ISO721M-EP [TI]

3.3-V/5-V HIGH-SPEED DIGITAL ISOLATORS; 3.3 V / 5 V高速数字隔离器
ISO721M-EP
型号: ISO721M-EP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3-V/5-V HIGH-SPEED DIGITAL ISOLATORS
3.3 V / 5 V高速数字隔离器

文件: 总24页 (文件大小:669K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO721M-EP  
www.ti.com ....................................................................................................................................................................................................... SLLS882JUNE 2008  
3.3-V/5-V HIGH-SPEED DIGITAL ISOLATORS  
1
FEATURES  
Signaling Rate 0 Mbps to 150 Mbps  
23  
Controlled Baseline  
Low Propagation Delay  
One Assembly Site  
One Test Site  
Low Pulse Skew (Pulse-Width Distortion)  
Low-Power Sleep Mode  
High Electromagnetic Immunity  
Low Input Current Requirement  
Failsafe Output  
One Fabrication Site  
Extended Temperature Performance of  
–55°C to 125°C  
Enhanced Diminishing Manufacturing Sources  
(DMS) Support  
Drop-In Replacement for Most Opto and  
Magnetic Isolators  
Enhanced Product-Change Notification  
APPLICATIONS  
(1)  
Industrial Fieldbus  
Qualification Pedigree  
Modbus  
Profibus  
4000-V(peak) Isolation  
UL 1577, IEC 60747-5-2 (VDE 0884, Rev. 2)  
IEC 61010-1  
DeviceNet™ Data Buses  
Smart Distributed Systems (SDS™)  
50-kV/µs Transient Immunity Typical  
Computer Peripheral Interface  
Servo Control Interface  
Data Acquisition  
(1) Component qualification in accordance with JEDEC and  
industry standards to ensure reliable operation over an  
extended temperature range. This includes, but is not limited  
to, Highly Accelerated Stress Test (HAST) or biased 85/85,  
temperature cycle, autoclave or unbiased HAST,  
electromigration, bond intermetallic life, and mold compound  
life. Such qualification testing should not be viewed as  
justifying use of this component beyond specified  
performance and environmental limits.  
DESCRIPTION/ORDER INFORMATION  
The ISO721, ISO721M, ISO722, and ISO722M are digital isolators with a logic input and output buffer separated  
by a silicon oxide (SiO2) insulation barrier. This barrier provides galvanic isolation of up to 4000 V. Used in  
conjunction with isolated power supplies, these devices prevent noise currents on a data bus or other circuits  
from entering the local ground, and interfering with or damaging sensitive circuitry.  
A binary input signal is conditioned, translated to a balanced signal, then differentiated by the capacitive isolation  
barrier. Across the isolation barrier, a differential comparator receives the logic transition information, then sets or  
resets a flip-flop and the output circuit accordingly. A periodic update pulse is sent across the barrier to ensure  
the proper dc level of the output. If this dc-refresh pulse is not received for more than 4 µs, the input is assumed  
to be unpowered or not being actively driven, and the failsafe circuit drives the output to a logic high state.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
SDS is a trademark of Honeywell.  
DeviceNet is a trademark of Open Devicenet Vendors Association, Inc.  
UNLESS OTHERWISE NOTED this document contains  
PRODUCTION DATA information current as of publication date.  
Products conform to specifications per the terms of Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008, Texas Instruments Incorporated  
ISO721M-EP  
SLLS882JUNE 2008....................................................................................................................................................................................................... www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
FUNCTION DIAGRAM  
Isolation Barrier  
DC Channel  
+
_
Filter  
Pulse Width  
Demodulation  
OSC  
+
PWM  
V
ref  
_
+
Carrier Detect  
POR  
POR  
BIAS  
ISO722  
Only  
+
_
Data MUX  
AC Detect  
3-State  
EN  
Input  
+
Filter  
IN  
V
ref  
_
+
OUT  
Output Buffer  
AC Channel  
The symmetry of the dielectric and capacitor within the integrated circuitry provides for close capacitive matching,  
and allows fast transient voltage changes between the input and output grounds without corrupting the output.  
The small capacitance and resulting time constant provide for fast operation with signaling rates(2) from 0 Mbps  
(dc) to 100 Mbps for the ISO721/ISO722, and 0 Mbps to 150 Mbps with the ISO721M/ISO722M.  
These devices require two supply voltages of 3.3 V, 5 V, or any combination. All inputs are 5-V tolerant when  
supplied from a 3.3-V supply and all outputs are 4-mA CMOS.  
The ISO721 has TTL input thresholds and a noise-filter at the input that prevents transient pulses of up to 2 ns in  
duration from being passed to the output of the device.  
The ISO721M has CMOS VCC/2 input thresholds, but do not have the noise filter and the additional propagation  
delay. These features of the ISO721M also provide for reduced jitter operation.  
The ISO721M is characterized for operation over the ambient temperature range of –55°C to 125°C.  
(2) The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
www.ti.com ....................................................................................................................................................................................................... SLLS882JUNE 2008  
D PACKAGE  
ISO721, ISO721M  
(TOP VIEW)  
D PACKAGE  
ISO722, ISO722M  
(TOP VIEW)  
V
V
V
CC2  
V
V
V
CC2  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CC1  
IN  
CC1  
IN  
GND2  
OUT  
EN  
CC1  
OUT  
GND2  
CC1  
GND1  
GND2  
GND1  
AVAILABLE OPTIONS(1)  
OUTPUT  
ENABLED  
INPUT  
THRESHOLDS  
NOISE  
TOP-SIDE  
MARKING  
PRODUCT(2)  
PACKAGE  
FILTER  
ORDERING NUMBER  
GREEN  
ISO721(3)  
ISO721M  
ISO722(3)  
ISO722M(3)  
NO  
NO  
TTL  
YES  
NO  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
-
-
CMOS  
TTL  
721MEP  
ISO721MMDREP (reel)  
Pb Free  
Sb/Br Free  
YES  
YES  
YES  
NO  
-
-
-
-
CMOS  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
(3) Product Preview  
REGULATORY INFORMATION  
VDE  
CSA  
UL  
Approved under CSA Component  
Acceptance Notice: CA-5A  
Recognized under 1577  
Certified according to IEC 60747-5-2  
File Number: 40014131  
Component Recognition Program(1)  
File Number: 1698195  
File Number: E181974  
(1) Production tested 3000 VRMS for 1 second in accordance with UL 1577.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
SLLS882JUNE 2008....................................................................................................................................................................................................... www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
UNIT  
VCC  
VI  
Supply voltage(2), VCC1, VCC2  
Voltage at IN, OUT, or EN terminal  
Output Current  
–0.5 V to 6 V  
–0.5 V to 6 V  
±15 mA  
IO  
Human-Body Model  
Charged-Device Model  
JEDEC Standard 22, Test Method A114-C.01  
JEDEC Standard 22, Test Method C101  
±2 kV  
Electrostatic  
discharge  
ESD  
TJ  
All pins  
±1 kV  
Maximum junction temperature  
170°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values. Vrms  
values are not listed in this publication.  
RECOMMENDED OPERATING CONDITIONS  
MIN TYP  
MAX  
5.5  
3.6  
4
UNIT  
V
4.5  
3
VCC  
Supply voltage, VCC1, VCC2  
IOH  
IOL  
High-level output current  
Low-level output current  
mA  
-4  
10  
6.67  
2
ISO72x  
tui  
Input pulse width  
ns  
V
ISO72xM  
VIH  
VIL  
VIH  
VIL  
TJ  
High-level input voltage (IN, EN)  
Low-level input voltage (IN, EN)  
High-level input voltage (IN, EN)  
Low-level input voltage (IN, EN)  
Junction temperature  
VCC  
0.8  
ISO72x  
0
0.7 VCC  
VCC  
IOS72xM  
V
0
0.3 VCC  
150  
See the Thermal Characteristics table  
°C  
External magnetic field intensity per IEC 61000-4-8 and IEC 61000-4-9  
certification  
H
1000  
A/m  
IEC 60747-5-2 INSULATION CHARACTERISTICS(1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SPECIFICATIONS  
UNIT  
VIORM  
Maximum working insulation voltage  
560  
V
After Input/Output Safety Test Subgroup 2/3  
VPR = VIORM × 1.2, t = 10 s,  
Partial discharge < 5 pC  
672  
896  
V
V
V
Method a, VPR = VIORM × 1.6,  
Type and sample test with t = 10 s,  
Partial discharge < 5 pC  
VPR  
Input to output test voltage  
Method b1, VPR = VIORM × 1.875,  
100 % Production test with t = 1 s,  
Partial discharge < 5 pC  
1050  
VIOTM  
RS  
Transient overvoltage  
Insulation resistance  
Pollution degree  
t = 60 s  
4000  
>109  
2
V
VIO = 500 V at TS  
(1) Climatic Classification 40/125/21  
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
www.ti.com ....................................................................................................................................................................................................... SLLS882JUNE 2008  
ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 5 V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
Quiescent  
0.5  
2
1
ICC1  
ICC2  
VOH  
VOL  
VCC1 supply current  
VI = VCC or 0 V, No load  
mA  
4
25 Mbps  
Quiescent  
25 Mbps  
VI = VCC or 0 V, No load  
VI = VCC or 0 V, No load  
IOH = -4 mA, See Figure 1  
IOH = –20 µA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 µA, See Figure 1  
8
12  
VCC2 supply current  
mA  
14  
10  
VCC – 0.8  
4.6  
5
High-level output voltage  
Low-level output voltage  
V
VCC – 0.1  
0.2  
0
0.4  
V
0.1  
VI(HYS) Input voltage hysteresis  
150  
mV  
IIH  
IIL  
High-level input current  
Low-level input current  
IN at 2 V  
10  
µA  
IN at 0.8 V  
–10  
25  
High-impedance output  
current  
IOZ  
ISO722, ISO722M  
EN, IN at VCC  
1
µA  
CI  
Input capacitance to ground  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI Common-mode transient immunity  
VI = VCC or 0 V, See Figure 5  
50  
kV/µs  
SWITCHING CHARACTERISTICS: VCC1 and VCC2 5 V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
17  
MAX UNIT  
tPLH  
tPHL  
tsk(p)  
tPLH  
tPHL  
tsk(p)  
tsk(pp)  
tr  
Propagation delay, low-to-high-level output  
Propagation delay , high-to-low-level output  
ISO72x  
17  
ns  
Pulse skew |tPHL – tPLH  
|
0.5  
10  
EN at 0 V,  
See Figure 1  
Propagation delay, low-to-high-level output  
Propagation delay, high-to-low-level output  
2
2
16  
16  
1
ISO721M  
10  
Pulse skew |tPHL – tPLH  
|
0.5  
(1)  
Part-to-part skew  
3
ns  
ns  
Output signal rise time  
Output signal fall time  
1
1
EN at 0 V,  
See Figure 1  
tf  
Sleep-mode propagation delay,  
high-level-to-high-mpedance output  
tpHZ  
tpZH  
tpLZ  
8
4
8
5
ns  
µs  
ns  
See Figure 2  
Sleep-mode propagation delay,  
high-impedance-to-high-level output  
ISO722  
ISO722M  
Sleep-mode propagation delay,  
low-level-to-high-impedance output  
See Figure 3  
See Figure 4  
Sleep-mode propagation delay,  
high-impedance-to-low-level output  
tpZL  
tfs  
µs  
µs  
Failsafe output delay time from input power loss  
3
2
100 Mbps NRZ data input, See Figure 6  
ISO72x  
Peak-to-peak eye-pattern jitter  
ISO72xM  
100 Mbps unrestricted bit run length data  
input, See Figure 6  
3
1
2
tjit(PP)  
ns  
150 Mbps NRZ data input, See Figure 6  
150 Mbps unrestricted bit run length data  
input, See Figure 6  
(1) tsk(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
SLLS882JUNE 2008....................................................................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
Quiescent  
0.5  
2
1
ICC1  
ICC2  
VOH  
VOL  
VCC1 supply current  
VI = VCC or 0 V, No load  
mA  
4
25 Mbps  
Quiescent  
25 Mbps  
VI = VCC or 0 V, No load  
VI = VCC or 0 V, No load  
IOH = –4 mA, See Figure 1  
IOH = –20 µA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 µA, See Figure 1  
4
6.5  
mA  
7.5  
VCC2 supply current  
5
VCC – 0.4  
3
3.3  
0.2  
0
High-level output voltage  
Low-level output voltage  
V
VCC – 0.1  
0.4  
V
0.1  
VI(HYS) Input voltage hysteresis  
150  
mV  
IIH  
IIL  
High-level input current  
Low-level input current  
IN at 2 V  
10  
µA  
IN at 0.8 V  
–10  
25  
High-impedance output  
current  
IOZ  
ISO722, ISO722M  
EN, IN at VCC  
1
µA  
CI  
Input capacitance to ground  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI Common-mode transient immunity  
VI = VCC or 0 V, See Figure 5  
40  
kV/µs  
SWITCHING CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tPLH  
tPHL  
tsk(p)  
tPLH  
tPHL  
tsk(p)  
tsk(pp)  
tr  
Propagation delay, low-to-high-level output  
Propagation delay , high-to-low-level output  
19  
19  
ISO72x  
ns  
Pulse skew |tPHL – tPLH  
|
0.5  
12  
EN at 0 V,  
See Figure 1  
Propagation delay, low-to-high-level output  
Propagation delay, high-to-low-level output  
3
3
20  
20  
1
ISO721M  
12  
Pulse skew |tPHL – tPLH  
|
0.5  
(1)  
Part-to-part skew  
5
ns  
ns  
Output signal rise time  
Output signal fall time  
2
2
EN at 0 V,  
See Figure 1  
tf  
Sleep-mode propagation delay,  
high-level-to-high-mpedance output  
tpHZ  
tpZH  
tpLZ  
11  
6
ns  
µs  
ns  
See Figure 2  
Sleep-mode propagation delay,  
high-impedance-to-high-level output  
ISO722  
ISO722M  
Sleep-mode propagation delay,  
low-level-to-high-impedance output  
13  
6
See Figure 3  
See Figure 4  
Sleep-mode propagation delay,  
high-impedance-to-low-level output  
tpZL  
tfs  
µs  
µs  
Failsafe output delay time from input power loss  
3
2
100 Mbps NRZ data input, See Figure 6  
ISO72x  
Peak-to-peak eye-pattern jitter  
ISO72xM  
100 Mbps unrestricted bit run length data  
input, See Figure 6  
3
1
2
tjit(PP)  
ns  
150 Mbps NRZ data input, See Figure 6  
150 Mbps unrestricted bit run length data  
input, See Figure 6  
(1) tsk(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
www.ti.com ....................................................................................................................................................................................................... SLLS882JUNE 2008  
ELECTRICAL CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
Quiescent  
0.3  
1
0.5  
mA  
2
ICC1  
ICC2  
VOH  
VOL  
VCC1 supply current  
VI = VCC or 0 V, No load  
25 Mbps  
Quiescent  
25 Mbps  
VI = VCC or 0 V, No load  
VI = VCC or 0 V, No load  
IOH = –4 mA, See Figure 1  
IOH = –20 µA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 µA, See Figure 1  
8
12  
VCC2 supply current  
mA  
14  
10  
VCC – 0.8  
VCC – 0.1  
4.6  
5
High-level output voltage  
Low-level output voltage  
V
0.2  
0
0.4  
V
0.1  
VI(HYS) Input voltage hysteresis  
150  
mV  
IIH  
IIL  
High-level input current  
Low-level input current  
IN at 2 V  
10  
µA  
IN at 0.8 V  
–10  
High-impedance output  
current  
IOZ  
ISO722, ISO722M  
EN, IN at VCC  
1
µA  
CI  
Input capacitance to ground  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI Common-mode transient immunity  
VI = VCC or 0 V, See Figure 5  
25  
40  
kV/µs  
SWITCHING CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tPLH  
tPHL  
tsk(p)  
tPLH  
tPHL  
tsk(p)  
tsk(pp)  
tr  
Propagation delay, low-to-high-level output  
Propagation delay , high-to-low-level output  
17  
17  
0.5  
12  
12  
0.5  
0
ISO72x  
ns  
Pulse skew |tPHL – tPLH  
|
EN at 0 V,  
See Figure 1  
Propagation delay, low-to-high-level output  
Propagation delay, high-to-low-level output  
3
3
21  
21  
1
ISO721M  
Pulse skew |tPHL – tPLH  
|
(1)  
Part-to-part skew  
5
ns  
ns  
Output signal rise time  
Output signal fall time  
1
EN at 0 V,  
See Figure 1  
tf  
1
Sleep-mode propagation delay,  
high-level-to-high-mpedance output  
tpHZ  
tpZH  
tpLZ  
9
5
9
5
ns  
µs  
ns  
See Figure 2  
Sleep-mode propagation delay,  
high-impedance-to-high-level output  
ISO722  
ISO722M  
Sleep-mode propagation delay,  
low-level-to-high-impedance output  
See Figure 3  
See Figure 4  
Sleep-mode propagation delay,  
high-impedance-to-low-level output  
tpZL  
tfs  
µs  
µs  
Failsafe output delay time from input power loss  
3
2
100 Mbps NRZ data input, See Figure 6  
ISO72x  
Peak-to-peak eye-pattern jitter  
ISO72xM  
100 Mbps unrestricted bit run length data  
input, See Figure 6  
3
1
2
tjit(PP)  
ns  
150 Mbps NRZ data input, See Figure 6  
150 Mbps unrestricted bit run length data  
input, See Figure 6  
(1) tsk(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
SLLS882JUNE 2008....................................................................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 3.3 V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.3  
1
MAX  
0.5  
2
UNIT  
Quiescent  
ICC1  
ICC2  
VOH  
VOL  
VCC1 supply current  
VI = VCC or 0 V, No load  
mA  
25 Mbps  
Quiescent  
25 Mbps  
VI = VCC or 0 V, No load  
VI = VCC or 0 V, No load  
IOH = –4 mA, See Figure 1  
IOH = –20 µA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 µA, See Figure 1  
4
6.5  
7.5  
VCC2 supply current  
mA  
V
5
VCC – 0.4  
VCC – 0.1  
3
High-level output voltage  
Low-level output voltage  
3.3  
0.2  
0
0.4  
0.1  
V
VI(HYS) Input voltage hysteresis  
150  
mV  
µA  
IIH  
IIL  
High-level input current  
Low-level input current  
IN at 2 V  
10  
IN at 0.8 V  
–10  
25  
High-impedance output  
current  
IOZ  
ISO722, ISO722M  
EN, IN at VCC  
1
µA  
CI  
Input capacitance to ground  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI Common-mode transient immunity  
VI = VCC or 0 V, See Figure 5  
40  
kV/µs  
SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 3.3 V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tPLH  
tPHL  
tsk(p)  
tPLH  
tPHL  
tsk(p)  
tsk(pp)  
tr  
Propagation delay, low-to-high-level output  
Propagation delay , high-to-low-level output  
20  
20  
ISO72x  
ns  
Pulse skew |tPHL – tPLH  
|
0.5  
12  
EN at 0 V,  
See Figure 1  
Propagation delay, low-to-high-level output  
Propagation delay, high-to-low-level output  
3
3
25  
25  
1
ISO721M  
12  
Pulse skew |tPHL – tPLH  
|
0.5  
(1)  
Part-to-part skew  
5
ns  
ns  
Output signal rise time  
Output signal fall time  
2
2
EN at 0 V,  
See Figure 1  
tf  
Sleep-mode propagation delay,  
high-level-to-high-mpedance output  
tpHZ  
tpZH  
tpLZ  
13  
6
ns  
µs  
ns  
See Figure 2  
Sleep-mode propagation delay,  
high-impedance-to-high-level output  
ISO722  
ISO722M  
Sleep-mode propagation delay,  
low-level-to-high-impedance output  
13  
6
See Figure 3  
See Figure 4  
Sleep-mode propagation delay,  
high-impedance-to-low-level output  
tpZL  
tfs  
µs  
µs  
Failsafe output delay time from input power loss  
3
2
100 Mbps NRZ data input, See Figure 6  
ISO72x  
Peak-to-peak eye-pattern jitter  
ISO72xM  
100 Mbps unrestricted bit run length data  
input, See Figure 6  
3
1
2
tjit(PP)  
ns  
150 Mbps NRZ data input, See Figure 6  
150 Mbps unrestricted bit run length data  
input, See Figure 6  
(1) tsk(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
www.ti.com ....................................................................................................................................................................................................... SLLS882JUNE 2008  
PARAMETER MEASUREMENT INFORMATION  
V
CC1  
V
/2  
V
/2  
CC1  
I
OUT  
V
CC1  
O
I
IN  
0 V  
t
t
+
Input  
PHL  
V
PLH  
+
C
Generator  
OH  
OL  
V
L
V
ISO722  
and  
ISO722M  
90%  
10%  
O
I
50 W  
50%  
50%  
Note B  
V
-
EN  
-
O
NOTE A  
V
t
t
f
r
Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms  
V
O
V
CC2  
IN  
V
OUT  
C
I
V
/2  
3 V  
V
/2  
CC2  
CC2  
0 V  
V
EN  
t
R
= 1 kW ±1 %  
PZH  
L
L
OH  
NOTE B  
+
50%  
Input  
Generator  
NOTE A  
0.5 V  
V
O
V
I
50 W  
0 V  
t
PHZ  
-
Figure 2. ISO722 Sleep-Mode High-Level Output Test Circuit and Voltage Waveforms  
V
CC2  
R
= 1 kW ±1%  
L
V
CC2  
V
I
V
/2  
CC2  
V
/2  
CC2  
IN  
OUT  
V
0 V  
0 V  
O
t
t
PZL  
PLZ  
V
CC2  
0.5 V  
EN  
V
C
L
O
50%  
NOTE B  
+
V
Input  
Generator  
NOTE A  
OL  
50 W  
V
I
-
A. The input pulse is supplied by a generator having the following characteristics:  
PRR 50 kHz, 50% duty cycle, tr 3 ns, tf 3 ns, ZO = 50 .  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 3. ISO722 Sleep-Mode Low-Level Output Test Circuit and Voltage Waveforms  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
SLLS882JUNE 2008....................................................................................................................................................................................................... www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
I
V
CC1  
V
CC1  
V
2.7 V  
I
IN  
0 V  
V
OUT  
V
0 V  
t
fs  
O
OH  
50%  
V
O
C
EN  
ISO722  
and  
L
V
OL  
15 pF  
±20%  
ISO722M  
NOTE: VI transition time is 100 ns  
Figure 4. Failsafe Delay Time Test Circuit and Voltage Waveforms  
V
V
CC2  
CC1  
OUT  
C
IN  
V
L
CC  
V
15 pF  
±20%  
O
or  
0 V  
C = 0.1 mF,  
I
GND1  
GND2  
±1%  
V
CM  
NOTE: Pass/Fail criteria is no change in VO.  
Figure 5. Common-Mode Transient Immunity Test Circuit and Voltage Waveform  
10  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
www.ti.com ....................................................................................................................................................................................................... SLLS882JUNE 2008  
PARAMETER MEASUREMENT INFORMATION (continued)  
Tektronix  
Tektronix  
HFS9009  
784D  
PATTERN  
GENERATOR  
V
CC1  
In p u t  
0 V  
O u tp u t  
V
CC2/2  
J itte r  
NOTE: Bit pattern run length is 216 – 1. Transition Time is 800 ps. NRZ data input has no more than five consecutive  
ones or zeros.  
Figure 6. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
SLLS882JUNE 2008....................................................................................................................................................................................................... www.ti.com  
DEVICE INFORMATION  
PACKAGE CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
MIN  
4.8  
TYP  
MAX UNIT  
(1)  
L(101) Minimum air gap (Clearance)  
Shortest terminal to terminal distance through air  
mm  
Shortest terminal to terminal distance across the  
package surface  
L(102) Minimum external tracking (Creepage)  
4.3  
mm  
Tracking resistance (comparative tracking  
index)  
CTI  
DIN IEC 60112/VDE 0303 Part 1  
Distance through insulation  
175  
V
Minimum internal gap (internal clearance)  
0.008  
mm  
Input to output, VIO = 500 V, all pins on each side  
of the barrier tied together creating a two-terminal  
device, TA < 100 °C  
>1012  
>1011  
RIO  
Isolation resistance  
Input to output, VIO = 500 V,  
100°C TA< TA max.  
Barrier capacitance  
Input-to-output  
CIO  
CI  
VI = 0.4 sin (4E6πt)  
VI = 0.4 sin (4E6πt)  
1
1
pF  
pF  
Input capacitance to ground  
(1) Creepage and clearance requirements are applied according to the specific equipment isolation standards of an application. Care should  
be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the  
printed circuit board do not reduce this distance.  
Creepage and clearance on a printed circuit board become equal according to the measurement techniques shown in the Isolation  
Glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.  
IEC 60664-1 RATINGS TABLE  
PARAMETER  
Basic isolation group  
TEST CONDITIONS  
SPECIFICATION  
Material group  
IIIa  
I-IV  
I-III  
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
Installation classification  
DEVICE I/O SCHEMATIC  
Equivalent Input and Output Schematic Diagrams  
Enable  
Input  
Output  
V
CC2  
V
V
V
CC1  
CC2  
V
CC1  
V
CC1  
CC2  
8 W  
1 MW  
OUT  
500 W  
500 W  
EN  
IN  
13 W  
1 MW  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
www.ti.com ....................................................................................................................................................................................................... SLLS882JUNE 2008  
IEC SAFETY LIMITING VALUES  
Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry.  
A failure of the IO can allow low resistance to ground or the supply, and without current limiting, dissipate  
sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system  
failures.  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
100  
153  
150  
UNIT  
θJA = 263°C/W, VI = 5.5 V, TJ = 170°C, TA = 25°C  
θJA = 263°C/W, VI = 3.6 V, TJ = 170°C, TA = 25°C  
IS  
Safety input, output, or supply current  
Maximum case temperature  
mA  
TS  
°C  
The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum  
ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the  
application hardware determines the junction temperature. The junction-to-air thermal resistance in the Thermal  
Characteristics table is that of a device installed in the JESD51-3, Low Effective Thermal Conductivity Test Board  
for Leaded Surface Mount Packages and is conservative. The power is the recommended maximum input  
voltage times the current. The junction temperature is then the ambient temperature plus the power times the  
junction-to-air thermal resistance.  
THERMAL CHARACTERISTICS  
(over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Low-K Thermal Resistance(1)  
High-K Thermal Resistance(1)  
MIN  
TYP  
263  
125  
MAX  
UNIT  
°C/W  
°C/W  
θJA  
Junction-to-Air  
Junction-to-Board Thermal  
Resistance  
θJB  
θJC  
44  
75  
°C/W  
°C/W  
Junction-to-Case Thermal  
Resistance  
VCC1 = VCC2 = 5.5 V, TJ = 150°C,  
CL = 15 pF, Input a 100 Mbps 50% duty  
cycle square wave  
ISO72x  
159  
195  
PD  
Device Power Dissipation  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C,  
ISO72xM CL = 15 pF, Input a 150 Mbps 50% duty  
cycle square wave  
(1) Tested in accordance with the Low-K or High-K thermal metric definition of EIA/JESD51-3 for leaded surface mount packages.  
200  
175  
V
, V  
= 3.6 V  
CC1 CC2  
150  
125  
100  
75  
50  
25  
0
V
, V  
= 5.5 V  
CC1 CC2  
0
50  
100  
Case Temperature  
150  
200  
oC  
Figure 7. θJC THERMAL DERATING CURVE per IEC 60747-5-2  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
SLLS882JUNE 2008....................................................................................................................................................................................................... www.ti.com  
FUNCTION TABLE  
ISO721(1)  
VCC1  
VCC2  
INPUT  
(IN)  
OUTPUT  
(OUT)  
H
L
H
L
PU  
PD  
PU  
PU  
Open  
X
H
H
(1) PU = powered up (VCC 3 V); PD = powered down (VCC 2.5 V), X = irrelevant, H = high Level; L =  
low level  
ISO722(1)  
VCC1  
VCC2  
INPUT  
(IN)  
ISO722/ISO722M  
OUTPUT ENABLE (EN)  
OUTPUT  
(OUT)  
H
L
L or Open  
L or Open  
H
H
L
PU  
PU  
X
Z
H
H
Z
Open  
X
L or Open  
L or Open  
H
PD  
PD  
PU  
PU  
X
(1) PU = powered up (VCC 3 V); PD = powered down (VCC 2.5 V), X = irrelevant, H = high Level; L = low level  
14  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
www.ti.com ....................................................................................................................................................................................................... SLLS882JUNE 2008  
TYPICAL CHARACTERISTICS  
RMS SUPPLY CURRENT vs SIGNALING RATE  
RMS SUPPLY CURRENT vs SIGNALING RATE  
10  
9
15  
14  
13  
12  
V
V
T
= 3.3 V,  
= 3.3 V,  
= 25oC,  
V
V
T
= 5 V,  
= 5 V,  
= 25oC,  
CC1  
CC2  
CC1  
CC2  
8
7
6
5
A
A
I
CC2  
C
= 15 pF  
C
= 15 pF  
L
L
11  
10  
9
8
7
6
I
CC2  
I
4
3
2
CC1  
5
4
3
2
1
0
I
CC1  
1
0
0
25  
50  
75  
100  
0
25  
50  
75  
100  
Signaling Rate (Mbps)  
Signaling Rate (Mbps)  
Figure 8.  
Figure 9.  
PROPAGATION DELAY vs FREE-AIR TEMPERATURE  
30  
PROPAGATION DELAY vs FREE-AIR TEMPERATURE  
20  
t
PLH  
18  
16  
t
PLH  
25  
ISO72x  
t
PHL  
t
ISO72x  
PHL  
14  
12  
10  
20  
15  
t
PLH  
t
PLH  
t
PHL  
t
PHL  
ISO72xM  
ISO72xM  
8
6
4
10  
V
V
C
= 3.3 V,  
= 3.3 V,  
CC1  
V
= 5 V,  
= 5 V,  
CC1  
CC2  
CC2  
V
C
5
0
= 15 pF,  
L
= 15 pF,  
L
Air Flow at 7 cf/m  
2
0
Air Flow at 7 cf/m  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
T
− Free-Air Temperature − o  
C
T
− Free-Air Temperature − o  
C
A
A
Figure 10.  
Figure 11.  
ISO72x INPUT THRESHOLD VOLTAGE vs  
FREE-AIR TEMPERATURE  
ISO72xM INPUT THRESHOLD VOLTAGE vs  
FREE-AIR TEMPERATURE  
1.4  
1.35  
1.3  
2.5  
5-V (V  
)
IT+  
2.4  
2.3  
5-V (V  
)
IT+  
2.2  
2.1  
5-V (V  
)
3.3-V (V  
)
IT-  
IT+  
1.25  
1.2  
2
Air Flow at 7 cf/m  
1.9  
Air Flow at 7 cf/m  
1.15  
1.1  
1.05  
1
1.8  
1.7  
1.6  
5-V (V  
)
IT-  
3.3-V (V  
)
IT+  
3.3-V (V  
)
IT-  
3.3-V (V  
)
1.5  
1.4  
IT-  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
T
− Free-Air Temperature − o  
C
T
− Free-Air Temperature − o  
C
A
A
Figure 12.  
Figure 13.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
SLLS882JUNE 2008....................................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCC1 FAILSAFE THRESHOLD VOLTAGE vs  
FREE-AIR TEMPERATURE  
HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT  
VOLTAGE  
-80  
2.92  
2.9  
T
= 25oC  
-70  
-60  
-50  
-40  
-30  
-20  
A
V
= 5 V  
CC  
2.88  
2.86  
V
fs+  
V
= 5 V or 3.3 V,  
= 15 pF,  
CC  
C
L
Air Flow at 7 cf/m  
V
= 3.3 V  
2.84  
2.82  
CC  
V
fs-  
2.8  
-10  
0
2.78  
0
1
2
3
4
5
6
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
− Free-Air Temperature − o  
C
V
− High-Level Output Voltage − V  
T
OH  
A
Figure 14.  
Figure 15.  
LOW-LEVEL OUTPUT CURRENT vs  
LOW-LEVEL OUTPUT VOLTAGE  
70  
60  
T
= 25oC  
A
V
= 5 V  
CC  
50  
40  
30  
20  
V
= 3.3 V  
CC  
10  
0
0
1
2
3
4
5
V
− Low-Level Output Voltage − V  
OL  
Figure 16.  
16  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
www.ti.com ....................................................................................................................................................................................................... SLLS882JUNE 2008  
APPLICATION INFORMATION  
MANUFACTURER CROSS-REFERENCE DATA  
The ISO72xx isolators have the same functional pinout as most other vendors, and they are often pin-for-pin  
drop-in replacements. The notable differences in the products are propagation delay, signaling rate, power  
consumption, and transient protection rating. Table 1 is used as a guide for replacing other isolators with the  
ISO72x family of single channel isolators.  
ISO722  
or  
ISO721  
or  
HCPL-xxxx  
IL710  
ISO722M  
ISO721M  
ADuM1100  
V
V
V
V
V
V
V
DD2  
1
2
3
4
1
8
7
6
5
8
7
6
5
1
2
3
4
8
7
6
5
DD1  
V
V
V
V
V
V
CC2  
DD1  
DD2  
DD2  
DD1  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CC1  
CC2  
CC1  
IN  
V
I
V
V
2
3
4
NC  
GND2  
V
I
V
I
OE  
EN  
GND2  
OUT  
IN  
V
O
V
O
NC  
DD1  
O
OUT  
GND2  
CC1  
CC1  
*
GND1  
GND2  
GND1  
GND1  
GND2  
GND2  
GND1  
GND1  
GND2  
Figure 17. Pin Cross Reference  
Table 1. CROSS REFERENCE  
PIN 7  
ISO721  
OR  
ISO722  
OR  
ISOLATOR  
PIN 1  
PIN 2  
PIN 3  
PIN 4  
PIN 5  
PIN 6  
PIN 8  
ISO721M  
ISO722M  
ISO721(1)(2)  
ADuM1100(1)(2)  
VCC1  
VDD1  
IN  
VI  
VCC1  
VDD1  
GND1  
GND1  
GND2  
GND2  
OUT  
VO  
GND2  
EN  
VCC2  
VDD2  
GND2  
*Leave  
HCPL-xxxx  
IL710  
VDD1  
VDD1  
VI  
VI  
GND1  
GND1  
GND2  
GND2  
VO  
VO  
NC(4)  
VOE  
VDD2  
VDD2  
Open(3)  
NC(5)  
(1) The ISO72xx pin 1 and pin 3 are internally connected together. Either or both may be used as VCC1  
.
(2) The ISO721 and ISO721M pin 5 and pin 7 are internally connected together. Either or both may be used as GND2.  
(3) Pin 3 of the HCPL devices must be left open. This is not a problem when substituting an ISO72xx device since the extra VCC1 on pin 3  
may be left an open circuit as well.  
(4) An HCPL device PIN 7 must be left floating (open) or grounded when an ISO722 or ISO722M device is to be used as a drop-in  
replacement. If pin 7 of the ISO722 or ISO722M device is placed in a high logic state, the output of the device is disabled  
(5) Pin 3 of the IL710 must not be tied to ground on the circuit board since this shorts the ISO72xx's VCC1 to ground. The IL710 pin 3 may  
only be tied to VCC or left open to drop in an ISO72xx.  
VCC1  
VCC2  
ISO721  
or ISO721M  
20 mm  
max.  
from  
20 mm  
max.  
from  
m
0.1 F  
m
0.1 F  
1
8
Vcc1  
Vcc2  
2
7
6
5
IN  
INPUT  
GND1  
3
4
OUTPUT  
GND2  
OUT  
Figure 18. Basic Application Circuit  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ISO721M-EP  
 
ISO721M-EP  
SLLS882JUNE 2008....................................................................................................................................................................................................... www.ti.com  
ISOLATION GLOSSARY  
Creepage Distance — The shortest path between two conductive input-to-output leads measured along the  
surface of the insulation. The shortest distance path is found around the end of the package body.  
Clearance — The shortest distance between two conductive input-to-output leads measured through air (line of  
sight).  
Input-to-Output Barrier Capacitance -- The total capacitance between all input terminals connected together,  
and all output terminals connected together.  
Input-to-Output Barrier Resistance -- The total resistance between all input terminals connected together, and  
all output terminals connected together.  
Primary Circuit -- An internal circuit directly connected to an external supply mains or other equivalent source  
that supplies the primary circuit electric power.  
Secondary Circuit -- A circuit with no direct connection to primary power, and derives its power from a separate  
isolated source.  
Comparative Tracking Index (CTI) -- CTI is an index used for electrical insulating materials. It is defined as the  
numerical value of the voltage that causes failure by tracking during standard testing. Tracking is the process that  
produces a partially conducting path of localized deterioration on or through the surface of an insulating material  
as a result of the action of electric discharges on or close to an insulation surface -- the higher CTI value of the  
insulating material, the smaller the minimum creepage distance.  
Generally, insulation breakdown occurs either through the material, over its surface, or both. Surface failure may  
arise from flashover or from the progressive degradation of the insulation surface by small localized sparks. Such  
sparks are the result of the breaking of a surface film of conducting contaminant on the insulation. The resulting  
break in the leakage current produces an overvoltage at the site of the discontinuity, and an electric spark is  
generated. These sparks often cause carbonization on insulation material and lead to a carbon track between  
points of different potential. This process is known as tracking.  
18  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ISO721M-EP  
ISO721M-EP  
www.ti.com ....................................................................................................................................................................................................... SLLS882JUNE 2008  
Insulation:  
Operational insulation -- Insulation needed for the correct operation of the equipment.  
Basic insulation -- Insulation to provide basic protection against electric shock.  
Supplementary insulation -- Independent insulation applied in addition to basic insulation in order to ensure  
protection against electric shock in the event of a failure of the basic insulation.  
Double insulation -- Insulation comprising both basic and supplementary insulation.  
Reinforced insulation -- A single insulation system which provides a degree of protection against electric shock  
equivalent to double insulation.  
Pollution Degree:  
Pollution Degree 1 -- No pollution, or only dry, nonconductive pollution occurs. The pollution has no influence.  
Pollution Degree 2 -- Normally, only nonconductive pollution occurs. However, a temporary conductivity caused  
by condensation must be expected.  
Pollution Degree 3 -- Conductive pollution occurs or dry nonconductive pollution occurs, which becomes  
conductive due to condensation that is to be expected.  
Pollution Degree 4 – Continuous conductivity occurs due to conductive dust, rain, or other wet conditions.  
Installation Category:  
Overvoltage Category -- This section is directed at insulation co-ordination by identifying the transient  
overvoltages that may occur, and by assigning four different levels as indicated in IEC 60664.  
1. Signal Level -- Special equipment or parts of equipment.  
2. Local Level -- Portable equipment etc.  
3. Distribution Level -- Fixed installation  
4. Primary Supply Level -- Overhead lines, cable systems  
Each category should be subject to smaller transients than the category above.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ISO721M-EP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2008  
PACKAGING INFORMATION  
Orderable Device  
ISO721MMDREP  
V62/08627-01XE  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jun-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
ISO721MMDREP  
SOIC  
D
8
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jun-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
533.4 346.0 36.0  
ISO721MMDREP  
D
8
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

ISO721M-EP_10

3.3-V/5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721M-EP_101

3.3-V/5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721MD

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721MDG4

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721MDR

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721MDRG4

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721MMDREP

3.3-V/5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721MMDREPG4

3.3-V/5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721QDRQ1

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721_10

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721_1007

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721_15

Single Channel High-Speed Digital Isolators
TI