ISO7320CD [TI]

低功耗、双通道、2/0、25Mbps 数字隔离器 | D | 8 | -40 to 125;
ISO7320CD
型号: ISO7320CD
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低功耗、双通道、2/0、25Mbps 数字隔离器 | D | 8 | -40 to 125

文件: 总24页 (文件大小:1535K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
ISO732x 耐用 EMC 低功耗双通道数字隔离器  
1 特性  
3 说明  
1
信号传输速率:25Mbps  
ISO732x 可提供符合 UL 标准的长达 1 分钟且高达  
3000 VRMS 的电流隔离,以及符合 VDE 标准的 4242  
PK 隔离。 这些器件具有两个隔离通道,其逻辑输入  
输入时使用集成噪声滤波器  
V
默认输出选项  
和输出缓冲器由二氧化硅 (SiO2) 绝缘隔栅分离开来。  
ISO7320 的两个通道方向相同,而 ISO7321 的两个通  
道方向相反。 如果出现输入功率或信号损失,则后缀  
“F”的器件默认输出电平,后缀没有“F”的器件则  
默认输出电平。 更多详细信息,请参见器件功能模  
。 与隔离电源配合使用,这些器件可防止数据总线  
或者其它电路上的噪声电流进入本地接地并且干扰或损  
坏敏感电路。 ISO732x 已针对恶劣环境集成了噪声滤  
波器,在此类环境下,器件的输入引脚上可能会出现短  
噪音脉冲。 ISO732x 具有晶体管晶体管逻辑电路  
(TTL) 输入阈值,工作电压范围为 3V 5.5V。 凭借  
创新的芯片设计和布线技术,ISO732x 的电磁兼容性  
得到了显著增强,从而可确保提供系统级 ESDEFT  
和浪涌保护并符合辐射标准。  
低功耗:每通道的 ICC 典型值(1Mbps时):  
ISO73201.2mA5V 电源供电时),  
0.9mA3.3V 电源供电时)  
ISO73211.7mA5V 电源供电时),  
1.2mA3.3V 电源供电时)  
低传播延迟:典型值 33ns  
5V 电源供电时)  
3.3V 5V 电平转换  
宽温度范围:-40°C 125°C  
65KV/μs 瞬态抗扰度,  
典型值(5V 电源供电时)  
优异的电磁兼容性 (EMC)  
系统级静电放电 (ESD)、瞬态放电 (EFT) 以及  
抗浪涌保护  
低辐射  
器件信息(1)  
隔离隔栅寿命:> 25 年  
可由 3.3V 5V 电压供电  
窄体小尺寸集成电路 (SOIC)-8 封装  
安全及管理批准:  
器件型号  
ISO7320C  
ISO7320FC  
ISO7321C  
ISO7321FC  
封装  
封装尺寸(标称值)  
SOIC (8)  
4.90mm x 3.91mm  
符合 DIN V VDE V 0884-10 DIN EN 61010-  
1 标准的 4242 VPK 隔离中的 4242 VPK 部分  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
部分增加了脚注。  
符合 UL 1577 标准且长达 1 分钟的 3000VRMS  
隔离  
CSA 组件接受通知 5AIEC 60950-1IEC  
60601-1 IEC 61010-1 标准中 CSA 组件接受  
列表项的(审批正在审理中)”  
简化电路原理图  
VCCO  
VCCI  
通过 GB4943.1-2011 CQC 认证  
Isolation  
Capacitor  
2 应用  
INx  
OUTx  
在下列应用中的光电耦合器替代产品:  
工业用 FieldBus  
ProfiBus  
GNDI  
GNDO  
ModBus  
(1)  
(2)  
V
CCI GNDI 分别是输入通道的电源和接地  
连接。  
CCO GNDO 分别是输出通道的电源和接  
地连接。  
DeviceNet™ 数据总线  
V
伺服控制接口  
电机控制  
电源  
电池组  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEK8  
 
 
 
 
 
 
 
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 14  
Applications and Implementation ...................... 15  
9.1 Application Information............................................ 15  
9.2 Typical Application ................................................. 15  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics, 5 V ................................... 5  
6.6 Electrical Characteristics, 3.3 V ................................ 5  
6.7 Switching Characteristics, 5 V .................................. 6  
6.8 Switching Characteristics, 3.3 V ............................... 6  
6.9 Typical Characteristics.............................................. 7  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
9
10 Power Supply Recommendations ..................... 17  
11 Layout................................................................... 17  
11.1 PCB Material......................................................... 17  
11.2 Layout Guidelines ................................................. 17  
11.3 Layout Example .................................................... 17  
12 器件和文档支持 ..................................................... 18  
12.1 相关链接................................................................ 18  
12.2 ....................................................................... 18  
12.3 静电放电警告......................................................... 18  
12.4 术语表 ................................................................... 18  
13 机械、封装和可订购信息....................................... 18  
7
8
4 修订历史记录  
Changes from Revision B (April 2015) to Revision C  
Page  
已添加DINEN 61010-1 标准特性 ................................................................................................................................ 1  
已删除特性 ............................................................................................................................................................................. 1  
Changed From: VCC1 To: VCCI in Figure 11 ........................................................................................................................... 9  
Changed From: VCC1 To: VCCI and From: VCC2 To: VCCO in Figure 13 .................................................................................. 9  
Deleted IEC from the section title: Insulation and Safety-Related Specifications for D-8 Package .................................... 11  
Changed the CTI Test Conditions in Insulation and Safety-Related Specifications for D-8 Package ................................ 11  
Changed VISO Test Condition in the Insulation Characteristics table ................................................................................... 12  
Changes from Revision A (March 2015) to Revision B  
Page  
将器件状态从:产品预览改为:量产 ...................................................................................................................................... 1  
Changes from Original (January 2015) to Revision A  
Page  
从仅首页更改为完整数据表。 ................................................................................................................................................ 1  
VCC1 更改为 VCCIVCC2 更改为 VCCOGND1 更改为 GNDIGND2 更改为 GND0,并在简化电路原理..................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
www.ti.com.cn  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
5 Pin Configuration and Functions  
ISO7320  
D PACKAGE  
(TOP VIEW)  
ISO7321  
D PACKAGE  
(TOP VIEW)  
VCC1  
VCC2  
8
7
6
5
1
2
3
4
VCC1  
VCC2  
8
7
6
5
1
2
3
4
INA  
INB  
OUTA  
OUTB  
GND2  
OUTA  
INB  
INA  
OUTB  
GND2  
GND1  
GND1  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
ISO7320  
ISO7321  
INA  
INB  
2
3
4
5
7
6
1
8
7
3
4
5
2
6
1
8
I
I
Input, channel A  
Input, channel B  
GND1  
GND2  
OUTA  
OUTB  
VCC1  
O
O
Ground connection for VCC1  
Ground connection for VCC2  
Output, channel A  
Output, channel B  
Power supply, VCC1  
Power supply, VCC2  
VCC2  
Copyright © 2015, Texas Instruments Incorporated  
3
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.5  
–0.5  
MAX UNIT  
(2)  
Supply voltage, VCC1 , VCC2  
6
VCC+ 0.5(3)  
±15  
V
V
(2)  
Voltage  
INx, OUTx  
Output current, IO  
mA  
°C  
°C  
Junction temperature, TJ  
Storage temperature, Tstg  
150  
–65  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal and are peak voltage values.  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
VESD  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
3
TYP  
MAX  
UNIT  
V
VCC1, VCC2 Supply voltage  
IOH High-level output current  
IOL  
5.5  
–4  
mA  
mA  
V
Low-level output current  
High-level input voltage  
Low-level input voltage  
Input pulse duration  
Signaling rate  
4
5.5  
0.8  
VIH  
VIL  
tui  
2
0
V
40  
0
ns  
1 / tui  
25  
136  
125  
Mbps  
°C  
(1)  
TJ  
Junction temperature  
Ambient temperature  
TA  
-40  
25  
°C  
(1) To maintain the recommended operating conditions for TJ, see the Thermal Information table.  
6.4 Thermal Information  
D PACKAGE  
(8) PINS  
121  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJCtop  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
67.9  
61.6  
21.5  
61.1  
N/A  
RθJB  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
Maximum power dissipation by ISO7320  
Maximum power dissipation by side-1 of ISO7320  
Maximum power dissipation by side-2 of ISO7320  
Maximum power dissipation by ISO7321  
Maximum power dissipation by side-1 of ISO7321  
Maximum power dissipation by side-2 of ISO7321  
ψJB  
RθJCbot  
PD (ISO7320)  
PD1 (ISO7320)  
PD2 (ISO7320)  
PD (ISO7321)  
PD1 (ISO7321)  
PD2 (ISO7321)  
56  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15  
pF, Input a 12.5 MHz 50% duty-cycle square  
wave  
15  
mW  
mW  
41  
67  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15  
pF, Input a 12.5 MHz 50% duty-cycle square  
wave  
33.5  
33.5  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
 
 
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
www.ti.com.cn  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
6.5 Electrical Characteristics, 5 V  
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
VCCO(1)– 0.5  
VCCO(1) – 0.1  
TYP MAX  
UNIT  
IOH = –4 mA; see Figure 11  
4.7  
5
VOH  
High-level output voltage  
V
IOH = –20 μA; see Figure 11  
IOL = 4 mA; see Figure 11  
IOL = 20 μA; see Figure 11  
0.2  
0
0.4  
0.1  
VOL  
Low-level output voltage  
V
VI(HYS)  
IIH  
Input threshold voltage hysteresis  
High-level input current  
460  
mV  
μA  
IN = VCC  
10  
IIL  
Low-level input current  
IN = 0 V  
–10  
25  
μA  
CMTI  
Common-mode transient immunity  
VI = VCC or 0 V; see Figure 13.  
65  
kV/μs  
SUPPLY CURRENT (All inputs switching with square wave clock signal for dynamic ICC measurement)  
ISO7320  
ICC1  
0.4  
2
0.9  
3.2  
1.4  
4.4  
2.3  
6.8  
DC Input: VI = VCC or 0 V,  
AC Input: CL = 15pF  
DC to 1 Mbps  
ICC2  
ICC1  
0.8  
3.2  
1.4  
4.9  
Supply current for VCC1 and VCC2  
10 Mbps  
25 Mbps  
CL = 15pF  
CL = 15pF  
mA  
ICC2  
ICC1  
ICC2  
ISO7321  
DC Input: VI = VCC or 0 V,  
AC Input: CL = 15pF  
1.7  
2.8  
ICC1 , ICC2  
DC to 1 Mbps  
Supply current for VCC1 and VCC2  
mA  
ICC1 , ICC2  
ICC1 , ICC2  
10 Mbps  
25 Mbps  
CL = 15pF  
CL = 15pF  
2.5  
3.7  
3.7  
5.4  
(1) VCCO is supply voltage, VCC1 or VCC2, for the output channel being measured.  
6.6 Electrical Characteristics, 3.3 V  
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
VCCO(1)– 0.5  
VCCO(1)– 0.1  
TYP  
3
MAX UNIT  
IOH = –4 mA; see Figure 11  
VOH  
High-level output voltage  
V
IOH = –20 μA; see Figure 11  
IOL = 4 mA; see Figure 11  
IOL = 20 μA; see Figure 11  
3.3  
0.2  
0
0.4  
V
0.1  
VOL  
Low-level output voltage  
VI(HYS)  
IIH  
Input threshold voltage hysteresis  
High-level input current  
450  
mV  
IN = VCC  
10  
μA  
μA  
IIL  
Low-level input current  
IN = 0 V  
-10  
25  
CMTI  
Common-mode transient immunity  
VI = VCC or 0 V; see Figure 13  
50  
kV/μs  
SUPPLY CURRENT (All inputs switching with square wave clock signal for dynamic ICC measurement)  
ISO7320  
ICC1  
0.2  
1.5  
0.5  
2.2  
0.9  
3.3  
0.5  
2.5  
0.8  
3.2  
1.4  
4.7  
DC Input: VI = VCC or 0 V,  
AC Input: CL = 15pF  
DC to 1 Mbps  
ICC2  
ICC1  
Supply current for VCC1 and VCC2  
10 Mbps  
25 Mbps  
CL = 15pF  
CL = 15pF  
mA  
ICC2  
ICC1  
ICC2  
ISO7321  
DC Input: VI = VCC or 0 V,  
AC Input: CL = 15pF  
ICC1 , ICC2  
DC to 1 Mbps  
1.2  
2
Supply current for VCC1 and VCC2  
mA  
ICC1 , ICC2  
ICC1 , ICC2  
10 Mbps  
25 Mbps  
CL = 15pF  
CL = 15pF  
1.7  
2.5  
2.5  
3.6  
(1) VCCO is supply voltage, VCC1 or VCC2, for the output channel being measured.  
Copyright © 2015, Texas Instruments Incorporated  
5
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
6.7 Switching Characteristics, 5 V  
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
tPLH, tPHL  
PWD(1)  
Propagation delay time  
Pulse width distortion |tPHL – tPLH  
20  
33  
57  
4
ns  
ns  
See Figure 11  
|
ISO7320  
ISO7321  
2
(2)  
tsk(o)  
Channel-to-channel output skew time  
ns  
17  
23  
(3)  
tsk(pp)  
Part-to-part skew time  
ns  
ns  
ns  
μs  
tr  
Output signal rise time  
2.4  
2.1  
7.5  
See Figure 11  
See Figure 12  
tf  
Output signal fall time  
tfs  
Fail-safe output delay time from input power loss  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.8 Switching Characteristics, 3.3 V  
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT3  
tPLH, tPHL  
PWD(1)  
Propagation delay time  
Pulse width distortion |tPHL – tPLH  
22  
37  
66  
3
ns  
ns  
See Figure 11  
|
ISO7320  
ISO7321  
3
(2)  
tsk(o)  
Channel-to-channel output skew time  
ns  
16  
28  
(3)  
tsk(pp)  
Part-to-part skew time  
ns  
ns  
ns  
μs  
tr  
Output signal rise time  
3.1  
2.6  
7.4  
See Figure 11  
See Figure 12  
tf  
Output signal fall time  
tfs  
Fail-safe output delay time from input power loss  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6
Copyright © 2015, Texas Instruments Incorporated  
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
www.ti.com.cn  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
6.9 Typical Characteristics  
7
4
3.5  
3
ICC1 at 3.3 V  
ICC1 at 5 V  
ICC2 at 3.3 V  
ICC2 at 5 V  
ICC1 at 3.3 V  
ICC1 at 5 V  
ICC2 at 3.3 V  
ICC2 at 5 V  
6
5
2.5  
2
4
3
2
1
0
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
0
0
0
5
10  
15  
20  
25  
30  
Data Rate (Mbps)  
Data Rate (Mbps)  
D001  
D002  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
No Load  
Figure 1. ISO7320 Supply Current vs Data Rate  
Figure 2. ISO7320 Supply Current vs Data Rate  
4
3
2.5  
2
3.5  
3
2.5  
2
1.5  
1
1.5  
1
ICC1 at 3.3 V  
ICC1 at 5 V  
ICC2 at 3.3 V  
ICC2 at 5 V  
ICC1 at 3.3 V  
ICC1 at 5 V  
ICC2 at 3.3 V  
ICC2 at 5 V  
0.5  
0
0.5  
0
0
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
Data Rate (Mbps)  
Data Rate (Mbps)  
D003  
D004  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
No Load  
Figure 3. ISO7321 Supply Current vs Data Rate  
Figure 4. ISO7321 Supply Current vs Data Rate  
6
5
4
3
2
1
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VCC at 3.3 V  
VCC at 5 V  
VCC at 3.3 V  
VCC at 5 V  
-15  
-10  
-5  
0
5
10  
15  
High-Level Output Current (mA)  
Low-Level Output Current (mA)  
D005  
D006  
TA = 25°C  
TA = 25°C  
Figure 5. High-Level Output Voltage vs High-Level Output  
Current  
Figure 6. :Low-Level Output Voltage vs Low-Level Output  
Current  
Copyright © 2015, Texas Instruments Incorporated  
7
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
2.48  
43  
41  
39  
37  
35  
33  
31  
29  
27  
25  
VCC Rising  
VCC Falling  
2.46  
2.44  
2.42  
2.4  
2.38  
2.36  
2.34  
tPHL at 3.3 V  
tPLH at 5 V  
tPLH at 3.3 V  
tPHL at 5 V  
-50  
0
50  
100  
150  
-40  
-5  
30  
65  
100  
135  
Free-Air Temperature (qC)  
Free-Air Temperature (qC)  
D007  
D008  
Figure 7. Power Supply Under Voltage Threshold vs Free-  
Air Temperature  
Figure 8. Propagation Delay Time vs Free-Air Temperature  
160  
140  
120  
100  
80  
29  
27  
25  
23  
21  
19  
60  
40  
17  
20  
0
Output Jitter at 3.3 V  
Output Jitter at 5 V  
tGS at 3.3 V  
tGS at 5 V  
15  
-40  
-5  
30  
65  
100  
135  
0
5
10  
15  
20  
25  
Free-Air Temperature (qC)  
Data Rate (Mbps)  
D009  
D010  
Figure 9. Input Glitch Suppression Time vs Free-Air  
Temperature  
Figure 10. Peak-to-Peak Output Jitter vs Data Rate  
8
Copyright © 2015, Texas Instruments Incorporated  
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
www.ti.com.cn  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
7 Parameter Measurement Information  
VCCI  
VI  
50%  
50%  
IN  
OUT  
VO  
0 V  
tPLH  
tPHL  
Input  
Generator(1)  
(2)  
50 W  
VI  
CL  
VOH  
VOL  
90%  
10%  
50%  
50%  
VO  
tr  
tf  
(1) The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle,  
tr 3 ns, tf 3 ns, ZO = 50 . At the input, a 50-Ω resistor is required to terminate the Input Generator signal. It is not  
needed in actual application.  
(2) CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 11. Switching Characteristic Test Circuit and Voltage Waveforms  
V
I
V
V
CC  
CC  
2.7 V  
V
I
0 V  
V
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = VCC (Devices with suffix F)  
t
V
fs  
O
OH  
fs high  
fs low  
50%  
V
O
C
L
V
OL  
NOTE A  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 12. Fail-Safe Output Delay-Time Test Circuit and Voltage Waveforms  
VCCI  
VCCO  
C = 0.1 μF 1ꢀ  
C = 0.1 μF 1ꢀ  
Pass-fail criteria –  
output must remain  
stable.  
IN  
OUT  
S1  
+
CL  
Note A  
VOH or VOL  
GNDI  
GNDO  
+
VCM  
(1) CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 13. Common-Mode Transient Immunity Test Circuit  
Copyright © 2015, Texas Instruments Incorporated  
9
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The isolator in Figure 14 is based on a capacitive isolation barrier technique. The I/O channel of the device  
consists of two internal data channels, a high-frequency (HF) channel with a bandwidth from 100 kbps up to 25  
Mbps, and a low-frequency (LF) channel covering the range from 100 kbps down to DC.  
In principle, a single-ended input signal entering the HF channel is split into a differential signal via the inverter  
gate at the input. The following capacitor-resistor networks differentiate the signal into transient pulses, which  
then are converted into CMOS levels by a comparator. The transient pulses at the input of the comparator can  
be either above or below the common mode voltage VREF depending on whether the input bit transitioned from  
0 to 1 or 1 to 0. The comparator threshold is adjusted based on the expected bit transition. A decision logic  
(DCL) at the output of the HF channel comparator measures the durations between signal transients. If the  
duration between two consecutive transients exceeds a certain time limit, (as in the case of a low-frequency  
signal), the DCL forces the output-multiplexer to switch from the high-frequency to the low-frequency channel.  
8.2 Functional Block Diagram  
Isolation Barrier  
OSC  
Low ± Frequency  
Channel  
PWM  
VREF  
LPF  
(DC...100 kbps)  
0
1
Polarity and  
Threshold Selection  
OUT  
IN  
S
High ± Frequency  
Channel  
DCL  
VREF  
(100 kbps...25 Mbps)  
Polarity and Threshold Selection  
Figure 14. Conceptual Block Diagram of a Digital Capacitive Isolator  
Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these  
signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a  
sufficiently high frequency, capable of passing the capacitive barrier. As the input is modulated, a low-pass filter  
(LPF) is needed to remove the high-frequency carrier from the actual data before passing it on to the output  
multiplexer.  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
www.ti.com.cn  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
8.3 Feature Description  
PRODUCT  
ISO7320C  
ISO7320FC  
ISO7321C  
ISO7321FC  
CHANNEL DIRECTION  
RATED ISOLATION  
MAX DATA RATE DEFAULT OUTPUT  
High  
Same  
Low  
(1)  
3000 VRMS / 4242 VPK  
25 Mbps  
High  
Opposite  
Low  
(1) See the Regulatory Information section for detailed Isolation Ratings  
8.3.1 High Voltage Feature Description  
8.3.1.1 Insulation and Safety-Related Specifications for D-8 Package  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
L(I01)  
L(I02)  
Minimum air gap (clearance)  
Shortest terminal-to-terminal distance through air  
4
mm  
Minimum external tracking  
(creepage)  
Shortest terminal-to-terminal distance across the  
package surface  
4
400  
13  
mm  
V
Tracking resistance (comparative  
tracking index)  
CTI  
DTI  
DIN EN 60112 (VDE 0303-11); IEC 60112  
Distance through insulation  
Minimum internal gap (internal  
clearance)  
µm  
VIO = 500 V, TA = 25°C  
1012  
1011  
Isolation resistance, input to  
output(1)  
RIO  
VIO = 500 V, 100°C TA 125°C  
Isolation capacitance, input to  
output(1)  
Input capacitance(2)  
CIO  
CI  
VIO = 0.4 sin (2πft), f = 1 MHz  
1.5  
1.8  
pF  
pF  
VI = VCC/2 + 0.4 sin (2πft), f = 1 MHz, VCC = 5 V  
(1) All pins on each side of the barrier tied together creating a two-terminal device.  
(2) Measured from input pin to ground.  
NOTE  
Creepage and clearance requirements should be applied according to the specific  
equipment isolation standards of an application. Care should be taken to maintain the  
creepage and clearance distance of a board design to ensure that the mounting pads of  
the isolator on the printed-circuit board do not reduce this distance.  
Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to  
help increase these specifications.  
Copyright © 2015, Texas Instruments Incorporated  
11  
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
8.3.1.2 Insulation Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
SPECIFICATION  
UNIT  
VIOWM  
VIORM  
Maximum isolation working voltage  
400  
VRMS  
Maximum repetitive peak voltage per  
DIN V VDE V 0884-10  
566  
VPK  
After Input/Output safety test subgroup 2/3,  
VPR = VIORM x 1.2, t = 10 s,  
Partial discharge < 5 pC  
680  
906  
Method a, After environmental tests subgroup 1,  
VPR = VIORM x 1.6, t = 10 s,  
Input-to-output test voltage per  
DIN V VDE V 0884-10  
VPR  
VPK  
Partial Discharge < 5 pC  
Method b1,  
VPR = VIORM x 1.875, t = 1 s (100% Production test)  
Partial discharge < 5 pC  
1062  
VTEST = VIOTM  
t = 60 sec (qualification)  
t= 1 sec (100% production)  
Maximum transient overvoltage per  
DIN V VDE V 0884-10  
VIOTM  
4242  
6000  
VPK  
VPK  
Maximum surge isolation voltage per  
DIN V VDE V 0884-10  
Test method per IEC 60065, 1.2/50 µs waveform,  
VTEST = 1.3 x VIOSM = 7800 VPK (qualification)  
VIOSM  
VTEST = VISO = 3000 VRMS, t = 60 sec  
(qualification);  
VTEST = 1.2 x VISO = 3600 VRMS, t = 1 sec (100%  
production)  
VISO  
Withstand isolation voltage per UL 1577  
3000  
VRMS  
RS  
Insulation resistance  
Pollution degree  
VIO = 500 V at TS  
>109  
2
(1) Climatic Classification 40/125/21  
Table 1. IEC 60664-1 Ratings Table  
PARAMETER  
TEST CONDITIONS  
SPECIFICATION  
Basic isolation group  
Material group  
II  
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
I–IV  
I–III  
Installation classification  
8.3.1.3 Regulatory Information  
VDE  
CSA  
UL  
CQC  
Approved under CSA  
Certified according to DIN V VDE  
V 0884-10 (VDE V 0884-  
10):2006-12  
Recognized under UL 1577  
Component Recognition  
Program  
Component Acceptance Notice  
5A, IEC 60950-1, and IEC  
61010-1  
Certified according to GB4943.1-  
2011  
400 VRMS Basic Insulation and  
200 VRMS Reinforced Insulation  
working voltage per CSA  
60950-1-07+A1+A2 and IEC  
60950-1 2nd Ed.+A1+A2;  
300 VRMS Basic Insulation  
working voltage per CSA  
61010-1-12 and IEC 61010-1  
3rd Ed.  
Basic Insulation  
Maximum Transient Overvoltage,  
4242 VPK  
Maximum Surge Isolation  
Voltage, 6000 VPK  
Maximum Repetitive Peak  
Voltage, 566 VPK  
Basic Insulation, Altitude 5000 m,  
Tropical Climate, 250 VRMS  
maximum working voltage  
(1)  
Single protection, 3000 VRMS  
File number: E181974  
Master contract number:  
220991  
Certificate number:  
CQC15001121656  
Certificate number: 40016131  
(1) Production tested 3600 VRMS for 1 second in accordance with UL 1577.  
12  
Copyright © 2015, Texas Instruments Incorporated  
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
www.ti.com.cn  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
8.3.1.4 Safety Limiting Values  
Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of  
the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier, potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
188  
287  
150  
UNIT  
mA  
R
θJA = 121 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
θJA = 121 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C  
Safety input, output, or supply  
current  
IS  
R
TS  
Maximum case temperature  
°C  
The safety-limiting constraint is the absolute-maximum junction temperature specified in the Absolut Maximun  
Ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the  
application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the  
Thermal Information table is that of a device installed on a High-K Test Board for Leaded Surface-Mount  
Packages. The power is the recommended maximum input voltage times the current. The junction temperature is  
then the ambient temperature plus the power times the junction-to-air thermal resistance.  
400  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
300  
200  
100  
0
0
50  
100  
150  
200  
Case Temperature (qC)  
D011  
Figure 15. θJC Thermal Derating Curve per DIN V VDE V 0884-10  
Copyright © 2015, Texas Instruments Incorporated  
13  
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
8.4 Device Functional Modes  
Table 2. Function Table(1)  
OUTA, OUTB  
ISO7320C, ISO7321C ISO7320FC, ISO7321FC  
VCCI  
VCCO  
INA, INB  
H
L
H
H
PU  
PU  
L
H(2)  
H(2)  
L
L(3)  
L(3)  
Open  
X
PD  
X
PU  
PD  
X
Undetermined  
Undetermined  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC 3 V); PD = Powered down (VCC 2.1 V); X = Irrelevant; H =  
High level; L = Low level; Open = Not connected  
(2) In fail-safe condition, output defaults to high level  
(3) In fail-safe condition, output defaults to low level  
8.4.1 Device I/O Schematics  
Input (Devices Without Suffix F)  
Input (Devices With Suffix F)  
V
V
CCI  
V
V
V
V
V
CCI  
CCI  
CCI  
CCI  
CCI  
CCI  
5 mA  
500 W  
500 W  
INx  
INx  
5 mA  
Output  
V
CCO  
40 W  
OUTx  
Figure 16. Device I/O Schematics  
14  
Copyright © 2015, Texas Instruments Incorporated  
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
www.ti.com.cn  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
9 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
ISO732x utilize single-ended TTL-logic switching technology. Its supply voltage range is from 3 V to 5.5 V for  
both supplies, VCC1 and VCC2. When designing with digital isolators, it is important to keep in mind that due to the  
single-ended design structure, digital isolators do not conform to any specific interface standard and are only  
intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the  
data controller (i.e. μC or UART), and a data converter or a line transceiver, regardless of the interface type or  
standard.  
9.2 Typical Application  
ISO7321 can be used with Texas Instruments' mixed signal micro-controller, digital-to-analog converter,  
transformer driver, and voltage regulator to create an isolated 4-20 mA current loop.  
VCC1  
VCC2  
ISO7321  
Figure 17. Typical ISO7321 Application Circuit  
Copyright © 2015, Texas Instruments Incorporated  
15  
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
9.2.1.1 Typical Supply Current Equations  
ISO7320:  
ISO7321:  
At VCC1 = VCC2 = 5 V  
At VCC1 = VCC2 = 5 V  
ICC1 = 0.3838 + (0.0431 x f)  
ICC2 = 2.74567 + (0.08433 x f) + (0.01 x f x CL)  
ICC1 and ICC2 = 1.5877 + (0.066 x f) + (0.00123 x f x CL)  
At VCC1 = VCC2 = 3.3 V  
At VCC1 = VCC2 = 3.3 V  
ICC1 = 0.2394 + (0.02355 x f)  
ICC1 and ICC2 = 1.187572 + (0.019399 x f) + (0.0019029 x  
f x CL)  
ICC2 = 2.10681 + (0.04374 x f) + (0.007045 x f x CL)  
ICC1 and ICC2 are typical supply currents measured in mA, f is data rate measured in Mbps, CL is the capacitive  
load measured in pF.  
9.2.2 Detailed Design Procedure  
9.2.2.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO732x  
incorporate many chip-level design improvements for overall system robustness. Some of these improvements  
include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
9.2.3 Application Performance Curves  
Typical eye diagrams of ISO732x below indicate low jitter and wide open eye at the maximum data rate of 25  
Mbps.  
Figure 19. Eye Diagram at 25 Mbps, 3.3 V and 25°C  
Figure 18. Eye Diagram at 25 Mbps, 5 V and 25°C  
16  
Copyright © 2015, Texas Instruments Incorporated  
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
www.ti.com.cn  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
10 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, a 0.1 µF bypass capacitor is recommended at  
input and output supply pins (VCC1 & VCC2). The capacitors should be placed as close to the supply pins as  
possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501. For  
such applications, detailed power supply design and transformer selection recommendations are available in  
SN6501 datasheet (SLLSEA0) .  
11 Layout  
11.1 PCB Material  
For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of  
up to 10 inches, use standard FR-4 epoxy-glass as PCB material. FR-4 (Flame Retardant 4) meets the  
requirements of Underwriters Laboratories UL94-V0, and is preferred over cheaper alternatives due to its lower  
dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and its self-  
extinguishing flammability-characteristics.  
11.2 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 20). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power / ground plane system to the  
stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
For detailed layout recommendations, see Application Note SLLA284, Digital Isolator Design Guide.  
11.3 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
0 ~ 4.5  
space free  
from planes,  
traces , pads,  
and vias  
40 mils  
10 mils  
r
Power plane  
Low-speed traces  
Figure 20. Recommended Layer Stack  
版权 © 2015, Texas Instruments Incorporated  
17  
 
ISO7320C, ISO7320FC, ISO7321C, ISO7321FC  
ZHCSDI8C JANUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
3. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
ISO7320C  
ISO7320FC  
ISO7321C  
ISO7321FC  
12.2 商标  
DeviceNet is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
《隔离相关术语》SLLA353  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
18  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7320CD  
ISO7320CDR  
ISO7320FCD  
ISO7320FCDR  
ISO7321CD  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
D
8
8
8
8
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
7320C  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
7320C  
7320FC  
7320FC  
7321C  
ISO7321CDR  
ISO7321FCD  
ISO7321FCDR  
7321C  
7321FC  
7321FC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7320CDR  
ISO7320FCDR  
ISO7321CDR  
ISO7321FCDR  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
6.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7320CDR  
ISO7320FCDR  
ISO7321CDR  
ISO7321FCDR  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
2500  
2500  
2500  
2500  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO7320CD  
ISO7320FCD  
ISO7321CD  
ISO7321FCD  
D
D
D
D
SOIC  
SOIC  
SOIC  
SOIC  
8
8
8
8
75  
75  
75  
75  
505.46  
505.46  
505.46  
505.46  
6.76  
6.76  
6.76  
6.76  
3810  
3810  
3810  
3810  
4
4
4
4
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY