ISO7710-Q1 [TI]

EMC 性能优异的汽车类单通道、增强型数字隔离器;
ISO7710-Q1
型号: ISO7710-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

EMC 性能优异的汽车类单通道、增强型数字隔离器

文件: 总32页 (文件大小:1613K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ISO7710-Q1  
ZHCSG31 MARCH 2017  
EMC 性能优异的 ISO7710-Q1 高速单通道增强型数字隔离器  
1 特性  
3 说明  
1
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列结果:  
ISO7710-Q1 器件是一款高性能单通道数字隔离器,可  
提供符合 UL 1577 5000VRMSDW 封装)和  
3000VRMSD 封装)隔离额定值。此器件还通过了  
VDETUVCSA CQC 认证。  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
器件 HBM ESD 分类等级 3A  
器件 CDM ESD 分类等级 C6  
在隔离互补金属氧化物半导体 (CMOS) 或者低电压互  
补金属氧化物半导体 (LVCMOS) 数字 I/O 的同  
时,ISO7710-Q1 器件还可提供高电磁抗扰度和低辐  
射,同时具备低功耗特性。隔离通道具有逻辑输入和输  
出缓冲器,二者通过二氧化硅 (SiO2) 绝缘栅相隔离。  
如果输入功率或信号出现损失,不带后缀 F 的器件默  
认输出高电平,带后缀 F 的器件默认输出低电平。更  
多详细信息,请参见。  
信号传输速率:高达 100Mbps  
宽电源电压范围:2.25V 5.5V  
2.25V 5.5V 电平转换  
默认输出高电平 低电平 选项  
低功耗,  
1Mbps 时的电流典型值为 1.7mA  
低传播延迟:典型值为 11ns  
(由 5V 电源供电)  
与隔离式电源结合使用时,该器件有助于防止数据总线  
或者其他电路中的噪声电流进入本地接地,进而干扰或  
损坏敏感电路。凭借创新型芯片设计和布线技  
术,ISO7710-Q1 器件的电磁兼容性得到了显著增强,  
可缓解系统级 ESDEFT 和浪涌问题并符合辐射标  
准。ISO7710-Q1 器件可提供 16 引脚 SOIC 宽体  
(DW) 8 引脚 SOIC 窄体 (D) 封装。  
CMTI±100kV/μs(典型值)  
优异的电磁兼容性 (EMC)  
系统级 ESDEFT 和浪涌抗扰性  
低辐射  
隔离栅寿命:> 40 年  
宽体小外形尺寸集成电路 (SOIC) (DW-16) 和窄体  
小外形尺寸集成电路 (SOIC) (D-8) 封装选项  
器件信息(1)  
安全及管理批准:  
器件型号  
ISO7710-Q1  
封装  
SOIC (D)  
SOIC (DW)  
封装尺寸(标称值)  
4.90mm x 3.91mm  
10.30mm × 7.50mm  
VDE 增强型隔离,符合 DIN V VDE  
V 0884-10 (VDE V 0884-10):2006-12 标准  
UL 1577 组件认证计划  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
CSA 组件验收通知  
5AIEC 60950-1 IEC 60601-1 终端设备标  
简化原理图  
V
V
CC2  
符合 GB4943.1-2011 CQC 认证  
CC1  
Isolation  
Capacitor  
符合 EN 60950-1 EN 61010-1 TUV 认证  
完成 DW-16 封装的 VDEULCSA TUV  
认证;已规划其他所有认证  
IN  
OUT  
2 应用  
GND1  
GND2  
Copyright © 2016, Texas Instruments Incorporated  
混合动力电动汽车  
电机控制  
电源  
光伏逆变器  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEU2  
 
 
 
ISO7710-Q1  
ZHCSG31 MARCH 2017  
www.ti.com.cn  
目录  
6.19 Typical Characteristics.......................................... 13  
Parameter Measurement Information ................ 14  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 15  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 18  
9.1 Application Information............................................ 18  
9.2 Typical Application .................................................. 18  
1
2
3
4
5
6
特性.......................................................................... 1  
7
8
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Power Ratings........................................................... 5  
6.6 Insulation Specifications .......................................... 6  
6.7 Safety-Related Certifications..................................... 7  
6.8 Safety Limiting Values .............................................. 7  
6.9 Electrical Characteristics—5-V Supply ..................... 8  
6.10 Supply Current Characteristics—5-V Supply.......... 8  
6.11 Electrical Characteristics—3.3-V Supply ................ 9  
6.12 Supply Current Characteristics—3.3-V Supply....... 9  
6.13 Electrical Characteristics—2.5-V Supply .............. 10  
6.14 Supply Current Characteristics—2.5-V Supply..... 10  
6.15 Switching Characteristics—5-V Supply................. 11  
6.16 Switching Characteristics—3.3-V Supply.............. 11  
6.17 Switching Characteristics—2.5-V Supply.............. 11  
6.18 Insulation Characteristics Curves ......................... 12  
9
10 Power Supply Recommendations ..................... 20  
11 Layout................................................................... 20  
11.1 Layout Guidelines ................................................. 20  
11.2 Layout Example .................................................... 20  
12 器件和文档支持 ..................................................... 21  
12.1 文档支持................................................................ 21  
12.2 相关链接................................................................ 21  
12.3 接收文档更新通知 ................................................. 21  
12.4 社区资源................................................................ 21  
12.5 ....................................................................... 21  
12.6 静电放电警告......................................................... 21  
12.7 术语表 ................................................................... 21  
13 机械、封装和可订购信息....................................... 21  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2017 3 月  
*
初始发行版。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
ISO7710-Q1  
www.ti.com.cn  
ZHCSG31 MARCH 2017  
5 Pin Configuration and Functions  
DW Package  
16-Pin SOIC  
Top View  
D Package  
8-Pin SOIC  
Top View  
GND1  
NC  
1
2
3
4
5
6
7
8
16 GND2  
15 NC  
1
2
3
4
8
7
6
V
V
CC2  
CC1  
IN  
NC  
14  
V
V
CC2  
CC1  
IN  
OUT  
V
CC1  
13 OUT  
12 NC  
11 NC  
10 NC  
9 GND2  
GND1  
5 GND2  
NC  
NC  
GND1  
NC  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
DW  
D
1, 3  
8
VCC1  
VCC2  
GND1  
GND2  
IN  
3
14  
I
Power supply, VCC1  
Power supply, VCC2  
Ground connection for VCC1  
Ground connection for VCC2  
Input channel  
1, 7  
9, 16  
4
4
5
2
OUT  
13  
6
O
Output channel  
2, 5, 6, 8, 10 ,11,  
12, 15  
NC  
7
Not connect pin; it has no internal connection  
Copyright © 2017, Texas Instruments Incorporated  
3
ISO7710-Q1  
ZHCSG31 MARCH 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)  
See  
MIN  
–0.5  
–0.5  
–15  
MAX  
UNIT  
V
VCC1, VCC2  
Supply voltage(2)  
Voltage at IN, OUT  
Output Current  
6
VCC + 0.5(3)  
15  
V
V
IO  
mA  
°C  
TJ  
Tstg  
Junction temperature  
Storage temperature  
150  
–65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
±6000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
5.5  
UNIT  
V
VCC1, VCC2  
VCC(UVLO+)  
VCC(UVLO-)  
VHYS(UVLO)  
Supply voltage  
2.25  
UVLO threshold when supply voltage is rising  
UVLO threshold when supply voltage is falling  
Supply voltage UVLO hysteresis  
2
1.8  
2.25  
V
1.7  
100  
–4  
V
200  
mV  
VCC2 = 5 V  
IOH  
High-level output current  
Low-level output current  
VCC2 = 3.3 V  
VCC2 = 2.5 V  
VCC2 = 5 V  
–2  
mA  
mA  
–1  
4
IOL  
VCC2 = 3.3 V  
VCC2 = 2.5 V  
2
1
VIH  
VIL  
DR  
TA  
High-level input voltage  
Low-level input voltage  
Signaling rate  
0.7 × VCC1  
VCC1  
V
V
0
0
0.3 × VCC1  
100  
Mbps  
°C  
Ambient temperature  
–40  
25  
125  
4
Copyright © 2017, Texas Instruments Incorporated  
ISO7710-Q1  
www.ti.com.cn  
ZHCSG31 MARCH 2017  
6.4 Thermal Information  
ISO7710-Q1  
DW (SOIC)  
THERMAL METRIC(1)  
D (SOIC)  
(8-Pin)  
146.1  
63.1  
UNIT  
(16-Pin)  
94.4  
57.3  
57.1  
40.0  
56.8  
n/a  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
80.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
9.6  
ψJB  
79.0  
RθJC(bottom) Junction-to-case(bottom) thermal resistance  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50 MHz 50% duty cycle square wave  
PD  
Maximum power dissipation  
50  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50 MHz 50% duty cycle square wave  
PD1  
PD2  
Maximum power dissipation by side-1  
Maximum power dissipation by side-2  
12.5  
37.5  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50 MHz 50% duty cycle square wave  
Copyright © 2017, Texas Instruments Incorporated  
5
 
ISO7710-Q1  
ZHCSG31 MARCH 2017  
www.ti.com.cn  
UNIT  
6.6 Insulation Specifications  
VALUE  
DW-16  
PARAMETER  
TEST CONDITIONS  
D-8  
(1)  
CLR  
CPG  
External clearance  
External creepage  
Shortest terminal-to-terminal distance through air  
8
4
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
(1)  
8
4
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A  
According to IEC 60664-1  
21  
>600  
I
21  
>600  
I
μm  
V
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
I–IV  
I–IV  
I–IV  
I–III  
I–IV  
I–III  
n/a  
n/a  
Overvoltage category per IEC 60664-1  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12(2)  
Maximum repetitive peak isolation  
voltage  
VIORM  
AC voltage (bipolar)  
1414  
637  
VPK  
AC voltage; Time dependent dielectric breakdown  
(TDDB) test  
1000  
1414  
450  
637  
VRMS  
VDC  
VIOWM  
Maximum working isolation voltage  
DC voltage  
VTEST = VIOTM  
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
t = 60 s (qualification)  
t= 1 s (100% production)  
8000  
4242  
VPK  
VPK  
Test method per IEC 60065, 1.2/50 µs waveform,  
VTEST = 1.6 × VIOSM (qualification)  
VIOSM  
8000  
5  
5000  
5  
Method a, After Input/Output safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a, After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM, tm = 10 s  
5  
5  
qpd  
Apparent charge(4)  
pC  
Method b1; At routine test (100% production) and  
preconditioning (type test)  
5  
5  
Vini = VIOTM, tini = 1 s; Vpd(m) = 1.875 × VIORM, tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5) VIO = 0.4 × sin (2πft), f = 1 MHz  
~0.4  
>1012  
>1011  
>109  
2
~0.4  
>1012  
>1011  
>109  
2
pF  
VIO = 500 V, TA = 25°C  
Isolation resistance(5)  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
55/125/21 55/125/21  
UL 1577  
VTEST = VISO, t = 60 s (qualification);  
VTEST = 1.2 × VISO, t = 1 s (100% production)  
VISO  
Withstanding isolation voltage  
5000  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device.  
6
Copyright © 2017, Texas Instruments Incorporated  
ISO7710-Q1  
www.ti.com.cn  
ZHCSG31 MARCH 2017  
6.7 Safety-Related Certifications  
VDE, CSA, UL and TUV certifications for DW-16 package are complete; All other certifications are planned.  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to EN  
61010-1:2010 (3rd Ed)  
and EN 60950-  
1:2006/A11:2009/A1:2010/  
A12:2011/A2:2013  
Certified according to  
DIN V VDE V 0884-10  
(VDE V 0884-10):2006-  
12  
Certified under CSA  
Component Acceptance  
Notice 5A, IEC 60950-1,  
and IEC 60601-1  
Certified according to UL  
1577 Component  
Recognition Program  
Plan to certify according to  
GB4943.1-2011  
5000 VRMS (DW-16) and  
3000 VRMS (D-8)  
Reinforced insulation per  
CSA 60950-1-07+A1+A2  
and IEC 60950-1 2nd Ed.,  
800 VRMS (DW-16) and 400  
VRMS (D-8) max working  
voltage (pollution degree 2,  
material group I);  
2 MOPP (Means of Patient  
Protection) per CSA 60601-  
1:14 and IEC 60601-1 Ed.  
3.1, 250 VRMS (DW-16) max  
working voltage  
Reinforced insulation per  
EN 61010-1:2010 (3rd Ed)  
up to working voltage of  
600 VRMS (DW-16) and  
300 VRMS (D-8)  
5000 VRMS (DW-16) and  
3000 VRMS (D-8)  
Reinforced insulation per  
EN 60950-  
1:2006/A11:2009/A1:2010/  
A12:2011/A2:2013 up to  
working voltage of 800  
VRMS (DW-16) and 400  
VRMS (D-8)  
Maximum transient  
isolation voltage, 8000  
VPK (DW-16, Reinforced)  
and 4242 VPK (D-8);  
Maximum repetitive peak  
isolation voltage, 1414  
VPK (DW-16, Reinforced)  
and 637 VPK (D-8);  
Maximum surge isolation  
voltage, 8000 VPK (DW-  
16, Reinforced) and  
DW-16: Reinforced  
Insulation, Altitude 5000  
m, Tropical Climate, 400  
VRMS maximum working  
voltage;  
D-8: Basic Insulation,  
Altitude 5000 m, Tropical  
Climate, 250 VRMS  
DW-16: Single  
protection, 5000 VRMS  
D-8: Single protection,  
3000 VRMS  
;
maximum working voltage  
5000 VPK (D-8)  
Certificate number:  
40040142  
Master contract number:  
220991  
File number: E181974  
Certification Planned  
Client ID number: 77311  
6.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of  
the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
DW-16 Package  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
R
R
R
θJA = 94.4 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 1  
θJA = 94.4 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 1  
θJA = 94.4 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C,  
241  
Safety input, output, or  
supply current  
368  
mA  
IS  
482  
see Figure 1  
Safety input, output, or  
total power  
PS  
TS  
RθJA = 94.4 °C/W, TJ = 150°C, TA = 25°C, see Figure 2  
1324 mW  
Maximum safety  
temperature  
150  
°C  
D-8 Package  
R
θJA = 146.1 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 3  
θJA = 146.1 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C,  
156  
238  
311  
Safety input, output, or  
supply current  
R
IS  
mA  
see Figure 3  
RθJA = 146.1 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 3  
Safety input, output, or  
total power  
PS  
TS  
RθJA = 146.1 °C/W, TJ = 150°C, TA = 25°C, see Figure 4  
856 mW  
150 °C  
Maximum safety  
temperature  
The maximum safety temperature is the maximum junction temperature specified for the device. The power  
dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines  
the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information table is that  
of a device installed on a High-K test board for leaded surface mount packages. The power is the recommended  
maximum input voltage times the current. The junction temperature is then the ambient temperature plus the  
power times the junction-to-air thermal resistance.  
Copyright © 2017, Texas Instruments Incorporated  
7
 
ISO7710-Q1  
ZHCSG31 MARCH 2017  
www.ti.com.cn  
6.9 Electrical Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
4.8  
MAX UNIT  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
Rising input threshold voltage  
Falling input threshold voltage  
Input threshold voltage hysteresis  
High-level input current  
IOH = –4 mA; see Figure 11  
VCC2 – 0.4  
V
IOL = 4 mA; see Figure 11  
0.2  
0.4  
V
V
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
0.6 x VCC1 0.7 x VCC1  
0.4 x VCC1  
0.3 x VCC1  
0.1 × VCC1  
V
0.2 × VCC1  
V
VIH = VCC1 at IN  
VIL = 0 V at IN  
10  
μA  
μA  
kV/μs  
pF  
IIL  
Low-level input current  
–10  
85  
CMTI  
CI  
Common-mode transient immunity VI = VCC1 or 0 V, VCM = 1200 V; see Figure 13  
Input Capacitance(1)  
VI = VCC/ 2 + 0.4×sin(2πft), f = 1 MHz, VCC = 5 V  
100  
2
(1) Measured from input pin to ground.  
6.10 Supply Current Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
0.5  
0.6  
1.6  
0.6  
1.1  
0.6  
1.1  
1.1  
1.4  
5.9  
0.8  
1
VI = VCC1 (ISO7710-Q1), VI = 0 V (ISO7710-Q1 with F  
suffix)  
ICC2  
Supply current - DC signal  
ICC1  
2.5  
1
VI = 0 V (ISO7710-Q1), VI = VCC1 (ISO7710-Q1 with F  
suffix)  
ICC2  
ICC1  
1.5  
mA  
1.1  
1 Mbps  
ICC2  
ICC1  
1.6  
1.6  
2
All channels switching with square  
10 Mbps  
Supply current - AC signal  
wave clock input; CL = 15 pF  
ICC2  
ICC1  
100 Mbps  
ICC2  
7
8
Copyright © 2017, Texas Instruments Incorporated  
ISO7710-Q1  
www.ti.com.cn  
ZHCSG31 MARCH 2017  
6.11 Electrical Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3.2  
MAX UNIT  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
IOH = –2 mA; see Figure 11  
VCC2 – 0.3  
V
IOL = 2 mA; see Figure 11  
0.1  
0.3  
V
V
VIT+(IN) Rising input voltage threshold  
0.6 x VCC1  
0.4 x VCC1  
0.2 × VCC1  
0.7 x VCC1  
VIT-(IN)  
VI(HYS)  
IIH  
Falling input voltage threshold  
Input threshold voltage hysteresis  
High-level input current  
0.3 x VCC1  
0.1 × VCC1  
V
V
VIH = VCC1 at IN  
VIL = 0 V at IN  
10  
μA  
μA  
kV/μs  
IIL  
Low-level input current  
–10  
85  
CMTI  
Common-mode transient immunity VI = VCC1 or 0 V, VCM = 1200 V; see Figure 13  
100  
6.12 Supply Current Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
0.5  
0.6  
1.6  
0.6  
1.1  
0.6  
1
0.8  
1
VI = VCC1 (ISO7710-Q1), VI = 0 V (ISO7710-Q1 with F  
suffix)  
ICC2  
Supply current - DC signal  
ICC1  
2.5  
1
VI = 0 V (ISO7710-Q1), VI = VCC1 (ISO7710-Q1 with F  
suffix)  
ICC2  
ICC1  
1.5  
mA  
1
1 Mbps  
ICC2  
ICC1  
1.6  
1.4  
1.8  
5.3  
All channels switching with square  
10 Mbps  
Supply current - AC signal  
wave clock input; CL = 15 pF  
ICC2  
1.1  
1.3  
4.3  
ICC1  
100 Mbps  
ICC2  
Copyright © 2017, Texas Instruments Incorporated  
9
ISO7710-Q1  
ZHCSG31 MARCH 2017  
www.ti.com.cn  
6.13 Electrical Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.45  
MAX UNIT  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
IOH = –1 mA; see Figure 11  
VCC2 – 0.2  
V
IOL = 1 mA; see Figure 11  
0.05  
0.2  
V
V
VIT+(IN) Rising input voltage threshold  
0.6 x VCC1  
0.4 x VCC1  
0.2 × VCC1  
0.7 x VCC1  
VIT-(IN)  
VI(HYS)  
IIH  
Falling input voltage threshold  
Input threshold voltage hysteresis  
High-level input current  
0.3 x VCC1  
0.1 × VCC1  
V
V
VIH = VCC1 at IN  
VIL = 0 V at IN  
10  
μA  
μA  
IIL  
Low-level input current  
–10  
85  
Common-mode transient  
immunity  
CMTI  
VI = VCC1 or 0 V, VCM = 1200 V; see Figure 13  
100  
kV/μs  
6.14 Supply Current Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
0.5  
0.6  
1.6  
0.6  
1.1  
0.6  
1.1  
0.9  
1.2  
3.4  
0.8  
1
VI = VCC1 (ISO7710-Q1), VI = 0 V (ISO7710-Q1 with F  
suffix)  
ICC2  
Supply current - DC signal  
ICC1  
2.5  
1
VI = 0 V (ISO7710-Q1), VI = VCC1 (ISO7710-Q1 with F  
suffix)  
ICC2  
ICC1  
1.5  
mA  
1
1 Mbps  
ICC2  
ICC1  
1.5  
1.4  
1.6  
4.4  
All channels switching with square  
10 Mbps  
Supply current - AC signal  
wave clock input; CL = 15 pF  
ICC2  
ICC1  
100 Mbps  
ICC2  
10  
Copyright © 2017, Texas Instruments Incorporated  
ISO7710-Q1  
www.ti.com.cn  
ZHCSG31 MARCH 2017  
6.15 Switching Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
Part-to-part skew time(2)  
Output signal rise time  
TEST CONDITIONS  
MIN  
TYP  
11  
MAX UNIT  
tPLH, tPHL  
6
16  
4.9  
4.5  
3.9  
3.9  
ns  
ns  
ns  
ns  
ns  
See Figure 11  
PWD  
tsk(pp)  
tr  
|
0.6  
1.8  
1.9  
See Figure 11  
tf  
Output signal fall time  
Measured from the time VCC1 goes below 1.7 V.  
See Figure 12  
tDO  
tie  
Default output delay time from input power loss  
Time interval error  
0.1  
1
0.3  
μs  
216 – 1 PRBS data at 100 Mbps  
ns  
(1) Also known as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.16 Switching Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
Part-to-part skew time(2)  
Output signal rise time  
TEST CONDITIONS  
MIN  
TYP  
11  
MAX UNIT  
tPLH, tPHL  
6
16  
5
ns  
ns  
ns  
ns  
ns  
See Figure 11  
PWD  
tsk(pp)  
tr  
|
0.1  
4.5  
3
0.7  
0.7  
See Figure 11  
tf  
Output signal fall time  
3
Measured from the time VCC1 goes below 1.7 V.  
See Figure 12  
tDO  
tie  
Default output delay time from input power loss  
Time interval error  
0.1  
1
0.3  
μs  
216 – 1 PRBS data at 100 Mbps  
ns  
(1) Also known as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.17 Switching Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
Part-to-part skew time(2)  
Output signal rise time  
TEST CONDITIONS  
MIN  
TYP  
12  
MAX  
18.5  
5.1  
UNIT  
ns  
tPLH, tPHL  
7.5  
See Figure 11  
PWD  
tsk(pp)  
tr  
|
0.2  
ns  
4.6  
ns  
1
1
3.5  
ns  
See Figure 11  
tf  
Output signal fall time  
3.5  
ns  
Measured from the time VCC1 goes below 1.7 V.  
See Figure 12  
tDO  
tie  
Default output delay time from input power loss  
Time interval error  
0.1  
1
0.3  
μs  
216 – 1 PRBS data at 100 Mbps  
ns  
(1) Also known as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2017, Texas Instruments Incorporated  
11  
ISO7710-Q1  
ZHCSG31 MARCH 2017  
www.ti.com.cn  
6.18 Insulation Characteristics Curves  
600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
500  
400  
300  
200  
100  
0
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D001  
D002  
Figure 1. Thermal Derating Curve for Limiting Current per  
VDE for DW-16 Package  
Figure 2. Thermal Derating Curve for Limiting Power per  
VDE for DW-16 Package  
350  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
300  
250  
200  
150  
100  
50  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
Ambient Temperature (èC)  
D003  
D004  
Figure 3. Thermal Derating Curve for Limiting Current per  
VDE for D-8 Package  
Figure 4. Thermal Derating Curve for Limiting Power per  
VDE for D-8 Package  
12  
Copyright © 2017, Texas Instruments Incorporated  
ISO7710-Q1  
www.ti.com.cn  
ZHCSG31 MARCH 2017  
6.19 Typical Characteristics  
7
2.5  
2
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
6
5
4
3
2
1
0
1.5  
1
0.5  
0
0
25  
50  
Data Rate (Mbps)  
75  
100  
0
25  
50  
Data Rate (Mbps)  
75  
100  
D005  
D006  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 5. ISO7710-Q1 Supply Current vs Data Rate  
(With 15 pF Load)  
Figure 6. ISO7710-Q1 Supply Current vs Data Rate  
(With No Load)  
6
5
4
3
2
1
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VCC at 2.5 V  
VCC at 3.3 V  
VCC at 5 V  
VCC at 2.5 V  
VCC at 3.3 V  
VCC at 5 V  
-15  
-10  
High-Level Output Current (mA)  
-5  
0
0
5 10  
Low-Level Output Current (mA)  
15  
D011  
D012  
TA = 25°C  
TA = 25°C  
Figure 7. High-Level Output Voltage vs High-level  
Output Current  
Figure 8. Low-Level Output Voltage vs Low-Level  
Output Current  
2.10  
14  
13  
12  
11  
10  
9
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
VCC1 Rising  
VCC1 Falling  
VCC2 Rising  
VCC2 Falling  
tPLH at 2.5 V  
tPHL at 2.5 V  
tPLH at 3.3 V  
tPHL at 3.3 V  
tPLH at 5 V  
tPHL at 5 V  
8
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
-55  
-25  
5
35  
65  
95  
125  
Free-Air Temperature (èC)  
Free Air Temperature (èC)  
D009  
D010  
Figure 9. Power Supply Undervoltage Threshold vs  
Free-Air Temperature  
Figure 10. Propagation Delay Time vs Free-Air Temperature  
Copyright © 2017, Texas Instruments Incorporated  
13  
ISO7710-Q1  
ZHCSG31 MARCH 2017  
www.ti.com.cn  
7 Parameter Measurement Information  
V
CC1  
V
50%  
I
50%  
IN  
OUT  
0 V  
t
t
PHL  
PLH  
Input Generator  
(See Note A)  
C
L
V
I
V
O
50  
V
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3  
ns, tf 3ns, ZO = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in  
actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 11. Switching Characteristics Test Circuit and Voltage Waveforms  
V
I
See Note B  
V
CC  
V
CC  
V
1.7 V  
I
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. Power Supply Ramp Rate = 10 mV/ns  
Figure 12. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CC1  
CC1  
C = 0.1 µF 1%  
C = 0.1 µF 1%  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
EN  
V
or V  
OH  
OL  
C
L
œ
See Note A  
GND1  
GND2  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 13. Common-Mode Transient Immunity Test Circuit  
14  
Copyright © 2017, Texas Instruments Incorporated  
ISO7710-Q1  
www.ti.com.cn  
ZHCSG31 MARCH 2017  
8 Detailed Description  
8.1 Overview  
The ISO7710-Q1 device has an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a  
silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to  
represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the  
signal after advanced signal conditioning and produces the output through a buffer stage. The device also  
incorporates advanced circuit techniques to maximize the CMTI performance and minimize the radiated  
emissions due the high frequency carrier and IO buffer switching. The conceptual block diagram of a digital  
capacitive isolator, Figure 14, shows a functional block diagram of a typical channel.  
8.2 Functional Block Diagram  
Transmitter  
Receiver  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
Copyright © 2017, Texas Instruments Incorporated  
Figure 14. Conceptual Block Diagram of a Digital Capacitive Isolator  
Figure 15 shows a conceptual detail of how the OOK scheme works.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
Figure 15. On-Off Keying (OOK) Based Modulation Scheme  
Copyright © 2017, Texas Instruments Incorporated  
15  
 
 
ISO7710-Q1  
ZHCSG31 MARCH 2017  
www.ti.com.cn  
8.3 Feature Description  
The ISO7710-Q1 device is available in two default output state options to enable a variety of application uses.  
Table 1 lists the device features.  
Table 1. Device Features  
MAXIMUM DATA  
RATE  
CHANNEL  
DIRECTION  
DEFAULT OUTPUT  
STATE  
PART NUMBER  
PACKAGE  
RATED ISOLATION(1)  
DW-16  
D-8  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
ISO7710-Q1  
100 Mbps  
100 Mbps  
1 Forward, 0 Reverse  
1 Forward, 0 Reverse  
High  
Low  
DW-16  
D-8  
ISO7710-Q1  
with F suffix  
(1) See the Safety-Related Certifications section for detailed isolation ratings.  
8.3.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO7710-  
Q1 device incorporates many chip-level design improvements for overall system robustness. Some of these  
improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
16  
Copyright © 2017, Texas Instruments Incorporated  
 
ISO7710-Q1  
www.ti.com.cn  
ZHCSG31 MARCH 2017  
8.4 Device Functional Modes  
Table 2 lists the functional modes of ISO7710-Q1 device.  
Table 2. Function Table(1)  
INPUT  
(IN)(2)  
OUTPUT  
(OUT)  
VCC1  
VCC2  
COMMENTS  
H
L
H
L
Normal Operation:  
A channel output assumes the logic state of its input.  
PU  
PU  
Default mode: When IN is open, the corresponding channel output goes to its  
default logic state. Default is High for ISO7710-Q1 and Low for ISO7710-Q1  
with F suffix.  
Open  
Default  
Default  
Default mode: When VCC1 is unpowered, a channel output assumes the logic  
state based on the selected default option. Default is High for ISO7710-Q1 and  
Low for ISO7710-Q1 with F suffix.  
When VCC1 transitions from unpowered to powered-up, a channel output  
assumes the logic state of its input.  
PD  
X
PU  
PD  
X
When VCC1 transitions from powered-up to unpowered, channel output  
assumes the selected default state.  
(3)  
When VCC2 is unpowered, a channel output is undetermined  
.
X
Undetermined  
When VCC2 transitions from unpowered to powered-up, a channel output  
assumes the logic state of its input  
(1) PU = Powered up (VCC 2.25 V); PD = Powered down (VCC 1.7 V); X = Irrelevant; H = High level; L = Low level  
(2) A strongly driven input signal can weakly power the floating VCC via an internal protection diode and cause undetermined output.  
(3) The outputs are in undetermined state when 1.7 V < VCC1, VCC2 < 2.25 V.  
8.4.1 Device I/O Schematics  
Input (Devices without F suffix)  
Input (Devices with F suffix)  
V
V
V
V
CC1  
V
V
V
CC1  
CC1  
CC1  
CC1  
CC1  
CC1  
1.5 M  
985 ꢀ  
985 ꢀ  
IN  
IN  
1.5 Mꢀ  
Output  
V
CC2  
~20 ꢀ  
OUT  
Figure 16. Device I/O Schematics  
Copyright © 2017, Texas Instruments Incorporated  
17  
 
ISO7710-Q1  
ZHCSG31 MARCH 2017  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ISO7710-Q1 device is a high-performance, single-channel digital isolator. The device uses single-ended  
CMOS-logic switching technology. The supply voltage range is from 2.25 V to 5.5 V for both supplies, VCC1 and  
VCC2. When designing with digital isolators, keep in mind that because of the single-ended design structure,  
digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended  
CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μC or  
UART), and a data converter or a line transceiver, regardless of the interface type or standard.  
9.2 Typical Application  
The ISO7710-Q1 device can be used with Texas Instruments' mixed signal microcontroller, CAN transceiver,  
transformer driver, and low-dropout voltage regulator to create an Isolated CAN Interface as shown below.  
VS  
10 F  
3.3 V  
2
MBR0520L  
Vcc  
1:1.33  
ISO 3.3V  
3
1
1
5
2
D2  
D1  
IN  
OUT  
TPS76333-Q1  
SN6501-Q1  
10 F  
0.1 F  
10 F  
3
EN  
GND  
MBR0520L  
GND  
GND  
4
5
ISO Barrier  
0.1 F  
5
4
GND2  
GND1  
IN  
3
0.1 F  
6
8
2
ISO7710-Q1  
OUT  
VCC  
RS  
8
10 (optional)  
10 (optional)  
1, 3  
4
1
VCC2  
VCC1  
R
CANH  
29, 57  
7
6
0.1 F  
0.1 F  
SN65HVD231Q  
V
DDIO  
26  
25  
D
CANL  
Vref  
CANRXA  
TMS320F28035PAGQ  
CANTXA  
0.1 F  
GND  
5
0.1 F  
SM712  
2
VCC1  
VCC2  
1, 3  
2
8
6
V
SS  
IN  
GND1  
OUT  
ISO7710-Q1  
6, 28  
GND2  
4
5
4.7 nF /  
2 kV  
Copyright © 2017, Texas Instruments Incorporated  
Figure 17. Isolated CAN Interface  
18  
Copyright © 2017, Texas Instruments Incorporated  
ISO7710-Q1  
www.ti.com.cn  
ZHCSG31 MARCH 2017  
Typical Application (continued)  
9.2.1 Design Requirements  
To design with this device, use the parameters listed in Table 3.  
Table 3. Design Parameters  
PARAMETER  
VALUE  
2.25 V to 5.5 V  
0.1 µF  
Supply voltage, VCC1 and VCC2  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which require components to improve performance, provide bias, or limit current, the  
ISO7710-Q1 device only requires two external bypass capacitors to operate.  
VCC1  
VCC2  
2 mm  
2 mm  
maximum  
from VCC1  
maximum  
from VCC2  
0.1 F  
0.1 F  
1
2
8
7
IN  
INPUT  
3
4
OUT 6  
5
OUTPUT  
GND2  
GND1  
Figure 18. Typical ISO7710-Q1 Circuit Hook-up  
9.2.3 Application Curve  
The following typical eye diagram of the ISO7710-Q1 device indicates low jitter and wide open eye at the  
maximum data rate of 100 Mbps.  
Time = 3.5 ns / div  
Figure 19. ISO7710-Q1 Eye Diagram at 100 Mbps PRBS, 5-V Supplies and 25°C  
Copyright © 2017, Texas Instruments Incorporated  
19  
 
ISO7710-Q1  
ZHCSG31 MARCH 2017  
www.ti.com.cn  
10 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended  
at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins  
as possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501-Q1.  
For such applications, detailed power supply design and transformer selection recommendations are available in  
SN6501-Q1 Transformer Driver for Isolated Power Supplies.  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 20). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
For detailed layout recommendations, refer to the Digital Isolator Design Guide.  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and the self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
0 ~ 4.5  
r
Power plane  
Low-speed traces  
Figure 20. Layout Example  
20  
版权 © 2017, Texas Instruments Incorporated  
 
ISO7710-Q1  
www.ti.com.cn  
ZHCSG31 MARCH 2017  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
数字隔离器设计指南  
《隔离相关术语》  
SN6501-Q1 用于隔离电源的变压器驱动器》  
SN65HVD231Q 汽车 3.3V CAN 收发器》  
TPS76333-Q1 低功耗 150mA 低压降线性稳压器》  
TMS320F28035PAGQ Piccolo™ 微控制器》  
12.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
Piccolo, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017, Texas Instruments Incorporated  
21  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7710FQDQ1  
ISO7710FQDRQ1  
ISO7710FQDWQ1  
ISO7710FQDWRQ1  
ISO7710QDQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
7710FQ  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
7710FQ  
DW  
DW  
D
16  
16  
8
ISO7710FQ  
ISO7710FQ  
7710Q  
ISO7710QDRQ1  
ISO7710QDWQ1  
ISO7710QDWRQ1  
D
8
7710Q  
DW  
DW  
16  
16  
ISO7710Q  
ISO7710Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DW 16  
7.5 x 10.3, 1.27 mm pitch  
SOIC - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224780/A  
www.ti.com  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
R0.05 TYP  
9
9
8
8
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
R0.05 TYP  
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

ISO7710D

EMC 性能优异的单通道、增强型数字隔离器 | D | 8 | -55 to 125
TI

ISO7710DR

EMC 性能优异的单通道、增强型数字隔离器 | D | 8 | -55 to 125
TI

ISO7710DW

EMC 性能优异的单通道、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7710DWR

EMC 性能优异的单通道、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7710FD

EMC 性能优异的单通道、增强型数字隔离器 | D | 8 | -55 to 125
TI

ISO7710FDR

EMC 性能优异的单通道、增强型数字隔离器 | D | 8 | -55 to 125
TI

ISO7710FDW

EMC 性能优异的单通道、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7710FDWR

EMC 性能优异的单通道、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7710FQDQ1

EMC 性能优异的汽车类单通道、增强型数字隔离器 | D | 8 | -40 to 125
TI

ISO7710FQDRQ1

EMC 性能优异的汽车类单通道、增强型数字隔离器 | D | 8 | -40 to 125
TI

ISO7710FQDWQ1

EMC 性能优异的汽车类单通道、增强型数字隔离器 | DW | 16 | -40 to 125
TI

ISO7710FQDWRQ1

EMC 性能优异的汽车类单通道、增强型数字隔离器 | DW | 16 | -40 to 125
TI