ISO7720FQDQ1 [TI]

EMC 性能优异的汽车类双通道、2/0、增强型数字隔离器 | D | 8 | -40 to 125;
ISO7720FQDQ1
型号: ISO7720FQDQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

EMC 性能优异的汽车类双通道、2/0、增强型数字隔离器 | D | 8 | -40 to 125

光电二极管 接口集成电路
文件: 总42页 (文件大小:2964K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
ISO772x-Q1 EMC 性能优异的高速、增强型双通道数字隔离器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列结果:  
– 器件温度等140°C +125°C 环境工作  
温度范围  
– 器HBM ESD 分类等3A  
– 器CDM ESD 分类等C6  
提供功能安全  
ISO772x-Q1 器件是一款高性能双通道数字隔离器可  
提供符合 UL 1577 标准的 5000VRMSDW 封装和  
3000VRMSD 封装隔离额定值。该系列包含的器件  
具有符合 VDECSATUV CQC 标准的增强绝缘  
等级。  
在隔离互补金属氧化物半导体 (CMOS) 或者低电压互  
补金属氧化物半导体 (LVCMOS) 数字 I/O 的同时,  
ISO772x-Q1 器件还可提供高电磁抗扰度和低辐射同  
时具备低功耗特性。每条隔离通道的逻辑输入和输出缓  
冲器均由双电容二氧化硅 (SiO2) 缘栅相隔离。  
ISO7720-Q1 器件具有两条同向通道ISO7721-Q1  
器件具有两条反向通道。如果输入功率或信号出现损  
不带后缀 F 的器件默认输出高电平带后缀 F 的  
器件默认输出低电平。有关更多详细信息请参阅器件  
功能模部分。  
– 可提供用于功能安全系统设计的文档:  
ISO7720-Q1ISO7721-Q1  
100Mbps 数据速率  
• 稳健可靠的隔离栅:  
1.5 kVRMS 工作电压下预计寿命超100 年  
– 隔离等级高5000VRMS  
– 浪涌能力高12.8kV  
CMTI 典型值±100kV/μs  
• 宽电源电压范围2.25V 5.5V  
2.25V 5.5V 电平转换  
• 默认输出高电(ISO772x) 低电(ISO772xF)  
选项  
• 低功耗1Mbps 时每通道的电流典型值1.7mA  
• 低传播延迟11ns典型值)  
• 优异的电磁兼容(EMC)  
这些器件与隔离式电源结合使用有助于防止 CAN 和  
LIN 等数据总线损坏敏感电路。凭借创新型芯片设计和  
布线技术ISO772x-Q1 器件的电磁兼容性得到了显著  
增强可缓解系统级 ESDEFT 和浪涌问题并符合辐  
射标准。ISO772x-Q1 系列器件可提供 16 引脚 SOIC  
(DW) 8 SOIC (D) 封装。  
– 系统ESDEFT 和浪涌抗扰性  
– 在整个隔离栅具±8kV IEC 61000-4-2 接触放  
电保护  
器件信息  
封装  
器件型(1)  
封装尺寸标称值)  
4.90 mm × 3.91 mm  
10.30mm × 7.50mm  
D (8)  
DW (16)  
ISO7720-Q1  
ISO7721-Q1  
– 低干(EMI)  
• 宽SOICDW-16和窄SOIC (D-8) 封装选项  
6.7  
(1) 要了解所有可用封装请参见数据表末尾的可订购产品附录。  
DIN VDE V 0884-11:2017-01  
UL 1577 组件认证计划  
VCCO  
VCCI  
IEC 60950-1IEC 62368-1IEC 61010-1、  
IEC 60601-1 GB 4943.1-2011 认证  
Series Isolation  
Capacitors  
INx  
OUTx  
2 应用  
混合动力、电动和动力总成系(EV/HEV)  
GNDI  
GNDO  
Copyright © 2016, Texas Instruments Incorporated  
电池管理系(BMS)  
车载充电器  
牵引逆变器  
直流/直流转换器  
逆变器和电机控制  
VCCI = 输入电源VCCO = 输出电源  
GNDI = 输入接地GNDO = 输出接地  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEU1  
 
 
 
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
Table of Contents  
7 Parameter Measurement Information..........................17  
8 Detailed Description......................................................18  
8.1 Overview...................................................................18  
8.2 Functional Block Diagram.........................................18  
8.3 Feature Description...................................................19  
8.4 Device Functional Modes..........................................20  
9 Application and Implementation..................................21  
9.1 Application Information............................................. 21  
9.2 Typical Application.................................................... 22  
10 Power Supply Recommendations..............................26  
11 Layout...........................................................................27  
11.1 Layout Guidelines................................................... 27  
11.2 Layout Example...................................................... 27  
12 Device and Documentation Support..........................28  
12.1 Device Support....................................................... 28  
12.2 Documentation Support.......................................... 28  
12.3 Related Links.......................................................... 28  
12.4 接收文档更新通知................................................... 28  
12.5 支持资源..................................................................28  
12.6 Trademarks.............................................................28  
12.7 静电放电警告.......................................................... 29  
12.8 术语表..................................................................... 29  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Power Ratings.............................................................6  
6.6 Insulation Specifications............................................. 7  
6.7 Safety-Related Certifications...................................... 8  
6.8 Safety Limiting Values.................................................9  
6.9 Electrical Characteristics5-V Supply..................... 10  
6.10 Supply Current Characteristics5-V Supply..........10  
6.11 Electrical Characteristics3.3-V Supply.................11  
6.12 Supply Current Characteristics3.3-V Supply....... 11  
6.13 Electrical Characteristics2.5-V Supply................ 12  
6.14 Supply Current Characteristics2.5-V Supply.......12  
6.15 Switching Characteristics5-V Supply...................13  
6.16 Switching Characteristics3.3-V Supply................13  
6.17 Switching Characteristics2.5-V Supply................13  
6.18 Insulation Characteristics Curves........................... 14  
6.19 Typical Characteristics............................................15  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (April 2020) to Revision B (October 2020)  
Page  
• 添加了“功能安全”要点....................................................................................................................................1  
Changes from Revision * (March 2016) to Revision A (April 2020)  
Page  
• 通篇进行了编辑性和修饰性更改.........................................................................................................................1  
• 将“隔离栅寿命>40 年”更改为“1.5kVRMS 工作电压下预计寿命超100 年”1 .............1  
• 在1 中添加了“隔离等级高达 5000VRMS....................................................................................................1  
• 在1 中添加了“浪涌能力高达 12.8kV.........................................................................................................1  
• 在1 中添加了“在整个隔离栅具有 ±8kV IEC 61000-4-2 接触放电保护”......................................................1  
• 更新了1 中与认证相关的要点VDE 标准名称从“DIN V VDE V 0884-10 (VDE V 0884-10):2006-12”  
更改为“DIN VDE V 0884-11:2017-01........................................................................................................... 1  
• 更新了2 列表..................................................................................................................................................1  
• 更新了3-1以便显示每个通道的两个串联隔离电容器而不是单个隔离电容器...........................................1  
Added "Contact discharge per IEC 61000-4-2" specification of ±8000 V in 6.2 table ...................................5  
Changed 'Signaling' rate to 'Data' rate and added table note to Data rate specification in 6.3 table ............5  
Changed VIORM Value for DW-16 package From: "1414 VPK" To: "2121 VPK" in 6.6 table ........................... 7  
Changed VIOWM value for DW-16 package From: "1000 VRMS" and "1414 VDC" To: "1500 VRMS" and "2121  
VDC" in 6.6 table ............................................................................................................................................7  
Added 'see 9-6" to TEST CONDITIONS of VIOWM specification ................................................................... 7  
Changed VIOTM TEST CONDITIONS for 100% production test From: "VTEST = VIOTM" To: "VTEST = 1.2 x  
VIOTM" in 6.6 table ......................................................................................................................................... 7  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSEU1  
2
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
Changed VIOSM TEST CONDITIONS From: "Test method per IEC 60065" To: "Test method per IEC 62368-1"  
in 6.6 table .....................................................................................................................................................7  
Changed qpd TEST CONDITIONS for method b1 test From: "Vini = VIOTM" To: "Vini = 1.2 x VIOTM" in 6.6  
table ...................................................................................................................................................................7  
Changed the climatic category for the D package from 5/125/21 to 55/125/21 .................................................7  
Updated certification information in 6.7 table ................................................................................................8  
Switched the line colors for VCC at 2.5 V and VCC at 3.3 V in the Low-Level Output Voltage vs Low-Level  
Output Current graph........................................................................................................................................15  
Deleted EN from the Common-Mode Transient Immunity Test Circuit figure................................................... 17  
Corrected ground symbols for "Input (Devices with F suffix)" in 8.4.1 ........................................................ 20  
Added 9.2.3.1 sub-section under 9.2.3 section ...................................................................................... 24  
Added 'How to use isolation to improve ESD, EFT and Surge immunity in industrial systems' application  
report to 12.2 section .................................................................................................................................. 28  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
GND1  
NC  
1
2
3
4
5
6
7
8
16 GND2  
15 NC  
GND1  
NC  
1
2
3
4
5
6
7
8
16 GND2  
15 NC  
14  
14  
V
V
V
V
CC1  
CC2  
CC1  
CC2  
INA  
INB  
13 OUTA  
12 OUTB  
11 NC  
10 NC  
9 GND2  
OUTA  
INB  
13 INA  
12 OUTB  
11 NC  
10 NC  
9 GND2  
NC  
NC  
GND1  
NC  
GND1  
NC  
5-1. ISO7720-Q1 DW Package 16-Pin SOIC Top 5-2. ISO7721-Q1 DW Package 16-Pin SOIC Top  
View View  
1
2
3
4
8
1
2
3
4
8
7
V
V
CC2  
V
V
CC2  
CC1  
CC1  
INA  
INB  
7 OUTA  
6 OUTB  
5 GND2  
OUTA  
INB  
INA  
6 OUTB  
5 GND2  
GND1  
GND1  
5-3. ISO7720-Q1 D Package 8-Pin SOIC Top View 5-4. ISO7721-Q1 D Package 8-Pin SOIC Top View  
5-1. Pin Functions  
PIN  
DW PACKAGE  
D PACKAGE  
I/O  
DESCRIPTION  
NAME  
GND1  
GND2  
ISO7720-Q1  
ISO7721-Q1  
ISO7720-Q1 ISO7721-Q1  
1, 7  
9
1, 7  
9
4
4
Ground connection for VCC1  
Ground connection for VCC2  
5
5
16  
4
16  
13  
5
INA  
INB  
2
3
7
3
I
I
Input, channel A  
Input, channel B  
5
2, 6, 8, 10, 11, 2, 6, 8, 10, 11,  
NC  
Not connected  
15  
13  
12  
3
15  
OUTA  
OUTB  
VCC1  
4
7
6
1
8
2
6
1
8
O
O
Output, channel A  
Output, channel B  
Power supply, VCC1  
Power supply, VCC2  
12  
3
VCC2  
14  
14  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSEU1  
4
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
See (1)  
.
MIN  
0.5  
0.5  
15  
MAX  
UNIT  
V
VCC1, VCC2  
Supply voltage(2)  
6
VCC + 0.5(3)  
15  
V
Voltage at INx, OUTx  
Output current  
V
IO  
mA  
°C  
TJ  
Tstg  
Junction temperature  
Storage temperature  
150  
150  
°C  
65  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
±6000  
±1500  
±8000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge Charged-device model (CDM), per AEC Q100-011  
V
Contact discharge per IEC 61000-4-2; Isolation barrier withstand test(2) (3)  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
(3) Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device.  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
5.5  
UNIT  
V
VCC1, VCC2  
VCC(UVLO+)  
VCC(UVLO-)  
VHYS(UVLO)  
Supply voltage  
2.25  
UVLO threshold when supply voltage is rising  
UVLO threshold when supply voltage is falling  
Supply voltage UVLO hysteresis  
VCCO (1) = 5 V  
2
1.8  
2.25  
V
1.7  
100  
4  
2  
1  
V
200  
mV  
IOH  
High-level output current  
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 5 V  
mA  
mA  
4
IOL  
Low-level output current  
VCCO = 3.3 V  
VCCO = 2.5 V  
2
1
(1)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
Data rate  
0.7 × VCC I  
VCCI  
V
V
0
0
0.3 × VCCI  
100  
DR(2)  
Mbps  
°C  
TA  
Ambient temperature  
25  
125  
40  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
(2) 100 Mbps is the maximum specified data rate, although higher data rates are possible.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
 
 
 
 
 
 
 
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
6.4 Thermal Information  
ISO772x-Q1  
DW (SOIC)  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
137.7  
54.9  
UNIT  
16 PINS  
86.5  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
49.6  
49.7  
71.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
32.3  
7.1  
49.2  
70.7  
ψJB  
RθJC(bottom) Junction-to-case(bottom) thermal resistance  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISO7720-Q1  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50 MHz 50% duty cycle square wave  
PD  
Maximum power dissipation  
100  
20  
mW  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50 MHz 50% duty cycle square wave  
PD1  
PD2  
Maximum power dissipation by side-1  
Maximum power dissipation by side-2  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50 MHz 50% duty cycle square wave  
80  
ISO7721-Q1  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50 MHz 50% duty cycle square wave  
PD  
Maximum power dissipation  
100  
50  
mW  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50 MHz 50% duty cycle square wave  
PD1  
PD2  
Maximum power dissipation by side-1  
Maximum power dissipation by side-2  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50 MHz 50% duty cycle square wave  
50  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSEU1  
6
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
 
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
6.6 Insulation Specifications  
VALUE  
UNIT  
PARAMETER  
TEST CONDITIONS  
DW-16  
D-8  
CLR  
CPG  
External clearance (1)  
External creepage (1)  
Shortest terminal-to-terminal distance through air  
8
4
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
8
4
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A  
According to IEC 60664-1  
21  
21  
>600  
I
μm  
>600  
I
V
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
IIV  
IIV  
IIV  
IIII  
IIV  
IIII  
n/a  
Overvoltage category per IEC 60664-1  
n/a  
DIN VDE V 0884-11:2017-01(2)  
Maximum repetitive peak isolation  
voltage  
VIORM  
AC voltage (bipolar)  
2121  
637  
VPK  
AC voltage; Time dependent dielectric breakdown  
(TDDB) test; see 9-6  
1500  
2121  
8000  
450  
637  
VRMS  
VDC  
VPK  
VIOWM Maximum working isolation voltage  
DC voltage  
VTEST = VIOTM, t = 60 s (qualification);  
VTEST = 1.2 x VIOTM, t = 1 s (100% production)  
VIOTM  
VIOSM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
4242  
Test method per IEC 62368-1, 1.2/50 µs waveform,  
VTEST = 1.6 × VIOSM (qualification)  
8000  
5000  
VPK  
Method a, After Input/Output safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
5  
5  
Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a, After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM, tm = 10 s  
5  
5  
5  
5  
qpd  
Apparent charge(4)  
pC  
Method b1; At routine test (100% production) and  
preconditioning (type test),  
Vini = 1.2 x VIOTM, tini = 1 s;  
Vpd(m) = 1.875 × VIORM, tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Isolation resistance(5)  
~0.5  
>1012  
>1011  
>109  
2
~0.5  
>1012  
>1011  
>109  
2
pF  
VIO = 0.4 × sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
55/125/21 55/125/21  
UL 1577  
VTEST = VISO, t = 60 s(qualification);  
VTEST = 1.2 × VISO, t = 1 s (100% production)  
VISO  
Withstanding isolation voltage  
5000  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these  
specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
 
 
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
TUV  
6.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
Certified according to EN  
61010-1:2010/A1:2019,  
EN 60950-1:2006/  
A2:2013 and EN  
Certified according to IEC  
60950-1, IEC 62368-1 and 1577 Component  
IEC 60601-1  
Recognized under UL  
Certified according to DIN  
VDE V 0884-11:2017-01  
Certified according to  
GB4943.1-2011  
Recognition Program  
62368-1:2014  
800 VRMS (DW-16)  
reinforced insulation and  
400 VRMS (D-8) basic  
insulation working voltage  
per CSA  
60950-1-07+A1+A2, IEC  
60950-1 2nd Ed.+A1+A2,  
CSA 62368-1-14 and IEC  
62368-1:2014, (pollution  
degree 2, material group I);  
5000 VRMS (DW-16) and  
3000 VRMS (D-8)  
Reinforced insulation per  
EN 61010-1:2010/  
A1:2019 up to working  
voltage of 600 VRMS  
(DW-16) and 300 VRMS  
(D-8)  
Maximum transient  
isolation voltage, 8000 VPK  
(DW-16) and 4242 VPK  
(D-8);  
Maximum repetitive peak  
isolation voltage, 2121 VPK  
(DW-16) and 637 VPK  
(D-8);  
DW-16: Reinforced  
Insulation, Altitude 5000  
m, Tropical Climate,700 VRMS  
DW-16: Single  
protection, 5000 VRMS; maximum working voltage;  
D-8: Single protection, D-8: Basic Insulation, Altitude  
5000 VRMS (DW-16) and  
3000 VRMS (D-8)  
Reinforced insulation per  
EN 60950-1:2006/  
A2:2013 and EN  
62368-1:2014 up to  
working voltage of 800  
VRMS (DW-16) and 400  
VRMS (D-8)  
3000 VRMS  
5000 m, Tropical Climate,  
400 VRMS maximum working  
voltage  
2 MOPP (Means of Patient  
Protection) per CSA  
60601-1:14 and IEC  
60601-1 Ed. 3.1, 250 VRMS  
(DW-16) max working  
voltage  
Maximum surge isolation  
voltage, 8000 VPK (DW-16)  
and 5000 VPK (D-8)  
Certificate numbers:  
File number: E181974 CQC15001121716 (DW-16) Client ID number: 77311  
CQC15001121656 (D-8)  
Certificate number:  
40040142  
Master contract number:  
220991  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
6.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
DW-16 PACKAGE  
263  
RθJA = 86.5 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see 6-1  
RθJA = 86.5 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see 6-1  
RθJA = 86.5 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see 6-1  
Safety input, output, or supply  
current(1)  
IS  
401  
525  
mA  
Safety input, output, or total  
power(1)  
PS  
TS  
1445 mW  
RθJA = 86.5 °C/W, TJ = 150°C, TA = 25°C, see 6-2  
Maximum safety  
temperature(1)  
150  
°C  
D-8 PACKAGE  
165  
252  
330  
RθJA = 137.7 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see 6-3  
RθJA = 137.7 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see 6-3  
RθJA = 137.7 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see 6-3  
Safety input, output, or supply  
IS  
mA  
current(1)  
Safety input, output, or total  
power(1)  
PS  
TS  
908 mW  
150 °C  
RθJA = 137.7 °C/W, TJ = 150°C, TA = 25°C, see 6-4  
Maximum safety  
temperature(1)  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the 6.4 table is that of a device installed on a high-K test board for leaded surface-  
mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
6.9 Electrical Characteristics5-V Supply  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
4.8  
MAX UNIT  
(1)  
VCCO  
0.4  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
IOH = 4 mA; see 7-1  
0.2  
0.4  
V
V
IOL = 4 mA; see 7-1  
VIT+(IN) Rising input threshold voltage  
0.6 x VCCI 0.7 x VCCI  
0.4 x VCCI  
VIT-(IN)  
VI(HYS)  
IIH  
Falling input threshold voltage  
Input threshold voltage hysteresis  
High-level input current  
0.3 x VCCI  
0.1 × VCCI  
V
0.2 × VCCI  
V
VIH = VCCI (1) at INx  
10  
μA  
µA  
IIL  
Low-level input current  
VIL = 0 V at INx  
10  
CMTI  
CI  
Common-mode transient immunity  
Input Capacitance(2)  
85  
100  
2
VI = VCCI or 0 V, VCM = 1200 V; see 7-3  
VI = VCC/ 2 + 0.4×sin(2πft), f = 1 MHz, VCC = 5 V  
kV/μs  
pF  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
(2) Measured from input pin to ground.  
6.10 Supply Current Characteristics5-V Supply  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX UNIT  
ISO7720-Q1  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
0.8  
1.1  
2.9  
1.2  
1.8  
1.3  
1.9  
2.2  
2.5  
11.6  
1.1  
1.7  
4.2  
1.9  
VI = VCCI (ISO7720-Q1), VI = 0 V (ISO7720-Q1 with F suffix)  
VI = 0 V (ISO7720-Q1), VI = VCCI (ISO7720-Q1 with F suffix)  
1 Mbps  
Supply current - DC signal  
2.7  
mA  
1.9  
2.7  
3
All channels switching with square  
10 Mbps  
Supply current - AC signal  
wave clock input; CL = 15 pF  
3.2  
14  
100 Mbps  
ISO7721-Q1  
VI = VCCI (ISO7721-Q1),  
VI = 0 V (ISO7721-Q1 with F suffix)  
ICC1, ICC2  
ICC1, ICC2  
1
1.6  
Supply current - DC signal  
VI = 0 V (ISO7721-Q1),  
VI = VCCI (ISO7721-Q1 with F suffix)  
2.2  
3.2  
mA  
2.4  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
1.7  
2.2  
7.3  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
10 Mbps  
3
9
100 Mbps  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSEU1  
10  
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
 
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
6.11 Electrical Characteristics3.3-V Supply  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
VCCO  
0.3  
VOH  
High-level output voltage  
3.2  
V
IOH = 2 mA; see 7-1  
VOL  
Low-level output voltage  
0.1  
0.6 x VCCI  
0.4 x VCCI  
0.3  
V
V
IOL = 2 mA; see 7-1  
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
Rising input voltage threshold  
Falling input voltage threshold  
Input threshold voltage hysteresis  
High-level input current  
0.7 x VCCI  
0.3 x VCCI  
V
0.1 × VCCI 0.2 × VCCI  
V
VIH = VCCI (1) at INx  
10  
μA  
µA  
IIL  
Low-level input current  
VIL = 0 V at INx  
10  
CMTI  
Common-mode transient immunity  
85  
100  
VI = VCCI or 0 V, VCM = 1200 V; see 7-3  
kV/μs  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
6.12 Supply Current Characteristics3.3-V Supply  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISO7720-Q1  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
0.8  
1.1  
2.9  
1.2  
1.8  
1.2  
1.9  
1.9  
2.2  
8.6  
1.1  
1.7  
4.2  
1.9  
2.7  
1.9  
2.7  
2.6  
3.1  
11  
VI = VCCI (ISO7720-Q1), VI = 0 V (ISO7720-Q1 with F suffix)  
VI = 0 V (ISO7720-Q1), VI = VCCI (ISO7720-Q1 with F suffix)  
1 Mbps  
Supply current - DC signal  
mA  
All channels switching with square wave  
10 Mbps  
Supply current - AC signal  
clock input; CL = 15 pF  
100 Mbps  
ISO7721-Q1  
VI = VCCI (ISO7721-Q1), VI = 0 V (ISO7721-Q1 with F suffix)  
VI = 0 V (ISO7721-Q1), VI = VCCI (ISO7721-Q1 with F suffix)  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
1
2.2  
1.6  
2
1.6  
3.2  
2.4  
2.8  
7
Supply current - DC signal  
mA  
All channels switching with square wave  
clock input; CL = 15 pF  
Supply current - AC signal  
10 Mbps  
100 Mbps  
5.6  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
6.13 Electrical Characteristics2.5-V Supply  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.45  
0.05  
MAX UNIT  
IOH = 1 mA; see 7-1  
VCCO (1) 0.2  
VOH  
High-level output voltage  
Low-level output voltage  
Rising input voltage threshold  
Falling input voltage threshold  
Input threshold voltage hysteresis  
High-level input current  
V
0.2  
VOL  
V
V
IOL = 1 mA; see 7-1  
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
0.6 x VCCI 0.7 x VCCI  
0.3 x VCCI 0.4 x VCCI  
V
0.1 × VCCI 0.2 × VCCI  
V
VIH = VCCI (1) at INx  
10  
μA  
μA  
kV/μs  
IIL  
Low-level input current  
VIL = 0 V at INx  
10  
CMTI  
Common-mode transient immunity  
85  
100  
VI = VCCI or 0 V, VCM = 1200 V; see 7-3  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
6.14 Supply Current Characteristics2.5-V Supply  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
ISO7720-Q1  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
0.8  
1.1  
2.9  
1.2  
1.8  
1.3  
1.9  
1.7  
2.2  
6.8  
1.1  
1.7  
4.2  
1.9  
2.7  
1.9  
2.7  
2.4  
3
VI = VCCI (ISO7720-Q1), VI = 0 V (ISO7720-Q1 with F  
suffix)  
Supply current - DC signal  
VI = 0 V (ISO7720-Q1), VI = VCCI (ISO7720-Q1 with F  
suffix)  
1 Mbps  
mA  
All channels switching with square  
10 Mbps  
Supply current - AC signal  
wave clock input; CL = 15 pF  
100 Mbps  
9
ISO7721-Q1  
VI = VCCI (ISO7721-Q1), VI = 0 V (ISO7721-Q1 with F  
suffix)  
ICC1, ICC2  
ICC1, ICC2  
1
1.6  
3.2  
Supply current - DC signal  
VI = 0 V (ISO7721-Q1), VI = VCCI (ISO7721-Q1 with F  
suffix)  
2.2  
mA  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
1.6  
1.9  
4.6  
2.4  
2.7  
6
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
10 Mbps  
100 Mbps  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSEU1  
12  
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
6.15 Switching Characteristics5-V Supply  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL tPLH  
TEST CONDITIONS  
MIN  
TYP  
11  
MAX UNIT  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
6
16  
4.9  
4
ns  
ns  
ns  
ns  
ns  
ns  
See 7-1  
0.5  
|
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same direction channels  
4.5  
3.9  
3.9  
Output signal rise time  
1.8  
1.9  
See 7-1  
tf  
Output signal fall time  
Measured from the time VCC goes below 1.7  
V. See 7-2  
tDO  
tie  
Default output delay time from input power loss  
Time interval error  
0.1  
1
0.3  
μs  
216 1 PRBS data at 100 Mbps  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.16 Switching Characteristics3.3-V Supply  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL tPLH  
TEST CONDITIONS  
MIN  
TYP  
11  
MAX  
16  
5
UNIT  
ns  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
6
See 7-1  
0.5  
ns  
|
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same direction channels  
4.1  
4.5  
3
ns  
ns  
Output signal rise time  
0.7  
0.7  
ns  
See 7-1  
tf  
Output signal fall time  
3
ns  
Measured from the time VCC goes  
below 1.7 V. See 7-2  
tDO  
tie  
Default output delay time from input power loss  
Time interval error  
0.1  
1
0.3  
μs  
216 1 PRBS data at 100 Mbps  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.17 Switching Characteristics2.5-V Supply  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL tPLH  
TEST CONDITIONS  
MIN  
TYP  
12  
MAX UNIT  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
7.5  
18.5  
5.1  
4.1  
4.6  
3.5  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
See 7-1  
0.5  
|
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same direction channels  
Output signal rise time  
1
1
See 7-1  
tf  
Output signal fall time  
Measured from the time VCC goes  
below 1.7 V. See 7-2  
tDO  
tie  
Default output delay time from input power loss  
Time interval error  
0.1  
1
0.3  
μs  
216 1 PRBS data at 100 Mbps  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
 
 
 
 
 
 
 
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
6.18 Insulation Characteristics Curves  
600  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
500  
400  
300  
200  
100  
0
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D002  
D001  
6-2. Thermal Derating Curve for Limiting Power  
6-1. Thermal Derating Curve for Limiting Current  
per VDE for DW-16 Package  
per VDE for DW-16 Package  
350  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D004  
D003  
6-4. Thermal Derating Curve for Limiting Power  
6-3. Thermal Derating Curve for Limiting Current  
per VDE for D-8 Package  
per VDE for D-8 Package  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
6.19 Typical Characteristics  
14  
5
4.5  
4
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
12  
10  
8
3.5  
3
2.5  
2
6
1.5  
1
4
2
0.5  
0
0
0
25  
50  
Data Rate (Mbps)  
75  
100  
0
25  
50  
Data Rate (Mbps)  
75  
100  
D006  
D005  
TA = 25°C  
CL = No Load  
TA = 25°C  
CL = 15 pF  
6-6. ISO7720-Q1 Supply Current vs Data Rate  
6-5. ISO7720-Q1 Supply Current vs Data Rate  
(With No Load)  
(With 15-pF Load)  
9
4
ICC1, ICC2 at 2.5 V  
ICC1, ICC2 at 3.3 V  
ICC1, ICC2 at 5 V  
ICC1, ICC2 at 2.5 V  
ICC1, ICC2 at 3.3 V  
ICC1, ICC2 at 5 V  
8
7
6
5
4
3
2
1
0
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
25  
50  
Data Rate (Mbps)  
75  
100  
0
25  
50  
Data Rate (Mbps)  
75  
100  
D008  
D007  
TA = 25°C  
CL = No Load  
TA = 25°C  
CL = 15 pF  
6-8. ISO7721-Q1 Supply Current vs Data Rate  
6-7. ISO7721-Q1 Supply Current vs Data Rate  
(With No Load)  
(With 15-pF Load)  
6
5
4
3
2
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
VCC at 2.5 V  
VCC at 3.3 V  
VCC at 5 V  
VCC at 2.5 V  
VCC at 3.3 V  
VCC at 5 V  
1
0.1  
0
0
0
5
10  
Low-Level Output Current (mA)  
15  
-15  
-10 -5  
High-Level Output Current (mA)  
0
D012  
D011  
TA = 25°C  
TA = 25°C  
6-10. Low-Level Output Voltage vs Low-Level  
6-9. High-Level Output Voltage vs High-level  
Output Current  
Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
2.1  
2.05  
2
14  
13  
12  
11  
10  
9
1.95  
1.9  
1.85  
1.8  
1.75  
1.7  
tPLH at 2.5 V  
tPHL at 2.5 V  
tPLH at 3.3 V  
tPHL at 3.3 V  
tPLH at 5 V  
tPHL at 5 V  
VCC1+  
VCC1-  
VCC2+  
VCC2-  
1.65  
1.6  
8
-55  
-55  
-25  
5
35  
65  
95  
125  
-25  
5
35  
65  
95  
125  
Free-Air Temperature (èC)  
Free Air Temperature (èC)  
D011  
D012  
6-11. Power Supply Undervoltage Threshold vs  
6-12. Propagation Delay Time vs Free-Air  
Free-Air Temperature  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
7 Parameter Measurement Information  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
t
t
PHL  
PLH  
Input Generator  
(See Note A)  
C
L
V
I
V
50  
O
V
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3 ns, tf 3 ns, ZO  
= 50 Ω. At the input, 50 Ωresistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
7-1. Switching Characteristics Test Circuit and Voltage Waveforms  
V
I
See Note B  
V
CC  
V
CC  
V
1.7 V  
I
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. Power Supply Ramp Rate = 10 mV/ns  
7-2. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CCO  
CCI  
C = 0.1 µF 1%  
C = 0.1 µF 1%  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
V
OH  
or V  
OL  
C
L
œ
See Note A  
GNDI  
GNDO  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
7-3. Common-Mode Transient Immunity Test Circuit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ISO772x-Q1 family of devices has an ON-OFF keying (OOK) modulation scheme to transmit the digital data  
across a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier  
to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates  
the signal after advanced signal conditioning and produces the output through a buffer stage. These devices  
also incorporate advanced circuit techniques to maximize the CMTI performance and minimize the radiated  
emissions due the high frequency carrier and IO buffer switching. The conceptual block diagram of a digital  
capacitive isolator, 8-1, shows a functional block diagram of a typical channel.  
8.2 Functional Block Diagram  
Transmitter  
Receiver  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
8-1. Conceptual Block Diagram of a Digital Capacitive Isolator  
8-2 shows a conceptual detail of how the OOK scheme works.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
8-2. On-Off Keying (OOK) Based Modulation Scheme  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSEU1  
18  
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
 
 
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
8.3 Feature Description  
The ISO772x-Q1 family of devices is available in two channel configurations and default output state options to  
enable a variety of application uses. 8-1 lists the device features of the ISO772x-Q1 devices.  
8-1. Device Features  
MAXIMUM DATA  
RATE  
DEFAULT OUTPUT  
STATE  
PART NUMBER  
CHANNEL DIRECTION  
PACKAGE  
RATED ISOLATION(1)  
DW-16  
D-8  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
ISO7720-Q1  
100 Mbps  
100 Mbps  
100 Mbps  
100 Mbps  
2 Forward, 0 Reverse  
High  
Low  
High  
Low  
DW-16  
D-8  
ISO7720-Q1 with F  
suffix  
2 Forward, 0 Reverse  
1 Forward, 1 Reverse  
1 Forward, 1 Reverse  
DW-16  
D-8  
ISO7721-Q1  
DW-16  
D-8  
ISO7721-Q1 with F  
suffix  
(1) See the 6.7 section for detailed isolation ratings.  
8.3.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO772x-  
Q1 family of devices incorporates many chip-level design improvements for overall system robustness. Some of  
these improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
8.4 Device Functional Modes  
8-2 lists the functional modes for the ISO772x-Q1 devices.  
8-2. Function Table  
INPUT  
(INx)(3)  
OUTPUT  
(OUTx)  
(1)  
VCCI  
VCCO  
COMMENTS  
H
L
H
L
Normal Operation:  
A channel output assumes the logic state of the input.  
PU  
PU  
Default mode: When INx is open, the corresponding channel output goes to  
the default logic state. The default is High for ISO772x-Q1 and Low for  
ISO772x-Q1 with F suffix.  
Open  
Default  
Default mode: When VCCI is unpowered, a channel output assumes the logic  
state based on the selected default option. The default is High for ISO772x-Q1  
and Low for ISO772x-Q1 with F suffix.  
PD  
X
PU  
PD  
X
X
Default  
When VCCI transitions from unpowered to powered-up, a channel output  
assumes the logic state of the input.  
When VCCI transitions from powered-up to unpowered, channel output  
assumes the selected default state.  
When VCCO is unpowered, a channel output is undetermined(2)  
.
Undetermined  
When VCCO transitions from unpowered to powered-up, a channel output  
assumes the logic state of the input  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC 2.25 V); PD = Powered down (VCC 1.7 V); X = Irrelevant;  
H = High level; L = Low level  
(2) The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V.  
(3) A strongly driven input signal can weakly power the floating VCC via an internal protection diode and cause undetermined output.  
8.4.1 Device I/O Schematics  
Input (Devices without F suffix)  
Input (Devices with F suffix)  
V
V
V
V
CCI  
V
V
V
CCI  
CCI  
CCI  
CCI  
CCI  
CCI  
1.5 M  
985 ꢀ  
985 ꢀ  
INx  
INx  
1.5 Mꢀ  
Output  
V
CCO  
~20 ꢀ  
OUTx  
Copyright © 2016, Texas Instruments Incorporated  
8-3. Device I/O Schematics  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
 
 
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The ISO772x-Q1 devices are high-performance, dual-channel digital isolators. The devices use single-ended  
CMOS-logic switching technology. The supply voltage range is from 2.25 V to 5.5 V for both supplies, VCC1 and  
VCC2. When designing with digital isolators, keep in mind that because of the single-ended design structure,  
digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended  
CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μC or  
UART), and a data converter or a line transceiver, regardless of the interface type or standard.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
9.2 Typical Application  
The ISO7721-Q1 device can be used with Texas Instruments' Piccolomicrocontroller, CAN transceiver,  
transformer driver, and voltage regulator to create an isolated CAN interface.  
V
S
0.1 F  
3.3 V  
2
MBR0520L  
1:1.33  
3.3VISO  
10 F  
3
1
1
3
5
2
V
CC  
D2  
IN  
OUT  
TPS76333-Q1  
SN6501-Q1  
10 F 0.1 F  
EN  
GND  
D1  
GND  
4, 5  
10 F  
MBR0520L  
ISO Barrier  
0.1 F  
0.1 F  
0.1 F  
0.1 F  
1
8
3
29,57  
V
V
CC2  
CC1  
VCC  
RS  
8
V
DDIO  
10 (optional)  
10 (optional)  
4
7
26  
25  
2
R
D
CANH  
INA  
CANRXA  
OUTA  
ISO7721-Q1  
7
6
5
TMS320F28035PAGQ  
3
SN65HVD231Q  
OUTB  
GND2  
5
CANTXA  
INB  
1
6
CANL  
Vref  
GND1  
V
SS  
GND  
2
4
6,28  
SM712  
4.7 nF /  
2 kV  
Copyright © 2017, Texas Instruments Incorporated  
9-1. Isolated 4-mA to 20-mA Current Loop  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSEU1  
22  
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
9.2.1 Design Requirements  
To design with these devices, use the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETER  
VALUE  
2.25 V to 5.5 V  
0.1 µF  
Supply voltage, VCC1 and VCC2  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,  
the ISO772x-Q1 devices only require two external bypass capacitors to operate.  
V
CC1  
V
CC2  
GND1  
NC  
1
2
3
4
5
6
7
8
16 GND2  
15 NC  
0.1 µF  
GND1  
0.1 µF  
GND2  
GND2  
GND1  
14  
V
V
CC2  
CC1  
INA  
OUTA  
INB  
OUTA  
INB  
13 INA  
12 OUTB  
11 NC  
10 NC  
OUTB  
NC  
GND1  
NC  
GND1  
9
GND2  
GND2  
9-2. Typical ISO7721-Q1 Circuit Hook-up  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
9.2.3 Application Curve  
The following typical eye diagrams of the ISO772x-Q1 family of devices indicate low jitter and wide open eye at  
the maximum data rate of 100 Mbps.  
Time = 3.5 ns / div  
Time = 3.5 ns / div  
9-3. ISO7720-Q1 Eye Diagram at 100 Mbps  
PRBS,  
9-4. ISO7721-Q1 Eye Diagram at 100 Mbps  
PRBS,  
5-V Supplies and 25°C  
5-V Supplies and 25°C  
9.2.3.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See 9-5 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation  
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for  
lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20%  
higher than the specified value.  
9-6 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the intrinsic capability of the insulation is 1500 VRMS with a lifetime of 135 years. Other  
factors, such as package size, pollution degree, material group, etc. can further limit the working voltage of the  
component. The working voltage of DW-16 package is specified up to 1500 VRMS and D-8 package up to 450  
VRMS. At the lower working voltages, the corresponding insulation lifetime is much longer than 135 years.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSEU1  
24  
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
9-5. Test Setup for Insulation Lifetime Measurement  
9-6. Insulation Lifetime Projection Data  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended  
at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins  
as possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501-Q1.  
For such applications, detailed power supply design and transformer selection recommendations are available in  
SN6501-Q1 Transformer Driver for Isolated Power Supplies.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSEU1  
26  
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see 11-1). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
For detailed layout recommendations, refer to the Digital Isolator Design Guide.  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength  
and stiffness, and the self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
0 ~ 4.5  
r
Power plane  
Low-speed traces  
11-1. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
For development support, refer to:  
Isolated CAN Flexible Data (FD) Rate Repeater Reference Design  
Isolated 16-Channel AC Analog Input Module Reference Design Using Dual Simultaneously Sampled ADCs  
Polyphase Shunt Metrology with Isolated AFE Reference Design  
Reference Design for Power-Isolated Ultra-Compact Analog Output Module  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, How to use isolation to improve ESD, EFT and Surge immunity in industrial systems  
application report  
Texas Instruments, Isolation Glossary  
Texas Instruments, SN6501-Q1 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, SN65HVD231Q 3.3-V CAN Transceivers data sheet  
Texas Instruments, TPS763xx-Q1 Low-Power, 150-mA, Low-Dropout Linear Regulators data sheet  
Texas Instruments, TMS320F2803x Piccolo™ Microcontrollers data sheet  
12.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
12-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
ISO7720-Q1  
ISO7721-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.4 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.6 Trademarks  
Piccolois a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSEU1  
28  
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
 
 
 
 
 
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
12.7 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
 
 
 
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
PACKAGE OUTLINE  
D0008B  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
.041  
[1.04]  
4221445/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15], per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
D0008B  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.055)  
[1.4]  
8X (.061 )  
[1.55]  
SEE  
DETAILS  
SEE  
DETAILS  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
(R.002 ) TYP  
[0.05]  
(R.002 )  
[0.05]  
TYP  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
(.217)  
[5.5]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSDE  
METAL  
EXPOSED  
METAL  
.0028 MIN  
[0.07]  
ALL AROUND  
.0028 MAX  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221445/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
ISO7720-Q1, ISO7721-Q1  
ZHCSG30B MARCH 2017 REVISED OCTOBER 2020  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
D0008B  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
8X (.055)  
[1.4]  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
(R.002 ) TYP  
[0.05]  
(R.002 )  
[0.05]  
TYP  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.217)  
[5.5]  
(.213)  
[5.4]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:6X  
4221445/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ISO7720-Q1 ISO7721-Q1  
English Data Sheet: SLLSEU1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7720FQDQ1  
ISO7720FQDRQ1  
ISO7720FQDWQ1  
ISO7720FQDWRQ1  
ISO7720QDQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
7720FQ  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
7720FQ  
DW  
DW  
D
16  
16  
8
ISO7720FQ  
ISO7720FQ  
7720Q  
ISO7720QDRQ1  
ISO7720QDWQ1  
ISO7720QDWRQ1  
ISO7721FQDQ1  
ISO7721FQDRQ1  
ISO7721FQDWQ1  
ISO7721FQDWRQ1  
ISO7721QDQ1  
D
8
7720Q  
DW  
DW  
D
16  
16  
8
ISO7720Q  
ISO7720Q  
7721FQ  
D
8
7721FQ  
DW  
DW  
D
16  
16  
8
ISO7721FQ  
ISO7721FQ  
7721Q  
ISO7721QDRQ1  
ISO7721QDWQ1  
ISO7721QDWRQ1  
D
8
7721Q  
DW  
DW  
16  
16  
ISO7721Q  
ISO7721Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7720FQDRQ1  
ISO7720FQDWRQ1  
ISO7720QDRQ1  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
DW  
D
8
16  
8
2500  
2000  
2500  
2000  
2500  
2000  
2500  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
16.4  
12.4  
16.4  
12.4  
16.4  
12.4  
16.4  
6.4  
10.75 10.7  
6.4 5.2  
10.75 10.7  
6.4 5.2  
10.75 10.7  
6.4 5.2  
10.75 10.7  
5.2  
2.1  
2.7  
2.1  
2.7  
2.1  
2.7  
2.1  
2.7  
8.0  
12.0  
8.0  
12.0  
16.0  
12.0  
16.0  
12.0  
16.0  
12.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
ISO7720QDWRQ1  
ISO7721FQDRQ1  
ISO7721FQDWRQ1  
ISO7721QDRQ1  
DW  
D
16  
8
12.0  
8.0  
DW  
D
16  
8
12.0  
8.0  
ISO7721QDWRQ1  
DW  
16  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7720FQDRQ1  
ISO7720FQDWRQ1  
ISO7720QDRQ1  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
DW  
D
8
16  
8
2500  
2000  
2500  
2000  
2500  
2000  
2500  
2000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
ISO7720QDWRQ1  
ISO7721FQDRQ1  
ISO7721FQDWRQ1  
ISO7721QDRQ1  
DW  
D
16  
8
DW  
D
16  
8
ISO7721QDWRQ1  
DW  
16  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO7720FQDQ1  
ISO7720FQDWQ1  
ISO7720QDQ1  
D
DW  
D
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
8
16  
8
75  
40  
75  
40  
75  
40  
75  
40  
505.46  
506.98  
505.46  
506.98  
505.46  
506.98  
505.46  
506.98  
6.76  
12.7  
6.76  
12.7  
6.76  
12.7  
6.76  
12.7  
3810  
4826  
3810  
4826  
3810  
4826  
3810  
4826  
4
6.6  
4
ISO7720QDWQ1  
ISO7721FQDQ1  
ISO7721FQDWQ1  
ISO7721QDQ1  
DW  
D
16  
8
6.6  
4
DW  
D
16  
8
6.6  
4
ISO7721QDWQ1  
DW  
16  
6.6  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DW 16  
7.5 x 10.3, 1.27 mm pitch  
SOIC - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224780/A  
www.ti.com  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
R0.05 TYP  
9
9
8
8
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
R0.05 TYP  
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY