ISO7310FC [TI]

低功耗、单通道、25Mbps、默认输出低电平数字隔离器;
ISO7310FC
型号: ISO7310FC
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低功耗、单通道、25Mbps、默认输出低电平数字隔离器

文件: 总26页 (文件大小:1414K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ISO7310C, ISO7310FC  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
ISO7310x 优异电磁兼容性 (EMC) 低功耗单通道数字隔离器  
1 特性  
3 说明  
1
信号传输速率:25Mbps  
输入端集成有噪声滤波器  
ISO7310x 可提供符合 UL 标准的长达 1 分钟且高达  
3000 VRMS 的电流隔离,以及符合 VDE 标准的 4242  
VPK 隔离。 这些器件具有一个隔离通道,其逻辑输入  
默认输出高电平低电平选项  
低功耗:ICC 典型值  
和输出缓冲器由二氧化硅 (SiO2) 绝缘隔栅分离开来。  
通过与隔离电源一起使用,ISO7310x 可防止数据总线  
或者其它电路上的噪声电流进入本地接地端并干扰或者  
损坏敏感电路。 这些器件已针对恶劣环境集成了噪声  
滤波器,在此类环境下,器件的输入引脚上可能会出现  
短噪音脉冲。 ISO7310x 具有晶体管晶体管逻辑电路  
(TTL) 输入阈值,工作电压范围为 3V 5.5V。 凭借  
创新的芯片设计和布线技术,ISO7310x 的电磁兼容性  
得到了显著增强,从而可确保提供系统级 ESDEFT  
和浪涌保护并符合辐射标准。  
1Mbps 时为 1.9mA25Mbps 时为 3.8mA5V  
电源供电时)  
1Mbps 时为 1.4mA25Mbps 时为  
2.6mA3.3V 电源供电时)  
低传播延迟:典型值 32ns5V 电源供电时)  
3.3V 5V 电平转换  
TA 额定范围:-40°C 125°C  
65KV/μs 瞬态抗扰度,典型值(5V 电源供电时)  
优异的电磁兼容性 (EMC)  
系统级静电放电 (ESD)、瞬态放电 (EFT) 以及  
抗浪涌保护  
器件信息(1)  
器件型号  
ISO7310C  
ISO7310FC  
封装  
封装尺寸(标称值)  
低辐射  
隔离隔栅寿命:> 25 年  
可由 3.3V 5V 电压供电  
窄体小尺寸集成电路 (SOIC)-8 封装  
安全及管理批准:  
SOIC (8)  
4.90mm x 3.91mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化电路原理图  
符合 DIN V VDE V 0884-10 标准和 DIN EN  
61010-1 标准的 4242 VPK 隔离 中)中)  
VCC2  
VCC1  
Isolation  
Capacitor  
符合 UL 1577 标准且长达 1 分钟的 3000 VRMS  
隔离”  
IN  
OUT  
CSA 组件接受通知 5A,  
IEC 60950-1 IEC 61010-1 终端设备标准中  
CSA 组件接受列表项中 CSA 组件接受列表  
项的(审批正在审理中)”  
GND1  
GND2  
符合 GB4943.1-2011 CQC 认证  
所有机构的审批已通过”  
2 应用  
在下列应用中的光电耦合器替代产品:  
工业用 FieldBus  
ProfiBus  
ModBus  
DeviceNet™ 数据总线  
伺服控制接口  
电机控制  
电源  
电池组  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLLSEI8  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISO7310C, ISO7310FC  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
8.3 Feature Description................................................. 12  
8.4 Device Functional Modes........................................ 15  
Applications and Implementation ...................... 16  
9.1 Application Information............................................ 16  
9.2 Typical Application ................................................. 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ..................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 6  
6.7 Electrical Characteristics........................................... 7  
6.8 Switching Characteristics.......................................... 7  
6.9 Typical Characteristics.............................................. 8  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 11  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 19  
11.1 PCB Material......................................................... 19  
11.2 Layout Guidelines ................................................. 19  
11.3 Layout Example .................................................... 19  
12 器件和文档支持 ..................................................... 20  
12.1 ....................................................................... 20  
12.2 静电放电警告......................................................... 20  
12.3 术语表 ................................................................... 20  
13 机械、封装和可订购信息....................................... 20  
7
8
4 修订历史记录  
Changes from Revision C (March 2015) to Revision D  
Page  
已添加DINEN 61010-1 标准“4242 VPK特性............................................................................................................. 1  
已删除特性.............................................................................................................................................................................. 1  
Deleted IEC from the section title: Insulation and Safety-Related Specifications for D-8 Package .................................... 12  
Changed the CTI Test Conditions in Insulation and Safety-Related Specifications for D-8 Package ................................ 12  
Changed VISO Test Condition in the Insulation Characteristics table .................................................................................. 13  
Changed column CSA in the Regulatory Information table.................................................................................................. 13  
Changes from Revision B (September 2014) to Revision C  
Page  
已将特性中的输入引脚上集成有噪声滤波器更改为输入端集成有噪声滤波器” .................................................................... 1  
已添加特性 - 默认输出高电平低电平....................................................................................................................... 1  
已将“DIN V VDE 0884-10 标准更改为 “DIN V VDE V 0884-10”特性................................................................................. 1  
已将特性中的“3 KVRMS 隔离更改为“3000 VRMS 隔离 ............................................................................................................. 1  
已添加(审批正在审理中)特性 ....................................................................................................................................... 1  
已将特性中的通过 GB4943.1-2011 CQC 认证更改为符合 GB4943.1-2011 CQC 认证................................................ 1  
已将简化电路原理图中的 GND1 更改为 GNDIGND2 更改为 GNDO.................................................................................. 1  
Changed the Handling Ratings to ESD Ratings table and updated guidelines ..................................................................... 5  
Changed the CTI MIN value in Insulation and Safety-Related Specifications for D-8 Package From: >400 V To: 400 V .. 12  
Added "DT1" to the Minimum internal gap in Insulation and Safety-Related Specifications for D-8 Package ................... 12  
Changed the DTI MIN value in Insulation and Safety-Related Specifications for D-8 Package From: 0.014 mm To:  
13 µM.................................................................................................................................................................................... 12  
Changed the RIO Test Condition in Insulation and Safety-Related Specifications for D-8 Package From: TA < 100°C  
To: TA = 25°C ....................................................................................................................................................................... 12  
Changed the RIO Test Condition in Insulation and Safety-Related Specifications for D-8 Package From: TA max  
To: TA = 125°C ..................................................................................................................................................................... 12  
Changed DIN V VDE 0884-10 To: DIN V VDE V 0884-10 in the Insulation Characteristics .............................................. 13  
Added VIOSM to the Insulation Characteristics table ............................................................................................................ 13  
2
版权 © 2014–2015, Texas Instruments Incorporated  
 
ISO7310C, ISO7310FC  
www.ti.com.cn  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
Changed RS Test Conditions in Insulation Characteristics From: TS To: TS = 150°C ......................................................... 13  
Changed the Regulatory Information table, VDE Certified From: DIN V VDE 0884-10 To: DIN V VDE V 0884-10  
(VDE V 0884-10):2006-12 and DIN EN 61010-1 (VDE 0411-1):2011-07............................................................................ 13  
Changed the Regulatory Information table, deleted (Approval Pending) statement............................................................ 13  
Changed the Regulatory Information table, CQC Certified number From: CQC14001109540 To: CQC15001121656...... 13  
Changed title From: " IEC Safety Limiting Values" To: Safety Limiting Values .................................................................. 14  
Changed Table 2 Header information to include device number for the OUT column. Added Note 3. .............................. 15  
Changed Figure 14 to include a diode at VCC1 on the Input circuit ...................................................................................... 15  
Changed Figure 15 .............................................................................................................................................................. 16  
Added Figure 16 .................................................................................................................................................................. 17  
Changes from Revision A (July 2014) to Revision B  
Page  
添加了器件 ISO7310FC ......................................................................................................................................................... 1  
已将特性中的 符合 DIN EN 60747-5-5 (VDE 0884-5) 标准的 4242 VPK 隔离更改为 符合 DIN V VDE 0884-10  
标准的 4242 VPK ............................................................................................................................................................. 1  
已删除特性安全及管理批准..................................................................................................................................................... 1  
Replaced Figure 10 ............................................................................................................................................................. 10  
Changed DIN EN 60747-5-5 To: DIN V VDE 0884-10 in the Insulation Characteristics .................................................... 13  
Changed DIN EN 60747-5-5 (VDE 0884-5) To: DIN V VDE 0884-10 in the Regulatory Information table ......................... 13  
Added a NOTE in the Application Information section ........................................................................................................ 16  
Changes from Original (March 2014) to Revision A  
Page  
从单页产品预览更改为完整数据.......................................................................................................................................... 1  
已添加特性 - 通过 GB4943.1-2011 CQC 认证 ....................................................................................................................... 1  
更改了说明部分,新增:凭借创新的芯片设计...” .................................................................................................................. 1  
已更改简化电路原理图 ........................................................................................................................................................... 1  
Copyright © 2014–2015, Texas Instruments Incorporated  
3
ISO7310C, ISO7310FC  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
www.ti.com.cn  
5 Pin Configuration and Functions  
D PACKAGE  
(TOP VIEW)  
VCC1  
VCC2  
8
7
6
5
1
2
3
4
IN  
VCC1  
GND2  
OUT  
GND1  
GND2  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VCC1  
NUMBER  
1, 3  
2
I
Power supply, VCC1  
Input  
IN  
GND1  
GND2  
OUT  
VCC2  
4
O
Ground connection for VCC1  
Ground connection for VCC2  
Output  
5, 7  
6
8
Power supply, VCC2  
4
Copyright © 2014–2015, Texas Instruments Incorporated  
ISO7310C, ISO7310FC  
www.ti.com.cn  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
MAX  
UNIT  
V
Supply voltage(2)  
VCC1 , VCC2  
–0.5  
6
(2)  
Voltage  
IN, OUT  
IO  
–0.5 VCC+0.5(3)  
V
Output current  
±15  
150  
mA  
°C  
Junction temperature  
Storage temperature  
TJ  
Tstg  
–65  
150  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal and are peak voltage values.  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
MAX  
±4000  
±1500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
VESD  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
3
TYP  
MAX  
UNIT  
VCC1, VCC2 Supply voltage  
IOH High-level output current  
IOL  
5.5  
V
mA  
mA  
V
–4  
Low-level output current  
High-level input voltage  
Low-level input voltage  
Input pulse duration  
Signaling rate  
4
5.5  
0.8  
VIH  
VIL  
tui  
2
0
V
40  
0
ns  
1 / tui  
25  
136  
125  
Mbps  
°C  
(1)  
TJ  
Junction temperature  
Ambient temperature  
TA  
-40  
25  
°C  
(1) To maintain the recommended operating conditions for TJ, see the Thermal Information table.  
6.4 Thermal Information  
D PACKAGE  
(8) PINS  
119.9  
65.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
Maximum power dissipation  
61.3  
°C/W  
19.3  
ψJB  
60.7  
RθJCbot  
PD  
N/A  
34  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
Input a 12.5 MHz 50% duty-cycle square wave  
PD1  
Power dissipation by Side-1  
7.9  
mW  
PD2  
Power dissipation by Side-2  
26.1  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2014–2015, Texas Instruments Incorporated  
5
 
 
ISO7310C, ISO7310FC  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
www.ti.com.cn  
6.5 Electrical Characteristics  
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
VCC2 – 0.5  
VCC2 – 0.1  
TYP  
4.7  
5
MAX  
UNIT  
IOH = –4 mA; see Figure 9  
VOH  
High-level output voltage  
V
IOH = –20 μA; see Figure 9  
IOL = 4 mA; see Figure 9  
IOL = 20 μA; see Figure 9  
0.2  
0
0.4  
0.1  
VOL  
Low-level output voltage  
V
VI(HYS)  
IIH  
Input threshold voltage hysteresis  
High-level input current  
480  
mV  
μA  
IN = VCC  
10  
IIL  
Low-level input current  
IN = 0 V  
–10  
25  
μA  
CMTI  
Common-mode transient immunity  
VI = VCC or 0 V; see Figure 11.  
65  
kV/μs  
SUPPLY CURRENT (All inputs switching with square wave clock signal for dynamic ICC measurement)  
ICC1  
0.3  
1.6  
0.5  
2.2  
0.8  
3
0.6  
2.4  
1
DC Input: VI = VCC or 0 V,  
AC Input: CL = 15pF  
DC to 1 Mbps  
ICC2  
ICC1  
Supply current for VCC1 and VCC2  
10 Mbps  
25 Mbps  
CL = 15pF  
CL = 15pF  
mA  
ICC2  
ICC1  
ICC2  
3.2  
1.3  
4.2  
6.6 Switching Characteristics  
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
58  
UNIT  
ns  
tPLH, tPHL  
PWD(1)  
Propagation delay time  
20  
32  
See Figure 9  
Pulse width distortion |tPHL – tPLH  
|
4
ns  
(2)  
tsk(pp)  
Part-to-part skew time  
24  
ns  
tr  
Output signal rise time  
Output signal fall time  
2.5  
2
ns  
See Figure 9  
See Figure 10  
tf  
ns  
tfs  
Fail-safe output delay time from input power loss  
7.5  
μs  
(1) Also known as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6
Copyright © 2014–2015, Texas Instruments Incorporated  
ISO7310C, ISO7310FC  
www.ti.com.cn  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
6.7 Electrical Characteristics  
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
VCC2 – 0.5  
VCC2 – 0.1  
TYP  
3
MAX  
UNIT  
IOH = –4 mA; see Figure 9  
VOH  
High-level output voltage  
V
IOH = –20 μA; see Figure 9  
IOL = 4 mA; see Figure 9  
IOL = 20 μA; see Figure 9  
3.3  
0.2  
0
0.4  
0.1  
VOL  
Low-level output voltage  
V
VI(HYS)  
IIH  
Input threshold voltage hysteresis  
High-level input current  
450  
mV  
μA  
IN = VCC  
10  
IIL  
Low-level input curre  
IN = 0 V  
-10  
25  
μA  
CMTI  
Common-mode transient immunity  
VI = VCC or 0 V; see Figure 11  
50  
kV/μs  
SUPPLY CURRENT (All inputs switching with square wave clock signal for dynamic ICC measurement)  
ICC1  
0.2  
1.2  
0.3  
1.6  
0.5  
2.1  
0.4  
1.8  
0.5  
2.2  
0.8  
3
DC Input: VI = VCC or 0 V,  
AC Input: CL = 15pF  
DC to 1 Mbps  
ICC2  
ICC1  
Supply current for VCC1 and VCC2  
10 Mbps  
25 Mbps  
CL = 15pF  
CL = 15pF  
mA  
ICC2  
ICC1  
ICC2  
6.8 Switching Characteristics  
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
tPLH, tPHL  
PWD(1)  
Propagation delay time  
22  
36  
67  
3.5  
28  
See Figure 9  
Pulse width distortion |tPHL – tPLH  
|
ns  
(2)  
tsk(pp)  
Part-to-part skew time  
ns  
tr  
Output signal rise time  
Output signal fall time  
3.2  
2.7  
7.4  
ns  
See Figure 9  
See Figure 10  
tf  
ns  
tfs  
Fail-safe output delay time from input power loss  
μs  
(1) Also known as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2014–2015, Texas Instruments Incorporated  
7
ISO7310C, ISO7310FC  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
www.ti.com.cn  
6.9 Typical Characteristics  
3.5  
3.5  
3
ICC2 at 5 V  
ICC2 at 3.3 V  
V  
ICC1 at 5 V  
V  
ICC2 at 5 V  
I
at 3.3 V  
CC2  
3
2.5  
2
I
at 5 V  
CC1
I
at 3.3 V  
I
at 3.3 V  
CC1  
2.5  
2
CC1  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Data Rate (Mbps)  
Data Rate (Mbps)  
C014  
C014  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 1. Supply Current vs Data Rate (with 15 pF Load)  
Figure 2. Supply Current vs Data Rate (with No Load)  
6
0.9  
V
at 5 V  
CC  
VCC at 3.3 V  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 3.3 V  
V
at 5 V  
CC
CC  
5
4
3
2
1
0
±15  
±10  
±5  
0
0
5
10  
15  
High-Level Output Current (mA)  
Low-Level Output Current (mA)  
C014  
C014  
TA = 25°C  
TA = 25°C  
Figure 3. High-Level Output Voltage vs High-level Output  
Current  
Figure 4. Low-Level Output Voltage vs Low-Level Output  
Current  
43  
2.5  
tpHL at 3.3 V  
VCC Rising  
41  
39  
37  
35  
33  
31  
29  
27  
25  
tpLH at 3.3 V  
2.48  
2.46  
2.44  
2.42  
2.4  
V
Falling  
CC  
tpHL at 5 V  
tpLH at 5 V  
2.38  
2.36  
2.34  
±40  
±5  
30  
65  
100  
135  
±40 ±20  
0
20  
40  
60  
80  
100 120 140  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C014  
C014  
Figure 6. Propagation Delay Time vs Free-Air Temperature  
Figure 5. Power Supply Undervoltage Threshold vs Free-Air  
Temperature  
8
Copyright © 2014–2015, Texas Instruments Incorporated  
ISO7310C, ISO7310FC  
www.ti.com.cn  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
Typical Characteristics (continued)  
29  
240  
220  
200  
180  
160  
140  
120  
100  
tGS at 5 V  
tGS at 3.3 V  
27  
25  
23  
21  
19  
17  
15  
Output Jitter at 3.3 V  
Output Jitter at 5 V  
±40  
±5  
30  
65  
100  
135  
0
5
10  
15  
20  
25  
Free-Air Temperature (oC)  
Data Rate (Mbps)  
C014  
C014  
TA = 25°C  
Figure 7. Input Glitch Suppression Time vs Free-Air  
Temperature  
Figure 8. Output Jitter vs Data Rate  
Copyright © 2014–2015, Texas Instruments Incorporated  
9
ISO7310C, ISO7310FC  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
www.ti.com.cn  
7 Parameter Measurement Information  
VCC1  
VI  
50%  
50%  
IN  
OUT  
VO  
0 V  
tPLH  
tPHL  
Input  
Generator(1)  
(2)  
50 W  
VI  
CL  
VOH  
VOL  
90%  
10%  
50%  
50%  
VO  
tr  
tf  
(1) The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle,  
tr 3 ns, tf 3 ns, ZO = 50 . At the input, a 50-Ω resistor is required to terminate the Input Generator signal. It is not  
needed in actual application.  
(2) CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 9. Switching Characteristic Test Circuit and Voltage Waveforms  
V
I
V
V
CC  
CC  
2.7 V  
V
I
0 V  
V
IN  
OUT  
IN = 0 V (ISO7310C)  
IN = VCC (ISO7310FC)  
t
V
fs  
O
OH  
fs high  
fs low  
50%  
V
O
C
L
V
OL  
NOTE A  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 10. Fail-Safe Output Delay-Time Test Circuit and Voltage Waveforms  
VCC1  
VCC2  
C = 0.1 μF 1ꢀ  
C = 0.1 μF 1ꢀ  
Pass-fail criteria –  
output must remain  
stable.  
IN  
OUT  
S1  
+
CL(1)  
GND2  
VOH or VOL  
GND1  
+
VCM  
(1) CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 11. Common-Mode Transient Immunity Test Circuit  
10  
Copyright © 2014–2015, Texas Instruments Incorporated  
ISO7310C, ISO7310FC  
www.ti.com.cn  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
8 Detailed Description  
8.1 Overview  
The isolator in Figure 12 is based on a capacitive isolation barrier technique. The I/O channel of the device  
consists of two internal data channels, a high-frequency (HF) channel with a bandwidth from 100 kbps up to 25  
Mbps, and a low-frequency (LF) channel covering the range from 100 kbps down to DC.  
In principle, a single-ended input signal entering the HF channel is split into a differential signal via the inverter  
gate at the input. The following capacitor-resistor networks differentiate the signal into transient pulses, which  
then are converted into CMOS levels by a comparator. The transient pulses at the input of the comparator can  
be either above or below the common mode voltage VREF depending on whether the input bit transitioned from  
0 to 1 or 1 to 0. The comparator threshold is adjusted based on the expected bit transition. A decision logic  
(DCL) at the output of the HF channel comparator measures the durations between signal transients. If the  
duration between two consecutive transients exceeds a certain time limit, (as in the case of a low-frequency  
signal), the DCL forces the output-multiplexer to switch from the high-frequency to the low-frequency channel.  
8.2 Functional Block Diagram  
Isolation Barrier  
OSC  
Low ± Frequency  
Channel  
PWM  
VREF  
LPF  
(DC...100 kbps)  
0
1
Polarity and  
Threshold Selection  
OUT  
IN  
S
High ± Frequency  
Channel  
DCL  
VREF  
(100 kbps...25 Mbps)  
Polarity and Threshold Selection  
Figure 12. Conceptual Block Diagram of a Digital Capacitive Isolator  
Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these  
signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a  
sufficiently high frequency, capable of passing the capacitive barrier. As the input is modulated, a low-pass filter  
(LPF) is needed to remove the high-frequency carrier from the actual data before passing it on to the output  
multiplexer.  
Copyright © 2014–2015, Texas Instruments Incorporated  
11  
 
ISO7310C, ISO7310FC  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
www.ti.com.cn  
8.3 Feature Description  
PRODUCT  
ISO7310C  
ISO7310FC  
RATED ISOLATION  
MAX DATA RATE  
DEFAULT OUTPUT  
High  
Low  
(1)  
3000 VRMS / 4242 VPK  
25 Mbps  
(1) See the Regulatory Information section for detailed Isolation Ratings  
8.3.1 High Voltage Feature Description  
8.3.1.1 Insulation and Safety-Related Specifications for D-8 Package  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
L(I01)  
L(I02)  
Minimum air gap (clearance)  
Shortest terminal-to-terminal distance through air  
4
mm  
Minimum external tracking  
(creepage)  
Shortest terminal-to-terminal distance across the  
package surface  
4
400  
13  
mm  
V
Tracking resistance (comparative  
tracking index)  
CTI  
DTI  
DIN EN 60112 (VDE 0303-11); IEC 60112  
Distance through the insulation  
Minimum internal gap (internal  
clearance)  
µm  
VIO = 500 V, TA = 25°C  
>1012  
>1011  
Isolation resistance, input to  
output(1)  
RIO  
VIO = 500 V, 100°C TA 125°C  
Isolation capacitance, input to  
output(1)  
Input capacitance(2)  
CIO  
CI  
VIO = 0.4 sin (2πft), f = 1 MHz  
0.5  
1.6  
pF  
pF  
VI = VCC/2 + 0.4 sin (2πft), f = 1 MHz, VCC = 5 V  
(1) All pins on each side of the barrier tied together creating a two-terminal device.  
(2) Measured from input pin to ground.  
NOTE  
Creepage and clearance requirements should be applied according to the specific  
equipment isolation standards of an application. Care should be taken to maintain the  
creepage and clearance distance of a board design to ensure that the mounting pads of  
the isolator on the printed-circuit board do not reduce this distance.  
Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to  
help increase these specifications.  
12  
Copyright © 2014–2015, Texas Instruments Incorporated  
ISO7310C, ISO7310FC  
www.ti.com.cn  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
8.3.1.2 Insulation Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
SPECIFICATION  
UNIT  
VIOWM  
VIORM  
Maximum isolation working voltage  
400  
VRMS  
Maximum repetitive peak voltage per  
DIN V VDE V 0884-10  
566  
VPK  
After Input/Output safety test subgroup 2/3,  
VPR = VIORM x 1.2, t = 10 s,  
680  
Partial discharge < 5 pC  
Method a, After environmental tests subgroup 1,  
VPR = VIORM x 1.6, t = 10 s,  
Partial Discharge < 5 pC  
Input-to-output test voltage per  
DIN V VDE V 0884-10  
VPR  
906  
VPK  
Method b1,  
VPR = VIORM x 1.875, t = 1 s (100% Production test)  
Partial discharge < 5 pC  
1062  
VTEST = VIOTM  
t = 60 sec (qualification)  
t= 1 sec (100% production)  
Maximum transient overvoltage per  
DIN V VDE V 0884-10  
VIOTM  
4242  
6000  
VPK  
VPK  
Maximum surge isolation voltage per  
DIN V VDE V 0884-10  
Test method per IEC 60065, 1.2/50 µs waveform,  
VTEST = 1.3 x VIOSM = 7800 VPK (qualification)  
VIOSM  
VTEST = VISO = 3000 VRMS, t = 60 sec  
(qualification);  
VTEST = 1.2 x VISO = 3600 VRMS, t = 1 sec (100%  
production)  
VISO  
Withstand isolation voltage per UL 1577  
3000  
VRMS  
RS  
Insulation resistance  
Pollution degree  
VIO = 500 V at TS = 150°C  
>109  
2
(1) Climatic Classification 40/125/21  
Table 1. IEC 60664-1 Ratings Table  
PARAMETER  
TEST CONDITIONS  
SPECIFICATION  
Basic isolation group  
Material group  
II  
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
I–IV  
I–III  
Installation classification  
8.3.1.3 Regulatory Information  
VDE  
CSA  
UL  
CQC  
Certified according to DIN V VDE Approved under CSA  
Recognized under UL 1577  
Component Recognition  
Program  
V 0884-10 (VDE V 0884-  
Component Acceptance Notice  
Certified according to GB4943.1-  
2011  
10):2006-12 and DIN EN 61010- 5A, IEC 60950-1, and IEC  
1 (VDE 0411-1):2011-07  
61010-1  
400 VRMS Basic Insulation and  
200 VRMS Reinforced Insulation  
working voltage per CSA  
60950-1-07+A1+A2 and IEC  
60950-1 2nd Ed.+A1+A2;  
300 VRMS Basic Insulation  
working voltage per CSA  
61010-1-12 and IEC 61010-1  
3rd Ed.  
Basic Insulation  
Maximum Transient Overvoltage,  
4242 VPK  
Maximum Surge Isolation  
Voltage, 6000 VPK  
;
Basic Insulation, Altitude 5000 m,  
Tropical Climate, 250 VRMS  
maximum working voltage  
(1)  
Single protection, 3000 VRMS  
;
Maximum Repetitive Peak  
Voltage, 566 VPK  
Master contract number:  
220991  
Certificate number:  
CQC15001121656  
Certificate number: 40016131  
File number: E181974  
(1) Production tested 3600 VRMS for 1 second in accordance with UL 1577.  
Copyright © 2014–2015, Texas Instruments Incorporated  
13  
ISO7310C, ISO7310FC  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
www.ti.com.cn  
8.3.1.4 Safety Limiting Values  
Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of  
the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier, potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
190  
290  
150  
UNIT  
mA  
R
θJA = 119.9 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
θJA = 119.9 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C  
Safety input, output, or supply  
current  
IS  
R
TS  
Maximum case temperature  
°C  
The safety-limiting constraint is the absolute-maximum junction temperature specified in the Absolut Maximun  
Ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the  
application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the  
Thermal Information table is that of a device installed on a High-K Test Board for Leaded Surface-Mount  
Packages. The power is the recommended maximum input voltage times the current. The junction temperature is  
then the ambient temperature plus the power times the junction-to-air thermal resistance.  
350  
VCC1 = VCC2 = 3.6 V  
300  
250  
200  
VCC1 = VCC2 = 5.5 V  
150  
100  
50  
0
0
50  
100  
Case Temperature (oC)  
150  
200  
C004  
Figure 13. θJC Thermal Derating Curve per DIN V VDE 0884-10  
14  
Copyright © 2014–2015, Texas Instruments Incorporated  
ISO7310C, ISO7310FC  
www.ti.com.cn  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
8.4 Device Functional Modes  
Table 2. Function Table(1)  
OUT  
VCC1  
VCC2  
IN  
ISO7310C  
ISO7310FC  
H
L
H
L
H
L
PU  
PU  
Open  
X
H(2)  
H(2)  
L(3)  
L(3)  
PD  
X
PU  
PD  
X
Undetermined  
Undetermined  
(1) PU = Powered up (VCC 3 V); PD = Powered down (VCC 2.1 V); X = Irrelevant; H = High level; L = Low level  
(2) In fail-safe condition, output defaults to high level  
(3) In fail-safe condition, output defaults to low level  
8.4.1 Device I/O Schematics  
Input (ISO7310C)  
VCC1  
VCC1  
VCC1  
VCC1  
5 PA  
500 Q  
IN  
Output  
VCC2  
40 Q  
OUT  
Input (ISO7310FC)  
VCC1  
VCC1  
VCC1  
500 Q  
IN  
5 PA  
Figure 14. Device I/O Schematics  
Copyright © 2014–2015, Texas Instruments Incorporated  
15  
ISO7310C, ISO7310FC  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
www.ti.com.cn  
9 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
ISO7310x use single-ended TTL-logic switching technology. The supply voltage range is from 3 V to 5.5 V for  
both supplies, VCC1 and VCC2. When designing with digital isolators, it is important to keep in mind that due to the  
single-ended design structure, digital isolators do not conform to any specific interface standard and are only  
intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the  
data controller (i.e. μC or UART), and a data converter or a line transceiver, regardless of the interface type or  
standard.  
9.2 Typical Application  
ISO7310 can be used with Texas Instruments’ microcontroller, CAN transceiver, transformer driver, and low-  
dropout voltage regulator to create an Isolated CAN Interface as shown in Figure 15.  
VS  
10 F  
3.3V  
2
MBR0520L  
Vcc  
1:2.2  
ISO 5V  
10F  
3
1
1
5
2
D2  
D1  
IN  
OUT  
TPS76350  
SN6501  
10F 0.1F  
3
EN  
GND  
MBR0520L  
GND  
GND  
5
4
ISO-BARRIER  
0.1F  
5,7  
4
(See Note 1)  
GND2  
GND1  
3
0.1F  
6
8
2
OUT ISO7310 IN  
VCC  
S
8
10(opt)  
10(opt)  
1,3  
4
1
VCC2  
0.1F  
VCC1  
0.1F  
RXD  
CANH  
40 12(1)  
RST VDD VDDA VBAT  
3
37  
7
6
9(1)  
30  
31  
7
SN65HVD1050  
TXD  
VDDC  
OSC0  
OSC1  
LDO  
25  
26  
CANL  
CAN0Rx  
STELLARIS  
0.1F  
VCC1  
IN  
GND  
2
Vref  
5
0.1F  
VCC2  
LM3S5Y36  
CAN0Tx  
GND GNDA WAKE  
10(1)  
32  
SM712  
6MHz  
1,3  
2
8
6
OUT  
ISO7310  
18pF 18pF  
GND1  
GND2  
4
0.1F  
(See Note 1)  
4
5,7  
4.7nF/  
2kV  
(1) Multiple pins and capacitors omitted for clarity purpose.  
Figure 15. Isolated CAN Interface  
16  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ISO7310C, ISO7310FC  
www.ti.com.cn  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
Typical Application (continued)  
9.2.1 Design Requirements  
9.2.1.1 Typical Supply Current Equations  
At VCC1 = VCC2 = 5 V  
ICC1 = 0.30517 + (0.01983 x f)  
ICC2 = 1.40021 + (0.02879 x f) + (0.0021 x f x CL)  
At VCC1 = VCC2 = 3.3 V  
ICC1 = 0.18133 + (0.01166 x f)  
ICC2 = 1.053 + (0.01607 x f) + (0.001488 x f x CL)  
ICC1 and ICC2 are typical supply currents measured in mA, f is data rate measured in Mbps, CL is the capacitive  
load measured in pF.  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which need external components to improve performance, provide bias, or limit current,  
ISO7310x only need two external bypass capacitors to operate.  
VCC1  
VCC2  
2 mm  
max.  
from  
VCC2  
2 mm  
max.  
from  
VCC1  
0.1mF  
0.1mF  
1
2
8
7
6
5
IN  
INPUT  
GND1  
3
4
OUT  
OUTPUT  
GND2  
Figure 16. Typical ISO7310 Circuit Hook-up  
9.2.2.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO7310x  
incorporate many chip-level design improvements for overall system robustness. Some of these improvements  
include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Copyright © 2014–2015, Texas Instruments Incorporated  
17  
ISO7310C, ISO7310FC  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
www.ti.com.cn  
Typical Application (continued)  
9.2.3 Application Performance Curves  
Typical eye diagrams of ISO7310x below indicate very low jitter and wide open eye at the maximum data rate of  
25 Mbps.  
Figure 18. Eye Diagram at 25 Mbps, 3.3V and 25°C  
Figure 17. Eye Diagram at 25 Mbps, 5V and 25°C  
10 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, a 0.1 µF bypass capacitor is recommended at  
input and output supply pins (VCC1 & VCC2). The capacitors should be placed as close to the supply pins as  
possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501. For  
such applications, detailed power supply design and transformer selection recommendations are available in  
SN6501 datasheet (SLLSEA0) .  
18  
Copyright © 2014–2015, Texas Instruments Incorporated  
ISO7310C, ISO7310FC  
www.ti.com.cn  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
11 Layout  
11.1 PCB Material  
For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of  
up to 10 inches, use standard FR-4 epoxy-glass as PCB material. FR-4 (Flame Retardant 4) meets the  
requirements of Underwriters Laboratories UL94-V0, and is preferred over cheaper alternatives due to its lower  
dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and its self-  
extinguishing flammability-characteristics.  
11.2 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 19). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power / ground plane system to the  
stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
For detailed layout recommendations, see Application Note SLLA284, Digital Isolator Design Guide.  
11.3 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
0 ~ 4.5  
space free  
from planes,  
traces , pads,  
and vias  
40 mils  
10 mils  
r
Power plane  
Low-speed traces  
Figure 19. Recommended Layer Stack  
版权 © 2014–2015, Texas Instruments Incorporated  
19  
 
ISO7310C, ISO7310FC  
ZHCSCO1D JUNE 2014REVISED APRIL 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 商标  
DeviceNet is a trademark of Texas Instruments.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
《隔离相关术语》SLLA353  
13 机械、封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2014–2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7310CD  
ISO7310CDR  
ISO7310FCD  
ISO7310FCDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
7310C  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
7310C  
7310FC  
7310FC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7310CDR  
ISO7310FCDR  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
6.4  
5.2  
5.2  
2.1  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7310CDR  
ISO7310FCDR  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO7310CD  
D
D
SOIC  
SOIC  
8
8
75  
75  
505.46  
505.46  
6.76  
6.76  
3810  
3810  
4
4
ISO7310FCD  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ISO7310FCD

低功耗、单通道、25Mbps、默认输出低电平数字隔离器 | D | 8 | -40 to 125
TI

ISO7310FCDR

低功耗、单通道、25Mbps、默认输出低电平数字隔离器 | D | 8 | -40 to 125
TI

ISO7310FCQDQ1

汽车类低功耗、单通道、25Mbps 数字隔离器 | D | 8 | -40 to 125
TI

ISO7310FCQDRQ1

汽车类低功耗、单通道、25Mbps 数字隔离器 | D | 8 | -40 to 125
TI

ISO7320-Q1

汽车类低功耗、双通道、2/0、25Mbps 数字隔离器
TI

ISO7320C

低功耗、双通道、2/0、25Mbps 数字隔离器
TI

ISO7320CD

低功耗、双通道、2/0、25Mbps 数字隔离器 | D | 8 | -40 to 125
TI

ISO7320CDR

低功耗、双通道、2/0、25Mbps 数字隔离器 | D | 8 | -40 to 125
TI

ISO7320CQDQ1

汽车类低功耗、双通道、2/0、25Mbps 数字隔离器 | D | 8 | -40 to 125
TI

ISO7320CQDRQ1

汽车类低功耗、双通道、2/0、25Mbps 数字隔离器 | D | 8 | -40 to 125
TI

ISO7320FC

低功耗、双通道、2/0、25Mbps、默认输出低电平数字隔离器
TI

ISO7320FCD

低功耗、双通道、2/0、25Mbps、默认输出低电平数字隔离器 | D | 8 | -40 to 125
TI