ISO7142CC-Q1 [TI]

汽车类四通道、2/2、50Mbps 数字隔离器;
ISO7142CC-Q1
型号: ISO7142CC-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类四通道、2/2、50Mbps 数字隔离器

文件: 总27页 (文件大小:926K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ISO7142CC-Q1  
ZHCSEG9 DECEMBER 2015  
ISO7142CC-Q1 4242 VPK 小型封装低功耗四通道数字隔离器  
1 特性  
2 应用  
1
符合汽车应用要求  
具有符合 AEC-Q100 的下列结果:  
通用隔离  
工业自动化  
电机控制  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
太阳能逆变器  
器件人体模型 (HBM) 分类等级 3A  
3 说明  
器件充电器件模型 (CDM) 分类等级 C6  
ISO7142CC-Q1 器件可提供符合 UL 1577 标准的长达  
1 分钟且高达 2500 VRMS 的电流隔离,以及符合 VDE  
V 0884-10 标准的 4242 VPK隔离。  
最大信号传输速率:50Mbps5V 电源供电)  
具有集成噪声滤波器的稳健设计  
低功耗,每通道 ICC 典型值(3.3V 电源):  
ISO7142CC-Q1 是一款四通道隔离器,此隔离器具有  
两个正向和两个反向通道。此器件在由 5V 电源供电时  
的最大数据传输速率为 50Mbps,而在由 3.3V 2.7V  
电源供电时的最大数据传输速率为 40Mbps。  
ISO7142CC-Q1 器件的输入端集成有滤波器,适用于  
易受噪声干扰的应用。  
1Mbps 时为 1.3mA25Mbps 时为 2.5mA  
典型值为 50kV/µs 的瞬态抗扰度  
使用 SiO2 绝缘隔栅实现长使用寿命  
可由 2.7V3.3V 5V 电源供电  
2.7V 5V 电平转换  
小型四分之一尺寸小外形封装 (QSOP)-16 封装  
安全及管理批准  
每个隔离通道都有一个由二氧化硅 (SiO2) 绝缘隔栅分  
开的逻辑输入和输出缓冲器。与隔离式电源一起使用,  
这个器件可防止数据总线或者其它电路上的噪音电流进  
入本地接地和干扰或损坏敏感电路。该器件具有晶体管  
晶体管逻辑电路 (TTL) 输入阈值,并且可由 2.7V、  
3.3V 5V 电压供电运行。  
符合 UL 1577 标准且长达 1 分钟的 2500 VRMS  
隔离  
符合 DIN V VDE V 0884-10 (VDE V 0884-  
10):2006-12 标准的 4242 VPK 隔离  
CSA 组件验收通知 5AIEC 60950-1 IEC  
61010-1 终端设备标准  
器件信息(1)  
已通过符合 GB4943.1-2011 CQC 认证  
器件型号  
封装  
SSOP (16)  
封装尺寸(标称值)  
ISO7142CC-Q1  
4.90mm × 3.90mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化电路原理图  
V
CCO  
V
CCI  
Isolation  
Capacitor  
INx  
OUTx  
ENx  
GNDI  
GNDO  
V
CCI GNDI 分别是输入通道的电源和接地连接。  
CCO GNDO 分别是输出通道的电源和接地连接。  
V
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSER5  
 
 
 
ISO7142CC-Q1  
ZHCSEG9 DECEMBER 2015  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
7
8
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application ................................................. 16  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics—5-V Supply ..................... 5  
6.6 Supply Current Characteristics—5-V Supply............ 5  
6.7 Electrical Characteristics—3.3-V Supply .................. 5  
6.8 Supply Current Characteristics—3.3-V Supply......... 6  
6.9 Electrical Characteristics—2.7-V Supply .................. 6  
6.10 Supply Current Characteristics—2.7-V Supply....... 6  
6.11 Power Dissipation Characteristics .......................... 6  
6.12 Switching Characteristics—5-V Supply................... 7  
6.13 Switching Characteristics—3.3-V Supply................ 7  
6.14 Switching Characteristics—2.7-V Supply................ 8  
6.15 Typical Characteristics............................................ 8  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 18  
11.1 Layout Guidelines ................................................. 18  
11.2 Layout Example .................................................... 19  
12 器件和文档支持 ..................................................... 20  
12.1 文档支持................................................................ 20  
12.2 社区资源................................................................ 20  
12.3 ....................................................................... 20  
12.4 静电放电警告......................................................... 20  
12.5 Glossary................................................................ 20  
13 机械、封装和可订购信息....................................... 20  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注释  
2015 12 月  
*
最初发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7142CC-Q1  
www.ti.com.cn  
ZHCSEG9 DECEMBER 2015  
5 Pin Configuration and Functions  
DBQ Package  
16-Pin SSOP  
Top View  
VCC1  
VCC2  
1
2
16  
GND2  
OUTA  
OUTB  
INC  
15  
GND1  
INA  
3
4
5
6
7
8
14  
13  
12  
11  
10  
9
INB  
OUTC  
OUTD  
EN1  
IND  
EN2  
GND1  
GND2  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Output enable 1. Output pins on side 1 are enabled when EN1 is high or open and in high-  
impedance state when EN1 is low.  
EN1  
7
I
I
Output enable 2. Output pins on side 2 are enabled when EN2 is high or open and in high-  
impedance state when EN2 is low.  
EN2  
10  
2
8
GND1  
Ground connection for VCC1  
Ground connection for VCC2  
9
GND2  
15  
3
INA  
I
I
Input, channel A  
Input, channel B  
Input, channel C  
Input, channel D  
Output, channel A  
Output, channel B  
Output, channel C  
Output, channel D  
Power supply, VCC1  
Power supply, VCC2  
INB  
4
INC  
12  
11  
14  
13  
5
I
IND  
I
OUTA  
OUTB  
OUTC  
OUTD  
VCC1  
VCC2  
O
O
O
O
6
1
16  
Copyright © 2015, Texas Instruments Incorporated  
3
ISO7142CC-Q1  
ZHCSEG9 DECEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–15  
MAX  
UNIT  
Supply voltage(2)  
Voltage  
VCC1, VCC2  
6
V
INx, OUTx, ENx  
VCC + 0.5(3)  
V
IO  
Output current  
15  
mA  
°C  
°C  
TJ  
Maximum junction temperature  
Storage temperature  
150  
150  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
2.7  
–4  
NOM  
MAX  
UNIT  
VCC1, VCC2  
IOH  
Supply voltage  
5.5  
V
V
CC 3 V  
High-level output current  
mA  
VCC < 3 V  
–2  
IOL  
VIH  
VIL  
Low-level output current  
High-level input voltage  
Low-level input voltage  
4
5.5  
0.8  
mA  
V
2
0
V
V
CC 4.5 V  
VCC < 4.5 V  
CC 4.5 V  
VCC < 4.5 V  
20  
25  
0
tui  
Input pulse duration  
Signaling rate  
ns  
V
50  
40  
1 / tui  
Mbps  
0
TJ  
Junction temperature  
Ambient temperature  
136  
125  
°C  
°C  
TA  
–55  
25  
6.4 Thermal Information  
ISO7142CC-Q1  
DBQ (SSOP)  
16 PINS  
104.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
57.8  
Junction-to-board thermal resistance  
46.8  
ψJT  
Junction-to-top characterization parameter  
18.3  
ψJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
46.4  
RθJCbot  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
 
 
ISO7142CC-Q1  
www.ti.com.cn  
ZHCSEG9 DECEMBER 2015  
6.5 Electrical Characteristics—5-V Supply  
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)  
PARAMETER  
TEST CONDITIONS  
IOH = –4 mA; see Figure 8  
MIN  
VCCO (1) – 0.5  
VCCO – 0.1  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
V
IOH = –20 μA; see Figure 8  
IOL = 4 mA; see Figure 8  
IOL = 20 μA; see Figure 8  
0.4  
V
VOL  
Low-level output voltage  
0.1  
Input threshold voltage  
hysteresis  
VI(HYS)  
480  
70  
mV  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI(1) at INx or ENx  
VIL = 0 V at INx or ENx  
10  
μA  
–10  
25  
Common-mode transient  
immunity  
CMTI  
VI = VCCI or 0 V; see Figure 11  
kV/μs  
(1) VCCI= Supply voltage for the input channel; VCCO = Supply voltage for the output channel  
6.6 Supply Current Characteristics—5-V Supply  
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
Disable  
EN1 = EN2 = 0 V  
ICC1, ICC2  
0.8  
1.6  
5
DC signal: VI = VCCI or 0 V,  
DC to 1 Mbps AC signal: All channels switching with ICC1 , ICC2  
square wave clock input; CL = 15 pF  
3.3  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current for VCC1 and VCC2  
10 Mbps  
25 Mbps  
50 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
4.9  
7.3  
7
10  
mA  
All channels switching with square  
wave clock input; CL = 15 pF  
All channels switching with square  
wave clock input; CL = 15 pF  
11.1  
14.5  
6.7 Electrical Characteristics—3.3-V Supply  
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)  
PARAMETER  
TEST CONDITIONS  
IOH = –4 mA; see Figure 8  
MIN  
VCCO (1) – 0.5  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
V
IOH = –20 μA; see Figure 8  
IOL = 4 mA; see Figure 8  
IOL = 20 μA; see Figure 8  
VCCO – 0.1  
0.4  
V
VOL  
Low-level output voltage  
0.1  
VI(HYS)  
IIH  
Input threshold voltage hysteresis  
High-level input current  
460  
50  
mV  
VIH = VCCI(1) at INx or ENx  
VIL = 0 V at INx or ENx  
10  
μA  
IIL  
Low-level input current  
–10  
25  
Common-mode transient  
immunity  
CMTI  
VI = VCCI or 0 V; see Figure 11  
kV/μs  
(1) VCCI= Supply voltage for the input channel; VCCO = Supply voltage for the output channel  
Copyright © 2015, Texas Instruments Incorporated  
5
ISO7142CC-Q1  
ZHCSEG9 DECEMBER 2015  
www.ti.com.cn  
6.8 Supply Current Characteristics—3.3-V Supply  
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
Disable  
EN1 = EN2 = 0 V  
ICC1, ICC2  
0.5  
2.5  
1
4
DC signal: VI = VCCI or 0 V  
DC to 1 Mbps AC signal: All channels switching with  
square-wave clock input; CL = 15 pF  
ICC1, ICC2  
All channels switching with square  
10 Mbps  
Supply current for VCC1 and VCC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
3.5  
5
5
7
mA  
wave clock input; CL = 15 pF  
All channels switching with square  
25 Mbps  
wave clock input; CL = 15 pF  
All channels switching with square  
40 Mbps  
6.5  
10  
wave clock input; CL = 15 pF  
6.9 Electrical Characteristics—2.7-V Supply  
VCC1 and VCC2 at 2.7 V (over recommended operating conditions unless otherwise noted.)  
PARAMETER  
TEST CONDITIONS  
IOH = –2 mA; see Figure 8  
MIN  
VCCO (1) – 0.3  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
V
IOH = –20 μA; see Figure 8  
IOL = 4 mA; see Figure 8  
IOL = 20 μA; see Figure 8  
VCCO – 0.1  
0.4  
V
VOL  
Low-level output voltage  
0.1  
Input threshold voltage  
hysteresis  
VI(HYS)  
360  
45  
mV  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI(1) at INx or ENx  
VIL = 0 V at INx or ENx  
10  
μA  
–10  
25  
Common-mode transient  
immunity  
CMTI  
VI = VCCI or 0 V; see Figure 11  
kV/μs  
(1) VCCI= Supply voltage for the input channel; VCCO = Supply voltage for the output channel  
6.10 Supply Current Characteristics—2.7-V Supply  
VCC1 and VCC2 at 2.7 V (over recommended operating conditions unless otherwise noted.)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
Disable  
EN1 = EN2 = 0 V  
ICC1, ICC2  
0.4  
0.8  
3.5  
DC signal: VI = VCCI or 0 V  
DC to 1 Mbps AC signal: All channels switching with  
square-wave clock input; CL = 15 pF  
ICC1, ICC2  
2.2  
All channels switching with square  
10 Mbps  
Supply current for VCC1 and VCC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
3
4.2  
5.4  
4.2  
5.5  
7.5  
mA  
wave clock input; CL = 15 pF  
All channels switching with square  
25 Mbps  
wave clock input; CL = 15 pF  
All channels switching with square  
40 Mbps  
wave clock input; CL = 15 pF  
6.11 Power Dissipation Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
170  
UNIT  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF  
Input a 25-MHz, 50% duty cycle square wave  
PD  
Device power dissipation  
6
Copyright © 2015, Texas Instruments Incorporated  
ISO7142CC-Q1  
www.ti.com.cn  
ZHCSEG9 DECEMBER 2015  
6.12 Switching Characteristics—5-V Supply  
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)  
PARAMETER  
TEST CONDITIONS  
See Figure 8  
MIN  
TYP  
MAX UNIT  
38 ns  
tPLH, tPHL  
PWD(1)  
Propagation delay time  
Pulse width distortion |tPHL – tPLH  
15  
21  
|
See Figure 8  
3.5 ns  
Same-direction channels  
Opposite-direction channels  
1.5  
ns  
Channel-to-channel output skew  
time  
(2)  
tsk(o)  
6.5  
(3)  
tsk(pp)  
Part-to-part skew time  
Output signal rise time  
Output signal fall time  
14 ns  
ns  
tr  
tf  
See Figure 8  
See Figure 8  
2.5  
2.1  
ns  
Disable propagation delay,  
high/low-to-high impedance  
output  
tPHZ, tPLZ  
See Figure 9  
7
12 ns  
Enable propagation delay, high  
impedance-to-high output  
tPZH  
tPZL  
See Figure 9  
See Figure 9  
See Figure 10  
6
12 ns  
23 us  
Enable propagation delay, high  
impedance-to-low output  
12  
Fail-safe output delay time from  
input data or power loss  
tfs  
8
μs  
tGR  
Input glitch rejection time  
9.5  
ns  
(1) Also known as pulse skew  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals, and loads.  
6.13 Switching Characteristics—3.3-V Supply  
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tPLH, tPHL  
PWD(1)  
Propagation delay time  
Pulse width distortion |tPHL  
See Figure 8  
See Figure 8  
16  
25  
46  
ns  
3
ns  
tPLH  
|
Same-direction Channels  
2
6.5  
21  
Channel-to-channel output  
skew time  
(2)  
tsk(o)  
ns  
Opposite-direction Channels  
(3)  
tsk(pp)  
Part-to-part skew time  
Output signal rise time  
Output signal fall time  
ns  
ns  
ns  
tr  
tf  
See Figure 8  
See Figure 8  
3
2.5  
Disable propagation delay, from  
high/low to high-impedance  
output  
tPHZ, tPLZ  
See Figure 9  
9
14  
ns  
Enable propagation delay, from  
high-impedance to high output  
tPZH  
tPZL  
See Figure 9  
See Figure 9  
See Figure 10  
9
17  
24  
ns  
us  
Enable propagation delay, from  
high-impedance to low output  
12  
Fail-safe output delay time from  
input data or power loss  
tfs  
7
μs  
tGR  
Input glitch rejection time  
11  
ns  
(1) Also known as pulse skew  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2015, Texas Instruments Incorporated  
7
ISO7142CC-Q1  
ZHCSEG9 DECEMBER 2015  
www.ti.com.cn  
6.14 Switching Characteristics—2.7-V Supply  
VCC1 and VCC2 at 2.7 V (over recommended operating conditions unless otherwise noted.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tPLH, tPHL  
PWD(1)  
Propagation delay time  
Pulse width distortion |tPHL  
See Figure 8  
See Figure 8  
18  
28  
50 ns  
3
3
ns  
ns  
tPLH  
|
Same-direction Channels  
Channel-to-channel output  
skew time  
(2)  
tsk(o)  
Opposite-direction Channels  
8.5 ns  
24 ns  
ns  
(3)  
tsk(pp)  
Part-to-part skew time  
Output signal rise time  
Output signal fall time  
tr  
tf  
See Figure 8  
See Figure 8  
3.5  
2.8  
ns  
Disable propagation delay, from  
high/low to high-impedance  
output  
tPHZ, tPLZ  
See Figure 9  
10  
15 ns  
Enable propagation delay, from  
high-impedance to high output  
tPZH  
tPZL  
See Figure 9  
See Figure 9  
See Figure 10  
10  
12  
19 ns  
23 us  
Enable propagation delay, from  
high-impedance to low output  
Fail-safe output delay time from  
input data or power loss  
tfs  
7
μs  
tGR  
Input glitch rejection time  
12  
ns  
(1) Also known as pulse skew  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals, and loads.  
6.15 Typical Characteristics  
12  
10  
8
6
5
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
4
3
6
2
4
1
VCC at 3.3 V  
2
0
V
at 5 V  
CC
œ1  
0
œ15  
œ10  
œ5  
0
C002  
0
10  
20  
30  
40  
50  
60  
C001  
High-Level Output Current (mA)  
Data Rate (Mbps)  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
Figure 1. ISO7142CC-Q1 Supply Current for All Channels vs  
Data Rate  
Figure 2. High-Level Output Voltage  
vs High-Level Output Current  
8
Copyright © 2015, Texas Instruments Incorporated  
ISO7142CC-Q1  
www.ti.com.cn  
ZHCSEG9 DECEMBER 2015  
Typical Characteristics (continued)  
1.2  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.38  
2.36  
2.34  
VCC at 3.3 V  
V
at 5 V  
CC  
0.8  
0.4  
0.0  
VCC Rising  
VCC Falling  
0
5
10  
15  
œ55  
œ25  
5
35  
65  
95  
125  
C003  
Low-Level Output Current (mA)  
Free-Air Temperature (oC)  
C004  
TA = 25°C  
Figure 3. Low-Level Output Voltage  
vs Low-Level Output Current  
Figure 4. VCC Undervoltage Threshold  
vs Free-Air Temperature  
30  
25  
20  
15  
10  
5
14  
12  
10  
8
6
4
tpLH at 3.3 V  
t at 3.3 V  
pHL
tGR at 3.3 V  
2
tpLH at 5 V  
tGR at 2.7 V  
t at 5 V  
pHL
tGR at 5 V  
0
0
œ55  
œ25  
5
35  
65  
95  
125  
C005  
œ55  
œ25  
5
35  
65  
95  
125  
C006  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
Figure 5. Propagation Delay Time  
vs Free-Air Temperature  
Figure 6. Input Glitch Rejection Time  
vs Free-Air Temperature  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Output jitter at 2.7 V  
Output jitter at 3.3 V  
Output Jitter at 5 V  
0.0  
0
20  
40  
60  
C007  
Data Rate (Mbps)  
TA = 25°C  
Figure 7. Peak-Peak Output Jitter vs Data Rate  
Copyright © 2015, Texas Instruments Incorporated  
9
ISO7142CC-Q1  
ZHCSEG9 DECEMBER 2015  
www.ti.com.cn  
7 Parameter Measurement Information  
VCCI  
VI  
50%  
50%  
IN  
OUT  
VO  
0 V  
tPLH  
tPHL  
Input  
Generator  
Note A  
50 W  
VI  
CL  
VOH  
VOL  
90%  
10%  
Note B  
50%  
50%  
VO  
tr  
tf  
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3  
ns, tf 3 ns, ZO = 50 Ω. At the input, a 50-Ω resistor is required to terminate the input-generator signal. It is not  
needed in an actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 8. Switching-Characteristics Test Circuit and Voltage Waveforms  
V
CC  
VCC  
VCC / 2  
VCC / 2  
RL = 1 kΩ 1%  
OUT  
VI  
0 V  
IN  
tPLZ  
tPZL  
VO  
0 V  
VCC  
0.5 V  
VO  
50%  
EN  
CL  
V
OL  
See Note B  
Input  
Generator  
V
I
50 Ω  
See Note A  
VCC  
VO  
VCC / 2  
VCC / 2  
IN  
OUT  
VI  
3 V  
0 V  
tPZH  
EN  
CL  
See Note B  
VOH  
RL = 1 kΩ 1%  
Input  
50%  
0.5 V  
VO  
Generator  
See Note A  
V
I
50 W  
0 V  
tPHZ  
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3  
ns, tf 3 ns, ZO = 50 Ω.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 9. Enable/Disable Propagation Delay-Time Test Circuit and Waveform  
10  
Copyright © 2015, Texas Instruments Incorporated  
ISO7142CC-Q1  
www.ti.com.cn  
ZHCSEG9 DECEMBER 2015  
Parameter Measurement Information (continued)  
V
I
V
V
CC  
CC  
2.7 V  
V
I
0 V  
IN  
OUT  
t
V
fs  
VIN = 0 V  
O
V
OH  
50%  
V
O
C
L
See Note A  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 10. Failsafe Delay-Time Test Circuit and Voltage Waveforms  
VCCI  
VCCO  
C = 0.1 μF 1ꢀ  
C = 0.1 μF 1ꢀ  
Pass-fail criteria –  
output must remain  
stable.  
IN  
OUT  
S1  
+
CL  
Note A  
VOH or VOL  
GNDI  
GNDO  
+
VCM  
A. CL = 15pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 11. Common-Mode Transient Immunity Test Circuit  
Copyright © 2015, Texas Instruments Incorporated  
11  
ISO7142CC-Q1  
ZHCSEG9 DECEMBER 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The isolator in Figure 12 is based on a capacitive isolation barrier technique. The I/O channel of the device  
consists of two internal data channels, a high-frequency channel (HF) with a bandwidth from 100 kbps up to  
50 Mbps, and a low-frequency channel (LF) covering the range from 100 kbps down to DC. In principle, a single-  
ended input signal entering the HF-channel is split into a differential signal through the inverter gate at the input.  
The following capacitor-resistor networks differentiate the signal into transients, which then are converted into  
differential pulses by two comparators. The comparator outputs drive a NOR-gate flip-flop whose output feeds an  
output multiplexer. A decision logic (DCL) at the driving output of the flip-flop measures the durations between  
signal transients. If the duration between two consecutive transients exceeds a certain time limit, (as in the case  
of a low-frequency signal), the DCL forces the output-multiplexer to switch from the high- to the low-frequency  
channel.  
Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these  
signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a  
sufficiently high frequency signal, capable of passing the capacitive barrier. As the input is modulated, a low-pass  
filter (LPF) is needed to remove the high-frequency carrier from the actual data before passing it on to the output  
multiplexer.  
8.2 Functional Block Diagram  
Lsolation .arrier  
OSC  
LPF  
[owtCrequency  
/hannel  
PWM  
VREF  
(5/ꢀꢀꢀ100 kbps)  
0
1
OUT  
{
IN  
DCL  
IightCrequency  
/hannel  
VREF  
(100 kbpsꢀꢀꢀꢁ0 ꢂbps)  
Figure 12. Conceptual Block Diagram of a Digital Capacitive Isolator  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7142CC-Q1  
www.ti.com.cn  
ZHCSEG9 DECEMBER 2015  
8.3 Feature Description  
8.3.1 Insulation and Safety-Related Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DTI  
Distance through the insulation  
Input capacitance  
Minimum internal gap (internal clearance)  
0.014  
mm  
pF  
(1)  
CI  
VI = VCC/2 + 0.4 sin (2πft), f = 1 MHz, VCC = 5 V  
2
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
VIOTM Maximum transient isolation voltage  
VIORM Maximum working isolation voltage  
4242  
566  
VPK  
VPK  
After Input/Output safety test subgroup 2/3,  
VPR = VIORM x 1.2, t = 10 s,  
Partial discharge < 5 pC  
679  
906  
Method a, After environmental tests subgroup 1,  
VPR = VIORM x 1.6, t = 10 s,  
VPR  
Input-to-output test voltage  
VPK  
Partial discharge < 5 pC  
Method b1, 100% production test,  
VPR = VIORM x 1.875, t = 1 s,  
Partial discharge < 5 pC  
1061  
L(I01) Minimum air gap (clearance)  
Shortest terminal to terminal distance through air  
3.7  
3.7  
mm  
mm  
Minimum external tracking  
Shortest terminal to terminal distance across the  
package surface  
L(I02)  
(creepage)  
Pollution degree  
2
Tracking resistance (comparative  
tracking index)  
CTI  
DIN EN 60112 (VDE 0303-11); IEC 60112  
VIO = 500 V, TA = 25oC  
400  
V
>1012  
>1011  
>109  
2.4  
Isolation resistance, input to output VIO = 500 V, 100oC TA 125oC  
Ω
(2)  
RIO  
CIO  
VIO = 500 V, TS = 150oC  
(2)  
Barrier capacitance, input to output VI = 0.4 sin (2πft), f = 1 MHz  
pF  
UL 1577  
Withstanding Isolation voltage  
VTEST = VISO= 2500 VRMS, 60 sec (qualification);  
VISO  
VTEST = 1.2 * VISO= 3000 VRMS, 1 sec (100%  
production)  
2500 VRMS  
(1) Measured from input data pin to ground.  
(2) All pins on each side of the barrier tied together creating a two-terminal device.  
spacer  
NOTE  
Creepage and clearance requirements should be applied according to the specific  
equipment isolation standards of an application. Care should be taken to maintain the  
creepage and clearance distance of a board design to ensure that the mounting pads of  
the isolator on the printed circuit board do not reduce this distance.  
Creepage and clearance on a printed circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to  
help increase these specifications.  
Table 1. IEC 60664-1 Ratings Table  
PARAMETER  
Material Group  
TEST CONDITIONS  
SPECIFICATION  
II  
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
I–IV  
I–III  
Installation classification / Overvoltage  
Category for Basic Insulation  
Copyright © 2015, Texas Instruments Incorporated  
13  
ISO7142CC-Q1  
ZHCSEG9 DECEMBER 2015  
www.ti.com.cn  
8.3.2 Regulatory Information  
VDE  
UL  
CSA  
CQC  
Certified according to DIN V  
VDE V 0884-10 (VDE V 0884-  
10):2006-12 and DIN EN  
Certified under UL 1577  
Component Recognition  
Program  
Approved under CSA Component  
Acceptance Notice 5A, IEC 60950-1  
and IEC 61010-1  
Plan to certify according to GB  
4943.1-2011  
61010-1 (VDE 0411-1):2011-07  
3000 VRMS Isolation rating;  
185 VRMS Reinforced Insulation and  
370 VRMS Basic Insulation per CSA  
60950-1-07+A1+A2 and IEC 60950-1  
2nd Ed.+A1+A2;  
150 VRMS Reinforced Insulation and  
300 VRMS Basic Insulation per CSA  
61010-1-12 and IEC 61010-1 3rd Ed.  
Basic Insulation;  
Maximum transient Isolation  
IsolatiIsolationvoltage, 4242 VPK Single protection, 2500 VRMS  
Maximum working isolation  
voltage, 566 VPK  
Basic Insulation, Altitude ≤  
5000m, Tropical climate, 250  
VRMS maximum working  
voltage.  
(1)  
File number: 40016131  
File number: E181974  
Master contract number: 220991  
Certification Planned  
(1) Production tested 3000 VRMS for 1 second in accordance with UL 1577.  
8.3.3 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output  
circuitry. A failure of the IO can allow low resistance to ground or the supply and, without current limiting,  
dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary  
system failures.  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
θJA = 104.5°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
DBQ-16 θJA = 104.5°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C  
θJA = 104.5°C/W, VI = 2.7 V, TJ = 150°C, TA = 25°C  
217  
Safety input, output, or supply  
current  
IS  
332  
443  
150  
mA  
°C  
TS Maximum safety temperature  
The safety-limiting constraint is the absolute-maximum junction temperature specified in the Absolute Maximum  
Ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the  
application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the  
Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages.  
The power is the recommended maximum input voltage times the current. The junction temperature is then the  
ambient temperature plus the power times the junction-to-air thermal resistance.  
500  
VCC1 = VCC2 = 2.7 V  
VCC1 = VCC2 = 3.6 V  
450  
VCC1 = VCC2 = 5.5 V  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
Ambient Temperature (èC)  
D001  
Figure 13. Thermal Derating Curve for Safety Limiting Current per VDE  
14  
Copyright © 2015, Texas Instruments Incorporated  
ISO7142CC-Q1  
www.ti.com.cn  
ZHCSEG9 DECEMBER 2015  
8.4 Device Functional Modes  
Table 2 lists the functional modes for the ISO7142CC-Q1.  
Table 2. Function Table(1)  
INPUT  
(INx)  
OUTPUT ENABLE  
(ENx)  
OUTPUT  
(OUTx)  
VCCI  
VCCO  
H
L
H or open  
H
H or open  
L
PU  
PU  
X
L
Z
Open  
X
H or open  
H
PD  
PD  
X
PU  
PU  
PD  
H or open  
H
X
L
Z
X
X
Undetermined  
(1) VCCI = Input-side Supply Voltage; VCCO = Output-side Supply Voltage; PU = Powered Up (VCC 2.7  
V); PD = Powered Down (VCC 2.1 V); X = Irrelevant; H = High Level; L = Low Level; Z = High  
Impedance  
8.4.1 Device I/O Schematics  
Output  
Input  
V
V
CCO  
V
V
V
CCI  
CCI  
CCI  
CCI  
5 mA  
500 W  
40 W  
INx  
OUTx  
Enable  
V
V
V
V
CCO  
CCO  
CCO  
CCO  
5 mA  
500 W  
ENx  
Figure 14. Device I/O Schematics  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
ISO7142CC-Q1  
ZHCSEG9 DECEMBER 2015  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ISO7142CC-Q1 device uses single-ended TTL-logic switching technology. The supply voltage range is from  
2.7 V to 5.5 V for both supplies, VCC1 and VCC2. When designing with digital isolators, keep in mind that because  
of the single-ended design structure the single-ended design structure, digital isolators do not conform to any  
specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The  
isolator is typically placed between the data controller (that is, µC or UART), and a data converter or a line  
transceiver, regardless of the interface type or standard.  
9.2 Typical Application  
Figure 15 shows the typical isolated CAN interface implementation.  
VS  
10 F  
3.3 V  
2
MBR0520L  
Vcc  
1:1.33  
ISO 3.3V  
3
1
1
5
2
D2  
D1  
IN  
OUT  
TPS76333-Q1  
SN6501-Q1  
10 F  
0.1 F  
10 F  
3
EN  
GND  
MBR0520L  
GND  
GND  
4
5
ISO Barrier  
0.1 F  
0.1 F  
VCC2  
0.1 F  
0.1 F  
29,57  
3
VCC1  
V
VCC  
DDIO  
8
RS  
1
5
16  
10 (optional)  
10 (optional)  
26  
25  
CANRXA  
CANTXA  
CANH  
OUTC  
INA  
INC  
R
7
6
TMS320F28  
035PAGQ  
4
12  
14  
SN65HVD231Q  
D
OUTA  
CANL  
Vref  
1
3
5
GND  
SM712  
V
SS  
6,28  
2
ISO7142CC-Q1  
0.1 F  
3
4.7 nF / 2 kV  
0.1 F  
OUTD  
INB  
VCC  
8
RS  
29,57  
10 (optional)  
IND  
6
4
11  
CANH  
V
7
6
DDIO  
R
4
OUTB  
10 (optional)  
26  
25  
SN65HVD231Q  
13  
CANRXA  
CANTXA  
CANL  
Vref  
D
1
TMS320F28  
035PAGQ  
GND1  
GND2  
2,8  
9,15  
5
GND  
2
SM712  
V
SS  
6,28  
4.7 nF / 2 kV  
Figure 15. Typical Isolated CAN Application Circuit for ISO7142CC-Q1  
9.2.1 Design Requirements  
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,  
the ISO7142CC-Q1 device only requires two external bypass capacitors to operate.  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7142CC-Q1  
www.ti.com.cn  
ZHCSEG9 DECEMBER 2015  
Typical Application (continued)  
9.2.2 Detailed Design Procedure  
Figure 16 shows the hookup of a typical ISO7142CC-Q1 circuit. The only external components are two bypass  
capacitors.  
V
V
CC1  
CC2  
ISO7142CC  
0.1 µF  
0.1 µF  
V
V
CC2  
CC1  
1
2
3
4
16  
GND1  
GND2  
15  
14  
INA  
OUTA  
OUTB  
INC  
13  
INB  
OUTC  
12  
11  
10  
9
5
6
7
8
IND  
OUTD  
EN2  
EN1  
GND1  
GND2  
Figure 16. Typical ISO7142CC-Q1 Circuit Hook-up  
9.2.3 Application Curves  
Figure 17. Typical Eye Diagram at 40 Mbps,  
PRBS 216 - 1, 2.7-V Operation  
Figure 18. Typical Eye Diagram at 40 Mbps,  
PRBS 216 - 1, 3.3-V Operation  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
ISO7142CC-Q1  
ZHCSEG9 DECEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
Figure 19. Typical Eye Diagram at 50 Mbps,  
PRBS 216 - 1, 5-V Operation  
10 Power Supply Recommendations  
To help ensure reliable operation supply voltages, a 0.1-µF bypass capacitor is recommended at the input and  
output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as possible. If  
only a single primary-side power supply is available in an application, isolated power can be generated for the  
secondary-side with the help of a transformer driver such as Texas Instruments' SN6501-Q1. For such  
applications, detailed power supply design and transformer selection recommendations are available in SN6501-  
Q1 datasheet (SLLSEF3).  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 20). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power and ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
For detailed layout recommendations, see the application note, Digital Isolator Design Guide, SLLA284.  
18  
Copyright © 2015, Texas Instruments Incorporated  
ISO7142CC-Q1  
www.ti.com.cn  
ZHCSEG9 DECEMBER 2015  
Layout Guidelines (continued)  
11.1.1 PCB Material  
For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of  
up to 10 inches, use standard FR-4 UL 94 V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Yeep this  
FR-4  
0 ~ 4.5  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
r
Power plane  
Low-speed traces  
Figure 20. Recommended Layer Stack  
版权 © 2015, Texas Instruments Incorporated  
19  
ISO7142CC-Q1  
ZHCSEG9 DECEMBER 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
《数字隔离器设计指南》SLLA284  
《隔离相关术语》SLLA353  
ISO71xx EVM 用户指南》SLLU179  
SN6501-Q1 用于隔离电源的变压器驱动器》SLLSEF3  
SN65HVD231Q-Q1 3.3V CAN 收发器》SGLS398  
TMS320F28035 Piccolo™ 微控制器》SPRS584  
TPS76333-Q1 低功耗 150mA 低压降线性稳压器》SGLS247  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
Piccolo, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7142CCQDBQQ1  
ISO7142CCQDBQRQ1  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
DBQ  
DBQ  
16  
16  
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
7142Q  
7142Q  
2500 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

ISO7142CCDBQ

VPK Small-Footprint and Low-Power Quad Channel Digital Isolator
TI

ISO7142CCDBQR

VPK Small-Footprint and Low-Power Quad Channel Digital Isolator
TI

ISO7142CCQDBQQ1

汽车类四通道、2/2、50Mbps 数字隔离器 | DBQ | 16 | -40 to 125
TI

ISO7142CCQDBQRQ1

汽车类四通道、2/2、50Mbps 数字隔离器 | DBQ | 16 | -40 to 125
TI

ISO7142CC_15

VPK Small-Footprint and Low-Power Quad Channel Digital Isolator
TI

ISO721

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721-Q1

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721D

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721DG4

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721DR

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721DRG4

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721DUB

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI