ISO7310CQDRQ1 [TI]

汽车类低功耗、单通道、25Mbps 数字隔离器 | D | 8 | -40 to 125;
ISO7310CQDRQ1
型号: ISO7310CQDRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类低功耗、单通道、25Mbps 数字隔离器 | D | 8 | -40 to 125

文件: 总27页 (文件大小:795K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ISO7310-Q1  
ZHCSEH0 DECEMBER 2015  
ISO7310-Q1 优异 EMC 低功耗单通道数字隔离器  
1 特性  
2 应用  
1
符合汽车应用要求  
具有符合 AEC-Q100 的下列结果:  
在下列使用中的光电耦合器替代产品:  
工业用 FieldBus  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
ProfiBus  
ModBus  
器件人体模型 (HBM) 分类等级 3A  
DeviceNet™数据总线  
器件充电器件模型 (CDM) 分类等级 C6  
伺服控制接口  
电机控制  
电源  
信号传输速率:25Mbps  
输入端集成有噪声滤波器  
默认输出高电平低电平选项  
低功耗:ICC 典型值  
电池组  
3 说明  
1Mbps 时为 1.9mA25Mbps 时为 3.8mA5V  
电源供电时)  
ISO7310-Q1 器件可提供符合 UL 1577 标准的长达 1  
分钟且高达 3000 VRMS的电流隔离,以及符合 VDE V  
0884-10 标准的 4242 VPK 隔离。这些器件具有一个隔  
离通道,其逻辑输入和输出缓冲器由二氧化硅 (SiO2)  
绝缘隔栅分离开来。与隔离式电源一起使用  
1Mbps 时为 1.4mA25Mbps 时为  
2.6mA3.3V 电源供电时)  
低传播延迟:典型值 32ns5V 电源供电时)  
65kV/μs 瞬态抗扰度,典型值(5V 电源供电时)  
优异的电磁兼容性 (EMC)  
时,ISO7310-Q1 器件可防止数据总线或者其他电路上  
的噪声电流进入本地接地端并干扰或损坏敏感电路。该  
器件已集成了针对恶劣工业环境的噪声滤波器,在此类  
环境下,器件的输入引脚上可能会出现短噪声脉冲。  
系统级静电放电 (ESD)、瞬态放电 (EFT) 以及  
抗浪涌保护  
低辐射  
隔离隔栅寿命:> 25 年  
3.3V 5V 电源供电  
3.3V 5V 电平转换  
ISO7310-Q1 器件具有晶体管-晶体管逻辑电路 (TTL)  
输入阈值,工作电压范围为 3V 5.5V。凭借创新的  
芯片设计和布线技术,ISO7310-Q1 器件的电磁兼容性  
得到了显著增强,可确保提供系统级 ESDEFT 和浪  
涌保护并符合辐射标准。  
窄体小尺寸集成电路 (SOIC)-8 封装  
安全及管理批准:  
符合 DIN V VDE V 0884-10 DIN EN 61010-  
1 标准的 4242 VPK 隔离 中的“DIN V VDE  
0884-10”更改为“DIN V VDE V 0884-10” 中)  
器件信息(1)  
器件型号  
ISO7310-Q1  
封装  
SOIC (8)  
封装尺寸(标称值)  
符合 UL 1577 标准且长达一分钟的 3000 VRMS”  
4.90mm x 3.91mm  
CSA 组件接受通知 5A,  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
IEC 60950-1 IEC 61010-1 终端设备标准中  
CSA 组件接受列表项中 CSA 组件接受列表  
项的(审批正在审理中)”  
简化电路原理图  
V
V
CC2  
CC1  
Isolation  
Capacitor  
已计划符合 GB4943.1-2011 CQC 认证  
所有机构的审批已通过”  
IN  
OUT  
GND1  
GND2  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSER6  
 
 
 
ISO7310-Q1  
ZHCSEH0 DECEMBER 2015  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 14  
Applications and Implementation ...................... 15  
9.1 Application Information............................................ 15  
9.2 Typical Application ................................................. 15  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics—5-V Supply ..................... 5  
6.6 Supply Current Characteristics—5-V Supply............ 5  
6.7 Electrical Characteristics—3.3-V Supply .................. 5  
6.8 Supply Current Characteristics—3.3-V Supply......... 5  
6.9 Power Dissipation Characteristics ............................ 6  
6.10 Switching Characteristics—5-V Supply................... 6  
6.11 Switching Characteristics........................................ 6  
6.12 Typical Characteristics............................................ 7  
Parameter Measurement Information .................. 9  
10 Power Supply Recommendations ..................... 17  
11 Layout................................................................... 18  
11.1 Layout Guidelines ................................................. 18  
11.2 Layout Example .................................................... 18  
12 器件和文档支持 ..................................................... 19  
12.1 文档支持................................................................ 19  
12.2 社区资源................................................................ 19  
12.3 ....................................................................... 19  
12.4 静电放电警告......................................................... 19  
12.5 Glossary................................................................ 19  
13 机械、封装和可订购信息....................................... 20  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注释  
2015 12 月  
*
最初发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7310-Q1  
www.ti.com.cn  
ZHCSEH0 DECEMBER 2015  
5 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
VCC1  
VCC2  
1
2
3
4
8
7
6
5
IN  
GND2  
OUT  
VCC1  
GND1  
GND2  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
4
GND1  
Ground connection for VCC1  
5
GND2  
Ground connection for VCC2  
7
IN  
2
I
Input  
OUT  
6
O
Output  
1
VCC1  
VCC2  
Power supply, VCC1  
Power supply, VCC2  
3
8
Copyright © 2015, Texas Instruments Incorporated  
3
ISO7310-Q1  
ZHCSEH0 DECEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
MAX  
UNIT  
Supply voltage(2)  
VCC1 , VCC2  
IN, OUT  
6
V
(2)  
Voltage  
VCC+0.5(3)  
V
IO  
Output current  
±15  
mA  
°C  
°C  
TJ  
Junction temperature  
Storage temperature  
150  
Tstg  
–65  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal and are peak voltage values.  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
3
NOM  
MAX  
UNIT  
V
VCC1, VCC2 Supply voltage  
5.5  
IOH  
IOL  
VIH  
VIL  
tui  
High-level output current  
–4  
mA  
mA  
V
Low-level output current  
High-level input voltage  
Low-level input voltage  
Input pulse duration  
Signaling rate  
4
5.5  
0.8  
2
0
V
40  
0
ns  
1 / tui  
TJ  
25  
136  
125  
Mbps  
°C  
Junction temperature(1)  
TA  
Ambient temperature  
–40  
25  
°C  
(1) To maintain the recommended operating conditions for TJ, see the Thermal Information table.  
6.4 Thermal Information  
ISO7310-Q1  
D (SOIC)  
8 PINS  
119.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
65.2  
61.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
19.3  
ψJB  
60.7  
RθJCbot  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
 
 
ISO7310-Q1  
www.ti.com.cn  
ZHCSEH0 DECEMBER 2015  
6.5 Electrical Characteristics—5-V Supply  
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
VCC2 – 0.5  
VCC2 – 0.1  
TYP  
4.7  
5
MAX  
UNIT  
IOH = –4 mA; see Figure 9  
VOH  
High-level output voltage  
V
IOH = –20 μA; see Figure 9  
IOL = 4 mA; see Figure 9  
IOL = 20 μA; see Figure 9  
0.2  
0
0.4  
0.1  
VOL  
Low-level output voltage  
V
VI(HYS) Input threshold voltage hysteresis  
480  
mV  
μA  
IIH  
High-level input current  
IN = VCC  
10  
IIL  
Low-level input current  
IN = 0 V  
–10  
25  
μA  
CMTI  
Common-mode transient immunity  
VI = VCC or 0 V; see Figure 11.  
65  
kV/μs  
6.6 Supply Current Characteristics—5-V Supply  
All inputs switching with square wave clock signal for dynamic ICC measurement. VCC1 and VCC2 at 5 V ± 10% (over  
recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICC1  
0.3  
1.6  
0.5  
2.2  
0.8  
3
0.6  
2.4  
1
DC Input: VI = VCC or 0 V,  
AC Input: CL = 15 pF  
DC to 1 Mbps  
10 Mbps  
ICC2  
ICC1  
Supply current for VCC1 and VCC2  
CL = 15 pF  
CL = 15 pF  
mA  
ICC2  
3.2  
1.3  
4.2  
ICC1  
25 Mbps  
ICC2  
6.7 Electrical Characteristics—3.3-V Supply  
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3
MAX  
UNIT  
IOH = –4 mA; see Figure 9  
VCC2 – 0.5  
VCC2 – 0.1  
VOH  
High-level output voltage  
V
IOH = –20 μA; see Figure 9  
IOL = 4 mA; see Figure 9  
IOL = 20 μA; see Figure 9  
3.3  
0.2  
0
0.4  
0.1  
VOL  
Low-level output voltage  
V
VI(HYS)  
IIH  
Input threshold voltage hysteresis  
High-level input current  
450  
mV  
μA  
IN = VCC  
10  
IIL  
Low-level input curre  
IN = 0 V  
–10  
25  
μA  
CMTI  
Common-mode transient immunity  
VI = VCC or 0 V; see Figure 11  
50  
kV/μs  
6.8 Supply Current Characteristics—3.3-V Supply  
All inputs switching with square wave clock signal for dynamic ICC measurement. VCC1 and VCC2 at 3.3 V ± 10% (over  
recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
ICC1  
0.2  
1.2  
0.3  
1.6  
0.5  
2.1  
0.4  
1.8  
0.5  
2.2  
0.8  
3
DC Input: VI = VCC or 0 V,  
AC Input: CL = 15 pF  
DC to 1 Mbps  
10 Mbps  
ICC2  
ICC1  
Supply current for VCC1 and VCC2  
CL = 15 pF  
CL = 15 pF  
mA  
ICC2  
ICC1  
25 Mbps  
ICC2  
Copyright © 2015, Texas Instruments Incorporated  
5
ISO7310-Q1  
ZHCSEH0 DECEMBER 2015  
www.ti.com.cn  
6.9 Power Dissipation Characteristics  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 12.5 MHz 50% duty-cycle square wave (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
34  
UNIT  
mW  
mW  
mW  
PD  
Maximum power dissipation  
Power dissipation by Side-1  
Power dissipation by Side-2  
PD1  
PD2  
7.9  
26.1  
6.10 Switching Characteristics—5-V Supply  
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
tPLH, tPHL  
PWD(1)  
Propagation delay time  
Pulse width distortion |tPHL – tPLH  
Part-to-part skew time  
Output signal rise time  
Output signal fall time  
See Figure 9  
See Figure 9  
20  
32  
58  
4
|
ns  
(2)  
tsk(pp)  
24  
ns  
tr  
tf  
See Figure 9  
See Figure 9  
2.5  
2
ns  
ns  
Fail-safe output delay time from input  
power loss  
tfs  
See Figure 10  
7.5  
μs  
(1) Also known as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.11 Switching Characteristics  
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
67  
UNIT  
ns  
tPLH, tPHL  
PWD(1)  
Propagation delay time  
Pulse width distortion |tPHL – tPLH  
Part-to-part skew time  
Output signal rise time  
Output signal fall time  
See Figure 9  
See Figure 9  
22  
36  
|
3.5  
28  
ns  
(2)  
tsk(pp)  
ns  
tr  
tf  
See Figure 9  
See Figure 9  
3.2  
2.7  
ns  
ns  
Fail-safe output delay time from input  
power loss  
tfs  
See Figure 10  
7.4  
μs  
(1) Also known as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6
Copyright © 2015, Texas Instruments Incorporated  
ISO7310-Q1  
www.ti.com.cn  
ZHCSEH0 DECEMBER 2015  
6.12 Typical Characteristics  
3.5  
3.5  
3
ICC2 at 5 V  
ICC2 at 3.3 V  
V  
ICC1 at 5 V  
V  
ICC2 at 5 V  
I
at 3.3 V  
CC2  
3
2.5  
2
I
at 5 V  
CC1
I
at 3.3 V  
I
at 3.3 V  
CC1  
2.5  
2
CC1  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Data Rate (Mbps)  
Data Rate (Mbps)  
C014  
C014  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 1. Supply Current vs Data Rate (With 15-pF Load)  
Figure 2. Supply Current vs Data Rate (With No Load)  
6
0.9  
V
at 5 V  
CC  
VCC at 3.3 V  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 3.3 V  
V
at 5 V  
CC
CC  
5
4
3
2
1
0
œ15  
œ10  
œ5  
0
0
5
10  
15  
High-Level Output Current (mA)  
Low-Level Output Current (mA)  
C014  
C014  
TA = 25°C  
TA = 25°C  
Figure 3. High-Level Output Voltage vs High-level Output  
Current  
Figure 4. Low-Level Output Voltage vs Low-Level Output  
Current  
43  
2.5  
tpHL at 3.3 V  
VCC Rising  
41  
tpLH at 3.3 V  
2.48  
2.46  
2.44  
2.42  
2.4  
V
Falling  
CC  
tpHL at 5 V  
39  
tpLH at 5 V  
37  
35  
33  
31  
29  
27  
25  
2.38  
2.36  
2.34  
4ꢀ  
5
3ꢀ  
65  
1ꢀꢀ  
135  
œ40 œ20  
0
20  
40  
60  
80  
100 120 140  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
Cꢀ14  
C014  
Figure 6. Propagation Delay Time vs Free-Air Temperature  
Figure 5. Power Supply Undervoltage Threshold vs Free-Air  
Temperature  
Copyright © 2015, Texas Instruments Incorporated  
7
ISO7310-Q1  
ZHCSEH0 DECEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
29  
tGS at 5 V  
240  
220  
200  
180  
160  
140  
120  
100  
tGS at 3.3 V  
27  
25  
23  
21  
19  
17  
15  
Output Jitter at 3.3 V  
Output Jitter at 5 V  
±±4  
±5  
34  
65  
144  
135  
0
5
10  
15  
20  
25  
Free-Air Temperature (oC)  
Data Rate (Mbps)  
C41±  
C014  
TA = 25°C  
Figure 7. Input Glitch Suppression Time vs Free-Air  
Temperature  
Figure 8. Output Jitter vs Data Rate  
8
Copyright © 2015, Texas Instruments Incorporated  
ISO7310-Q1  
www.ti.com.cn  
ZHCSEH0 DECEMBER 2015  
7 Parameter Measurement Information  
VCC1  
VI  
50%  
50%  
IN  
OUT  
VO  
0 V  
tPLH  
tPHL  
Input  
Generator(1)  
(2)  
CL  
50 Ω  
VI  
VOH  
90%  
10%  
50%  
50%  
VO  
VOL  
tr  
tf  
(1) The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle,  
tr 3 ns, tf 3 ns, ZO = 50 . At the input, a 50-Ω resistor is required to terminate the Input Generator signal. It is not  
needed in actual application.  
(2) CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 9. Switching Characteristic Test Circuit and Voltage Waveforms  
VI  
VCC  
VCC  
2.7 V  
VI  
0 V  
IN  
OUT  
IN = 0 V (ISO7310C)  
IN = VCC (ISO7310FC)  
tfs  
VO  
VOH  
fs high  
fs low  
50%  
VO  
(1)  
CL  
VOL  
(1) CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 10. Fail-Safe Output Delay-Time Test Circuit and Voltage Waveforms  
VCC1  
VCC1  
C = 0.1 µF 1ꢀ  
C = 0.1 µF 1ꢀ  
Pass-fail criteria:  
output must remain  
stable.  
IN  
OUT  
S1  
+
(1)  
CL  
VOH or VOL  
GND1  
GND2  
+
VCM  
(1) CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 11. Common-Mode Transient Immunity Test Circuit  
Copyright © 2015, Texas Instruments Incorporated  
9
ISO7310-Q1  
ZHCSEH0 DECEMBER 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The isolator in Figure 12 is based on a capacitive isolation barrier technique. The I/O channel of the device  
consists of two internal data channels, a high-frequency (HF) channel with a bandwidth from 100 kbps up to  
25 Mbps, and a low-frequency (LF) channel covering the range from 100 kbps down to DC.  
In principle, a single-ended input signal entering the HF channel is split into a differential signal via the inverter  
gate at the input. The following capacitor-resistor networks differentiate the signal into transient pulses, which  
then are converted into CMOS levels by a comparator. The transient pulses at the input of the comparator can  
be either above or below the common mode voltage VREF depending on whether the input bit transitions from 0  
to 1 or 1 to 0. The comparator threshold is adjusted based on the expected bit transition. A decision logic (DCL)  
at the output of the HF channel comparator measures the durations between signal transients. If the duration  
between two consecutive transients exceeds a certain time limit (as in the case of a low-frequency signal), the  
DCL forces the output-multiplexer to switch from the high-frequency to the low-frequency channel.  
8.2 Functional Block Diagram  
Lsolation .arrier  
OSC  
[ow t Crequency  
/hannel  
PWM  
VREF  
LPF  
(5/ꢀꢀꢀ100 kbps)  
0
1
ꢃolarity and  
Çhreshold {election  
OUT  
IN  
{
Iigh t Crequency  
/hannel  
DCL  
VREF  
(100 kbpsꢀꢀꢀ2ꢁ ꢂbps)  
ꢃolarity and Çhreshold {election  
Figure 12. Conceptual Block Diagram of a Digital Capacitive Isolator  
Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these  
signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a  
sufficiently high frequency, capable of passing the capacitive barrier. As the input is modulated, a low-pass filter  
(LPF) is needed to remove the high-frequency carrier from the actual data before passing it on to the output  
multiplexer.  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7310-Q1  
www.ti.com.cn  
ZHCSEH0 DECEMBER 2015  
8.3 Feature Description  
ORDERABLE DEVICE  
RATED ISOLATION  
MAX DATA RATE  
DEFAULT OUTPUT  
ISO7310CQDQ1 and  
ISO7310CQDRQ1  
High  
(1)  
3000 VRMS / 4242 VPK  
25 Mbps  
ISO7310FCQDQ1 and  
ISO7310FCQDRQ1  
Low  
(1) See the Regulatory Information section for detailed Isolation Ratings  
8.3.1 High Voltage Feature Description  
8.3.1.1 Insulation and Safety-Related Specifications for D-8 Package  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
L(I01)  
L(I02)  
Minimum air gap (clearance)  
Shortest terminal-to-terminal distance through air  
4
mm  
Minimum external tracking  
(creepage)  
Shortest terminal-to-terminal distance across the  
package surface  
4
400  
13  
mm  
V
Tracking resistance (comparative  
tracking index)  
CTI  
DTI  
DIN EN 60112 (VDE 0303-11); IEC 60112  
Distance through the insulation  
Minimum internal gap (internal  
clearance)  
µm  
VIO = 500 V, TA = 25°C  
>1012  
>1011  
Isolation resistance, input to  
output(1)  
RIO  
VIO = 500 V, 100°C TA 125°C  
Isolation capacitance, input to  
output(1)  
Input capacitance(2)  
CIO  
CI  
VIO = 0.4 sin (2πft), f = 1 MHz  
0.5  
1.6  
pF  
pF  
VI = VCC/2 + 0.4 sin (2πft), f = 1 MHz, VCC = 5 V  
(1) All pins on each side of the barrier tied together creating a two-terminal device.  
(2) Measured from input pin to ground.  
NOTE  
Creepage and clearance requirements should be applied according to the specific  
equipment isolation standards of an application. Care should be taken to maintain the  
creepage and clearance distance of a board design to ensure that the mounting pads of  
the isolator on the printed-circuit board do not reduce this distance.  
Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to  
help increase these specifications.  
Copyright © 2015, Texas Instruments Incorporated  
11  
ISO7310-Q1  
ZHCSEH0 DECEMBER 2015  
www.ti.com.cn  
8.3.1.2 Insulation Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
SPECIFICATION  
UNIT  
VIOWM  
VIORM  
Maximum isolation working voltage  
400  
VRMS  
Maximum repetitive peak voltage per  
DIN V VDE V 0884-10  
566  
VPK  
After Input/Output safety test subgroup 2/3,  
VPR = VIORM × 1.2, t = 10 s,  
Partial discharge < 5 pC  
680  
906  
Method a, After environmental tests subgroup 1,  
VPR = VIORM × 1.6, t = 10 s,  
Input-to-output test voltage per  
DIN V VDE V 0884-10  
VPR  
VPK  
Partial Discharge < 5 pC  
Method b1,  
VPR = VIORM × 1.875, t = 1 s (100% Production test)  
Partial discharge < 5 pC  
1062  
VTEST = VIOTM  
t = 60 sec (qualification)  
t= 1 sec (100% production)  
Maximum transient overvoltage per  
DIN V VDE V 0884-10  
VIOTM  
4242  
6000  
VPK  
VPK  
Maximum surge isolation voltage per  
DIN V VDE V 0884-10  
Test method per IEC 60065, 1.2/50 µs waveform,  
VTEST = 1.3 × VIOSM = 7800 VPK (qualification)  
VIOSM  
VTEST = VISO = 3000 VRMS, t = 60 sec  
(qualification);  
VTEST = 1.2 × VISO = 3600 VRMS, t = 1 sec (100%  
production)  
VISO  
Withstand isolation voltage per UL 1577  
3000  
VRMS  
RS  
Insulation resistance  
Pollution degree  
VIO = 500 V at TS = 150°C  
>109  
2
(1) Climatic Classification 40/125/21  
Table 1. IEC 60664-1 Ratings Table  
PARAMETER  
TEST CONDITIONS  
SPECIFICATION  
Basic isolation group  
Material group  
II  
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
I–IV  
I–III  
Installation classification  
8.3.1.3 Regulatory Information  
VDE  
CSA  
UL  
CQC  
Certified according to DIN V VDE Approved under CSA  
Recognized under UL 1577  
Component Recognition  
Program  
V 0884-10 (VDE V 0884-  
Component Acceptance Notice  
Plan to certify according to  
GB4943.1-2011  
10):2006-12 and DIN EN 61010- 5A, IEC 60950-1, and IEC  
1 (VDE 0411-1):2011-07  
61010-1  
400 VRMS Basic Insulation and  
200 VRMS Reinforced Insulation  
working voltage per CSA  
60950-1-07+A1+A2 and IEC  
60950-1 2nd Ed.+A1+A2;  
300 VRMS Basic Insulation  
working voltage per CSA  
61010-1-12 and IEC 61010-1  
3rd Ed.  
Basic Insulation  
Maximum Transient Overvoltage,  
4242 VPK  
Maximum Surge Isolation  
Voltage, 6000 VPK  
;
Basic Insulation, Altitude 5000 m,  
Tropical Climate, 250 VRMS  
maximum working voltage  
(1)  
Single protection, 3000 VRMS  
File number: E181974  
;
Maximum Repetitive Peak  
Voltage, 566 VPK  
Master contract number:  
220991  
Certificate number: 40016131  
Certification planned  
(1) Production tested 3600 VRMS for 1 second in accordance with UL 1577.  
12  
Copyright © 2015, Texas Instruments Incorporated  
ISO7310-Q1  
www.ti.com.cn  
ZHCSEH0 DECEMBER 2015  
8.3.1.4 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of  
the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier, potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
190  
290  
150  
UNIT  
mA  
R
θJA = 119.9 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
θJA = 119.9 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C  
Safety input, output, or supply  
current  
IS  
R
TS  
Maximum safety temperature  
°C  
The safety-limiting constraint is the absolute-maximum junction temperature specified in the Absolute Maximum  
Ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the  
application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the  
Thermal Information table is that of a device installed on a High-K Test Board for Leaded Surface-Mount  
Packages. The power is the recommended maximum input voltage times the current. The junction temperature is  
then the ambient temperature plus the power times the junction-to-air thermal resistance.  
350  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
Ambient Temperature (èC)  
D001  
Figure 13. Thermal Derating Curve per VDE  
Copyright © 2015, Texas Instruments Incorporated  
13  
ISO7310-Q1  
ZHCSEH0 DECEMBER 2015  
www.ti.com.cn  
8.4 Device Functional Modes  
Table 2 lists the functional modes for the ISO7310-Q1 device.  
Table 2. Function Table(1)  
OUT  
VCC1  
VCC2  
IN  
ISO7310CQDQ1 AND  
ISO7310FCQDQ1 AND  
ISO7310CQDRQ1  
ISO7310FCQDRQ1  
H
L
H
H
PU  
PU  
L
H(2)  
H(2)  
L
L(3)  
L(3)  
Open  
X
PD  
X
PU  
PD  
X
Undetermined  
Undetermined  
(1) PU = Powered up (VCC 3 V); PD = Powered down (VCC 2.1 V); X = Irrelevant; H = High level; L = Low level  
(2) In fail-safe condition, output defaults to high level  
(3) In fail-safe condition, output defaults to low level  
8.4.1 Device I/O Schematics  
Input (ISO7310C)  
VCC1  
VCC1  
VCC1  
VCC1  
5 µA  
500 Ω  
IN  
Output  
VCC2  
40 Ω  
OUT  
Input (ISO7310FC)  
VCC1  
VCC1  
VCC1  
500 Ω  
IN  
5 µA  
Figure 14. Device I/O Schematics  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7310-Q1  
www.ti.com.cn  
ZHCSEH0 DECEMBER 2015  
9 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ISO7310-Q1 device uses single-ended TTL-logic switching technology. The supply voltage range is from 3 V  
to 5.5 V for both supplies, VCC1 and VCC2. When designing with digital isolators, keep in mind that due to the  
single-ended design structure, digital isolators do not conform to any specific interface standard and are only  
intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the  
data controller (essentially μC or UART), and a data converter or a line transceiver, regardless of the interface  
type or standard.  
9.2 Typical Application  
The ISO7310-Q1 device can be used with a Texas Instruments’ microcontroller, CAN transceiver, transformer  
driver, and low-dropout voltage regulator to create an Isolated CAN Interface as shown in Figure 15.  
VS  
10 F  
3.3 V  
2
MBR0520L  
Vcc  
1:1.33  
ISO 3.3V  
3
1
1
5
2
D2  
D1  
IN  
OUT  
TPS76333-Q1  
SN6501-Q1  
10 F  
0.1 F  
10 F  
3
EN  
GND  
MBR0520L  
GND  
GND  
4
5
ISO Barrier  
0.1 F  
5,7  
4
GND2  
GND1  
IN  
3
0.1 F  
6
8
2
ISO7310-Q1  
OUT  
VCC  
RS  
8
10 (optional)  
10 (optional)  
1,3  
4
1
VCC2  
VCC1  
R
CANH  
29,57  
7
6
0.1 F  
0.1 F  
SN65HVD231Q  
V
DDIO  
26  
25  
D
CANL  
Vref  
CANRXA  
CANTXA  
TMS320F28  
035PAGQ  
0.1 F  
GND  
5
0.1 F  
SM712  
2
VCC1  
VCC2  
1,3  
2
8
6
V
SS  
IN  
OUT  
ISO7310-Q1  
6,28  
GND1  
GND2  
4
5,7  
4.7 nF /  
2 kV  
(1) Multiple pins and capacitors omitted for clarity purpose.  
Figure 15. Isolated CAN Interface  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
ISO7310-Q1  
ZHCSEH0 DECEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
9.2.1.1 Typical Supply Current Equations  
For the equations in this section, the following is true:  
ICC1 and ICC2 are typical supply currents measured in mA  
f is the data rate measured in Mbps  
CL is the capacitive load measured in pF  
At VCC1 = VCC2 = 5 V  
ICC1 = 0.30517 + (0.01983 × f)  
(1)  
(2)  
ICC2 = 1.40021 + (0.02879 × f) + (0.0021 × f × CL)  
At VCC1 = VCC2 = 3.3 V  
ICC1 = 0.18133 + (0.01166 × f)  
(3)  
(4)  
ICC2 = 1.053 + (0.01607 × f) + (0.001488 × f × CL)  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,  
the ISO7310-Q1 device only requires two external bypass capacitors to operate.  
VCC1  
VCC1  
2 mm  
maximum  
from  
2 mm  
maximum  
from  
0.1 µF  
VCC2  
0.1 µF  
VCC1  
1
2
8
7
6
5
IN  
INPUT  
3
4
OUT  
OUTPUT  
GND1  
GND2  
Figure 16. Typical ISO7310-Q1 Circuit Hook-up  
9.2.2.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO7310-  
Q1 device incorporates many chip-level design improvements for overall system robustness. Some of these  
improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
16  
Copyright © 2015, Texas Instruments Incorporated  
ISO7310-Q1  
www.ti.com.cn  
ZHCSEH0 DECEMBER 2015  
Typical Application (continued)  
9.2.3 Application Curves  
The following typical eye diagrams of the ISO7310-Q1 device indicate low jitter and wide open eye at the  
maximum data rate of 25 Mbps.  
Figure 18. Eye Diagram at 25 Mbps, 3.3 V and 25°C  
Figure 17. Eye Diagram at 25 Mbps, 5 V and 25°C  
10 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-µF bypass capacitor is recommended  
at input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as  
possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501-Q1  
device. For such applications, detailed power supply design and transformer selection recommendations are  
available in SN6501-Q1 datasheet (SLLSEF3).  
Copyright © 2015, Texas Instruments Incorporated  
17  
ISO7310-Q1  
ZHCSEH0 DECEMBER 2015  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 19). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
For detailed layout recommendations, see the application note SLLA284, Digital Isolator Design Guide.  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and the self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Yeep this  
FR-4  
0 ~ 4.5  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
r
Power plane  
Low-speed traces  
Figure 19. Recommended Layer Stack  
18  
版权 © 2015, Texas Instruments Incorporated  
 
ISO7310-Q1  
www.ti.com.cn  
ZHCSEH0 DECEMBER 2015  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
《数字隔离器设计指南》SLLA284  
ISO7310 评估模块用户指南》SLLU206  
《隔离相关术语》SLLA353  
SN6501-Q1 用于隔离电源的变压器驱动器》SLLSEF3  
SN65HVD231Q 3.3V CAN 收发器》SGLS398  
TMS320F28035 Piccolo™ 微控制器》SPRS584  
TPS76333-Q1 低功耗 150mA 低压降线性稳压器》SGLS247  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
DeviceNet, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2015, Texas Instruments Incorporated  
19  
ISO7310-Q1  
ZHCSEH0 DECEMBER 2015  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2015, Texas Instruments Incorporated  
ISO7310-Q1  
www.ti.com.cn  
ZHCSEH0 DECEMBER 2015  
PACKAGE OUTLINE  
D0008B  
SOIC - 1.75 mm max height  
SCALE 2.800  
SOIC  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
.041  
[1.04]  
4221445/B 04/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15], per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
版权 © 2015, Texas Instruments Incorporated  
21  
ISO7310-Q1  
ZHCSEH0 DECEMBER 2015  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
D0008B  
SOIC - 1.75 mm max height  
SOIC  
8X (.055)  
[1.4]  
8X (.061 )  
[1.55]  
SEE  
DETAILS  
SEE  
DETAILS  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
(.217)  
[5.5]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.0028 MAX  
[0.07]  
ALL AROUND  
.0028 MIN  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221445/B 04/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
22  
版权 © 2015, Texas Instruments Incorporated  
ISO7310-Q1  
www.ti.com.cn  
ZHCSEH0 DECEMBER 2015  
EXAMPLE STENCIL DESIGN  
D0008B  
SOIC - 1.75 mm max height  
SOIC  
8X (.061 )  
[1.55]  
8X (.055)  
[1.4]  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.217)  
[5.5]  
(.213)  
[5.4]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:6X  
4221445/B 04/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
版权 © 2015, Texas Instruments Incorporated  
23  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7310CQDQ1  
ISO7310CQDRQ1  
ISO7310FCQDQ1  
ISO7310FCQDRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
7310Q  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
7310Q  
7310FQ  
7310FQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY