ISO7342CDWR [TI]

低功耗、四通道、2/2、25Mbps 数字隔离器 | DW | 16 | -40 to 125;
ISO7342CDWR
型号: ISO7342CDWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低功耗、四通道、2/2、25Mbps 数字隔离器 | DW | 16 | -40 to 125

文件: 总38页 (文件大小:1572K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
ISO734x 耐用 EMC 低功耗四通道数字隔离器  
1 特性  
3 说明  
1
信号传输速率:25Mbps删除了数据表标题中的删  
除了数据表标题中的  
ISO734x 系列器件可提供符合 UL 1577 标准的长达 1  
分钟且高达 3000 VRMS 的电隔离,以及符合 VDE V  
0884-10 标准的 4242 VPK 隔离。这些器件具有四个隔  
离通道,后者由逻辑输入和输出缓冲器组成,并由二氧  
化硅 (SiO2) 绝缘隔栅进行隔离。  
输入时使用集成噪声滤波器  
默认输出高电平低电平选项  
低功耗,每通道 ICC 典型值(1Mbps 时):  
ISO7340x0.9mA5V 电源)、  
0.7mA3.3V 电源)  
ISO7340x 器件具有四个正向通道,ISO7341x 器件具  
有三个正向通道和一个反向通道,ISO7342x 器件具有  
两个正向通道和两个反向通道。如果出现输入功率或信  
号损失,默认输出(器件带有后缀 F)或(器件不  
带后缀 F)。有关更多详细信息,请参阅 器件功能模  
部分。  
ISO7341x1.2mA5V 电源)、  
0.9mA3.3V 电源)  
ISO7342x1.3mA5V 电源)、  
0.9mA3.3V 电源)  
低传播延迟:典型值 31ns  
5V 电源)  
器件信息(1)  
3.3V 5V 电平转换  
器件型号  
ISO7340C  
封装  
封装尺寸  
宽温度范围:-40°C 125°C  
70KV/μs 瞬态抗扰度,典型值(5V 电源)  
优异的电磁兼容性 (EMC)  
ISO7340FC  
ISO7341C  
ISO7341FC  
ISO7342C  
ISO7342FC  
SOIC (16)  
10.30mm x 7.50mm  
系统级静电放电 (ESD)、瞬态放电 (EFT) 以及  
抗浪涌保护  
低辐射  
3.3V 5V 电源供电  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
宽体小外形尺寸集成电路 (SOIC)-16 封装  
安全相关认证:  
简化电路原理图  
4242 VPK 基本隔离,符合 DIN V VDE V 0884-  
10 DIN EN 61010-1 标准  
V
V
CCI  
CCO  
Isolation  
Capacitor  
符合 UL 1577 标准且长达 1 分钟的 3K VRMS 隔  
INx  
OUTx  
ENx  
CSA 组件验收通知 5AIEC 60950-1 IEC  
61010-1 终端设备标准  
GNDI  
GNDO  
已通过 GB4943.1-2011 CQC 认证  
V
CCI GNDI 分别是输入通道的电源和接地  
连接。  
CCO GNDO 分别是输出的电源和接地连  
接。  
2 应用  
V
是下列应用中光耦合器的替代产品:  
工业现场总线 (Fieldbus)  
Profibus 现场总线  
Modbus  
DeviceNet 数据总线  
伺服器控制接口  
电机控制  
电源  
电池组  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEI6  
 
 
 
 
 
 
 
 
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 5  
Pin Configuration and Functions......................... 6  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 8  
7.5 Power Ratings........................................................... 8  
7.6 Insulation Specifications............................................ 9  
7.7 Safety-Related Certifications................................... 10  
7.8 Safety Limiting Values ............................................ 10  
7.9 Electrical Characteristics—5-V Supply ................... 11  
7.10 Supply Current Characteristics—5-V Supply........ 11  
7.11 Electrical Characteristics—3.3-V Supply .............. 12  
7.12 Supply Current Characteristics—3.3-V Supply..... 12  
7.13 Switching Characteristics—5-V Supply................. 13  
7.14 Switching Characteristics—3.3-V Supply.............. 13  
7.15 Insulation Characteristics Curves ......................... 14  
7.16 Typical Characteristics.......................................... 15  
8
9
Parameter Measurement Information ................ 17  
Detailed Description ............................................ 19  
9.1 Overview ................................................................. 19  
9.2 Functional Block Diagram ....................................... 19  
9.3 Feature Description................................................. 20  
9.4 Device Functional Modes........................................ 21  
10 Application and Implementation........................ 22  
10.1 Application Information.......................................... 22  
10.2 Typical Application ................................................ 22  
11 Power Supply Recommendations ..................... 26  
12 Layout................................................................... 27  
12.1 Layout Guidelines ................................................. 27  
12.2 Layout Example .................................................... 27  
13 器件和文档支持 ..................................................... 28  
13.1 文档支持................................................................ 28  
13.2 相关链接................................................................ 28  
13.3 接收文档更新通知 ................................................. 28  
13.4 社区资源................................................................ 28  
13.5 ....................................................................... 28  
13.6 静电放电警告......................................................... 28  
13.7 Glossary................................................................ 28  
14 机械、封装和可订购信息....................................... 29  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision F (August 2016) to Revision G  
Page  
已删除 增强型....................................................................................................................................................................... 1  
the production tested note for the UL VRMS value from the Safety-Related Certifications ................................................... 10  
Changes from Revision E (April 2015) to Revision F  
Page  
Changed the minimum air gap (clearance) parameter (L(I01)) to the external clearance parameter.................................... 9  
Changed the minimum external tracking (creepage) parameter (L(I02)) to the external creepage parameter...................... 9  
Changed the typ value for the enable propagation delay, high impedance-to-high output parameter of the FC  
devices and the typ value for the enable propagation delay, high impedance-to-low output parameter of the C  
devices from 16 to 16000 in the Switching Characteristics—3.3-V Supply table ................................................................ 13  
已添加 接收文档更新通知 ............................................................................................................................................. 28  
Changes from Revision D (March 2015) to Revision E  
Page  
删除了 中的“(VDE V0884-10):2006-12”“(VDE 0411-1:2011-07)”特性 安全及管理批准: .................................................. 1  
(等待审批)CSA 组件验收列表项中删除特性 ....................................................................................................... 1  
Deleted IEC from the section title: Insulation and Safety-Related Specifications for DW-16 Package ................................ 9  
Changed the TEST Conditions of CTI in Insulation and Safety-Related Specifications for DW-16 Package........................ 9  
Changed the Test Conditions of VISO in Insulation Characteristics ....................................................................................... 9  
Changed column CSA in the Safety-Related Certifications table ....................................................................................... 10  
Changed From: VCC1 To: VCCI in Switching Characteristics Test Circuit and Voltage Waveforms ..................................... 17  
Changed From: VCC1 To: VCCI and From: VCC2 To: VCCO in Common-Mode Transient Immunity Test Circuit..................... 18  
2
版权 © 2014–2017, Texas Instruments Incorporated  
 
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
Changes from Revision C (December 2014) to Revision D  
Page  
更改了 中的 DIN V VDE 0884-10 编号特性 安全及监管认证.............................................................................................. 1  
中的 CSA 组件验收列表项添加了(等待审批)特性 ....................................................................................................... 1  
删除了 中的所有已计划机构认证特性 安全及监管认证..................................................................................................... 1  
已更改简化电路原理图:VCC1 更改为 VCCIVCC2 更改为 VCCOGND1 更改为 GNDIGND2 更改为 GNDO。已添加  
注释 1 和注释 2....................................................................................................................................................................... 1  
Added Note: "Maximum voltage must not exceed 6 V:" to Absolute Maximum Ratings........................................................ 7  
Added "DT1" to the Minimum internal gap in Insulation and Safety-Related Specifications for DW-16 Package................. 9  
Changed VIORM "Maximum repetitive peak voltage" To: "Maximum repetitive peak isolation voltage per DIN V VDE V  
0884-10" in Insulation Characteristics ................................................................................................................................... 9  
Changed VIOTM From: "DIN V VDE 0884-10 " To: "DIN V VDE V 0884-10" in Insulation Characteristics ............................ 9  
Changed VIOSM "Maximum surge voltage per DIN V VDE 0884-10 " To: "Maximum surge isolation voltage per DIN V  
VDE V 0884-100" in Insulation Characteristics ..................................................................................................................... 9  
Changed VIOSM Test Conditions in Insulation Characteristics ............................................................................................... 9  
Changed VPR From: "DIN V VDE 0884-10 " To: "DIN V VDE V 0884-10" in Insulation Characteristics ............................... 9  
Changed RS Test Conditions in Insulation and Safety-Related Specifications for DW-16 Package From: TS To: TS =  
150°C ..................................................................................................................................................................................... 9  
Changed the Safety-Related Certifications table ................................................................................................................ 10  
Changed title From: " IEC Safety Limiting Values" To: Safety Limiting Values ................................................................... 10  
Changed MIN value for VOH in the Electrical Characteristics From: VCCx - 0.5 To: VCCO - 0.5 ............................................ 11  
Changed VCCx To VCCO in Note 1 of the Electrical Characteristics....................................................................................... 11  
Changed MIN value for VOH in the Electrical Characteristics From: VCCx - 0.5 To: VCCO - 0.5 ............................................ 12  
Changed VCCx To VCCO in Note 1 of the Electrical Characteristics....................................................................................... 12  
Changed Function Table Header information From: INPUT-SIDE VCC To: VCCI and OUTPUT-SIDE VCC To: VCCO ......... 21  
Changed Device I/O Schematics From: VCC To: VCCI on the inputs and VCCO on Output and Enabled............................... 21  
Moved Typical ISO7340x Circuit Hook-up to Typical ISO7342x-Q1 Circuit Hook-up from the Design Requirements  
section to the Detailed Design Procedure section................................................................................................................ 23  
Changes from Revision B (November 2014) to Revision C  
Page  
Changed the Handling Ratings table to ESD Ratings............................................................................................................ 7  
Changed Minimum internal gap MIN value in Insulation and Safety-Related Specifications for DW-16 Package  
From: 0.014 mm To: 13.5 µm................................................................................................................................................. 9  
Changed Minimum internal gap MIN value in Insulation and Safety-Related Specifications for DW-16 Package  
From: 13.5 µm To: 13 µm....................................................................................................................................................... 9  
Delete text "per DIN V VDE 0884-10" from VIORM in the table in section Insulation Characteristics ..................................... 9  
Changed From: VPEAK To VPK in the UNIT column of the table in section Insulation Characteristics .................................... 9  
Added VIOSM to the table in section Insulation Characteristics .............................................................................................. 9  
Changed the table in Safety-Related Certifications section - removed text "Certified according to", "Approved  
under", "Recognized under", changed "pending" To: "planned" .......................................................................................... 10  
Changed Maximum Repetitive Peak Voltage, 1414 VPK To: Maximum surge voltage , 6000 VPK in the VDE column  
of the table in section Safety-Related Certifications............................................................................................................. 10  
Changed the ICC2, Supply current, DC to 1 Mbps TYP value From: 3 To 3.2 mA .............................................................. 11  
Changed the ICC2, Supply current, 10 Mbps TYP value From: 5.1 To 5.6 mA .................................................................... 11  
Changed the ICC2, Supply current, 25 Mbps TYP value From: 8.6 To 9.3 mA .................................................................... 11  
Changed the ICC1, Supply current, 10 Mbps TYP value From: 0.8 To 0.9 mA .................................................................... 12  
Changed the ICC2, Supply current, 10 Mbps TYP value From: 0.3.6 To 3.9 mA ................................................................. 12  
Changed the ICC2, Supply current, 25 Mbps TYP value From: 5.9 To 6.3 mA .................................................................... 12  
版权 © 2014–2017, Texas Instruments Incorporated  
3
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Added ISO7340 Supply Current vs Data Rate (15-pF Load) and ISO7340x Supply Current vs Data Rate (No Load)....... 15  
Changed ISO7341x Supply Current vs Data Rate (No Load).............................................................................................. 15  
Changes from Revision A (Octoberr 2014) to Revision B  
Page  
Added Test Condition to IEC 60664-1 Ratings Table: Rated mains voltage 1000 VRMS ................................................... 9  
Changed the RIO Test Conditions in Insulation and Safety-Related Specifications for DW-16 Package : Added TA =  
25°C at MIN = 1012 ................................................................................................................................................................. 9  
Changed the RIO Test Conditions in Insulation and Safety-Related Specifications for DW-16 Package : Added VIO =  
500 V, 100°C TA 125°C at MIN = 1011 ............................................................................................................................. 9  
Added ISO7341x Supply Current vs Data Rate (15-pF Load) and ISO7341x Supply Current vs Data Rate (No Load)..... 15  
Changes from Original (September 2014) to Revision A  
Page  
将一页产品预览更改成了完整的数据表................................................................................................................................... 1  
已更改简化电路原理图,已添加接地符号 ............................................................................................................................... 1  
4
版权 © 2014–2017, Texas Instruments Incorporated  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
5 说明 (续)  
这些器件与隔离式电源结合使用,有助于防止数据总线或者其他电路上的噪声电流进入本地接地以及干扰或损坏敏  
感电路。ISO734x 器件具有集成噪声滤波器,可适用于严苛工业环境,在这种环境下,短噪声脉冲可能会出现在器  
件输入引脚上。ISO734x 器件具有 TTL 输入阈值,工作电压范围为 3V 5.5V。凭借创新型芯片设计和布局技  
术,ISO734x 系列器件的电磁兼容性得到了显著增强,从而能够实现系统级 ESDEFT 和浪涌保护并符合辐射标  
准。  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
6 Pin Configuration and Functions  
DW Package  
16-Pin SOIC  
DW Package  
16-Pin SOIC  
ISO7340x Top View  
ISO7341x Top View  
V
V
CC2  
V
V
CC2  
1
2
16  
15  
1
2
16  
15  
CC1  
CC1  
GND1  
INA  
GND2  
OUTA  
OUTB  
OUTC  
OUTD  
EN  
GND1  
INA  
GND2  
OUTA  
OUTB  
3
4
5
6
7
8
14  
13  
12  
11  
10  
3
4
5
6
14  
13  
12  
11  
INB  
INB  
INC  
INC  
OUTC  
IND  
OUTD  
IND  
NC  
EN1  
7
8
10  
9
EN2  
GND1  
GND2  
9
GND1  
GND2  
DW Package  
16-Pin SOIC  
ISO7342x Top View  
VCC1  
VCC2  
1
2
16  
15  
GND1  
INA  
GND2  
OUTA  
OUTB  
INC  
3
4
5
6
7
8
14  
13  
INB  
12  
11  
10  
9
OUTC  
OUTD  
EN1  
IND  
EN2  
GND1  
GND2  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
EN  
ISO7340x  
ISO7341x  
ISO7342x  
Output enable. All output pins are enabled when EN is high or  
disconnected and disabled when EN is low.  
10  
7
I
I
I
Output enable 1. Output pins on side-1 are enabled when EN1 is  
high or disconnected and disabled when EN1 is low.  
EN1  
EN2  
7
Output enable 2. Output pins on side-2 are enabled when EN2 is  
high or disconnected and disabled when EN2 is low.  
10  
10  
2
8
2
8
2
8
GND1  
GND2  
Ground connection for VCC1  
Ground connection for VCC2  
9
9
9
15  
3
15  
3
15  
3
INA  
I
I
Input, channel A  
INB  
4
4
4
Input, channel B  
INC  
5
5
12  
11  
14  
13  
5
I
Input, channel C  
IND  
6
11  
14  
13  
12  
6
I
Input, channel D  
NC  
7
O
O
O
O
No connect pins are floating with no internal connection  
Output, channel A  
OUTA  
OUTB  
OUTC  
OUTD  
VCC1  
VCC2  
14  
13  
12  
11  
1
Output, channel B  
Output, channel C  
6
Output, channel D  
1
1
Power supply, VCC1  
Power supply, VCC2  
16  
16  
16  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1)  
See  
MIN  
–0.5  
–0.5  
MAX  
UNIT  
V
VCC  
Supply voltage(2)  
Voltage  
VCC1, VCC2  
6
VCC + 0.5(3)  
±15  
INx, OUTx, ENx  
V
IO  
Output current  
mA  
°C  
TJ  
Maximum junction temperature  
Storage temperature  
150  
Tstg  
–65  
150  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(3) Maximum voltage must not exceed 6 V.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
3
NOM  
MAX  
UNIT  
V
VCC1, VCC2 Supply voltage  
5.5  
IOH  
IOL  
VIH  
VIL  
tui  
High-level output current  
–4  
mA  
mA  
V
Low-level output current  
High-level input voltage  
Low-level input voltage  
Input pulse duration  
Signaling rate  
4
5.5  
0.8  
2
0
V
40  
0
ns  
1 / tui  
TJ  
25  
136  
125  
Mbps  
°C  
Junction temperature(1)  
TA  
Ambient temperature  
–40  
25  
°C  
(1) To maintain the recommended operating conditions for TJ, see the Thermal Information table.  
Copyright © 2014–2017, Texas Instruments Incorporated  
7
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
7.4 Thermal Information  
ISO734x  
DW (SOIC)  
16 PINS  
78.4  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
41  
43  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
15.6  
ψJB  
42.5  
RθJC(bottom)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Power Ratings  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 12.5-MHz 50% duty cycle square wave  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
92  
PD  
Maximum power dissipation by both sides of ISO7340x  
Maximum power dissipation by side-1 of ISO7340x  
Maximum power dissipation by side-2 of ISO7340x  
Maximum power dissipation by both sides of ISO7341x  
Maximum power dissipation by side-1 of ISO7341x  
Maximum power dissipation by side-2 of ISO7341x  
Maximum power dissipation by both sides of ISO7342x  
Maximum power dissipation by side-1 of ISO7342x  
Maximum power dissipation by side-2 of ISO7342x  
PD1  
PD2  
PD  
24 mW  
68  
102  
PD1  
PD2  
PD  
42 mW  
60  
111  
PD1  
PD2  
55.5 mW  
55.5  
8
Copyright © 2014–2017, Texas Instruments Incorporated  
 
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
7.6 Insulation Specifications  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
GENERAL  
CLR  
External clearance(1)  
External creepage(1)  
Shortest terminal-to-terminal distance through air  
>8  
>8  
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
CPG  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
>13  
>400  
II  
µm  
V
Rated mains voltage 300 VRMS  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
I–IV  
I–III  
I-II  
Overvoltage Category  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12(2)  
VIORM Maximum repetitive peak isolation voltage AC voltage (bipolar)  
1414  
4242  
VPK  
VPK  
VTEST = VIOTM  
;
VIOTM  
VIOSM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
t = 60 s (qualification); t = 1 s (100% production)  
Test method per IEC 60065, 1.2/50 µs waveform,  
VTEST = 1.3 × VIOSM = 7800 VPK (qualification)  
6000  
VPK  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
5  
Vpd(m) = 1.2 × VIORM = 1697 VPK, tm = 10 s  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM = 2262 VPK, tm = 10 s  
5  
5  
qpd  
Apparent charge(4)  
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test) Vini = VIOTM, tini = 1 s;  
Vpd(m) = 1.875 × VIORM = 2651 VPK, tm = 1 s (100%  
production)  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Isolation resistance, input to output(5)  
VIO = 0.4 sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
2.4  
>1012  
>1011  
>109  
pF  
VIO = 500 V, 100°C TA x°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
40/125/21  
UL 1577  
VTEST = VISO = 3000 VRMS, t = 60 s (qualification);  
VTEST = 1.2 × VISO = 3600 VRMS, t = 1 s (100%  
production)  
VISO  
Withstand isolation voltage  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the maximum operating ratings. Compliance with the safety ratings shall  
be ensured by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device  
Copyright © 2014–2017, Texas Instruments Incorporated  
9
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
7.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10):2006-12 and DIN EN 61010- Acceptance Notice 5A, IEC 60950-1, and  
1 (VDE 0411-1):2011-07  
Approved under CSA Component  
Recognized under UL 1577  
Component Recognition  
Program  
Certified according to  
GB4943.1-2011  
IEC 61010-1  
800 VRMS Basic Insulation and 400 VRMS  
Reinforced Insulation working voltage per  
CSA 60950-1-07+A1+A2 and IEC 60950-1  
2nd Ed.+A1+A2;  
300 VRMS Basic Insulation working voltage  
per CSA 61010-1-12 and IEC 61010-1 3rd  
Ed.  
Basic Insulation;  
Maximum Transient Overvoltage, 4242 VPK  
Maximum Surge Isolation Voltage, 6000 VPK  
Maximum Repetitive Peak Isolation Voltage,  
1414 VPK  
;
Reinforced Insulation, Altitude  
5000 m, Tropical Climate, 250  
VRMS maximum working voltage  
Single protection, 3000 VRMS  
File number: E181974  
;
Certificate number:  
CQC15001121716  
Certificate number: 40016131  
Master contract number: 220991  
7.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure  
of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier, potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 78.4 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C,  
290  
see Figure 1  
θJA = 78.4 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C,  
see Figure 1  
Safety input, output, or supply  
current  
IS  
mA  
R
443  
150  
TS  
Safety temperature  
(1) The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-air  
thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air  
thermal resistance in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount  
packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient  
temperature plus the power times the junction-to-air thermal resistance.  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
7.9 Electrical Characteristics—5-V Supply  
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
VCCO(1) – 0.5  
VCCO(1) – 0.1  
TYP  
4.7  
5
MAX  
UNIT  
IOH = –4 mA; see Figure 14  
VOH  
High-level output voltage  
V
IOH = –20 μA; see Figure 14  
IOL = 4 mA; see Figure 14  
IOL = 20 μA; see Figure 14  
0.2  
0
0.4  
0.1  
VOL  
Low-level output voltage  
V
Input threshold voltage  
hysteresis  
VI(HYS)  
480  
mV  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCC at INx or ENx  
VIL = 0 V at INx or ENx  
10  
μA  
μA  
–10  
25  
Common-mode transient  
immunity  
Input capacitance(2)  
CMTI  
CI  
VI = VCC or 0 V; see Figure 17  
70  
kV/μs  
VI = VCC/2 + 0.4 sin (2πft), f = 1 MHz, VCC = 5 V  
3.4  
pF  
(1) VCCO is supply voltage, VCC1 or VCC2, for the output channel being measured.  
(2) Measured from input pin to ground.  
7.10 Supply Current Characteristics—5-V Supply  
All inputs switching with square wave clock signal for dynamic ICC measurement. VCC1 and VCC2 at 5 V ± 10% (over  
recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISO7340x  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
0.6  
0.4  
0.6  
3.2  
1.4  
5.6  
2.7  
9.3  
1.4  
0.8  
1.4  
EN = 0 V  
Disable  
DC to 1 Mbps  
10 Mbps  
4.8  
mA  
2.3  
Supply current  
DC Signal: VI = VCC or 0 V,  
AC Signal: All channels switching with  
square wave clock input; CL = 15 pF  
7.1  
4
25 Mbps  
12  
ISO7341x  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
0.8  
0.7  
2
1.8  
1.3  
3.2  
EN1 = EN2 = 0 V  
Disable  
DC to 1 Mbps  
10 Mbps  
2.9  
3.2  
4.9  
5
4.4  
mA  
4.5  
Supply current  
DC Signal: VI = VCC or 0 V,  
AC Signal: All channels switching with  
square wave clock input; CL = 15 pF  
6.5  
7
25 Mbps  
7.8  
11  
ISO7342x  
EN1 = EN2 = 0 V  
Disable  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
0.7  
2.5  
4.1  
6.4  
1.6  
DC to 1 Mbps  
10 Mbps  
4
mA  
5.6  
DC Signal: VI = VCC or 0 V,  
AC Signal: All channels switching with  
square wave clock input; CL = 15 pF  
Supply current  
25 Mbps  
9
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
7.11 Electrical Characteristics—3.3-V Supply  
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
VCCO(1) – 0.5  
VCCO(1) – 0.1  
TYP  
3
MAX  
UNIT  
IOH = –4 mA; see Figure 14  
VOH  
High-level output voltage  
V
IOH = –20 μA; see Figure 14  
IOL = 4 mA; see Figure 14  
IOL = 20 μA; see Figure 14  
3.3  
0.2  
0
0.4  
0.1  
VOL  
Low-level output voltage  
V
VI(HYS)  
Input threshold voltage  
hysteresis  
450  
mV  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCC at INx or ENx  
VIL = 0 V at INx or ENx  
10  
μA  
μA  
–10  
25  
Common-mode transient  
immunity  
CMTI  
VI = VCC or 0 V; see Figure 17  
50  
kV/μs  
(1) VCCO is supply voltage, VCC1 or VCC2, for the output channel being measured.  
7.12 Supply Current Characteristics—3.3-V Supply  
All inputs switching with square wave clock signal for dynamic ICC measurement. VCC1 and VCC2 at 3.3 V ± 10% (over  
recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISO7340x  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
0.4  
0.3  
0.4  
2.3  
0.9  
3.9  
1.6  
6.3  
0.7  
0.6  
0.7  
EN = 0 V  
Disable  
DC to 1 Mbps  
10 Mbps  
3.6  
mA  
1.3  
Supply current  
DC Signal: VI = VCC or 0 V,  
AC Signal: All channels switching with  
square wave clock input; CL = 15 pF  
5.1  
2.4  
8
25 Mbps  
ISO7341x  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
0.6  
0.5  
1.4  
2.2  
2.2  
3.4  
3.3  
5.2  
1
0.8  
2.3  
EN1 = EN2 = 0 V  
Disable  
DC to 1 Mbps  
10 Mbps  
3.2  
mA  
3
Supply current  
DC Signal: VI = VCC or 0 V,  
AC Signal: All channels switching with  
square wave clock input; CL = 15 pF  
4.5  
4.7  
7.2  
25 Mbps  
ISO7342x  
EN1 = EN2 = 0 V  
Disable  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
0.5  
1.8  
2.8  
4.3  
0.9  
DC to 1 Mbps  
10 Mbps  
2.8  
mA  
4
DC Signal: VI = VCC or 0 V,  
AC Signal: All channels switching with  
square wave clock input; CL = 15 pF  
Supply current  
25 Mbps  
5.8  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
7.13 Switching Characteristics—5-V Supply  
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tPLH, tPHL  
PWD(1)  
20  
31  
58  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Figure 14  
|
Same-direction Channels  
2.5  
17  
23  
(2)  
tsk(o)  
Channel-to-channel output skew time  
Opposite-direction Channels  
(3)  
tsk(pp)  
Part-to-part skew time  
tr  
Output signal rise time  
2.1  
See Figure 14  
tf  
Output signal fall time  
1.7  
tPHZ  
tPLZ  
Disable propagation delay, high-to-high impedance output  
Disable propagation delay, low-to-high impedance output  
7
7
13  
13  
ISO734xC  
7
13  
Enable propagation delay, high  
impedance-to-high output  
tPZH  
See Figure 15  
See Figure 16  
ns  
ISO734xFC  
15000  
15000  
7
23000(4)  
23000(4)  
13  
ISO734xC  
Enable propagation delay, high  
impedance-to-low output  
tPZL  
tfs  
ns  
ISO734xFC  
Fail-safe output delay time from input power loss  
9.4  
μs  
(1) Also known as Pulse Skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
(4) The enable signal rate should be 43 Kbps.  
7.14 Switching Characteristics—3.3-V Supply  
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tPLH, tPHL  
PWD(1)  
22  
35  
66  
See Figure 14  
|
2.5  
Same-direction Channels  
3
16  
28  
ns  
ns  
(2)  
tsk(o)  
Channel-to-channel output skew time  
Opposite-direction Channels  
(3)  
tsk(pp)  
Part-to-part skew time  
tr  
Output signal rise time  
2.8  
2.1  
9
See Figure 14  
tf  
Output signal fall time  
tPHZ  
tPLZ  
Disable propagation delay, high-to-high impedance output  
Disable propagation delay, low-to-high impedance output  
18  
18  
18  
9
ISO734xC  
9
Enable propagation delay, high impedance-  
to-high output  
tPZH  
See Figure 15  
See Figure 16  
ns  
ISO734xFC  
16000 24000(4)  
16000 24000(4)  
ISO734xC  
Enable propagation delay, high impedance-  
to-low output  
tPZL  
tfs  
ISO734xFC  
9
18  
Fail-safe output delay time from input power loss  
9.4  
μs  
(1) Also known as Pulse Skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
(4) The enable signal rate should be 45 Kbps.  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
7.15 Insulation Characteristics Curves  
500  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
400  
300  
200  
100  
0
0
50  
100  
150  
200  
Case Temperature (èC)  
D009  
Figure 1. Thermal Derating Curve for Limiting Current per VDE  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
7.16 Typical Characteristics  
10  
6
ICC2 at 5 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC1 at 3.3 V  
ICC2 at 5 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
9
5
4
3
2
1
0
8
ICC1 at 3.3 V  
7
6
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Data Rate (Mbps)  
Data Rate (Mbps)  
D001  
D001  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 2. ISO7340x Supply Current vs Data Rate  
(15-pF Load)  
Figure 3. ISO7340x Supply Current vs Data Rate  
(No Load)  
9
8
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
ICC1 at 3.3 V  
ICC1 at 5 V  
ICC2 at 3.3 V  
ICC2 at 5 V  
ICC1 at 3.3 V  
ICC1 at 5 V  
ICC2 at 3.3 V  
ICC2 at 5 V  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Data Rate (Mbps)  
Data Rate (Mbps)  
D001  
D001  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 4. ISO7341x Supply Current vs Data Rate  
(15-pF Load)  
Figure 5. ISO7341x Supply Current vs Data Rate  
(No Load)  
7
6
5
4
3
2
1
0
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
ICC1 at 3.3 V  
ICC1 at 5 V  
ICC2 at 3.3 V  
ICC2 at 5 V  
ICC1 at 3.3 V  
ICC1 at 5 V  
ICC2 at 3.3 V  
ICC2 at 5 V  
0.5  
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Data Rate (Mbps)  
Data Rate (Mbps)  
D001  
D002  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 6. ISO7342x Supply Current vs Data Rate  
(15-pF Load)  
Figure 7. ISO7342x Supply Current vs Data Rate  
(No Load)  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
6
5
4
3
2
1
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VCC at 3.3 V  
VCC at 5 V  
VCC at 3.3 V  
VCC at 5 V  
-15  
-10  
-5  
0
0
5
10  
15  
High-Level Output Current (mA)  
Low-Level Output Current (mA)  
D003  
D004  
TA = 25°C  
TA = 25°C  
Figure 8. High-Level Output Voltage vs High-level Output  
Current  
Figure 9. Low-Level Output Voltage vs Low-Level Output  
Current  
2.46  
42  
40  
38  
36  
34  
VCC Rising  
VCC Falling  
2.44  
2.42  
2.4  
2.38  
2.36  
2.34  
2.32  
32  
tPHL at 3.3 V  
tPHL at 5 V  
tPLH at 3.3 V  
tPLH at 5 V  
30  
28  
-40  
-50  
0
50  
100  
150  
-20  
0
20  
40  
60  
80  
100 120 140  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
D005  
D006  
Figure 10. Power Supply Undervoltage Threshold vs Free-  
Air Temperature  
Figure 11. Propagation Delay Time vs Free-Air Temperature  
29  
27  
25  
23  
21  
19  
140  
120  
100  
80  
60  
40  
17  
20  
tGS at 3.3 V  
Output Jitter at 3.3 V  
tGS at 5 V  
Output Jitter at 5 V  
15  
-40  
0
-5  
30  
65  
100  
135  
0
5
10  
15  
20 25  
Free-Air Temperature (èC)  
Data Rate (Mbps)  
D007  
D008  
TA = 25°C  
Figure 12. Input Glitch Suppression Time vs Free-Air  
Temperature  
Figure 13. Output Jitter vs Data Rate  
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
8 Parameter Measurement Information  
V
CCI  
V
I
V
/2  
V
/2  
CC  
CC  
IN  
OUT  
0 V  
t
t
PHL  
PLH  
Input  
Generator  
50 Ω  
See Note A  
V
O
V
V
OH  
C
L
I
90%  
10%  
V
50%  
50%  
O
See Note B  
V
OL  
t
t
f
r
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3  
ns, tf 3ns, ZO = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in  
actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 14. Switching Characteristics Test Circuit and Voltage Waveforms  
V
CC  
V
CC  
R = 1 kΩ  
L
±1%  
V
/2  
V
/2  
CC  
CC  
V
V
I
0 V  
IN  
OUT  
t
t
V
O
PLZ  
PZL  
0 V  
V
CC  
0.5 V  
V
50%  
EN  
O
C
L
See  
OL  
Input  
Generator  
See Note A  
Note B  
V
I
50 Ω  
V
CC  
V
V
/2  
V
/2  
O
CC  
IN  
CC  
OUT  
V
V
I
3 V  
0 V  
V
t
EN  
PZH  
C
OH  
L
See  
R = 1 kΩ  
±1%  
L
Input  
Generator  
See Note A  
50%  
0.5 V  
Note B  
O
V
I
50 Ω  
0 V  
t
PHZ  
A. The input pulse is supplied by a generator having the following characteristics: PRR 10 kHz, 50% duty cycle,  
tr 3 ns, tf 3 ns, ZO = 50 Ω.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 15. Enable/Disable Propagation Delay Time Test Circuit and Waveform  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Parameter Measurement Information (continued)  
V
I
V
V
CC  
CC  
2.7 V  
V
I
0 V  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = VCC (Devices with suffix F)  
tfs  
V
O
V
OH  
fs high  
50%  
V
O
C
fs low  
V
L
OL  
See Note A  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 16. Failsafe Delay Time Test Circuit and Voltage Waveforms  
VCCI  
VCCO  
C = 0.1 µF 1ꢀ  
C = 0.1 µF 1ꢀ  
Pass-fail criteria –  
output must remain  
stable.  
IN  
OUT  
S1  
+
CL  
See Note A  
VOH or VOL  
GNDI  
GNDO  
+
VCM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 17. Common-Mode Transient Immunity Test Circuit  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
9 Detailed Description  
9.1 Overview  
The isolator in Figure 18 is based on a capacitive isolation-barrier technique. The I/O channel of the device  
consists of two internal data channels, a high-frequency (HF) channel with a bandwidth from 100 kbps up to 25  
Mbps, and a low-frequency (LF) channel covering the range from 100 kbps down to DC.  
In principle, a single-ended input signal entering the HF channel is split into a differential signal through the  
inverter gate at the input. The following capacitor-resistor networks differentiate the signal into transient pulses,  
which then are converted into CMOS levels by a comparator. The transient pulses at the input of the comparator  
can be either above or below the common-mode voltage VREF depending on whether the input bit transitioned  
from 0 to 1 or 1 to 0. The comparator threshold is adjusted based on the expected bit transition. A decision logic  
(DCL) at the output of the HF channel comparator measures the durations between signal transients. If the  
duration between two consecutive transients exceeds a certain time limit, (as in the case of a low-frequency  
signal), the DCL forces the output-multiplexer to switch from the high-frequency to the low-frequency channel.  
Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these  
signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a  
sufficiently high frequency, capable of passing the capacitive barrier. As the input is modulated, a low-pass filter  
(LPF) is needed to remove the high-frequency carrier from the actual data before passing it on to the output  
multiplexer.  
9.2 Functional Block Diagram  
Lsolation .arrier  
OSC  
[ow t Crequency  
/hannel  
(5/ꢀꢀꢀ100 kbps)  
PWM  
VREF  
LPF  
0
1
ꢃolarity and Çhreshold  
{election  
OUT  
IN  
{
Iigh t Crequency  
/hannel  
DCL  
VREF  
(100 kbpsꢀꢀꢀ2ꢁ ꢂbps)  
ꢃolarity and Çhreshold {election  
Figure 18. Conceptual Block Diagram of a Digital Capacitive Isolator  
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
 
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
9.3 Feature Description  
The ISO734x family of devices are available in multiple channel configurations and default output state options to  
enable wide variety of application uses.  
PART NUMBER  
ISO7340C  
CHANNEL DIRECTION  
RATED ISOLATION  
MAXIMUM DATA RATE DEFAULT OUTPUT  
High  
Low  
4 Forward,  
0 Reverse  
ISO7340FC  
ISO7341C  
High  
3 Forward,  
1 Reverse  
(1)  
3000 VRMS / 4242 VPK  
25 Mbps  
Low  
ISO7341FC  
ISO7342C  
High  
Low  
2 Forward,  
2 Reverse  
ISO7342FC  
(1) See the Safety-Related Certifications section for detailed isolation ratings.  
9.3.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge, and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO734x  
family of devices incorporates many chip-level design improvements for overall system robustness. Some of  
these improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
9.4 Device Functional Modes  
Table 1 lists the functional modes for the ISO734x family of devices.  
Table 1. Function Table(1)  
OUTPUT  
(OUTx)  
INPUT  
(INx)  
OUTPUT ENABLE  
(ENx)  
VCCI  
VCCO  
ISO734xC  
ISO734xFC  
H
L
H or Open  
H
H
H or Open  
L
L
PU  
PU  
X
L
Z
Z
Open  
X
H or Open  
H(2)  
H(2)  
L(3)  
L(3)  
PD  
X
PU  
PU  
PD  
H or Open  
X
L
Z
Z
X
X
X
Undetermined  
Undetermined  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC 3 V); PD = Powered down (VCC 2.1 V); X = Irrelevant; H =  
High level; L = Low level ; Z = High Impedance  
(2) In fail-safe condition, output defaults to high level  
(3) In fail-safe condition, output defaults to low level  
9.4.1 Device I/O Schematics  
Input (Devices Without Suffix F)  
Input (Devices With Suffix F)  
V
V
CCI  
V
V
V
V
V
CCI  
CCI  
CCI  
CCI  
CCI  
CCI  
5 mA  
500 W  
500 W  
INx  
INx  
5 mA  
Output  
Enable  
V
CCO  
V
V
V
V
CCO  
CCO  
CCO  
CCO  
5 mA  
500 W  
40 W  
OUTx  
ENx  
Figure 19. Device I/O Schematics  
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
 
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The ISO734x family of devices use single-ended TTL-logic switching technology. The supply voltage range is  
from 3 V to 5.5 V for both supplies, VCC1 and VCC2. When designing with digital isolators, keep in mind that  
because of the single-ended design structure, digital isolators do not conform to any specific interface standard  
and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed  
between the data controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the  
interface type or standard.  
10.2 Typical Application  
10.2.1 Isolated Data Acquisition System for Process Control  
The ISO734x family of devices combined with Texas Instruments' precision analog-to-digital converter and mixed  
signal micro-controller can create an advanced isolated data acquisition system as shown in Figure 20.  
ISO-BARRIER  
5V  
ISO  
5V  
ISO  
5VISO  
3.3 V  
3.3 V  
0.1 F  
0.1 F  
0.1 F  
16  
10  
1
22  
1
V
V
CC1  
CC2  
2
7
0.1 F  
0.1 F  
AVDD  
AIN1+  
DVDD  
EN2  
EN1  
INA  
11  
DV  
8
14  
3
11  
12  
14  
13  
cc  
5
A0  
OUTA  
OUTB  
OUTC  
IND  
P3.0  
P3.1  
CLK  
XOUT  
RTD  
12  
7
13  
4
ISO7341  
AIN1œ  
A1  
INB  
27  
12  
5
6
MSP430  
F2132  
SCLK  
INC  
XIN  
P3.7  
P3.6  
P3.5  
18  
17  
28  
11  
6
18  
17  
16  
Bridge  
AIN2+  
DOUT  
OUTD  
GND1  
SOMI  
9,15  
2,8  
ADS1234  
GND2  
5V  
ISO  
5V  
ISO  
AIN2œ  
3.3 V  
15  
20  
19  
P3.4  
REF+  
DV  
4
ss  
16  
10  
1
13  
14  
V
V
CC2  
CC1  
NC  
0.1 F  
AIN3+  
REFœ  
7
Thermo  
couple  
0.1 F  
0.1 F  
EN  
AIN3œ  
23  
24  
25  
26  
14  
3
GAIN0  
GAIN1  
SPEED  
PWDN  
OUTA  
OUTB  
OUTC  
OUTD  
GND2  
INA  
13  
4
ISO7340  
INB  
16  
15  
AIN4+  
12  
5
INC  
IND  
Current  
shunt  
11  
6
AIN4œ  
9,15  
2,8  
AGND DGND  
21  
GND1  
2
Figure 20. Isolated Data-Acquisition System for Process Control  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
Typical Application (continued)  
10.2.1.1 Design Requirements  
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,  
the ISO734x family of devices only requires two external bypass capacitors to operate.  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Typical Supply Current Equations  
For the equations in this section, the following is true:  
ICC1 and ICC2 are typical supply currents measured in mA  
f is data rate measured in Mbps  
CL is the capacitive load measured in pF  
10.2.1.2.1.1 ISO7340x  
At VCC1 = VCC2 = 5 V:  
ICC1 = 0.54366 + (0.0873 × f)  
(1)  
(2)  
ICC2 = 2.74567 + (0.08433 × f) + (0.01 × f × CL)  
At VCC1 = VCC2 = 3.3 V:  
ICC1 = 0.3437 + (0.04922 × f)  
(3)  
(4)  
ICC2 = 2.1068 + (0.04374 × f) + (0.007045 × f × CL)  
10.2.1.2.1.2 ISO7341x  
At VCC1 = VCC2 = 5 V:  
ICC1 = 1.7403 + (0.1006 × f) + (0.001711 × f × CL)  
ICC2 = 2.502 + (0.09629 × f) + (0.00687 × f × CL)  
(5)  
(6)  
At VCC1 = VCC2 = 3.3 V:  
ICC1 = 1.2915 + (0.046 × f) + (0.00185 × f × CL)  
ICC2 = 1.8833 + (0.0566 × f) + (0.004514 × f × CL)  
(7)  
(8)  
10.2.1.2.1.3 ISO7342x  
At VCC1 = VCC2 = 5 V:  
ICC1, ICC2 = 2.1254 + (0.08694 × f) + (0.004868 × f × CL)  
(9)  
At VCC1 = VCC2 = 3.3 V:  
ICC1, ICC2 = 1.5912 + (0.0410 × f) + (0.003785 × f × CL)  
(10)  
2 mm max  
2 mm max  
2 mm max  
2 mm max  
from V  
CC1  
from V  
CC2  
from V  
CC1  
from V  
CC2  
ISO7340  
ISO7341  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
V
V
CC2  
CC1  
V
1
2
3
4
16  
1
2
3
4
16  
CC2  
V
CC1  
GND1  
GND2  
GND1  
15  
14  
GND2  
15  
14  
INA  
INB  
OUTA  
OUTB  
OUTC  
INA  
INB  
INC  
IND  
OUTA  
13  
13  
OUTB  
OUTC  
OUTD  
INC  
12  
11  
10  
9
5
6
7
8
12  
11  
10  
9
5
6
7
8
OUTD  
IND  
NC  
EN2  
EN1  
EN  
GND1  
GND2  
GND1  
GND2  
Figure 21. Typical ISO7340x Circuit Hook-up  
Figure 22. Typical ISO7341x Circuit Hook-up  
Copyright © 2014–2017, Texas Instruments Incorporated  
23  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Typical Application (continued)  
2 mm max  
from V  
2 mm max  
from V  
CC1  
CC2  
ISO7342  
0.1 µF  
0.1 µF  
V
V
CC2  
CC1  
1
2
3
4
16  
GND1  
GND2  
15  
14  
INA  
OUTA  
OUTB  
INC  
13  
INB  
OUTC  
12  
11  
10  
9
5
6
7
8
OUTD  
IND  
EN2  
EN1  
GND1  
GND2  
Figure 23. Typical ISO7342x Circuit Hook-up  
10.2.1.3 Application Curves  
The typical eye diagrams of the ISO734x family of devices indicate low jitter and a wide open eye at the  
maximum data rate of 25 Mbps.  
Figure 24. Eye Diagram at 25 Mbps, 5 V and 25°C  
Figure 25. Eye Diagram at 25 Mbps, 3.3 V and 25°C  
24  
Copyright © 2014–2017, Texas Instruments Incorporated  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
Typical Application (continued)  
10.2.2 Typical Application for Module With 16 Inputs  
The ISO7341x device and several other components from Texas Instruments can be used to create an isolated  
serial peripheral interface (SPI) for input module with 16 inputs.  
V
S
0.1 F  
3.3 V  
2
MBR0520L  
MBR0520L  
1:1.33  
3.3VISO  
3
1
4
3
1
2
V
CC  
D2  
D1  
IN  
OUT  
GND  
TLV70733  
SN6501  
10 F 0.1 F  
10 F  
EN  
2
4
6
GND  
4, 5  
V
V
OUT  
IN  
10 F  
1 F  
22 F  
REF5025  
GND  
ISO-BARRIER  
0.1 F  
0.1 F  
0.1 F  
0.1 F  
1
16  
4.7 kꢁ  
4.7 kꢁ  
V
V
CC2  
CC1  
2
3
2
28  
32  
31  
7
10  
EN1  
INA  
EN2  
DV  
CC  
AINP MXO VBD VA REFP  
6
3
4
5
6
14  
13  
12  
11  
23  
24  
25  
26  
20  
OUTA  
OUTB  
OUTC  
CS  
CH0  
P1.4  
5
6
ISO7341  
7
MSP430  
G2132  
(14-PW)  
XOUT  
XIN  
INB  
SCLK  
SDI  
SCLK  
16 Analog  
Inputs  
ADS7953  
8
INC  
SDO  
9
5
OUTD  
IND  
SDO  
CH15  
SDI  
DVss  
4
BDGND AGND  
27 1, 22  
REFM  
30  
GND1  
2, 8  
GND2  
9, 15  
Figure 26. Isolated SPI for an Analog Input Module With 16 Inputs  
10.2.2.1 Design Requirements  
Refer to Isolated Data Acquisition System for Process Control for the design requirements.  
10.2.2.2 Detailed Design Procedure  
Refer to Isolated Data Acquisition System for Process Control for the detailed design procedures.  
10.2.2.3 Application Curves  
Refer to Isolated Data Acquisition System for Process Control for the application curves.  
Copyright © 2014–2017, Texas Instruments Incorporated  
25  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Typical Application (continued)  
10.2.3 Typical Application for RS-232 Interface  
Typical isolated RS-232 interface implementation is shown in Figure 27.  
V
IN  
0.1 F  
3.3 V  
2
MBR0520L  
MBR0520L  
1:2.1  
5V  
ISO  
3
1
1
5
V
CC  
D2  
D1  
IN  
OUT  
BP  
LP2985-50  
SN6501  
10 F 0.1 F  
3.3 F  
3
4
ON  
GND  
GND  
4, 5  
2
10 nF  
10 F  
0.1 F  
ISO-BARRIER  
0.1 F  
0.1 F  
16  
V
1 F  
1 F  
0.1 F  
CC  
2
1
6
V
V
S-  
S+  
1
16  
4
4.7 k  
4.7 kꢀ  
C1+  
C2+  
V
V
CC2  
CC1  
TRS232  
2
1 F  
1 F  
7
10  
14  
12  
13  
11  
3
5
C1-  
EN1  
EN2  
C2-  
T1OUT  
R1IN  
DV  
CC  
15  
16  
12  
11  
3
5
4
6
11  
12  
10  
9
14  
13  
7
INA  
OUTA  
INC  
T1IN  
TxD  
RxD  
RST  
CST  
UCA0TXD  
UCA0RXD  
P3.1  
5
6
ISO7342  
XOUT  
XIN  
OUTC  
INB  
R1OUT  
T2IN  
MSP430  
F2132  
OUTB  
T2OUT  
R2IN  
8
OUTD  
IND  
R2OUT  
P3.0  
DV  
SS  
GND  
15  
GND1  
2, 8  
GND2  
4
9, 15  
ISOGND  
Figure 27. Isolated RS-232 Interface  
10.2.3.1 Design Requirements  
Refer to Isolated Data Acquisition System for Process Control for the design requirements.  
10.2.3.2 Detailed Design Procedure  
Refer to Isolated Data Acquisition System for Process Control for the detailed design procedures.  
10.2.3.3 Application Curves  
Refer to Isolated Data Acquisition System for Process Control for the application curves.  
11 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended  
at input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as  
possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501. For  
such applications, detailed power supply design and transformer selection recommendations are available in  
SN6501 Transformer Driver for Isolated Power Supplies.  
26  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
12 Layout  
12.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 28). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
For detailed layout recommendations, see the Digital Isolator Design Guide.  
12.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and the self-extinguishing flammability-characteristics.  
12.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Yeep this  
FR-4  
0 ~ 4.5  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
r
Power plane  
Low-speed traces  
Figure 28. Recommended Layer Stack  
版权 © 2014–2017, Texas Instruments Incorporated  
27  
 
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
请参阅如下相关文档:  
隔离相关术语  
数字隔离器设计指南  
SN6501-Q1 用于隔离电源的变压器驱动器》  
13.2 相关链接  
下面的表格列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的  
快速链接。  
2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
ISO7340C  
ISO7340FC  
ISO7341C  
ISO7341FC  
ISO7342C  
ISO7342FC  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可收到任意产  
品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
13.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
28  
版权 © 2014–2017, Texas Instruments Incorporated  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
14 机械、封装和可订购信息  
以下页中包括机械封装、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据发生变化时,  
我们可能不会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
版权 © 2014–2017, Texas Instruments Incorporated  
29  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
TYP  
9.97  
SEATING PLANE  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
30  
版权 © 2014–2017, Texas Instruments Incorporated  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
www.ti.com.cn  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
16X (1.65)  
16X (0.6)  
SEE  
DETAILS  
SEE  
DETAILS  
1
1
16  
16  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
R0.05 TYP  
14X (1.27)  
9
9
8
8
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
版权 © 2014–2017, Texas Instruments Incorporated  
31  
ISO7340C, ISO7340FC, ISO7341C, ISO7341FC, ISO7342C, ISO7342FC  
ZHCSCW1G SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (0.6)  
16X (2)  
1
1
16  
16  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
R0.05 TYP  
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
32  
版权 © 2014–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7340CDW  
ISO7340CDWR  
ISO7340FCDW  
ISO7340FCDWR  
ISO7341CDW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ISO7340C  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ISO7340C  
ISO7340FC  
ISO7340FC  
ISO7341C  
ISO7341C  
ISO7341FC  
ISO7341FC  
ISO7342C  
ISO7342C  
ISO7342FC  
ISO7342FC  
ISO7341CDWR  
ISO7341FCDW  
ISO7341FCDWR  
ISO7342CDW  
ISO7342CDWR  
ISO7342FCDW  
ISO7342FCDWR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7340CDWR  
ISO7340FCDWR  
ISO7341CDWR  
ISO7341FCDWR  
ISO7342CDWR  
ISO7342FCDWR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
16  
16  
2000  
2000  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7340CDWR  
ISO7340FCDWR  
ISO7341CDWR  
ISO7341FCDWR  
ISO7342CDWR  
ISO7342FCDWR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
16  
16  
2000  
2000  
2000  
2000  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO7340CDW  
ISO7340FCDW  
ISO7341CDW  
ISO7341FCDW  
ISO7342CDW  
ISO7342FCDW  
DW  
DW  
DW  
DW  
DW  
DW  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
16  
16  
16  
16  
16  
16  
40  
40  
40  
40  
40  
40  
506.98  
506.98  
506.98  
506.98  
506.98  
506.98  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
4826  
4826  
4826  
4826  
4826  
4826  
6.6  
6.6  
6.6  
6.6  
6.6  
6.6  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY