ISO7221MDR [TI]

DUAL DIGITAL ISOLATORS; 双通道数字隔离器
ISO7221MDR
型号: ISO7221MDR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL DIGITAL ISOLATORS
双通道数字隔离器

文件: 总25页 (文件大小:735K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
DUAL DIGITAL ISOLATORS  
FEATURES  
Operates with 3.3-V or 5-V Supplies  
4 kV ESD Protection  
1, 25, and 150-Mbps Signaling Rate Options  
Low Channel-to-Channel Output Skew;  
1 ns max  
High Electromagnetic Immunity  
–40°C to 125°C Operating Range  
Low Pulse-Width Distortion (PWD);  
1 ns max  
APPLICATIONS  
Industrial Fieldbus  
Low Jitter Content; 1 ns Typ at 150 Mbps  
Modbus  
Profibus™  
DeviceNet™ Data Buses  
Typical 25-Year Life at Rated Voltage  
(see app. note SLLA197 and Figure 19)  
4000-Vpeak Isolation, 560 V peak VIORM  
Computer Peripheral Interface  
Servo Control Interface  
Data Acquisition  
UL 1577, IEC 60747-5-2 (VDE 0884, Rev 2),  
IEC 61010-1  
50 kV/μs Typical Transient Immunity  
DESCRIPTION  
The ISO7220 and ISO7221 are dual-channel digital isolators. To facilitate PCB layout, the channels are oriented  
in the same direction in the ISO7220 and in opposite directions in the ISO7221. These devices have a logic  
input and output buffer separated by TI’s silicon-dioxide (SiO2) isolation barrier, providing galvanic isolation of up  
to 4000 V. Used in conjunction with isolated power supplies, these devices block high voltage, isolate grounds,  
and prevent noise currents on a data bus or other circuits from entering the local ground and interfering with or  
damaging sensitive circuitry.  
A binary input signal is conditioned, translated to a balanced signal, then differentiated by the capacitive isolation  
barrier. Across the isolation barrier, a differential comparator receives the logic transition information, then sets  
or resets a flip-flop and the output circuit accordingly. A periodic update pulse is sent across the barrier to  
ensure the proper dc level of the output. If this dc-refresh pulse is not received every 4 μs, the input is assumed  
to be unpowered or not being actively driven, and the failsafe circuit drives the output to a logic high state.  
The small capacitance and resulting time constant provide very fast operation with signaling rates available from  
0 Mbps (DC) to 150 Mbps.(1)The A- and C-option devices have TTL input thresholds and a noise filter at the  
input that prevents transient pulses from being passed to the output of the device. The M-option devices have  
CMOS Vcc/2 input thresholds and do not have the input noise-filter and the additional propagation delay.  
These devices require two supply voltages of 3.3 V, 5 V, or any combination. All inputs are 5-V tolerant when  
supplied from a 3.3-V supply and all outputs are 4-mA CMOS.  
These devices are characterized for operation over the ambient temperature range of –40°C to 125°C.  
ISO7221xD  
ISO7220xD  
1
2
3
4
8
7
6
5
VCC1  
OUTA  
INB  
VCC2  
1
2
3
4
8
7
6
5
VCC1  
INA  
INB  
VCC2  
INA  
OUTA  
OUTB  
GND2  
OUTB  
GND2  
GND1  
GND1  
(1) The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
DeviceNet is a trademark of Open DeviceNet Vendors Association.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2006–2007, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
SINGLE-CHANNEL FUNCTION DIAGRAM  
Galvanic Isolation  
Barrier  
DC Channel  
Filter  
OSC  
+
PWM  
Pulse Width  
Demodulation  
Vref  
Carrier Detect  
Data MUX  
AC Detect  
Input  
+
Filter  
Vref  
IN  
OUT  
Output Buffer  
AC Channel  
AVAILABLE OPTIONS  
PRODUCT  
SIGNALING  
RATE  
PACKAGE  
INPUT  
THRESHOLD  
CHANNEL  
DIRECTION  
MARKED  
ORDERING  
NUMBER  
AS  
ISO7220AD (rail)  
ISO7220ADR (reel)  
ISO7220CD (rail)  
ISO7220CDR (reel)  
ISO7220MD (rail)  
ISO7220MDR (reel)  
ISO7221AD (rail)  
ISO7221ADR (reel)  
ISO7221CD (rail)  
ISO7221CDR (reel)  
ISO7221MD (rail)  
ISO7221MDR (reel)  
1.5 V (TTL)  
(CMOS compatible)  
ISO7220A  
ISO7220C  
ISO7220M  
ISO7221A  
ISO7221C  
ISO7221M  
1 Mbps  
25 Mbps  
150 Mbps  
1 Mbps  
SOIC-8  
I7220A  
1.5 V (TTL)  
(CMOS compatible)  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
Same direction  
I7220C  
I7220M  
I7221A  
TI7221C  
I7221M  
VCC/2 (CMOS)  
1.5 V (TTL)  
(CMOS compatible)  
1.5 V (TTL)  
(CMOS compatible)  
25 Mbps  
150 Mbps  
Opposite directions  
VCC/2 (CMOS)  
REGULATORY INFORMATION  
VDE  
CSA  
UL  
Approved under CSA Component  
Acceptance Notice  
Recognized under 1577 Component  
Recognition Program(1)  
Certified according to IEC 60747-5-2  
File Number: 40014131  
File Number: 1698195  
File Number: E181974  
(1) Production tested 3000 VRMS for 1 second in accordance with UL 1577.  
2
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
ABSOLUTE MAXIMUM RATINGS(1)  
VALUE  
–0.5 to 6  
–0.5 to 6  
±15  
UNIT  
V
VCC  
VI  
Supply voltage(2), VCC1, VCC2  
Voltage at IN, OUT  
Output current  
V
IO  
mA  
Electrostatic discharge JEDEC Standard  
22, Test Method A114-C.01  
Human Body Model  
±4  
±1  
kV  
Electrostatic  
discharge  
ESD  
Field-Induced-Charged Device  
Model  
All pins  
JEDEC Standard 22, Test Method C101  
ANSI/ESDS5.2-1996  
Machine Model  
±200  
V
TJ  
Maximum junction temperature  
170  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
4.5  
3
TYP  
MAX  
5.5  
3.6  
4
UNIT  
VCC  
Supply voltage, VCC1, VCC2  
V
IOH  
IOL  
High-level output current  
Low-level output current  
mA  
mA  
μs  
–4  
ISO722xA  
ISO722xC  
ISO722xM  
ISO722xA  
ISO722xC  
ISO722xM  
1
tui  
Input pulse width  
Signaling rate  
40  
ns  
6.67  
5
250  
0
1000  
25  
kbps  
Mbps  
1/tui  
0
30  
200(1)  
0
150  
VIH  
VIL  
VIH  
VIL  
TJ  
High-level input voltage  
Low-level input voltage  
High-level input voltage  
Low-level input voltage  
Junction temperature  
2
VCC  
V
V
ISO722xA, ISO722xC  
ISO722xM  
0
0.7 VCC  
0
0.8  
VCC  
V
0.3 VCC  
150  
V
–40  
°C  
A/m  
H
External magnetic field-strength immunity per IEC 61000-4-8 & IEC 61000-4-9  
certification  
1000  
(1) Typical sigalling rate under ideal conditions at 25°C.  
3
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
ELECTRICAL CHARACTERISTICS  
VCC1 and VCC2 at 5-V operatjion, over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
ISO7220A  
1
8.5  
2
2
17  
3
Quiescent VI = VCC or 0 V, no load  
ICC1  
1 Mbps  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
ISO7221A  
10  
4
18  
9
ISO7220C, ISO7220M  
ISO7221C, ISO7221M  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
ISO7220A  
25 Mbps  
12  
16  
8.5  
17  
10  
20  
12  
4.6  
5
22  
mA  
31  
Quiescent VI = VCC or 0 V, no load  
17  
32  
18  
34  
22  
ICC2  
1 Mbps  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
ISO7221A  
ISO7220C, ISO7220M  
ISO7221C, ISO7221M  
25 Mbps  
IOH = –4 mA, See Figure 1  
IOH = –20 μA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 μA, See Figure 1  
VCC – 0.8  
VCC – 0.1  
VOH  
High-level output voltage  
Low-level output voltage  
V
0.2  
0
0.4  
V
VOL  
0.1  
VI(HYS) Input voltage hysteresis  
150  
mV  
IIH  
IIL  
CI  
High-level input current  
Low-level input current  
Input capacitance to ground  
10  
IN from 0 V to VCC  
μA  
–10  
25  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI Common-mode transient immunity  
VI = VCC or 0 V, See Figure 3  
50  
kV/μs  
SWITCHING CHARACTERISTICS  
VCC1 and VCC2 at 5-V operation, over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
tpLH  
tpHL  
,
Propagation delay  
280  
405  
1
475  
14  
42  
2
ISO722xA  
ISO722xC  
ISO722xM  
(1)  
PWD  
tpLH  
Pulse-width distortion |tpHL – tpLH  
|
|
|
,
Propagation delay  
22  
6
32  
1
tpHL  
PWD  
tpLH  
See Figure 1  
ns  
(1)  
(1)  
Pulse-width distortion |tpHL – tpLH  
Propagation delay  
,
10  
0.5  
16  
tpHL  
PWD  
tsk(pp)  
Pulse-width distortion |tpHL – tpLH  
1
180  
10  
3
ISO722xA  
ISO722xC  
ISO722xM  
ISO7220A  
ISO7220C/M  
(2)  
Part-to-part skew  
ns  
ns  
3
0.2  
1
15  
1
(3)  
tsk(o)  
Channel-to-channel output skew  
tr  
Output signal rise time  
Output signal fall time  
See Figure 1  
See Figure 2  
ns  
tf  
1
tfs  
Failsafe output delay time from input power loss  
3
μs  
(1) Also referred to as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
(3) tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the  
same direction while driving identical specified loads.  
4
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
SWITCHING CHARACTERISTICS (continued)  
VCC1 and VCC2 at 5-V operation, over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
150 Mbps PRBS NRZ data, 5-bit max  
same polarity input, both channels, See  
Figure 4, Figure 16  
1
tjit(pp)  
Peak-to-peak eye-pattern jitter  
ISO722xM  
ns  
150 Mbps unrestricted bit run length  
data input, both channels, See Figure 4  
2
ELECTRICAL CHARACTERISTICS  
VCC1 at 5 V, VCC2 at 3.3 V operation, over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mA  
V
SUPPLY CURRENT  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
ISO7220A  
1
8.5  
2
2
17  
3
Quiescent  
1 Mbps  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
ICC1  
ISO7221A  
10  
4
18  
9
ISO7220C, ISO7220M  
ISO7221C, ISO7221M  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
ISO7220A  
25 Mbps  
Quiescent  
1 Mbps  
12  
8
22  
18  
9.5  
19  
11  
20  
12  
4.3  
9
ICC2  
ISO7221A  
5
ISO7220C, ISO7220M  
ISO7221C, ISO7221M  
10  
6
25 Mbps  
VI = VCC or 0 V, no load  
ISO7220x  
IOH = –4 mA, See Figure 1  
VCC – 0.4  
VCC – 0.8  
VCC – 0.1  
VOH  
High-level output voltage  
Low-level output voltage  
ISO7221x (5-V side)  
IOH = –20 μA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 μA, See Figure 1  
0.4  
0.1  
VOL  
V
VI(HYS)  
IIH  
Input voltage hysteresis  
150  
mV  
μA  
High-level input current  
10  
IN from 0 V to VCC  
IIL  
Low-level input current  
–10  
15  
CI  
Input capacitance to ground  
Common-mode transient immunity  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI  
VI = VCC or 0 V, See Figure 3  
40  
kV/μs  
5
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
SWITCHING CHARACTERISTICS  
VCC1 at 5 V, VCC2 at 3.3 V operation, over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
tpLH  
tpHL  
,
Propagation delay  
285  
410  
1
480  
14  
48  
2
ISO722xA  
ISO722xC  
ISO722xM  
(1)  
PWD Pulse-width distortion |tpHL – tpLH  
|
|
|
tpLH  
,
Propagation delay  
25  
7
36  
1
tpHL  
PWD Pulse-width distortion |tpHL – tpLH  
tpLH  
See Figure 1  
ns  
(1)  
(1)  
,
Propagation delay  
12  
0.5  
20  
tpHL  
PWD Pulse-width distortion |tpHL – tpLH  
1
180  
10  
5
ISO722xA  
ISO722xC  
ISO722xM  
ISO7220A  
ISO7220C/M  
(2)  
tsk(pp) Part-to-part skew  
ns  
3
0.2  
2
15  
1
(3)  
tsk(o)  
Channel-to-channel output skew  
tr  
Output signal rise time  
Output signal fall time  
See Figure 1  
See Figure 2  
ns  
tf  
2
tfs  
Failsafe output delay time from input power loss  
3
μs  
150 Mbps PRBS NRZ data, 5-bit max same  
polarity input, both channels, See Figure 4,  
Figure 16  
1
2
tjit(pp)  
Peak-to-peak eye-pattern jitter  
ISO722xM  
ns  
150 Mbps unrestricted bit run length data  
input, both channels, See Figure 4  
(1) Also referred to as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
(3) tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the  
same direction while driving identical specified loads.  
6
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
ELECTRICAL CHARACTERISTICS  
VCC1 at 3.3 V, VCC2 at 5 V operation, over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
ISO7220A  
0.6  
4.3  
1
1
9.5  
2
Quiescent  
1 Mbps  
VI = VCC or 0 V, no load  
ICC1  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
ISO7221A  
5
11  
4
ISO7220C, ISO7220M  
ISO7221C, ISO7221M  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
ISO7220A  
2
25 Mbps  
Quiescent  
1 Mbps  
6
12  
31  
17  
32  
18  
34  
22  
mA  
16  
8.5  
18  
10  
20  
12  
ICC2  
ISO7221A  
ISO7220C, ISO7220M  
ISO7221C, ISO7221M  
25 Mbps  
ISO7220x  
VCC – 0.8  
VCC – 0.4  
VCC – 0.1  
IOH = –4 mA, See Figure 1  
ISO7221x  
(3.3-V side)  
VOH  
High-level output voltage  
V
IOH = –20 μA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 μA, See Figure 1  
0.4  
0.1  
VOL  
Low-level output voltage  
0
VI(HYS)  
IIH  
Input threshold voltage hysteresis  
High-level input current  
150  
mV  
10  
IN from 0 V or VCC  
μA  
IIL  
Low-level input current  
–10  
15  
CI  
Input capacitance to ground  
Common-mode transient immunity  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI  
VI = VCC or 0 V, See Figure 3  
40  
kV/μs  
SWITCHING CHARACTERISTICS  
VCC1 at 3.3 V, VCC2 at 5 V operation, over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
tpLH  
tpHL  
,
Propagation delay  
ISO722xA  
ISO722xC  
ISO722xM  
285  
25  
7
395  
1
480  
18  
48  
3
(1)  
(1)  
(1)  
PWD  
tpLH  
Pulse-width distortion |tpHL – tpLH  
|
|
|
,
Propagation delay  
36  
1
tpHL  
PWD  
tpLH  
See Figure 1  
Pulse-width distortion |tpHL – tpLH  
Propagation delay  
,
12  
0.5  
21  
tpHL  
PWD  
tsk(pp)  
Pulse-width distortion |tpHL – tpLH  
1
190  
10  
5
ns  
ISO722xA  
ISO722xC  
ISO722xM  
ISO7220A  
ISO7220C/M  
(2)  
Part-to-part skew  
3
0.2  
1
15  
1
(3)  
tsk(o)  
Channel-to-channel output skew  
tr  
Output signal rise time  
Output signal fall time  
See Figure 1  
See Figure 2  
tf  
1
tfs  
Failsafe output delay time from input power loss  
3
μs  
(1) Also referred to as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
(3) tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the  
same direction while driving identical specified loads.  
7
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
SWITCHING CHARACTERISTICS (continued)  
VCC1 at 3.3 V, VCC2 at 5 V operation, over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
150 Mbps PRBS NRZ data, 5-bit max same  
polarity input, both channels, See Figure 4,  
Figure 16  
1
2
tjit(pp)  
Peak-to-peak eye-pattern jitter  
ISO722xM  
ns  
150 Mbps unrestricted bit run length data input,  
both channels, See Figure 4  
ELECTRICAL CHARACTERISTICS  
VCC1 and VCC2 at 3.3 V operation, over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
SUPPLY CURRENT  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
ISO7220A  
0.6  
4.3  
1
1
9.5  
2
Quiescent  
1 Mbps  
VI = VCC or 0 V, no load  
ICC1  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
VI = VCC or 0 V, no load  
ISO7221A  
5
11  
4
ISO7220C, ISO7220M  
ISO7221C, ISO7221M  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
ISO7220A  
2
25 Mbps  
Quiescent  
1 Mbps  
6
12  
18  
9.5  
19  
11  
20  
12  
mA  
8
4.3  
9
ICC2  
ISO7221A  
5
ISO7220C, ISO7220M  
ISO7221C, ISO7221M  
10  
6
25 Mbps  
IOH = –4 mA, See Figure 1  
IOH = –20 μA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 μA, See Figure 1  
VCC – 0.4  
VCC – 0.1  
3
VOH  
High-level output voltage  
Low-level output voltage  
3.3  
0.2  
0
V
0.4  
0.1  
VOL  
VI(HYS)  
IIH  
Input voltage hysteresis  
150  
mV  
High-level input current  
10  
IN from 0 V or VCC  
μA  
IIL  
Low-level input current  
–10  
15  
CI  
Input capacitance to ground  
Common-mode transient immunity  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI  
VI = VCC or 0 V, See Figure 3  
40  
kV/μs  
8
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
SWITCHING CHARACTERISTICS  
VCC1 and VCC2 at 3.3 V operation, over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
tpLH  
tpHL  
,
Propagation delay  
290  
400  
1
485  
18  
52  
3
ISO722xA  
ISO722xC  
ISO722xM  
(1)  
PWD  
tpLH  
Pulse-width distortion |tpHL – tpLH  
|
|
|
,
Propagation delay  
26  
8
40  
1
tpHL  
PWD  
tpLH  
See Figure 1  
(1)  
(1)  
Pulse-width distortion |tpHL – tpLH  
Propagation delay  
,
16  
0.5  
25  
tpHL  
PWD  
tsk(pp)  
Pulse-width distortion |tpHL – tpLH  
1
190  
10  
5
ns  
ISO722xA  
ISO722xC  
ISO722xM  
ISO7220A  
ISO7220C/M  
Part-to-part skew(2)  
3
0.2  
2
15  
1
(3)  
tsk(o)  
Channel-to-channel output skew  
tr  
Output signal rise time  
Output signal fall time  
See Figure 1  
See Figure 2  
tf  
2
tfs  
Failsafe output delay time from input power loss  
3
μs  
150 Mbps PRBS NRZ data, 5-bit max  
same polarity input, both channels, See  
Figure 4, Figure 16  
1
2
tjit(pp)  
Peak-to-peak eye-pattern jitter  
ISO722xM  
ns  
150 Mbps unrestricted bit run length data  
input, both channels, See Figure 4  
(1) Also referred to as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
(3) tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the  
same direction while driving identical specified loads.  
9
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
PARAMETER MEASUREMENT INFORMATION  
V
1
CC  
V
V
1/2  
CC  
V
1/2  
I
CC  
IN  
OUT  
0 V  
t
t
PHL  
PLH  
Input  
Generator  
V
C
V
V
O
50 W  
OH  
OL  
L
NOTE B  
I
90%  
10%  
V
O
50%  
50%  
NOTE A  
V
t
t
f
r
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3  
ns, tf 3 ns, ZO = 50.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms  
V
I
V
1
CC  
V
1
CC  
V
I
0 V  
or  
2.7 V  
OUT  
IN  
V
0 V  
V
O
V
1
t
CC  
fs  
OH  
C
V
L
FAILSAFE HIGH  
50%  
O
NOTE A  
V
OL  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 2. Failsafe Delay Time Test Circuit and Voltage Waveforms  
V
1
V
2
CC  
CC  
C = 0.1 mF 1ꢀ  
C = 0.1 mF 1ꢀ  
Pass-fail criteria:  
Output must  
remain stable  
OUT  
IN  
S1  
NOTE A  
V
or V  
OL  
OH  
GND1  
GND2  
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 3. Common-Mode Transient Immunity Test Circuit  
V
1
CC  
DUT  
Tektronix  
HFS9009  
IN  
0 V  
V
Tektronix  
OUT  
784D  
PATTERN  
/2  
GENERATOR  
CC  
Jitter  
NOTE: PRBS bit pattern run length is 216 – 1. Transition time is 800 ps.  
Figure 4. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform  
10  
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
DEVICE INFORMATION  
IEC PACKAGE CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
L(I01) Minimum air gap (Clearance)  
Shortest terminal-to-terminal distance through air  
4.8  
mm  
SOIC-8  
L(I02) Minimum external tracking  
(Creepage)  
Shortest terminal-to-terminal distance across the  
package surface  
4.3  
175  
0.008  
mm  
V
CTI  
Tracking resistance (Comparative  
Tracking Index)  
DIN IEC 60112 / VDE 0303 Part 1  
Distance through the insulation  
Minimum Internal Gap (Internal  
Clearance)  
mm  
Input to output, VIO = 500 V, all pins on each side of the  
barrier tied together creating a two-terminal device,  
TA < 100°C  
>1012  
RIO  
Isolation resistance  
Input to output, VIO = 500 V, 100°C TA max  
VI = 0.4 sin (4E6πt)  
>1011  
CIO  
CI  
Barrier capacitance Input to output  
Input capacitance to ground  
1
1
pF  
pF  
VI = 0.4 sin (4E6πt)  
NOTE: Creepage and clearance requirements should be applied according to the specific equipment isolation  
standards of an application. Care should be taken to maintain the creepage and clearance distance of a board  
design to ensure that the mounting pads of the isolator on the printed circuit board do not reduce this distance.  
Creepage and clearance on a printed circuit board become equal according to the measurement techniques  
shown in the Isolation Glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are  
used to help increase these specifications.  
IEC 60664-1 RATINGS TABLE  
PARAMETER  
TEST CONDITIONS  
Material group  
SPECIFICATION  
Basic isolation group  
IIIa  
I-IV  
I-III  
I-II  
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
Rated mains voltage 400 VRMS  
Installation classification  
IEC 60747-5-2 INSULATION CHARACTERISTICS(1)  
PARAMETER  
TEST CONDITIONS  
SPECIFICATION  
UNIT  
V
VIORM Maximum working insulation  
voltage  
560  
Method b1, VPR = VIORM × 1.875,  
100% Production test with t = 1 s, Partial discharge <5 pC  
VPR  
Input to output test voltage  
1050  
VIOTM Transient overvoltage  
t = 60 s  
4000  
>109  
2
RS  
Insulation resistance  
Pollution degree  
VIO = 500 V at TS  
(1) Climatic Classification 40/125/21  
11  
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
DEVICE I/O SCHEMATICS  
Input  
Output  
CC2  
V
V
V
V
CC1  
CC1  
CC1  
750 kW  
8 W  
500 W  
IN  
OUT  
13 W  
IEC SAFETY LIMITING VALUES  
Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry.  
A failure of the IO can allow low resistance to ground or the supply and, without current limiting, dissipate  
sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system  
failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
124  
190  
150  
UNIT  
θJA = 212°C/W, VI = 5.5 V, TJ = 170°C, TA = 25°C  
θJA = 212°C/W, VI = 3.6 V, TJ = 170°C, TA = 25°C  
Safety input, output, or  
supply current  
IS  
SOIC-8  
mA  
TS  
Maximum case temperature SOIC-8  
°C  
The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum  
ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the  
application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the  
Thermal Characteristics table is that of a device installed in the JESD51-3, Low Effective Thermal Conductivity  
Test Board for Leaded Surface Mount Packages and is conservative. The power is the recommended maximum  
input voltage times the current. The junction temperature is then the ambient temperature plus the power times  
the junction-to-air thermal resistance.  
12  
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
SOIC-8 PACKAGE THERMAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Low-K Thermal Resistance(1)  
MIN  
TYP  
212  
122  
37  
MAX  
UNIT  
°C/W  
mW  
θJA  
Junction-to-air  
High-K Thermal Resistance  
θJB  
θJC  
PD  
Junction-to-Board Thermal Resistance  
Junction-to-Case Thermal Resistance  
69.1  
Device Power Dissipation ISO722xM VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
390  
Input a 150 Mbps 50% duty cycle square wave  
(1) Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.  
250  
225  
V
at 3.6 V  
CC1,2  
200  
175  
150  
125  
100  
75  
V
at 5.5 V  
CC1,2  
50  
25  
0
0
50  
100  
- Case Temperature - °C  
150  
200  
T
C
Figure 5. SOIC-8 θJC THERMAL DERATING CURVE per IEC 60747-5-2  
DEVICE FUNCTION TABLE  
Table 1. ISO7220x or ISO7221x(1)  
INPUT SIDE VCC  
OUTPUT SIDE VCC  
INPUT IN  
OUTPUT OUT  
H
L
H
L
PU  
PD  
PU  
PU  
Open  
X
H
H
(1) PU = Powered Up(Vcc 3.0V); PD = Powered Down (Vcc 2.5V); X = Irrelevant; H = High Level;  
L = Low Level  
13  
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
TYPICAL CHARACTERISTIC CURVES  
3.3-V RMS SUPPLY CURRENT  
vs  
SIGNALING RATE (Mbps)  
5-V RMS SUPPLY CURRENT  
vs  
SIGNALING RATE (Mbps)  
20  
18  
16  
14  
30  
28  
26  
24  
22  
T
= 25°C,  
T
= 25°C,  
A
15 pF Load  
A
15 pF Load  
ISO7220x I  
CC2  
ISO7220x I  
CC2  
20  
18  
16  
ISO7221x I  
CC1&2  
12  
10  
14  
12  
10  
ISO7221x I  
CC1&2  
8
6
ISO7220x I  
CC1  
8
6
4
4
2
0
ISO7220x I  
CC1  
2
0
0
25  
50  
75  
100  
0
25  
50  
75  
100  
Signaling Rate - Mbps  
Signaling Rate - Mbps  
Figure 6.  
Figure 7.  
PROPAGATION DELAY  
vs  
FREE-AIR TEMPERATURE, ISO722xA  
PROPAGATION DELAY  
vs  
FREE-AIR TEMPERATURE, ISO722xC  
30  
450  
15 pF Load  
440  
430  
420  
410  
400  
390  
380  
370  
360  
350  
VCC = 3.3 V  
25  
20  
15  
10  
5
tpLH & tpHL  
VCC = 3.3 V  
tpLH & tpHL  
VCC = 5 V  
tpLH & tpHL  
VCC = 5 V  
tpLH & tpHL  
15 pF Load  
0
-40  
-15  
10  
35  
60  
85  
110  
125  
-40  
-15  
10  
35  
60  
85  
110 125  
Temperature - °C  
Temperature - °C  
Figure 8.  
Figure 9.  
14  
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
TYPICAL CHARACTERISTIC CURVES (continued)  
ISO722xA AND ISO722xC INPUT VOLTAGE LOW-TO-HIGH  
PROPAGATION DELAY  
vs  
FREE-AIR TEMPERATURE, ISO722xM  
SWITCHING THRESHOLD  
vs  
FREE-AIR TEMPERATURE  
20  
15  
10  
5
1.4  
5-V Vth+  
1.35  
VCC = 3.3 V  
tpLH & tpHL  
1.3  
3.3-V Vth+  
1.25  
VCC = 5 V  
1.2  
1.15  
1.1  
15 pF Load  
tpLH & tpHL  
5-V Vth-  
15 pF Load  
1.05  
3.3-V Vth-  
0
1
-40  
-15  
10  
35  
60  
85  
110  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature - °C  
125  
Temperature - °C  
Figure 10.  
Figure 11.  
ISO722xM INPUT VOLTAGE HIGH-TO-LOW  
VCC FAILSAFE THRESHOLD  
vs  
FREE-AIR TEMPERATURE  
vs  
FREE-AIR TEMPERATURE  
2.5  
2.4  
2.3  
2.2  
2.1  
2
2.92  
2.9  
15 pF Load  
VCC = 3.3 V or 5 V  
5-V Vth+  
5-V Vth-  
VFS  
2.88  
2.86  
2.84  
2.82  
2.8  
15 pF Load  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
3.3-V Vth+  
3.3-V Vth-  
VFS-  
2.78  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature - °C  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature - °C  
Figure 12.  
Figure 13.  
15  
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
TYPICAL CHARACTERISTIC CURVES (continued)  
HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
70  
60  
50  
40  
30  
20  
10  
0
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
15 pF Load  
TA = 25°C  
15 pF Load  
TA = 25°C  
VCC = 5 V  
VCC = 5 V  
VCC = 3.3 V  
VCC = 3.3 V  
0
2
4
6
0
1
2
3
4
5
VOUT - V  
VOUT - V  
Figure 15.  
Figure 14.  
ISO722xM JITTER  
vs  
SIGNALING RATE  
2000  
1800  
1600  
1400  
1200  
1000  
800  
15 pF Load  
TA = 25°C  
VCC1 = VCC2 = 5 V  
600  
VCC1 = VCC2 = 3.3 V  
400  
200  
0
0
50  
100  
150  
200  
Signaling Rate - Mbps  
Figure 16.  
16  
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
APPLICATION INFORMATION  
Typical Applications  
VCC 1  
VCC2  
20 mm  
max .  
from  
20 mm  
max .  
from  
m
0.1 F  
m
0.1 F  
Vcc 1  
Vcc 2  
1
2
8
7
6
5
INA  
INB  
OUTA  
OUTB  
OUTPUT  
OUTPUT  
INPUT  
INPUT  
3
4
ISO7220  
GND 1  
GND 2  
Figure 17. Typical ISO7220 Application Circuit  
VCC 1  
VCC2  
20 mm  
max .  
from  
20 mm  
max .  
from  
m
0.1 F  
m
0.1 F  
Vcc 1  
Vcc 2  
1
2
8
7
OUTA  
INB  
INA  
OUTPUT  
INPUT  
INPUT  
OUTB  
OUTPUT  
3
4
6
5
ISO 7221  
GND 1  
GND 2  
Figure 18. Typical ISO7221 Application Circuit  
100  
VIORM at 560 V  
28  
10  
0
250  
500  
750  
1000  
120  
880  
WORKING VOLTAGE (VIORM) -- V  
Figure 19. Time Dependent Dielectric Breakdown Test Results  
17  
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
ISOLATION GLOSSARY  
Creepage Distance — The shortest path between two conductive input to output leads measured along the  
surface of the insulation. The shortest distance path is found around the end of the package body.  
Clearance — The shortest distance between two conductive input to output leads measured through air (line of  
sight).  
Input-to Output Barrier Capacitance -- The total capacitance between all input terminals connected together,  
and all output terminals connected together.  
Input-to Output Barrier Resistance -- The total resistance between all input terminals connected together, and  
all output terminals connected together.  
Primary Circuit -- An internal circuit directly connected to an external supply mains or other equivalent source  
which supplies the primary circuit electric power.  
Secondary Circuit -- A circuit with no direct connection to primary power, and derives its power from a separate  
isolated source.  
Comparative Tracking Index (CTI) -- CTI is an index used for electrical insulating materials which is defined as  
the numerical value of the voltage which causes failure by tracking during standard testing. Tracking is the  
process that produces a partially conducting path of localized deterioration on or through the surface of an  
insulating material as a result of the action of electric discharges on or close to an insulation surface -- the  
higher CTI value of the insulating material, the smaller the minimum creepage distance.  
Generally, insulation breakdown occurs either through the material, over its surface, or both. Surface failure may  
arise from flashover or from the progressive degradation of the insulation surface by small localized sparks.  
Such sparks are the result of the breaking of a surface film of conducting contaminant on the insulation. The  
resulting break in the leakage current produces an overvoltage at the site of the discontinuity, and an electric  
spark is generated. These sparks often cause carbonization on insulation material and lead to a carbon track  
between points of different potential. This process is known as tracking.  
18  
Submit Documentation Feedback  
ISO7220A, ISO7220C, ISO7220M  
ISO7221A, ISO7221C, ISO7221M  
www.ti.com  
SLLS755FJULY 2006REVISED AUGUST 2007  
ISOLATION GLOSSARY (continued)  
Insulation:  
Operational insulation -- Insulation needed for the correct operation of the equipment.  
Basic insulation -- Insulation to provide basic protection against electric shock.  
Supplementary insulation -- Independent insulation applied in addition to basic insulation in order to ensure  
protection against electric shock in the event of a failure of the basic insulation.  
Double insulation -- Insulation comprising both basic and supplementary insulation.  
Reinforced insulation -- A single insulation system which provides a degree of protection against electric shock  
equivalent to double insulation.  
Pollution Degree:  
Pollution Degree 1 -- No pollution, or only dry, nonconductive pollution occurs. The pollution has no influence.  
Pollution Degree 2 -- Normally, only nonconductive pollution occurs. However, a temporary conductivity caused  
by condensation must be expected.  
Pollution Degree 3 -- Conductive pollution occurs or dry nonconductive pollution occurs which becomes  
conductive due to condensation which is to be expected.  
Pollution Degree 4 – Continuous conductivity occurs due to conductive dust, rain, or other wet conditions.  
Installation Category:  
Overvoltage Category -- This section is directed at insulation co-ordination by identifying the transient  
overvoltages which may occur, and by assigning 4 different levels as indicated in IEC 60664.  
I: Signal Level -- Special equipment or parts of equipment.  
II: Local Level -- Portable equipment etc.  
III: Distribution Level -- Fixed installation  
IV: Primary Supply Level -- Overhead lines, cable systems  
Each category should be subject to smaller transients than the category above.  
19  
Submit Documentation Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2007  
PACKAGING INFORMATION  
Orderable Device  
ISO7220AD  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
ISO7220ADG4  
ISO7220ADR  
ISO7220ADRG4  
ISO7220CD  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
ISO7220CDG4  
ISO7220CDR  
ISO7220CDRG4  
ISO7220MD  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
ISO7220MDG4  
ISO7220MDR  
ISO7220MDRG4  
ISO7221AD  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
ISO7221ADG4  
ISO7221ADR  
ISO7221ADRG4  
ISO7221CD  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
ISO7221CDG4  
ISO7221CDR  
ISO7221CDRG4  
ISO7221MD  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
ISO7221MDG4  
ISO7221MDR  
ISO7221MDRG4  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2007  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Oct-2007  
TAPE AND REEL BOX INFORMATION  
Device  
Package Pins  
Site  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) (mm) Quadrant  
(mm)  
330  
330  
330  
330  
330  
330  
(mm)  
12  
ISO7220ADR  
ISO7220CDR  
ISO7220MDR  
ISO7221ADR  
ISO7221CDR  
ISO7221MDR  
D
D
D
D
D
D
8
8
8
8
8
8
SITE 35  
SITE 35  
SITE 35  
SITE 35  
SITE 35  
SITE 35  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
8
8
8
8
8
8
12  
12  
12  
12  
12  
12  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
12  
12  
12  
12  
12  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Oct-2007  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
ISO7220ADR  
ISO7220CDR  
ISO7220MDR  
ISO7221ADR  
ISO7221CDR  
ISO7221MDR  
D
D
D
D
D
D
8
8
8
8
8
8
SITE 35  
SITE 35  
SITE 35  
SITE 35  
SITE 35  
SITE 35  
358.0  
358.0  
358.0  
358.0  
358.0  
358.0  
335.0  
335.0  
335.0  
335.0  
335.0  
335.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties  
may be subject to additional restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY