SUPPLY  
CURRENT  
PARAMETER  
ISO6763  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VI = VCCI (ISO6763); VI = 0 V (ISO6763 with F suffix)  
VI = 0 V (ISO6763); VI = VCCI (ISO6763 with F suffix)  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
3
6.2  
4.7  
5.6  
9.8  
4.6  
8.9  
Supply current - DC signal  
6.9  
7.9  
mA  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
10 Mbps  
50 Mbps  
12.7  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISO6763-Q1  
 
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
6.15 Electrical Characteristics—1.8-V Supply  
VCC1 = VCC2 = 1.8 V ±10% (over recommended operating conditions unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
IOH = -1mA ; See Figure 7-1  
IOL = 1mA ; See Figure 7-1  
MIN  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
VCCO - 0.1  
V
VOL  
0.1  
V
V
(1)  
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
Rising input switching threshold  
Falling input switching threshold  
Input threshold voltage hysteresis  
High-level input current  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
V
V
VIH = VCCI (1) at INx  
10  
µA  
µA  
kV/us  
IIL  
Low-level input current  
VIL = 0 V at INx  
-10  
50  
CMTI  
Common mode transient immunity  
VI = VCC or 0 V, VCM = 1200 V  
75  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
2 MHz, VCC = 1.8 V ; See Figure  
7-3  
Ci  
Input Capacitance(2)  
2.8  
pF  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.16 Supply Current Characteristics—1.8-V Supply  
VCC1 = VCC2 = 1.8 V ±10% (over recommended operating conditions unless otherwise noted).  
SUPPLY  
CURRENT  
PARAMETER  
ISO6763  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VI = VCCI (ISO6763); VI = 0 V (ISO6763 with F suffix)  
VI = 0 V (ISO6763); VI = VCCI (ISO6763 with F suffix)  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
2.6  
5.7  
4.2  
4.9  
7.9  
4.3  
8.6  
Supply current - DC signal  
6.5  
7.3  
mA  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
10 Mbps  
50 Mbps  
10.5  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
6.17 Switching Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISO676x  
Propagation delay  
time  
tPLH, tPHL  
Propagation delay time  
See TBD  
See TBD  
11  
18  
7
ns  
ns  
Pulse width  
PWD  
tsk(o)  
Pulse width distortion(1) |tPHL – tPLH  
|
distortion(1) |tPHL  
tPLH  
|
Channel-to-  
Channel-to-channel output skew time(2) channel output  
skew time(2)  
Same-direction channels  
6
ns  
Part-to-part skew  
time(3)  
tsk(pp)  
Part-to-part skew time(3)  
Output signal rise time  
6
4.5  
4.5  
300  
ns  
ns  
ns  
us  
Output signal rise  
time  
tr  
tf  
See TBD  
See TBD  
Output signal fall  
time  
Output signal fall time  
Time from UVLO to  
valid output data  
Time from UVLO to valid output data  
tPU  
Default output  
delay time from  
input power loss  
Default output delay time from input  
power loss  
Measured from the time VCC goes  
below 1.2V. See TBD  
tDO  
tie  
0.1  
1
0.3  
us  
ns  
Time interval error  
Time interval error 216 – 1 PRBS data at 50 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISO6763-Q1  
 
 
 
 
ISO6763-Q1  
www.ti.com  
MAX UNIT  
SLLSFK2 – AUGUST 2021  
6.18 Switching Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
ISO676x  
Propagation delay  
time  
tPLH, tPHL  
Propagation delay time  
See TBD  
See TBD  
11  
18  
7
ns  
ns  
Pulse width  
PWD  
tsk(o)  
Pulse width distortion(1) |tPHL – tPLH  
|
distortion(1) |tPHL  
tPLH  
|
Channel-to-  
Channel-to-channel output skew time(2) channel output  
skew time(2)  
Same-direction channels  
6
ns  
Part-to-part skew  
time(3)  
tsk(pp)  
Part-to-part skew time(3)  
Output signal rise time  
7
3.2  
3.2  
300  
ns  
ns  
ns  
us  
Output signal rise  
time  
tr  
tf  
See TBD  
See TBD  
Output signal fall  
time  
Output signal fall time  
Time from UVLO to  
valid output data  
Time from UVLO to valid output data  
tPU  
Default output  
delay time from  
input power loss  
Default output delay time from input  
power loss  
Measured from the time VCC goes  
below 1.2V. See TBD  
tDO  
tie  
0.1  
1
0.3  
us  
ns  
Time interval error  
Time interval error 216 – 1 PRBS data at 50 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
6.19 Switching Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISO676x  
Propagation delay  
time  
tPLH, tPHL  
Propagation delay time  
See TBD  
See TBD  
12  
20.5  
7.1  
ns  
ns  
Pulse width  
PWD  
tsk(o)  
Pulse width distortion(1) |tPHL – tPLH  
|
distortion(1) |tPHL  
tPLH  
|
Channel-to-  
Channel-to-channel output skew time(2) channel output  
skew time(2)  
Same-direction channels  
6
ns  
Part-to-part skew  
time(3)  
tsk(pp)  
Part-to-part skew time(3)  
Output signal rise time  
7
4
ns  
ns  
ns  
us  
Output signal rise  
time  
tr  
tf  
See TBD  
See TBD  
Output signal fall  
time  
Output signal fall time  
4
Time from UVLO to  
valid output data  
Time from UVLO to valid output data  
300  
tPU  
Default output  
delay time from  
input power loss  
Default output delay time from input  
power loss  
Measured from the time VCC goes  
below 1.2V. See TBD  
tDO  
tie  
0.1  
1
0.3  
us  
ns  
Time interval error  
Time interval error 216 – 1 PRBS data at 50 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISO6763-Q1  
 
 
 
 
ISO6763-Q1  
www.ti.com  
MAX UNIT  
SLLSFK2 – AUGUST 2021  
6.20 Switching Characteristics—1.8-V Supply  
VCC1 = VCC2 = 1.8 V ±5% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
ISO676x  
Propagation delay  
time  
tPLH, tPHL  
Propagation delay time  
See TBD  
See TBD  
15  
24  
ns  
ns  
Pulse width  
PWD  
tsk(o)  
Pulse width distortion |tPHL – tPLH  
|
distortion |tPHL  
tPLH  
8.2  
|
Channel-to-  
Channel-to-channel output skew time(1) channel output  
skew time(1)  
Same-direction channels  
6
ns  
Part-to-part skew  
time(2)  
tsk(pp)  
Part-to-part skew time(2)  
Output signal rise time  
8.8  
4.7  
4.7  
300  
ns  
ns  
ns  
us  
Output signal rise  
time  
tr  
tf  
See TBD  
See TBD  
Output signal fall  
time  
Output signal fall time  
Time from UVLO to  
valid output data  
Time from UVLO to valid output data  
tPU  
Default output  
delay time from  
input power loss  
Default output delay time from input  
power loss  
Measured from the time VCC goes  
below 1.2V. See TBD  
tDO  
tie  
0.1  
1
0.3  
us  
ns  
Time interval error  
Time interval error 216 – 1 PRBS data at 50 Mbps  
(1) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
7 Parameter Measurement Information  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
V
t
t
PHL  
PLH  
Input  
Generator  
(See Note A)  
C
L
V
I
V
50  
O
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
Copyright © 2016, Texas Instruments Incorporated  
A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3ns, ZO  
50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
=
Figure 7-1. Switching Characteristics Test Circuit and Voltage Waveforms  
V
I
See Note B  
V
CC  
V
CC  
V
1.4 V  
I
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. Power Supply Ramp Rate = 10 mV/ns  
Figure 7-2. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CCO  
CCI  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
C
L
V
or V  
OL  
OH  
See Note A  
œ
GNDO  
GNDI  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. For optimized CMTI performance, a 0.1 μF + 1 μF decoupling capacitor should be placed close to VCC1 and VCC2. Please see Section  
9.2 for capacitor placement details. A recommended 0.1μF capacitor is LLL185R71A104MA11L (CAP CER 0.1UF 10V X7R 0306 - LW  
Reversed Low ESL Chip Ceramic Capacitors) or equivalent.  
Figure 7-3. Common-Mode Transient Immunity Test Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISO6763-Q1  
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The ISO676x-Q1 family of devices have an ON-OFF keying (OOK) modulation scheme to transmit the digital  
data across a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across  
the barrier to represent one digital state and sends no signal to represent the other digital state. The receiver  
demodulates the signal after advanced signal conditioning and produces the output through a buffer stage. If the  
ENx pin is low then the output goes to high impedance. The ISO676x-Q1 devices also incorporate advanced  
circuit techniques to maximize the CMTI performance and minimize the radiated emissions due to the high  
frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, Figure  
8-1, shows a functional block diagram of a typical channel.  
8.2 Functional Block Diagram  
Transmitter  
Receiver  
EN  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
Copyright © 2016, Texas Instruments Incorporated  
Figure 8-1. Conceptual Block Diagram of a Digital Capacitive Isolator  
Figure 8-2 shows a conceptual detail of how the ON-OFF keying scheme works.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
Figure 8-2. On-Off Keying (OOK) Based Modulation Scheme  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
 
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
8.3 Feature Description  
Table 8-1 provides an overview of the device features.  
Table 8-1. Device Features  
MAXIMUM DATA  
RATE  
DEFAULT  
OUTPUT  
PART NUMBER  
ISO6763-Q1  
CHANNEL DIRECTION  
PACKAGE  
DW-16  
RATED ISOLATION(1)  
5000 VRMS / 8000 VPK  
5000 VRMS / 8000 VPK  
3 Forward,  
3 Reverse  
50 Mbps  
50 Mbps  
High  
Low  
3 Forward,  
3 Reverse  
ISO6763F-Q1  
DW-16  
(1) See for detailed isolation ratings.  
8.3.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 25. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO676x-  
Q1 family of devices incorporates many chip-level design improvements for overall system robustness. Some of  
these improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISO6763-Q1  
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
8.4 Device Functional Modes  
Table 8-2 lists the functional modes for the ISO676x-Q1 devices.  
Table 8-2. Function Table  
INPUT  
OUTPUT  
(OUTx)  
(1)  
VCCI  
VCCO  
COMMENTS  
(INx) (3)  
H
L
H
L
Normal Operation: A channel output assumes the logic state of its input.  
PU  
PU  
Default mode: When INx is open, the corresponding channel output goes to its  
default logic state. Default is High for ISO676x-Q1 and Low for ISO676x-Q1  
with F suffix.  
Open  
Default  
Default mode: When VCCI is unpowered, a channel output assumes the logic  
state based on the selected default option. Default is High for ISO676x-Q1  
and Low for ISO676x-Q1 with F suffix. When VCCI transitions from unpowered  
to powered-up, a channel output assumes the logic state of the input. When  
VCCI transitions from powered-up to unpowered, channel output assumes the  
selected default state.  
PD  
X
PU  
PD  
X
X
Default  
When VCCO is unpowered, a channel output is undetermined(2). When VCCO  
transitions from unpowered to powered-up, a channel output assumes the  
logic state of the input.  
Undetermined  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC ≥ 1.71 V); PD = Powered down (VCC ≤ 1.05 V); X = Irrelevant;  
H = High level; L = Low level ; Z = High Impedance  
(2) The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V and 1.05 V < VCCI, VCCO < 1.71 V  
(3) A strongly driven input signal can weakly power the floating VCC through an internal protection diode and cause undetermined output  
8.4.1 Device I/O Schematics  
Input (Devices with F suffix)  
Input (Devices without F suffix)  
V
V
CCI  
V
CCI  
V
CCI  
CCI  
V
CCI  
V
V
CCI  
CCI  
1.5 M  
985 ꢀ  
985 ꢀ  
INx  
INx  
1.5 Mꢀ  
Output  
V
CCO  
~20 ꢀ  
OUTx  
Figure 8-3. Device I/O Schematics  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
 
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and  
TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The ISO676x-Q1 devices are high-performance, quad-channel digital isolators. The ISO676x-Q1 devices use  
single-ended CMOS-logic switching technology. The supply voltage range is from 1.71 V to 5.5 V for both  
supplies, VCC1 and VCC2. Since an isolation barrier separates the two sides, each side can be sourced  
independently with any voltage within recommended operating conditions. As an example, it is possible to  
supply ISO676x-Q1 VCC1 with 3.3 V (which is within 1.71 V to 5.5 V) and VCC2 with 5V (which is also within 1.71  
V to 5.5 V). You can use the digital isolator as a logic-level translator in addition to providing isolation. When  
designing with digital isolators, keep in mind that because of the single-ended design structure, digital isolators  
do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL  
digital signal lines. The isolator is typically placed between the data controller (that is, MCU or FPGA), and a  
data converter or a line transceiver, regardless of the interface type or standard.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISO6763-Q1  
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
9.2 Typical Application  
Figure 9-1 shows the isolated serial-peripheral interface (SPI) and controller-area network (CAN) interface  
implementation.  
VS  
10 F  
3.3 V  
2
MBR0520L  
Vcc  
1:1.33  
ISO 3.3V  
3
1
1
5
D2  
D1  
IN  
OUT  
10 F  
TPS76333-Q1  
2
4
6
SN6501-Q1  
VIN  
VOUT  
0.1 F  
10 F  
3
2
EN  
GND  
1 µF  
REF5025A-Q1  
GND  
22 µF  
MBR0520L  
GND  
GND  
4
5
ISO Barrier  
0.1 F  
0.1 µF  
0.1 F  
8
7
36  
5
4
16  
1
0.1 F  
AINP MXO +VBD +VA REFP  
31  
VCC2  
28  
VCC1  
CS  
CH0  
32  
33  
34  
2
3
SCLK  
SDI  
16 Analog  
Inputs  
INA  
OUTA  
OUTB  
29, 57  
ADS7953-Q1  
44  
15  
14  
INB  
11  
SPICLKA  
VDDIO  
SDO  
CH15  
33  
BDGND AGND  
27 1, 22  
REFM  
30  
4
6
ISO6762-Q1  
INC  
SPISIMOA  
SPISOMIA  
OUTC  
INE  
36  
34  
13  
OUTE  
11  
10  
TMS320F28035Q  
7
5
CANRXA  
CANTXA  
INF  
OUTF  
IND  
0.1 F  
26  
25  
OUTD  
12  
3
VSS  
VCC  
RS  
8
GND1  
8
GND2  
9
10 (optional)  
6, 28  
4
1
R
CANH  
CAN Bus  
7
6
SN65HVD231Q-Q1  
CANL  
Vref  
10 (optional)  
D
GND  
5
SM712  
2
4.7 nF /  
2 kV  
Figure 9-1. Isolated SPI and CAN Interface  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
9.2.1 Design Requirements  
To design with these devices, use the parameters listed in Table 9-1.  
Table 9-1. Design Parameters  
PARAMETER  
VALUE  
Supply voltage, VCC1 and VCC2  
1.71 V to 1.89 V and 2.25 V to 5.5 V  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
0.1 µF  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,  
the ISO676x-Q1 family of devices only require two external bypass capacitors to operate.  
0.1 µF  
0.1 µF  
VCC1  
1
16  
VCC2  
2
3
INA  
INB  
15  
14  
OUTA  
OUTB  
13  
OUTC  
INC  
4
OUTD  
OUTE  
12  
11  
10  
9
IND  
INE  
5
6
7
8
OUTF  
INF  
GND1  
GND2  
Figure 9-2. Typical ISO676x-Q1 Circuit Hook-up  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISO6763-Q1  
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
9.2.3 Application Curve  
9.2.3.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See Figure 9-3 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation  
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for  
lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20%  
higher than the specified value.  
Figure 9-4 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the intrinsic capability of the insulation is 1500 VRMS with a lifetime of 220 years. Other  
factors, such as package size, pollution degree, material group, etc. can further limit the working voltage of the  
component. The working voltage of DW-16 package is specified upto 1500 VRMS. At the lower working voltages,  
the corresponding insulation lifetime is much longer than 220 years.  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
Figure 9-3. Test Setup for Insulation Lifetime Measurement  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
Figure 9-4. Insulation Lifetime Projection Data  
Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended  
at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply  
pins as possible. If only a single primary-side power supply is available in an application, isolated power can  
be generated for the secondary-side with the help of a transformer driver. For automotive applications, please  
use SN6501-Q1 or SN6505B-Q1. For such applications, detailed power supply design and transformer selection  
recommendations are available in SN6501-Q1 Transformer Driver for Isolated Power Supplies or SN6505B-Q1  
Automotive, low-noise, 1-A, 420-kHz transformer driver with soft start for isolated power supplies.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISO6763-Q1  
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
9 Layout  
9.1 Layout Guidelines  
A minimum of two layers is required to accomplish a low EMI PCB design. To further improve EMI, a four layer  
board can be used (see Figure 9-2). Layer stacking for a four layer board should be in the following order  
(top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/inch2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system  
to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping.  
Also the power and ground plane of each power system can be placed closer together, thus increasing the  
high-frequency bypass capacitance significantly.  
For detailed layout recommendations, refer to the Digital Isolator Design Guide.  
9.1.1 PCB Material  
For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths  
of up to 10 inches, use standard FR-4 UL94V-0 printed circuit boards. This PCB is preferred over cheaper  
alternatives due to its lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and self-extinguishing flammability-characteristics.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
9.2 Layout Example  
Solid supply islands reduce  
inductance because large peak  
currents flow into the VCC pin  
0.5 mm  
maximum  
from VCC1  
0.5 mm  
maximum  
from VCC2  
VCC1  
VCC2  
1
16  
0.1 F  
0.1 F  
2
3
15  
14  
I/O pins  
routed  
4
13  
through  
alternate  
layer with  
vias  
5
6
12  
11  
7
8
10  
9
GND2  
GND1  
Solid ground islands help  
dissipate heat through PCB  
Figure 9-1. Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
space free  
from planes,  
40 mils  
0 ~ 4.5  
r
traces, pads,  
and vias  
Power plane  
10 mils  
Low-speed traces  
Figure 9-2. Four Layer Board Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISO6763-Q1  
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, Isolation Glossary  
Texas Instruments, How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems  
application report  
Texas Instruments, SN6505x-Q1 Low-Noise 1-A Transformer Drivers for Isolated Power Supplies  
Texas Instruments, TCAN1044-Q1 Automotive Fault-Protected CAN FD Transceiver  
Texas Instruments, TPS763xx-Q1 Low-Power, 150-mA, Low-Dropout Linear Regulators data sheet  
Texas Instruments, TMS320F2803x Piccolo™ Microcontrollers data sheet  
10.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
10.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
10.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
 
 
 
 
 
 
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
PACKAGE OUTLINE  
DW0016A  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A B  
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4220721/A 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016A  
SOIC - 2.65 mm max height  
SOIC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISO6763-Q1  
16X (2)  
SEE  
DETAILS  
SYMM  
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016A  
SOIC - 2.65 mm max height  
SOIC  
16X (2)  
SYMM  
1
16  
16X (0.6)  
SYMM  
14X (1.27)  
8
9
R0.05 TYP  
(9.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:7X  
4220721/A 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
11.1 Package Option Addendum  
Packaging Information  
Orderable  
Device  
Status(1)  
Package Type Package  
Drawing  
Pins  
16  
Package Qty  
2000  
Eco Plan(2)  
Lead/Ball  
Finish(6)  
MSL Peak  
Temp(3)  
Op Temp (°C) Device  
Marking(4) (5)  
XISO6763QDW ACTIVE  
RQ1  
SOIC  
DW  
Green (RoHS & NIPDAU  
no Sb/Br)  
Level-2-260C-1 --40 to 125  
YEAR  
XISO6763  
XISO6763FQD  
WRQ1  
Green (RoHS & NIPDAU  
no Sb/Br)  
Level-2-260C-1 --40 to 125  
YEAR  
XISO6763  
F
ACTIVE  
SOIC  
DW  
16  
2000  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISO6763-Q1  
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
11.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
P1 Pitch between successive cavity centers  
W
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
XISO6763QDWRQ1  
XISO6763FQDWRQ1  
SOIC  
SOIC  
DW  
DW  
16  
16  
2000  
2000  
330.0  
330.0  
24.4  
24.4  
10.9  
10.9  
10.7  
10.7  
2.7  
2.7  
12.0  
12.0  
24.0  
24.0  
Q1  
Q1  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ISO6763-Q1  
 
ISO6763-Q1  
SLLSFK2 – AUGUST 2021  
www.ti.com  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
SOIC  
Package Drawing Pins  
SPQ  
Length (mm) Width (mm)  
Height (mm)  
XISO6763QDWRQ1  
XISO6763FQDWRQ1  
DW  
DW  
16  
16  
2000  
367.0  
367.0  
367.0  
367.0  
45.0  
SOIC  
2000  
45.0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ISO6763-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
XISO6763FQDWRQ1  
XISO6763QDWRQ1  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DW  
DW  
16  
16  
2000  
2000  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
OTHER QUALIFIED VERSIONS OF ISO6763-Q1 :  
Catalog : ISO6763  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DW 16  
7.5 x 10.3, 1.27 mm pitch  
SOIC - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224780/A  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY