ISO7041 [TI]

经 ATEX/IECEx 认证的超低功耗四通道数字隔离器;
ISO7041
型号: ISO7041
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

经 ATEX/IECEx 认证的超低功耗四通道数字隔离器

文件: 总35页 (文件大小:3450K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
ISO7041 超低功耗四通道数字隔离器  
1 特性  
2 应用  
1
超低功率耗散  
4mA 20mA 环路供电式现场发送器  
工厂自动化、工艺自动化  
每通道静态电流为 3.5μA (3.3V)  
低功耗 GPIOUART SPI 隔离  
100kbps 时的每通道电流为 15μA (3.3V)  
1Mbps 时的每通道电流为 116μA (3.3V)  
3 说明  
稳健可靠的隔离栅  
ISO7041 器件是一种可用于隔离 CMOS LVCMOS  
数字 I/O 的超低功耗多通道数字隔离器。每条隔离通道  
的逻辑输入和输出缓冲器均由双电容二氧化硅 (SiO2)  
绝缘栅相隔离。基于边缘的创新架构与开关键控调制方  
案相结合,使这些隔离器具有非常低的功耗,同时符合  
UL1577 规定的 3000VRMS 隔离额定值。该器件的每通  
道动态电流消耗低于 120μA/Mbps,并且 3.3V 时每通  
道静态电流消耗为 3.5μA,从而允许在功耗和热性能受  
限的系统设计中使用 ISO7041。  
预计寿命超过 100 年  
隔离额定值为 3000VRMS  
CMTI 典型值为 ±100kV/μs  
宽电源电压范围:2.25V 5.5V  
宽温度范围:  
2.25V 3.6V-55°C +125°C  
3.6V 5.5V-40°C +125°C  
小型 16-QSOP 封装 (16-DBQ)  
信号传输速率:高达 2Mbps  
默认输出高电平 (ISO7041) 低电平 (ISO7041F)  
选项  
该器件可在低至 2.25V 和高达 5.5V,并可在隔离栅的  
每一侧采用不同电源电压的情况下实现完整功能。四通  
道隔离器采用 16-QSOP 封装,具有三个正向通道和一  
个反向通道。 该器件具有默认输出高电平和低电平选  
项。如果输入功率或信号出现损失,不具有 F 后缀的  
ISO7041 器件默认输出高电平,具有 F 后缀的  
ISO7041F 器件默认输出低电平。有关更多信息,请参  
器件功能模式部分。  
优异的电磁兼容性 (EMC)  
系统级 ESDEFT 和浪涌抗扰性  
±8kV IEC 61000-4-2 跨隔离栅接触放电保护  
极低辐射  
安全相关认证(计划):  
UL 1577 组件认证计划  
DIN V VDE V 0884-11  
CQCTUV CSA 认证  
器件信息(1)  
器件型号  
ISO7041  
封装  
QSOP (16)  
封装尺寸(标称值)  
IECExIEC 60079-0 IEC 60079-11)和  
ATEX (EN 60079-11)  
4.90mm × 3.90mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化应用电路原理图  
电压为 3.3V 时的数据速率与功耗间的关系  
200  
100  
VCC2  
VCC1  
VCC1  
VCC2  
VDD  
ISO7041  
MCU  
ADC  
DGND  
10  
4
GND2  
GND1  
Galvanic  
Isolation Barrier  
Digital  
Ground  
ISO  
Ground  
1
10  
100  
Data Rate (Kbps)  
1000 2000  
D001  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF54  
 
 
 
 
 
 
 
 
 
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
目录  
8.16 Insulation Characteristics Curves ......................... 14  
8.17 Typical Characteristics.......................................... 15  
Parameter Measurement Information ................ 16  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
8.1 Absolute Maximum Ratings ...................................... 5  
8.2 ESD Ratings.............................................................. 5  
8.3 Recommended Operating Conditions....................... 5  
8.4 Thermal Information.................................................. 6  
8.5 Power Ratings........................................................... 6  
8.6 Insulation Specifications............................................ 7  
8.7 Safety-Related Certifications..................................... 8  
8.8 Safety Limiting Values .............................................. 8  
8.9 Electrical Characteristics 5V Supply ......................... 9  
8.10 Supply Current Characteristics 5V Supply.............. 9  
8.11 Electrical Characteristics 3.3V Supply .................. 11  
8.12 Supply Current Characteristics 3.3V Supply......... 11  
8.13 Electrical Characteristics 2.5V Supply .................. 13  
8.14 Supply Current Characteristics 2.5V Supply......... 13  
8.15 Switching Characteristics...................................... 14  
9
10 Detailed Description ........................................... 17  
10.1 Overview ............................................................... 17  
10.2 Functional Block Diagram ..................................... 17  
10.3 Feature Description............................................... 17  
10.4 Device Functional Modes...................................... 19  
11 Application and Implementation........................ 21  
11.1 Application Information.......................................... 21  
11.2 Typical Application ................................................ 22  
12 Power Supply Recommendations ..................... 24  
13 Layout................................................................... 25  
13.1 Layout Guidelines ................................................. 25  
13.2 Layout Example .................................................... 25  
14 器件和文档支持 ..................................................... 26  
14.1 文档支持................................................................ 26  
14.2 接收文档更新通知 ................................................. 26  
14.3 社区资源................................................................ 26  
14.4 ....................................................................... 26  
14.5 静电放电警告......................................................... 26  
14.6 Glossary................................................................ 26  
15 机械、封装和可订购信息....................................... 26  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (October 2017) to Revision A  
Page  
已更改 将器件状态更改为生产数据” ...................................................................................................................................... 1  
5 修订历史记录  
Changes from Revision A (December 2018) to Revision B  
Page  
更新首页通道静态电流以匹配表中数据................................................................................................................................... 1  
扩大电源电压范围,以支持 特性 中高达 5.5V 的电压 ............................................................................................................ 1  
分割温度范围,以便支持 特性 -40°C 的温度(电压范围 3.6V 5.5V.......................................................................... 1  
特性 中添加了“±8kV IEC 61000-4-2 跨隔离栅接触放电保护” ............................................................................................. 1  
的电压下工作在说明 中将电源电压范围提升至 5.5V .............................................................................................................. 1  
Added ±8 kV IEC 61000-4-2 contact discharge protection across isolation barrier.............................................................. 5  
Added 5 V support to Recommended Operating Conditions ................................................................................................ 5  
Added temperature range for 3.6 V to 5.5 V supply range in Recommended Operating Conditions.................................. 5  
Added power dissipation maximum numbers to support 5.5 V in Power Ratings................................................................. 6  
Added 5.5 V support in Safety Limiting Values..................................................................................................................... 8  
Added 5 V Electrical Characteristics section.......................................................................................................................... 9  
Added 5 V Supply Current Characteristics section ................................................................................................................ 9  
Added 5.5 V support to Thermal Derating Curves in Insulation Characteristics Curves ..................................................... 14  
Added 5 V Supply Current Curves to Typical Characteristics ............................................................................................. 15  
Updated Device I/O schematics removing (F version) only text in 13 ............................................................................ 20  
Extended power supply range to 5.5 V in Application Information ...................................................................................... 21  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
ISO7041  
www.ti.com.cn  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
6 Device Comparison Table  
Table 1. Device Features  
MAXIMUM DATA  
RATE  
DEFAULT  
OUTPUT  
PART NUMBER  
CHANNEL DIRECTION  
PACKAGE  
DBQ-16  
RATED ISOLATION(1)  
3000 VRMS / 4242 VPK  
3000 VRMS / 4242 VPK  
3 Forward,  
1 Reverse  
ISO7041  
2 Mbps  
2 Mbps  
High  
Low  
ISO7041 with F  
suffix  
3 Forward,  
1 Reverse  
DBQ-16  
(1) See for detailed isolation ratings.  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
7 Pin Configuration and Functions  
ISO7041 DBQ Package  
16-Pin QSOP  
Top View  
VCC1  
GND1  
INA  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCC2  
GND2  
OUTA  
OUTB  
OUTC  
IND  
INB  
INC  
OUTD  
EN1  
EN2  
GND1  
GND2  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Refresh enable 1. Refresh is enabled when the EN1 pin is connected to GND1. Disable  
refresh by connecting the EN1 pin high to VCC1. EN1 and EN2 must be connected to the  
same logic state to enable or disable refresh.  
EN1  
7
I
Refresh enable 2. Refresh is enabled when the EN2 pin is connected to GND2. Disable  
refresh by connecting the EN2 pin high to VCC2. EN1 and EN2 must be connected to the  
same logic state to enable or disable refresh.  
EN2  
10  
I
2
8
GND1  
GND2  
Ground connection for VCC1  
Ground connection for VCC2  
9
15  
3
INA  
I
I
Input, channel A  
INB  
4
Input, channel B  
INC  
5
I
Input, channel C  
Input, channel D  
Output, channel A  
Output, channel B  
Output, channel C  
Output, channel D  
Power supply, side 1  
Power supply, side 2  
IND  
11  
14  
13  
12  
6
I
OUTA  
OUTB  
OUTC  
OUTD  
VCC1  
VCC2  
O
O
O
O
1
16  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
ISO7041  
www.ti.com.cn  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
MIN  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-15  
MAX  
UNIT  
VCC1 to GND1  
Supply Voltage  
6
6
V
VCC2 to GND2  
INx to GNDx  
Input/Output  
OUTx to GNDx  
Voltage  
VCCX + 0.5  
VCCX + 0.5  
VCCX + 0.5  
15  
V
ENx to GNDx  
Output Current  
Temperature  
Io  
mA  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
-65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values  
(3) Maximum voltage must not exceed 6 V.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±6000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
V(ESD)  
Electrostatic discharge  
±1500  
±8000  
V
Contact discharge per IEC 61000-4-2;  
Isolation barrier withstand test(3)(4)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
(4) Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
5.5  
UNIT  
V
(1)  
(1)  
VCC1  
VCC2  
VIH  
Supply Voltage Side 1  
Supply Voltage Side 2  
High level Input voltage  
Low level Input voltage  
2.25  
2.25  
5.5  
V
0.7 x VCCI  
VCCI  
V
VIL  
0
-4  
-2  
-1  
0.3 x VCCI  
V
VCCO = 5 V  
mA  
mA  
mA  
mA  
mA  
mA  
Mbps  
°C  
IOH  
High level output current  
Low level output current  
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 5 V  
4
2
IOL  
VCCO = 3.3 V  
VCCO = 2.5 V  
1
DR  
TA  
Data Rate  
0
-55  
-40  
2
VCC1, VCC2 = 2.25 V to 3.6 V  
VCC1, VCC2 = 3.6 V to 5.5 V  
125  
125  
Ambient temperature  
°C  
(1) VCC1 and VCC2 can be set independent of one another  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
8.4 Thermal Information  
ISO7041  
DBQ (SOIC)  
16 PINS  
87.0  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
33.3  
49.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.4  
ψJB  
48.5  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
7.82  
4.46  
3.36  
UNIT  
mW  
mW  
mW  
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL  
15 pF, Input a 1-MHz 50% duty cycle  
square wave  
=
PD1  
PD2  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
ISO7041  
www.ti.com.cn  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
8.6 Insulation Specifications  
PARAMETER  
SPECIFICATIONS  
UNIT  
TEST CONDITIONS  
QSOP-16  
IEC 60664-1  
CLR  
External clearance(1)  
Side 1 to side 2 distance through air  
>3.7  
>3.7  
mm  
mm  
Side 1 to side 2 distance across package  
surface  
CPG  
External Creepage(1)  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
IEC 60112; UL 746A  
17  
µm  
V
>600  
I
According to IEC 60664-1  
Overvoltage category per IEC 60664-1  
Rated mains voltage 300 VRMS  
I-III  
DIN V VDE V 0884-11:2017-01(2)  
VIORM Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
566  
400  
566  
4242  
VPK  
VRMS  
VDC  
AC voltage (sine wave); time-dependent  
dielectric breakdown (TDDB) test; See 15  
VIOWM  
Maximum isolation working voltage  
DC voltage  
VTEST = VIOTM , t = 60 s (qualification); VTEST  
= 1.2 × VIOTM, t = 1 s (100% production)  
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
VPK  
Test method per IEC 62368-1, 1.2/50 µs  
waveform, VTEST = 1.6 × VIOSM = 6400 VPK  
(qualification)  
VIOSM  
4000  
5  
VPK  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM  
tm = 10 s  
,
Method a: After environmental tests  
subgroup 1, Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM , tm = 10 s  
5  
qpd  
Apparent charge(4)  
pC  
Method b1: At routine test (100% production)  
and preconditioning (type test), Vini = VIOTM  
tini = 1 s;  
,
5  
Vpd(m) = 1.875 × VIORM , tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance, input to output(5)  
VIO = 0.4 × sin (2 πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
~1.5  
pF  
> 1012  
> 1011  
> 109  
2
VIO = 500 V, 100°C TA 150°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
55/125/21  
UL 1577  
VTEST = VISO , t = 60 s (qualification); VTEST  
1.2 × VISO , t = 1 s (100% production)  
=
VISO  
Withstand isolation voltage  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
CSA/Sira  
8.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Plan to certify  
Plan to certify for use  
in intrinsic safety (IS)  
to IS applications  
under ATEX and  
IECEx  
Plan to certify  
according to DIN V  
VDE V 0884-  
11:2017- 01  
Plan to certify  
according to UL 1577  
Component  
Certified according to  
IEC 60950-1 and IEC  
62368-1  
Plan to certify  
according to  
GB4943.1-2011  
according to EN  
61010-1:2010 (3rd  
Ed) and EN 60950-  
1:2006/A2:2013  
Recognition Program  
3000 VRMS insulation  
per CSA 60950-1-  
07+A1+A2, IEC  
60950-1 2nd  
Ed.+A1+A2, CSA  
62368-1- 14 and IEC  
62368-1:2014 370  
VRMS (DBQ-16)  
maximum working  
voltage (pollution  
degree 2, material  
group I)  
3000 VRMS insulation  
per EN 61010-1:2010  
(3rd Ed) up to  
working voltage of  
300 VRMS  
3000 VRMS insulation  
per EN 60950-  
1:2006/A2:2013 up to  
working voltage of  
370 VRMS  
Maximum transient  
isolation voltage,  
ATEX: EN 60079-  
0:2012+A11:2013  
and EN 60079-  
11:2012  
IECEx:IEC 60079-  
0:2011 (6th Ed) and  
IEC60079-11:2011  
(6th Ed)  
4242 VPK  
;
Basic insulation,  
Altitude 5000 m,  
Tropical Climate,  
250 VRMS maximum  
working voltage  
Maximum repetitive  
peak isolation  
Single protection,  
3000 VRMS  
voltage, 566 VPK  
;
Maximum surge  
isolation voltage,  
4000 VPK  
II 1G Ex ia IIC Ga  
Certificate planned  
Certificate planned  
Certificate planned  
Certificate planned  
Certificate planned  
Certificate planned  
8.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
16-QSOP PACKAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 87°C/W, VI = 5.5 V, TJ = 150°C,  
261  
399  
522  
mA  
TA = 25°C  
θJA = 87°C/W, VI = 3.6 V, TJ = 150°C,  
TA = 25°C  
θJA = 87°C/W, VI = 2.75 V, TJ = 150°C,  
TA = 25°C  
θJA = 87°C/W, TJ = 150°C, TA = 25°C  
R
IS  
Safety input, output, or supply current  
mA  
R
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
R
1435  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
ISO7041  
www.ti.com.cn  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
8.9 Electrical Characteristics 5V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
VIT+(IN)  
VIT-(IN)  
VOH  
Rising input switching threshold  
Falling input switching threshold  
High-level output voltage  
Low-level output voltage  
0.7 x VCCI  
V
V
V
V
0.3 x VCCI  
VCCO - 0.4  
IOH = -4 mA  
VOL  
IOL = 4 mA  
0.4  
1
Input threshold voltage  
hysteresis  
VI(HYS)  
0.1 x VCCI  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
µA  
µA  
-1  
Common mode transient  
immunity  
CMTI  
Ci  
VI = VCC or 0 V, VCM = 1200 V  
50  
100  
2
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f = 1  
MHz, VCC = 5 V  
(2)  
Input Capacitance  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
8.10 Supply Current Characteristics 5V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
ISO7041  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
ICC1  
ICC2  
ICC1  
6.2  
10.1  
8.2  
14.3  
18.5  
16.7  
µA  
µA  
µA  
Refresh disable  
Refresh enable  
Supply current - DC  
signal  
VI = VCC1 (ISO7041);  
VI = 0 V (ISO7041 with F suffix)  
ICC2  
ICC1  
ICC2  
10.8  
9.5  
18.5  
19.9  
19.5  
µA  
µA  
µA  
Refresh enable  
VI = 0 V (ISO7041);  
VI = VCC1 (ISO7041 with F suffix)  
11.3  
ICC1  
6.7  
11.8  
37.1  
25.8  
340.5  
167.0  
10.6  
11.9  
37.1  
25.8  
338.3  
166.0  
4.1  
19.7  
20.6  
57.4  
37.7  
436.1  
211.1  
20.8  
20.4  
57.4  
37.7  
436.1  
211.1  
7.4  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Refresh disable  
10 kbps, No Load  
ICC2  
ICC1  
Refresh disable  
100 kbps, No Load  
ICC2  
ICC1  
Refresh disable  
1 Mbps, No Load  
ICC2  
Supply current - AC  
signal  
ICC1  
Refresh enable  
10 kbps, No Load  
ICC2  
ICC1  
Refresh enable  
100 kbps, No Load  
ICC2  
ICC1  
Refresh enable  
1 Mbps, No Load  
ICC2  
DC Signal  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
Total Supply Current  
Per Channel,  
Refresh Disabled  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
5.9  
10.7  
23.4  
164.5  
17.4  
137.0  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Supply Current Characteristics 5V Supply (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
VI = VCC1 (ISO7041);  
VI = 0 V (ISO7041 with F suffix)  
ICC1(ch) + ICC2(ch)  
4.8  
8.5  
µA  
VI = 0 V (ISO7041);  
VI = VCC1 (ISO7041 with F suffix)  
Total Supply Current  
Per Channel,  
ICC1(ch) + ICC2(ch)  
5.3  
9.6  
µA  
Refresh Enabled  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
5.7  
16.4  
10.4  
22.3  
µA  
µA  
µA  
125.9  
154.0  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
ISO7041  
www.ti.com.cn  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
8.11 Electrical Characteristics 3.3V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
VIT+(IN)  
VIT-(IN)  
VOH  
Rising input switching threshold  
Falling input switching threshold  
High-level output voltage  
Low-level output voltage  
0.7 x VCCI  
V
V
V
V
0.3 x VCCI  
VCCO - 0.3  
IOH = -2mA  
VCCO - 0.2  
0.2  
VOL  
IOL = 2mA  
0.3  
1
Input threshold voltage  
hysteresis  
VI(HYS)  
0.1 x VCCI  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI(1) at INx  
VIL = 0 V at INx  
µA  
µA  
-1  
Common mode transient  
immunity  
CMTI  
Ci  
VI = VCC or 0 V, VCM = 1200 V  
50  
100  
2
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f = 1  
MHz, VCC = 3.6 V  
Input Capacitance(2)  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
8.12 Supply Current Characteristics 3.3V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
ISO7041  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
ICC1  
ICC2  
ICC1  
5.1  
8.9  
6.8  
8.8  
14.0  
12.2  
µA  
µA  
µA  
Refresh disable  
Refresh enable  
Supply current - DC  
signal  
VI = VCC1 (ISO7041);  
VI = 0 V (ISO7041 with F suffix)  
ICC2  
ICC1  
ICC2  
9.6  
8.1  
14.0  
14.8  
15.6  
µA  
µA  
µA  
Refresh enable  
VI = 0 V (ISO7041);  
VI = VCC1 (ISO7041 with F suffix)  
10.0  
ICC1  
7.9  
10.4  
35.9  
22.7  
316.4  
147.2  
9.8  
13.7  
15.9  
48.3  
31.4  
395.7  
188.2  
16.4  
16.2  
48.3  
31.4  
395.7  
188.2  
5.7  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Refresh disable  
10 kbps, No Load  
ICC2  
ICC1  
Refresh disable  
100 kbps, No Load  
ICC2  
ICC1  
Refresh disable  
1 Mbps, No Load  
ICC2  
Supply current - AC  
signal  
ICC1  
Refresh enable  
10 kbps, No Load  
ICC2  
10.5  
35.9  
22.7  
315.3  
146.2  
3.5  
ICC1  
Refresh enable  
100 kbps, No Load  
ICC2  
ICC1  
Refresh enable  
1 Mbps, No Load  
ICC2  
DC Signal  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
Total Supply Current  
Per Channel,  
Refresh Disabled  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
5.2  
8.2  
14.8  
115.7  
19.2  
138.7  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Supply Current Characteristics 3.3V Supply (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
VI = VCC1 (ISO7041);  
VI = 0 V (ISO7041 with F suffix)  
ICC1(ch) + ICC2(ch)  
4.2  
6.8  
µA  
VI = 0 V (ISO7041);  
VI = VCC1 (ISO7041 with F suffix)  
Total Supply Current  
Per Channel,  
ICC1(ch) + ICC2(ch)  
4.6  
7.7  
µA  
Refresh Enabled  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
5.2  
14.8  
8.2  
19.2  
µA  
µA  
µA  
115.7  
138.7  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
ISO7041  
www.ti.com.cn  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
8.13 Electrical Characteristics 2.5V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
VIT+(IN)  
VIT-(IN)  
VOH  
Rising input switching threshold  
Falling input switching threshold  
High-level output voltage  
Low-level output voltage  
0.7 x VCCI  
V
V
V
V
0.3 x VCCI  
VCCO - 0.2  
IOH = -1mA  
VOL  
IOL = 1mA  
0.2  
1
Input threshold voltage  
hysteresis  
VI(HYS)  
0.1 x VCCI  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI(1) at INx  
VIL = 0 V at INx  
µA  
µA  
-1  
Common mode transient  
immunity  
CMTI  
VI = VCC or 0 V, VCM = 1200 V  
50  
100  
kV/us  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
8.14 Supply Current Characteristics 2.5V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
ISO7041  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
ICC1  
ICC2  
ICC1  
4.7  
8.6  
6.4  
8.2  
13.0  
10.9  
µA  
µA  
µA  
Refresh disable  
Refresh enable  
Supply current - DC  
signal  
VI = VCC1 (ISO7041);  
VI = 0 V (ISO7041 with F suffix)  
ICC2  
ICC1  
ICC2  
9.2  
7.6  
9.6  
13.0  
13.2  
14.6  
µA  
µA  
µA  
Refresh enable  
VI = 0 V (ISO7041);  
VI = VCC1 (ISO7041 with F suffix)  
ICC1  
8.2  
10.0  
34.7  
21.3  
301.5  
137.0  
9.9  
12.2  
14.8  
44.5  
29.0  
367.4  
173.3  
14.6  
15.9  
44.5  
29.0  
367.4  
173.3  
5.3  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Refresh disable  
10 kbps, No Load  
ICC2  
ICC1  
Refresh disable  
100 kbps, No Load  
ICC2  
ICC1  
Refresh disable  
1 Mbps, No Load  
ICC2  
Supply current - AC  
signal  
ICC1  
Refresh enable  
10 kbps, No Load  
ICC2  
10.0  
34.7  
21.3  
304.8  
136.0  
3.3  
ICC1  
Refresh enable  
100 kbps, No Load  
ICC2  
ICC1  
Refresh enable  
1 Mbps, No Load  
ICC2  
DC Signal  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
Total Supply Current  
Per Channel,  
Refresh Disabled  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
5.0  
7.5  
14.0  
110.0  
17.6  
127.1  
VI = VCC1 (ISO7041);  
VI = 0 V (ISO7041 with F suffix)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
4.0  
4.4  
6.2  
7.0  
µA  
µA  
VI = 0 V (ISO7041);  
VI = VCC1 (ISO7041 with F suffix)  
Total Supply Current  
Per Channel,  
Refresh Enabled  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
5.0  
14.0  
110  
7.5  
17.6  
µA  
µA  
µA  
127.1  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
8.15 Switching Characteristics  
VCC1, VCC2 = 2.25 V to 5.5 V (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
140  
15  
MAX  
UNIT  
ns  
tPLH, tPHL  
tP(dft)  
Propagation delay time  
Propagation delay drift  
Minimum pulse width  
Pulse width distortion  
See 9  
See 9  
165  
ps/℃  
ns  
tUI  
500  
PWD  
10  
10  
10  
70  
5
ns  
Same-direction channels  
ns  
tsk(o)  
Channel to channel output skew time  
Opposite-direction channels  
ns  
tsk(p-p)  
Part to part skew time  
Output signal rise time  
Output signal fall time  
ns  
tr  
tf  
ns  
See 9  
5
ns  
Default output delay time from input  
power loss  
tDO  
Refresh enabled, See 10  
400  
10  
750  
5
us  
tPU  
FR  
Time from UVLO to valid output data  
Refresh rate  
1
5
ms  
kbps  
8.16 Insulation Characteristics Curves  
1600  
600  
VCC = 3.6 V  
VCC = 2.75 V  
VCC = 5.5 V  
500  
400  
300  
200  
100  
0
1200  
800  
400  
0
0
40  
80  
120  
160  
200  
0
40  
80  
120  
160  
200  
Ambient Temperature (èC)  
SLLS  
Ambient Temperature (èC)  
SLLS  
2. Thermal Derating Curve for Limiting Power per  
1. Thermal Derating Curve for Limiting Current per  
VDE  
VDE  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
200  
                                                                                                                                                                                                         
                                                                                                                                                                                                           
                                                                                                                                                                                                             
300  
ISO7041  
www.ti.com.cn  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
8.17 Typical Characteristics  
200  
300  
100  
                                                                                                                                                                                                           
                                                                                                                                                                                                             
Refresh Enabled  
Refresh Disabled  
Refresh Enabled  
Refresh Disabled  
100  
10  
10  
2
2
1
10  
100  
Data Rate (kbps)  
1000 2000  
1
10  
100  
Data Rate (kbps)  
1000 2000  
SLLS  
SLLS  
TA = 25°C  
CL = 0 pF  
TA = 25°C  
CL = 15 pF  
3. ISO7041 Supply Current vs Data Rate at 2.5 V  
4. ISO7041 Supply Current vs Data Rate at 2.5 V  
(With No Load)  
(With 15-pF Load)  
Refresh Enabled  
Refresh Disabled  
Refresh Enabled  
Refresh Disabled  
100  
100  
10  
2
10  
3
1
10  
100  
Data Rate (Kbps)  
1000 2000  
1
10  
100  
Data Rate (kbps)  
1000 2000  
SLLS  
SLLS  
TA = 25°C  
CL = 0 pF  
TA = 25°C  
CL = 15 pF  
5. ISO7041 Supply Current vs Data Rate at 3.3 V  
6. ISO7041 Supply Current vs Data Rate at 3.3 V  
(With No Load)  
(With 15-pF Load)  
300  
300  
Refresh Enabled  
Refresh Disabled  
Refresh Enabled  
Refresh Disabled  
100  
100  
10  
2
10  
2
1
10  
100  
Data Rate (kbps)  
1000 2000  
1
10  
100  
Data Rate (kbps)  
1000 2000  
SLLS  
SLLS  
TA = 25°C  
CL = 0 pF  
TA = 25°C  
CL = 15 pF  
7. ISO7041 Supply Current vs Data Rate at 5 V  
8. ISO7041 Supply Current vs Data Rate at 5 V  
(With No Load)  
(With 15-pF Load)  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9 Parameter Measurement Information  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
V
t
t
PHL  
PLH  
Input  
Generator  
(See Note A)  
C
L
V
I
V
O
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3  
ns, tf 3ns, ZO = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in  
actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
9. Switching Characteristics Test Circuit and Voltage Waveforms  
V
I
V
CC  
V
CC  
V
I
1.7 V  
0 V  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
default high  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. Power Supply Ramp Rate = 10 mV/ns  
10. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CCO  
CCI  
C = 0.1 µF 1%  
C = 0.1 µF 1%  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
V
OH  
or V  
OL  
C
L
œ
See Note A  
GNDI  
GNDO  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
11. Common-Mode Transient Immunity Test Circuit  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
ISO7041  
www.ti.com.cn  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
10 Detailed Description  
10.1 Overview  
The ISO7041 device uses edge encoding of data with an ON-OFF keying (OOK) modulation scheme to transmit  
the digital data across a silicon dioxide isolation barrier. The transmitter uses a high frequency carrier signal to  
pass data across the barrier representing a signal edge transition. Using this method achieves very low power  
consumption and high immunity. The receiver demodulates the carrier signal after advanced signal conditioning  
and produces the output through a buffer stage. For low data rates, a refresh logic option is available to make  
sure the output state matches the input state. The ENx pins of side A and side B must be tied low to enable  
refresh or high to disable refresh. Advanced circuit techniques are used to maximize the CMTI performance and  
minimize the radiated emissions due the high frequency carrier and IO buffer switching. The conceptual block  
diagram of a digital capacitive isolator, 12, shows a functional block diagram of a typical channel.  
10.2 Functional Block Diagram  
Transmitter  
Receiver  
OOK  
Modulation  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
TX IN  
Edge  
Encoding  
Capacitive  
Isolation  
Barrier  
EN1  
Refresh  
Logic  
Watch Dog  
Timer  
EN2  
Oscillator  
12. Conceptual Block Diagram of a Digital Capacitive Isolator  
10.3 Feature Description  
10.3.1 Refresh Enable  
The ISO7041 uses an edge based encoding scheme to transfer an input signal change across the isolation  
barrier versus sending across the DC state. consistently validates that the DC output state of each isolator  
channel matches the DC input state. An internal watchdog timer monitors for activity on the individual inputs and  
transmits the logic state when there is no input signal transition for more than 100 µs. This ensures that the input  
and output state of the isolator always match. Tie both EN1 and EN2 to their respective grounds to enable  
refresh.  
Disable refresh by tying both EN1 and EN2 to their respective VCC power supplies. Disabling refresh will further  
decrease the power consumption of the device but the DC state is not guaranteed at startup. System level  
solutions can be implemented to ensure the isolator channel output matches the input at startup. For example, at  
start up, an immediate full transition of the input signals from high to low and low to high on the individual isolator  
lines would allow the states of the outputs to properly track the inputs.  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
 
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Feature Description (接下页)  
10.3.2 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO70xx  
family of devices incorporates many chip-level design improvements for overall system robustness. Some of  
these improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
The device has no issue being able to meet either CISPR 22 Class A and CISPR22 Class B standards in an  
unshielded environment.  
18  
版权 © 2017–2019, Texas Instruments Incorporated  
ISO7041  
www.ti.com.cn  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
10.4 Device Functional Modes  
2 shows the functional modes for the device.  
2. Function Table(1)  
REFRESH  
ENABLE  
(ENx)  
INPUT  
(INx)(2)  
OUTPUT  
(OUTx)  
VCCI  
VCCO  
COMMENTS  
H
L
L
L
H
L
Normal Operation:  
A channel output assumes the logic state of its input.  
PU  
PU  
The device needs an input signal transition to validate the output  
X
X
H
Undetermined tracks the input state. Without a signal edge transition, the output will  
be in an undetermined state.  
When VCCI is unpowered, a channel output assumes the logic state  
based on the selected default option. Default is High for the device  
without the F suffix and Low for device with the F suffix.  
L
Default  
When VCCI transitions from unpowered to powered-up, a channel  
output assumes the logic state of the input.  
PD  
PU  
When VCCI transitions from powered-up to unpowered, channel output  
assumes the selected default state.  
When VCCI is unpowered, a channel output assumes the logic state  
based on the previous state of the output before VCCI powered down.  
H
L
Undetermined  
When VCCO is unpowered, a channel output is undetermined(3)  
.
Undetermined When VCCO transitions from unpowered to powered-up, a channel  
output assumes the logic state of the input.  
X
X
PD  
X
X
X
When VCCO is unpowered, a channel output is undetermined(3)  
Undetermined When VCCO transitions from unpowered to powered-up, a channel  
output assumes the selected default option.  
.
H
When ENx is unconnected or open, the device output will be in an  
Undetermined undetermined and unknown state. ENx must be connected high or  
low for the device to behave correctly.  
Open  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC 2.25 V); PD = Powered down (VCC 1.54); X = Irrelevant; H =  
High level; L = Low level ; Z = High Impedance  
(2) A strongly driven input signal can weakly power the floating VCC through an internal protection diode and cause undetermined output.  
(3) The outputs are in undetermined state when 2.25 V < VCCI, VCCO < 2.25 V.  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
 
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
10.4.1 Device I/O Schematics  
Refresh Enable  
Input  
V
V
V
CCI  
CCI  
CCI  
V
V
V
CCI  
CCI  
CCI  
985  
1970 ꢀ  
INx  
ENx  
Output  
V
CCO  
~20 ꢀ  
OUTx  
13. Device I/O Schematics  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
ISO7041  
www.ti.com.cn  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
11 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
11.1 Application Information  
The ISO7041 device is an ultra-low power digital isolator. The device uses single-ended CMOS-logic switching  
technology. The voltage range is from 2.25 V to 5.5 V for both supplies, VCC1 and VCC2, and can be set  
irrespective of one another. When designing with digital isolators, keep in mind that because of the single-ended  
design structure, digital isolators do not conform to any specific interface standard and are only intended for  
isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data  
controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the interface type or  
standard. See Isolated power and data interface for low-power applications reference design TI Design for  
detailed information on designing the ISO70xx in low-power applications.  
11.1.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; see 14 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm) and a minimum insulation lifetime of 20 years. VDE standard also requires additional safety margin of 20%  
for working voltage and 87.5% for insulation lifetime which translates into minimum required life time of 37.5  
years.  
15 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime. Based  
on the TDDB data, the intrinsic capability of these devices is 400 VRMS with a lifetime of >100 years. Other  
factors, such as package size, pollution degree, material group, and so forth can further limit the working voltage  
of the component. The working voltage of the DBQ-16 package specified up to 400 VRMS. At the lower working  
voltages, the corresponding insulation barrier life time is much longer.  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND  
1
GND 2  
V
S
Oven at 150 °C  
14. Test Setup for Insulation Lifetime Measurement  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
 
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Application Information (接下页)  
15. Insulation Lifetime Projection Data  
11.2 Typical Application  
16 shows the isolated serial peripheral interface (SPI).  
Isolation Barrier  
VCC1  
0.1 F  
VCC2  
0.1 F  
0.1 F  
0.1 F  
0.1 F  
0.1 F  
1 kΩ  
1 kΩ  
0.27 F  
4.7 F  
VCC1  
INA  
VCC2  
DVDD AVDD  
ADS1220  
AVcc DVcc  
AIN0  
AIN1  
AIN2  
AIN3  
CS  
OUTA  
OUTB  
P1.4  
SCLK  
DIN  
INB  
INC  
SCLK  
Thermocouple  
0.27 F  
MSP430FR2355  
ISO7041  
OUTC  
SDO  
SDI  
DOUT/DRDY  
DGND CLK AVSS  
OUTD  
EN1  
IND  
AVss DVss  
EN2  
GND1  
GND2  
16. Isolated SPI for a Temperature Field Transmitter  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ISO7041  
www.ti.com.cn  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
Typical Application (接下页)  
11.2.1 Design Requirements  
To design with these devices, use the parameters listed in 3.  
3. Design Parameters  
PARAMETER  
VALUE  
2.25 V to 5.5 V  
0.1 µF  
Supply voltage, VCC1 and VCC2  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
11.2.2 Detailed Design Procedure  
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,  
the device only require two external bypass capacitors to operate.  
2 mm maximum  
from VCC2  
2 mm maximum  
from VCC1  
VCC2  
VCC1  
1
16  
0.1 µF  
0.1 µF  
GND1  
GND2  
2
3
15  
14  
INA  
INB  
INC  
OUTA  
OUTB  
OUTC  
13  
4
12  
11  
10  
9
5
6
7
8
IND  
OUTD  
EN2  
EN1  
GND2  
GND1  
17. Typical ISO7041 Circuit Hook-up  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
 
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
11.2.3 Application Curves  
The following typical eye diagrams of the device indicates wide open eye at the maximum data rate of 2 Mbps.  
18. Eye Diagram at 2 Mbps PRBS 216 – 1, 3.3 V and 25°C  
19. Eye Diagram at 2 Mbps PRBS 216 – 1, 2.5 V and 25°C  
12 Power Supply Recommendations  
Put a 0.1-μF bypass capacitor at the input and output supply pins (VCC1 and VCC2) to make sure that operation is  
reliable at data rates and supply voltage. Put the capacitors as near to the supply pins as possible. If only one  
primary-side power supply is available in an application, use a transformer driver to help generate the isolated  
power for the secondary-side. Texas Instruments recommends the SN6501 device or SN6505A device. Refer to  
the SN6501 Transformer Driver for Isolated Power Supplies data sheet or SN6505 Low-Noise 1-A Transformer  
Drivers for Isolated Power Supplies data sheet for detailed power supply design and transformer selection  
recommendations.  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
ISO7041  
www.ti.com.cn  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
13 Layout  
13.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 20). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
Refer to the Digital Isolator Design Guide for detailed layout recommendations,.  
13.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and the self-extinguishing flammability-characteristics.  
13.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this space  
FR-4  
free from planes,  
traces, pads, and  
vias  
40 mils  
0r ~ 4.5  
Power plane  
10 mils  
Low-speed traces  
Figure 20. Recommended Layer Stack  
版权 © 2017–2019, Texas Instruments Incorporated  
25  
 
ISO7041  
ZHCSJ22B OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
14 器件和文档支持  
14.1 文档支持  
14.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《数字隔离器设计指南》  
德州仪器 (TI)《隔离相关术语》  
德州仪器 (TI)《具有集成 PGA 和基准的 ADS1220 4 通道 2kSPS 低功耗 24 ADC数据表  
德州仪器 (TI)《具有 UART 接口的 ADS122U04 24 4 通道 2kSPS Δ-Σ ADC数据表  
德州仪器 (TI)《具有 PGA 和电压基准的 ADS124S0x 低功耗、低噪声、高集成度、6 通道和 12 通道 4kSPS  
24 Δ-Σ ADC数据表  
德州仪器 (TI)《用于超低功耗和低功耗应用的独特高效率隔离式直流/直流 转换器TI 设计  
德州仪器 (TI)SN6501 用于隔离式电源的变压器驱动器》数据表  
德州仪器 (TI)SN6505A 用于隔离式电源的低噪声 1A 变压器驱动器》数据表  
德州仪器 (TI)《适用于低功耗 应用 的隔离式电源和数据接口参考设计》 TI 设计  
14.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
14.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
14.4 商标  
E2E is a trademark of Texas Instruments.  
14.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
14.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
15 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2017–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7041DBQ  
ISO7041DBQR  
ISO7041FDBQ  
ISO7041FDBQR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SSOP  
SSOP  
DBQ  
DBQ  
DBQ  
DBQ  
16  
16  
16  
16  
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
7041  
7041  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
7041F  
7041F  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7041DBQR  
ISO7041FDBQR  
SSOP  
SSOP  
DBQ  
DBQ  
16  
16  
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
6.4  
5.2  
5.2  
2.1  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7041DBQR  
ISO7041FDBQR  
SSOP  
SSOP  
DBQ  
DBQ  
16  
16  
2500  
2500  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO7041DBQ  
ISO7041FDBQ  
DBQ  
DBQ  
SSOP  
SSOP  
16  
16  
75  
75  
505.46  
505.46  
6.76  
6.76  
3810  
3810  
4
4
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY