ISO7763FQDBQRQ1 [TI]

EMC 性能优异的汽车类 6 通道、3/3、增强型数字隔离器 | DBQ | 16 | -40 to 125;
ISO7763FQDBQRQ1
型号: ISO7763FQDBQRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

EMC 性能优异的汽车类 6 通道、3/3、增强型数字隔离器 | DBQ | 16 | -40 to 125

文件: 总51页 (文件大小:2603K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
EMC 性能优异ISO776x-Q1 高速、增强型六通道数字隔离器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性:  
ISO776x-Q1 器件是高性能六通道数字隔离器可提供  
UL 1577 5000VRMSDW 封装3000VRMS  
DBQ 离额定值。该系列器件还通过了  
VDECSATUV CQC 认证。  
– 器件温度等140°C +125°C 的环境温  
度范围  
– 器HBM ESD 分类等3A  
– 器CDM ESD 分类等C6  
提供功能安全  
在隔离 CMOS LVCMOS I/O 同时,  
ISO776x-Q1 系列的器件还可提供高电磁抗扰度和低辐  
同时具备低功耗特性。每个隔离通道都有一个由二  
氧化硅 (SiO2) 绝缘栅分开的逻辑输入和逻辑输出缓冲  
器。ISO776x-Q1 系列的器件采用所有可能的引脚配  
因此所有六个通道都可以处于同一方向或者一  
个、两个或三个通道处于反向而其余通道处于正向。  
如果输入电源或信号丢失不带后缀 F 的器件默认输  
高电平带后缀 F 的器件默认输出低电平。更多详  
细信息请参阅器件功能模部分。  
– 可提供用于功能安全系统设计的文档:  
ISO7760-Q1ISO7761-Q1ISO7762-Q1、  
ISO7763-Q1  
100 Mbps 数据速率  
• 稳健可靠的隔离栅:  
– 预计寿命超100 年  
– 隔离等级高5000 VRMS  
– 浪涌能力高12.8 kV  
器件信息  
封装  
CMTI 典型值±100kV/μs  
• 宽电源电压范围2.25V 5.5V  
2.25V 5.5V 电平转换  
• 默认输出高电(ISO776x) 低电(ISO776xF)  
选项  
器件型号(1)  
ISO7760-Q1  
ISO7761-Q1  
ISO7762-Q1  
IOS7763-Q1  
封装尺寸标称值)  
SOIC (16)  
10.30mm × 7.50mm  
SSOP (16)  
4.90mm × 3.90mm  
• 低功耗1Mbps 时每通道的电流典型值1.4mA  
• 低传播延迟5V 11ns典型值)  
• 优异的电磁兼容(EMC):  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 系统ESDEFT 和浪涌抗扰性  
– 在整个隔离栅具±8kV IEC 61000-4-2 接触放  
电保护  
VCCO  
VCCI  
Series Isolation  
Capacitors  
– 低辐射  
• 宽SOIC (DW-16) SSOP (DBQ-16) 封装选项  
• 安全相关认证:  
INx  
OUTx  
– 符DIN EN IEC 60747-17 (VDE 0884-17) 标  
准的增强型绝缘  
UL 1577 组件认证计划  
GNDI  
GNDO  
Copyright © 2016, Texas Instruments Incorporated  
– 符IEC 62368-1 IEC 60601-1 标准CSA  
认证  
– 符GB4943.1 标准CQC 认证  
– 符EN 62368-1 EN 61010-1 标准TUV  
认证  
VCCI=VCCVCCO=VCC  
GNDI=输入接地GNDO=输出接地  
简化版原理图  
2 应用  
• 混合动力、电动和动力总成系(EV/HEV)  
– 电池管理系(BMS)  
– 车载充电器  
– 牵引逆变器  
– 直流/直流转换器  
– 起动机/发电机  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEU7  
 
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
Table of Contents  
7.18 Insulation Characteristics Curves........................... 20  
7.19 Typical Characteristics............................................21  
8 Detailed Description......................................................25  
8.1 Overview...................................................................25  
8.2 Functional Block Diagram.........................................25  
8.3 Feature Description...................................................26  
8.4 Device Functional Modes..........................................27  
9 Application and Implementation..................................28  
9.1 Application Information............................................. 28  
9.2 Typical Application.................................................... 28  
10 Power Supply Recommendations..............................31  
11 Layout...........................................................................32  
11.1 Layout Guidelines................................................... 32  
11.2 Layout Example...................................................... 32  
12 Device and Documentation Support..........................33  
12.1 Documentation Support.......................................... 33  
12.2 Related Links.......................................................... 33  
12.3 Receiving Notification of Documentation Updates..33  
12.4 支持资源..................................................................33  
12.5 Trademarks.............................................................33  
12.6 Electrostatic Discharge Caution..............................33  
12.7 术语表..................................................................... 34  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 7  
7.1 Absolute Maximum Ratings........................................ 7  
7.2 ESD Ratings .............................................................. 7  
7.3 Recommended Operating Conditions.........................7  
7.4 Thermal Information....................................................8  
7.5 Power Ratings.............................................................8  
7.6 Insulation Specifications............................................. 9  
7.7 Safety-Related Certifications.....................................11  
7.8 Safety Limiting Values...............................................11  
7.9 Electrical Characteristics5-V Supply..................... 12  
7.10 Supply Current Characteristics5-V Supply..........13  
7.11 Electrical Characteristics3.3-V Supply.................14  
7.12 Supply Current Characteristics3.3-V Supply.......15  
7.13 Electrical Characteristics2.5-V Supply................ 16  
7.14 Supply Current Characteristics2.5-V Supply.......17  
7.15 Switching Characteristics5-V Supply...................18  
7.16 Switching Characteristics3.3-V Supply................18  
7.17 Switching Characteristics2.5-V Supply................19  
Information.................................................................... 34  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (October 2020) to Revision C (October 2022)  
Page  
• 将整个文档中的标准名称从“DIN V VDE V 0884-11:2017-01”更改为“DIN EN IEC 60747-17 (VDE  
0884-17)..........................................................................................................................................................1  
• 通篇删除了对标IEC/EN/CSA 60950-1 的引用................................................................................................1  
Added Maximum impulse voltage (VIMP) specification in Insulation Specifications per DIN EN IEC 60747-17  
(VDE 0884-17) ...................................................................................................................................................9  
Changed test conditions and values of Maximum surge isolation voltage (VIOSM) specification in Insulation  
Specifications per DIN EN IEC 60747-17 (VDE 0884-17................................................................................... 9  
Clarified method b test conditions of Apparent charge (qPD) in Insulation Specifications ................................ 9  
Changed maximum working voltage value From: 250 VRMS To: 400 VRMS for DBQ-16 devices per GB 4943.1  
in Safety-Related Certifications.........................................................................................................................11  
Changed working voltage lifetime margin From: 87.5% To: 50%, minimum required insulation lifetime From:  
37.5 years To: 30 years and insulation lifetime per TDDB From: 135 years To: 169 years in Insulation Lifetime  
per DIN EN IEC 60747-17 (VDE 0884-17)....................................................................................................... 30  
Changed Figure 9-7 per DIN EN IEC 60747-17 (VDE 0884-17)...................................................................... 30  
Changes from Revision A (February 2019) to Revision B (October 2020)  
Page  
• 添加了“功能安全”要点.................................................................................................................................... 1  
Changes from Revision * (November 2018) to Revision A (February 2019)  
Page  
Changed CPG parameter description From: "External clearance" To: "External creepage" in 7.6 table ...... 9  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
5 说明)  
该系列器件与隔离式电源结合使用有助于防止数据总线例如CAN LIN或者其他电路上的噪声电流进入  
本地接地以及干扰或损坏敏感电路。凭借创新型芯片设计和布局技术ISO776x-Q1 系列器件的电磁兼容性得到了  
显著增强可缓解系统级 ESDEFT 和浪涌问题并符合辐射标准。ISO776x-Q1 系列器件可采用 16 引脚 SOIC  
SSOP 封装。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
1
2
3
4
5
6
7
8
16  
V
V
CC1  
CC2  
INA  
INB  
15 OUTA  
14 OUTB  
13 OUTC  
12 OUTD  
11 OUTE  
10 OUTF  
9 GND2  
INC  
IND  
INE  
INF  
GND1  
6-1. ISO7760-Q1 DW and DBQ Packages 16-Pin SOIC and SSOP Top View  
1
2
3
4
5
6
7
8
16  
V
V
CC1  
CC2  
INA  
INB  
15 OUTA  
14 OUTB  
13 OUTC  
12 OUTD  
11 OUTE  
10 INF  
INC  
IND  
INE  
OUTF  
GND1  
9 GND2  
6-2. ISO7761-Q1 DW and DBQ Packages 16-Pin SOIC and SSOP Top View  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
1
2
3
4
5
6
7
8
16  
V
V
CC1  
CC2  
INA  
INB  
15 OUTA  
14 OUTB  
13 OUTC  
12 OUTD  
11 INE  
10 INF  
9 GND2  
INC  
IND  
OUTE  
OUTF  
GND1  
6-3. ISO7762-Q1 DW and DBQ Packages 16-Pin SOIC and SSOP Top View  
1
2
3
4
5
6
7
8
16  
V
V
CC1  
CC2  
INA  
INB  
15 OUTA  
14 OUTB  
13 OUTC  
12 IND  
11 INE  
10 INF  
9 GND2  
INC  
OUTD  
OUTE  
OUTF  
GND1  
6-4. ISO7763-Q1 DW and DBQ Packages 16-Pin SOIC and SSOP Top View  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
6-1. Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
ISO7760-Q1  
ISO7761-Q1  
ISO7762-Q1  
ISO7763-Q1  
GND1  
GND2  
INA  
8
9
8
9
8
9
8
9
Ground connection for VCC1  
Ground connection for VCC2  
Input, channel A  
I
2
2
2
2
INB  
3
3
3
3
I
Input, channel B  
INC  
4
4
4
4
I
Input, channel C  
IND  
5
5
5
12  
11  
10  
15  
14  
13  
5
I
Input, channel D  
INE  
6
6
11  
10  
15  
14  
13  
12  
6
I
Input, channel E  
INF  
7
10  
15  
14  
13  
12  
11  
7
I
Input, channel F  
OUTA  
OUTB  
OUTC  
OUTD  
OUTE  
OUTF  
VCC1  
VCC2  
15  
14  
13  
12  
11  
10  
1
O
O
O
O
O
O
Output, channel A  
Output, channel B  
Output, channel C  
Output, channel D  
Output, channel E  
Output, channel F  
Power supply, side 1  
Power supply, side 2  
6
7
7
1
1
1
16  
16  
16  
16  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
7 Specifications  
7.1 Absolute Maximum Ratings  
See (1)  
MIN  
MAX  
UNIT  
VCC1  
VCC2  
,
Supply voltage(2)  
6
V
0.5  
V
Voltage at INx, OUTx  
Output current  
VCCX + 0.5(3)  
V
0.5  
15  
IO  
15  
mA  
°C  
°C  
TJ  
Tstg  
Junction temperature  
Storage temperature  
150  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(3) Maximum voltage must not exceed 6 V  
7.2 ESD Ratings  
VALUE  
±6000  
±1500  
±8000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge Charged-device model (CDM), per AEC Q100-011  
V
Contact discharge per IEC 61000-4-2; Isolation barrier withstand test(2) (3)  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
(3) Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
5.5  
UNIT  
V
VCC1, VCC2 Supply voltage  
2.25  
VCC(UVLO+) UVLO threshold when supply voltage is rising  
VCC(UVLO-) UVLO threshold when supply voltage is falling  
VHYS(UVLO) Supply voltage UVLO hysteresis  
VCCO (1) = 5 V  
2
1.8  
2.25  
V
1.7  
100  
4  
2  
1  
V
200  
mV  
IOH  
High-level output current  
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 5 V  
mA  
mA  
4
IOL  
Low-level output current  
VCCO = 3.3 V  
VCCO = 2.5 V  
2
1
(1)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
Data rate  
0.7 × VCCI  
VCCI  
V
V
0
0
0.3 × VCCI  
100  
DR(2)  
Mbps  
°C  
TA  
Ambient temperature  
-40  
25  
125  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
(2) 100 Mbps is the maximum specified data rate, although higher data rates are possible.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
7.4 Thermal Information  
ISO776x-Q1  
DW (SOIC)  
THERMAL METRIC(1)  
DBQ (SSOP)  
16 PINS  
86.5  
UNIT  
16 PINS  
60.3  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case(top) thermal resistance  
24.0  
26.9  
RθJB  
ψJT  
Junction-to-board thermal resistance  
29.3  
36.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
3.3  
1.7  
28.7  
36.1  
ψJB  
Rθ  
Junction-to-case(bottom) thermal resistance  
n/a  
n/a  
°C/W  
JC(bottom)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISO7760-Q1  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50-MHz 50% duty cycle square wave  
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side 1)  
Maximum power dissipation (side 2)  
292 mW  
50 mW  
242 mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50-MHz 50% duty cycle square wave  
PD1  
PD2  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50-MHz 50% duty cycle square wave  
ISO7761-Q1  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50-MHz 50% duty cycle square wave  
PD  
Maximum power dissipation (both sides)  
292 mW  
83 mW  
209 mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50-MHz 50% duty cycle square wave  
PD1  
PD2  
Maximum power dissipation (side 1)  
Maximum power dissipation (side 2)  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50-MHz 50% duty cycle square wave  
ISO7762-Q1  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50-MHz 50% duty cycle square wave  
PD  
Maximum power dissipation (both sides)  
292 mW  
116 mW  
176 mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50-MHz 50% duty cycle square wave  
PD1  
PD2  
Maximum power dissipation (side 1)  
Maximum power dissipation (side 2)  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50-MHz 50% duty cycle square wave  
ISO7763-Q1  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50-MHz 50% duty cycle square wave  
PD  
Maximum power dissipation (both sides)  
292 mW  
146 mW  
146 mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50-MHz 50% duty cycle square wave  
PD1  
PD2  
Maximum power dissipation (side 1)  
Maximum power dissipation (side 2)  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
input a 50-MHz 50% duty cycle square wave  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
7.6 Insulation Specifications  
VALUE  
PARAMETER  
TEST CONDITIONS  
UNIT  
DW-16 DBQ-16  
CLR External clearance(1)  
CPG External creepage(1)  
Shortest terminal-to-terminal distance through air  
Shortest terminal-to-terminal distance across the package surface  
Minimum internal gap (internal clearance)  
>8  
>8  
>3.7  
>3.7  
>21  
mm  
mm  
μm  
DTI  
CTI  
Distance through the insulation  
>21  
Tracking resistance (comparative  
tracking index)  
DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A  
>600  
>600  
V
Material group  
According to IEC 60664-1  
I
I
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
IIV  
IIV  
IIV  
IIII  
IIV  
IIII  
n/a  
Overvoltage category per IEC  
60664-1  
n/a  
DIN EN IEC 60747-17 (VDE 0884-17)(2)  
Maximum repetitive peak isolation  
voltage  
VIORM  
AC voltage (bipolar)  
2121  
566  
VPK  
AC voltage; Time dependent dielectric breakdown (TDDB) test; see  
9-7  
1500  
2121  
8000  
400  
566  
VRMS  
VDC  
VPK  
Maximum working isolation  
voltage  
VIOWM  
DC voltage  
Maximum transient isolation  
voltage  
VTEST = VIOTM , t = 60 s (qualification)  
VTEST = 1.2 x VIOTM, t = 1 s (100% production)  
VIOTM  
4242  
VIMP Maximum impulse voltage(3)  
8000  
4000  
VPK  
VPK  
Tested in air, 1.2/50-μs waveform per IEC 62368-1  
Tested in oil (qualification test), 1.2/50-μs waveform per IEC  
Maximum surge isolation  
VIOSM  
12800  
10000  
voltage(4)  
62368-1  
Method a, After Input/Output safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.2 × VIORM, tm = 10 s  
5  
5  
5  
5  
Method a, After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM, tm = 10 s  
qpd  
Apparent charge(5)  
pC  
Method b: At routine test (100% production) and preconditioning  
(type test);  
Vini = 1.2 x VIOTM, tini = 1 s;  
5  
5  
Vpd(m) = 1.875 x VIORM, tm = 1 s (method b1) or  
Vpd(m) = Vini, tm = tini (method b2)  
Barrier capacitance, input to  
output(6)  
CIO  
RIO  
~1.1  
~0.9  
pF  
VIO = 0.4 × sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
>1012  
>1011  
>109  
2
>1012  
>1011  
>109  
2
Isolation resistance(6)  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V, TS = 150°C  
Pollution degree  
Climatic category  
55/125/ 55/125/  
21  
21  
UL 1577  
VTEST = VISO , t = 60 s (qualification),  
VTEST = 1.2 × VISO , t = 1 s (100% production)  
VISO Withstanding isolation voltage  
5000  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these  
specifications.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air to determine the surge immunity of the package.  
(4) Testing is carried in oil to determine the intrinsic surge immunity of the isolation barrier.  
(5) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(6) All pins on each side of the barrier tied together creating a two-terminal device.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
7.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to  
DIN EN IEC 60747-17  
(VDE 0884-17)  
Recognized under UL 1577  
Component Recognition  
Program  
Certified according to  
EN 61010-1 and EN  
62368-1  
Certified according to IEC  
62368-1 and IEC 60601-1  
Certified according to GB  
4943.1  
Reinforced Insulation;  
Maximum transient  
isolation voltage, 8000  
VPK (DW-16) and 4242  
VPK (DBQ-16);  
Maximum repetitive  
peak isolation voltage,  
2121 VPK (DW-16) and  
566 VPK (DBQ-16);  
Maximum surge  
Reinforced insulation per  
CSA 62368-1 and IEC  
62368-1  
800 VRMS (DW-16) and 370  
VRMS (DBQ-16) maximum  
working voltage (pollution  
degree 2, material group I);  
DW-16: 2 MOPP (Means of 3000 VRMS  
Patient Protection) per CSA  
60601-1 and IEC 60601-1,  
250 VRMS maximum working  
voltage  
5000 VRMS Reinforced  
insulation per EN  
61010-1 up to working  
voltage of 600 VRMS  
(DW-16) and 300 VRMS  
(DBQ-16)  
5000 VRMS Reinforced  
insulation per EN  
62368-1 up to working  
voltage of 800 VRMS  
(DW-16) and 370 VRMS  
(DBQ-16)  
DW-16: Reinforced  
Insulation, Altitude 5000  
m, Tropical Climate, 700  
VRMS maximum working  
voltage;  
DBQ-16: Basic Insulation,  
Altitude 5000 m,  
DW-16: Single protection,  
5000 VRMS  
;
DBQ-16: Single protection,  
Tropical Climate, 400 VRMS  
maximum working voltage  
isolation voltage, 12800  
VPK (DW-16) and 10000  
VPK (DBQ-16)  
Certificate numbers:  
CQC15001121716 (DW)  
CQC18001199097 (DBQ)  
Certificate number:  
40040142  
Master contract number:  
220991  
File number: E181974  
Client ID number: 77311  
7.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
DW-16 PACKAGE  
R
θJA = 60.3 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C,  
377  
see 7-1  
θJA = 60.3 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C,  
see 7-1  
θJA = 60.3 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C,  
see 7-1  
R
Safety input, output, or supply  
current(1)  
IS  
576 mA  
R
754  
PS  
TS  
Safety input, output, or total power(1)  
Maximum safety temperature(1)  
2073 mW  
RθJA = 60.3 °C/W, TJ = 150°C, TA = 25°C, see 7-3  
150  
°C  
DBQ-16 PACKAGE  
R
θJA = 86.5 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C,  
263  
see 7-2  
θJA = 86.5 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C,  
see 7-2  
θJA = 86.5 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C,  
see 7-2  
θJA = 86.5 °C/W, TJ = 150°C, TA = 25°C, see 7-4  
R
Safety input, output, or supply  
IS  
401 mA  
current(1)  
R
525  
PS  
TS  
Safety input, output, or total power(1)  
Maximum safety temperature(1)  
1445 mW  
R
150  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the 7.4 table is that of a device installed on a high-K test board for leaded surface-  
mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
7.9 Electrical Characteristics5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(1)  
VCCO  
0.4  
VOH  
High-level output voltage  
4.8  
V
IOH = 4 mA; see 8-1  
VOL  
Low-level output voltage  
0.2  
0.6 x VCCI  
0.4 x VCCI  
0.2 x VCCI  
0.4  
V
V
IOL = 4 mA; see 8-1  
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
Rising input threshold voltage  
Falling input threshold voltage  
Input threshold voltage hysteresis  
High-level input current  
0.7 x VCCI  
0.3 x VCCI  
0.1 × VCCI  
V
V
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
10  
μA  
μA  
IIL  
Low-level input current  
10  
Common-mode transient  
immunity  
VI = VCCI or 0 V, VCM = 1200 V; see 图  
8-3  
CMTI  
CI  
85  
100  
2
kV/μs  
VI = VCC / 2 + 0.4 × sin (2πft), f = 1  
MHz, VCC = 5 V  
Input capacitance(2)  
pF  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
(2) Measured from input pin to ground.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
7.10 Supply Current Characteristics5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted).  
SUPPLY  
CURRENT  
PARAMETER  
ISO7760-Q1  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.6  
3
2.3  
4.9  
11.3  
5.3  
6.4  
5.6  
6.7  
9
VI = VCC1 (ISO7760-Q1);  
VI = 0 V (ISO7760-Q1 with F suffix)  
Supply current - DC  
signal  
mA  
8
VI = 0 V (ISO7760-Q1);  
VI = VCC1 (ISO7760-Q1 with F suffix)  
3.3  
5
1 Mbps  
3.5  
5.2  
6.4  
7
Supply current - AC  
signal  
All channels switching with square wave clock  
input; CL = 15 pF  
10 Mbps  
100 Mbps  
mA  
9
35  
44  
ISO7761-Q1  
VI = VCCI (1)(ISO7761-Q1);  
VI = 0 V (ISO7761-Q1 with F suffix)  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.9  
2.9  
2.7  
4.7  
10.6  
6.6  
6.4  
5.9  
7.2  
8.8  
15  
Supply current - DC  
signal  
mA  
mA  
7.3  
VI = 0 V (ISO7761-Q1);  
VI = VCCI (ISO7761-Q1 with F suffix)  
4.2  
4.7  
1 Mbps  
3.8  
5.3  
Supply current - AC  
signal  
All channels switching with square wave clock  
input; CL = 15 pF  
10 Mbps  
100 Mbps  
6.3  
11.5  
30.5  
38  
ISO7762-Q1  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
2.1  
2.6  
6.5  
5
3.2  
4.2  
9.3  
7.5  
6.3  
6.1  
7.6  
8.4  
21  
VI = VCCI (ISO7762-Q1);  
VI = 0 V (ISO7762-Q1 with F suffix)  
Supply current - DC  
signal  
mA  
mA  
VI = 0 V (ISO7762-Q1);  
VI = VCCI (ISO7762-Q1 with F suffix)  
4.5  
4
1 Mbps  
5.6  
6
Supply current - AC  
signal  
All channels switching with square wave clock  
input; CL = 15 pF  
10 Mbps  
100 Mbps  
16.5  
25.7  
32  
ISO7763-Q1  
VI = VCCI (ISO7763-Q1);  
VI = 0 V (ISO7763-Q1 with F suffix)  
ICC1, ICC2  
ICC1, ICC2  
2.4  
5.7  
3.7  
8.6  
Supply current - DC  
signal  
mA  
mA  
VI = 0 V (ISO7763-Q1);  
VI = VCCI (ISO7763-Q1 with F suffix)  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
4.2  
5.8  
21  
6.1  
8
Supply current - AC  
signal  
All channels switching with square wave clock  
input; CL = 15 pF  
10 Mbps  
100 Mbps  
26.5  
(1) VCCI = Input-side VCC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
7.11 Electrical Characteristics3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3.2  
MAX UNIT  
IOH = 2 mA; see 8-1  
VCCO (1) 0.3  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
0.1  
0.3  
V
V
IOL = 2 mA; see 8-1  
0.7 x  
VCCI  
VIT+(IN) Rising input threshold voltage  
0.6 x VCCI  
VIT-(IN)  
Falling input threshold voltage  
0.3 x VCCI  
0.1 × VCCI  
0.4 x VCCI  
0.2 x VCCI  
V
VI(HYS) Input threshold voltage hysteresis  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VCCI IH = V(1) at INx  
VIL = 0 V at INx  
10  
μA  
μA  
10  
Common-mode transient  
immunity  
VI = VCCI or 0 V, VCM = 1200 V; see 图  
8-3  
CMTI  
85  
100  
kV/μs  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
7.12 Supply Current Characteristics3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted).  
SUPPLY  
CURRENT  
PARAMETER  
ISO7760-Q1  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.6  
3
2.2  
4.8  
11.4  
5.3  
6.6  
5.3  
6.7  
7.8  
8.2  
33  
VI = VCC1 (ISO7760-Q1);  
VI = 0 V (ISO7760-Q1 with F suffix)  
Supply current - DC  
signal  
mA  
8
VI = 0 V (ISO7760-Q1);  
VI = VCC1 (ISO7760-Q1 with F suffix)  
3.3  
4.9  
3.4  
5
1 Mbps  
Supply current - AC  
signal  
All channels switching with square wave clock  
input; CL = 15 pF  
10 Mbps  
100 Mbps  
mA  
5.5  
6.3  
26  
ISO7761-Q1  
VI = VCCI (1) (ISO7761-Q1);  
VI = 0 V (ISO7761-Q1 with F suffix)  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.8  
2.9  
7.2  
4.2  
4.6  
3.7  
5.1  
5.5  
9.4  
22.8  
2.7  
4.7  
10.3  
6.6  
6.5  
5.7  
7
Supply current - DC  
signal  
mA  
mA  
VI = 0 V (ISO7761-Q1);  
VI = VCCI (ISO7761-Q1 with F suffix)  
1 Mbps  
Supply current - AC  
signal  
All channels switching with square wave clock  
input; CL = 15 pF  
10 Mbps  
100 Mbps  
7.8  
12  
29  
ISO7762-Q1  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
2.1  
2.5  
6.5  
5
3.2  
4.2  
9.4  
7.5  
6.2  
5.8  
7.1  
7.5  
16.5  
25  
VI = VCCI (ISO7762-Q1);  
VI = 0 V (ISO7762-Q1 with F suffix)  
Supply current - DC  
signal  
mA  
mA  
VI = 0 V (ISO7762-Q1);  
VI = VCCI (ISO7762-Q1 with F suffix)  
4.4  
3.9  
5.2  
5.4  
12.9  
19.5  
1 Mbps  
Supply current - AC  
signal  
All channels switching with square wave clock  
input; CL = 15 pF  
10 Mbps  
100 Mbps  
ISO7763-Q1  
VI = VCCI (ISO7763-Q1);  
VI = 0 V (ISO7763-Q1 with F suffix)  
ICC1, ICC2  
ICC1, ICC2  
2.4  
5.7  
3.7  
8.4  
Supply current - DC  
signal  
mA  
mA  
VI = 0 V (ISO7763-Q1);  
VI = VCCI (ISO7763-Q1 with F suffix)  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
4.2  
5.2  
16  
6.2  
7.5  
Supply current - AC  
signal  
All channels switching with square wave clock  
input; CL = 15 pF  
10 Mbps  
100 Mbps  
20.5  
(1) VCCI = Input-side VCC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
7.13 Electrical Characteristics2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = 1 mA; see 8-1  
IOL = 1 mA; see 8-1  
MIN  
TYP  
2.45  
0.05  
MAX  
UNIT  
V
VCCO (1) 0.2  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
0.2  
V
0.7 x  
VCCI  
VIT+(IN) Rising input threshold voltage  
0.6 x VCCI  
V
VIT-(IN) Falling input threshold voltage  
VI(HYS) Input threshold voltage hysteresis  
0.3 x VCCI  
0.1 × VCCI  
0.4 x VCCI  
0.2 x VCCI  
V
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
10  
μA  
μA  
10  
VI = VCCI or 0 V, VCM = 1200 V; see 图  
8-3  
CMTI  
Common-mode transient immunity  
85  
100  
kV/μs  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
7.14 Supply Current Characteristics2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted).  
SUPPLY  
CURRENT  
PARAMETER  
ISO7760-Q1  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.6  
3
2.2  
4.8  
11.6  
5.3  
6.8  
5.3  
7
VI = VCC1 (ISO7760-Q1);  
VI = 0 V (ISO7760-Q1 with F suffix)  
Supply current - DC  
signal  
mA  
8
VI = 0 V (ISO7760-Q1);  
VI = VCC1 (ISO7760-Q1 with F suffix)  
3.3  
4.9  
3.4  
5
1 Mbps  
Supply current - AC  
signal  
All channels switching with square wave clock  
input; CL = 15 pF  
10 Mbps  
100 Mbps  
mA  
4.9  
6
7.2  
8
20.3  
26  
ISO7761-Q1  
VI = VCCI (1) (ISO7761-Q1);  
VI = 0 V (ISO7761-Q1 with F suffix)  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.8  
2.9  
7.2  
4.2  
4.6  
3.7  
4.9  
5
2.7  
4.6  
10.3  
6.5  
6.7  
5.8  
7.1  
7.3  
10.7  
24  
Supply current - DC  
signal  
mA  
mA  
VI = 0 V (ISO7761-Q1);  
VI = VCCI (ISO7761-Q1 with F suffix)  
1 Mbps  
Supply current - AC  
signal  
All channels switching with square wave clock  
input; CL = 15 pF  
10 Mbps  
100 Mbps  
8.3  
18.1  
ISO7762-Q1  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
2.1  
2.6  
6.5  
4.9  
4.4  
3.9  
5
3.2  
4.1  
VI = VCCI (ISO7762-Q1);  
VI = 0 V (ISO7762-Q1 with F suffix)  
Supply current - DC  
signal  
mA  
mA  
9.6  
VI = 0 V (ISO7762-Q1);  
VI = VCCI (ISO7762-Q1 with F suffix)  
7.5  
6.4  
1 Mbps  
5.8  
7.1  
Supply current - AC  
signal  
All channels switching with square wave clock  
input; CL = 15 pF  
10 Mbps  
100 Mbps  
5
7.1  
10.9  
15.6  
14.1  
20.1  
ISO7763-Q1  
VI = VCCI (ISO7763-Q1);  
VI = 0 V (ISO7763-Q1 with F suffix)  
ICC1, ICC2  
ICC1, ICC2  
2.3  
5.7  
3.7  
8.4  
Supply current - DC  
signal  
mA  
mA  
VI = 0 V (ISO7763-Q1);  
VI = VCCI (ISO7763-Q1 with F suffix)  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
4.1  
4.9  
13  
6.1  
7.1  
17  
Supply current - AC  
signal  
All channels switching with square wave clock  
input; CL = 15 pF  
10 Mbps  
100 Mbps  
(1) VCCI = Input-side VCC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
MAX UNIT  
7.15 Switching Characteristics5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
11  
tPLH, tPHL Propagation delay time  
6
16  
4.9  
4
ns  
ns  
ns  
ns  
ns  
ns  
See 8-1  
Pulse width distortion(1) |tPHL tPLH  
|
PWD  
tsk(o)  
tsk(pp)  
tr  
0.4  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
4.5  
3.9  
3.9  
Output signal rise time  
1.1  
1.4  
See 8-1  
tf  
Output signal fall time  
Measured from the time VCC goes  
below 1.7 V. See 8-2  
tDO  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
1.3  
0.3  
μs  
216 1 PRBS data at 100 Mbps  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
7.16 Switching Characteristics3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
12  
MAX UNIT  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
Propagation delay time  
6
16  
5
ns  
ns  
ns  
ns  
ns  
ns  
See 8-1  
Pulse width distortion(1) |tPHL tPLH  
|
0.5  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
4.1  
4.5  
3
Output signal rise time  
1
1
See 8-1  
tf  
Output signal fall time  
3
Measured from the time VCC goes  
below 1.7 V. See 8-2  
tDO  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
1.3  
0.3  
μs  
216 1 PRBS data at 100 Mbps  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
 
 
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
7.17 Switching Characteristics2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
13  
MAX UNIT  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
Propagation delay time  
7.5  
18.5  
5.1  
4.1  
4.6  
3.5  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
See 8-1  
Pulse width distortion(1) |tPHL tPLH  
|
0.6  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
Output signal rise time  
1
1
See 8-1  
tf  
Output signal fall time  
Measured from the time VCC goes  
below 1.7 V. See 8-2  
tDO  
tie  
Default output delay time from input power loss  
Time interval error  
0.1  
1.3  
0.3  
μs  
216 1 PRBS data at 100 Mbps  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
7.18 Insulation Characteristics Curves  
800  
600  
500  
400  
300  
200  
100  
0
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
700  
600  
500  
400  
300  
200  
100  
0
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D008  
D009  
7-1. Thermal Derating Curve for Limiting Current 7-2. Thermal Derating Curve for Limiting Current  
per VDE for DW-16 Package per VDE for DBQ-16 Package  
2500  
2000  
1500  
1000  
500  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D010  
D011  
7-3. Thermal Derating Curve for Limiting Power  
7-4. Thermal Derating Curve for Limiting Power  
per VDE for DW-16 Package  
per VDE for DBQ-16 Package  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
7.19 Typical Characteristics  
48  
14  
12  
10  
8
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
ICC2 at 5 V  
6
4
2
4
0
0
0
25  
50  
Data Rate (Mbps)  
75  
100  
0
25  
50  
Data Rate (Mbps)  
75  
100  
D001  
D002  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
7-5. ISO7760-Q1 Supply Current vs Data Rate  
7-6. ISO7760-Q1 Supply Current vs Data Rate  
(With 15-pF Load)  
(With No Load)  
48  
14  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
44  
12  
40  
36  
32  
28  
24  
20  
16  
12  
8
10  
8
6
4
2
4
0
0
0
25  
50  
Data Rate (Mbps)  
75  
100  
0
25  
50  
Data Rate (Mbps)  
75  
100  
D012  
D013  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
7-7. ISO7761-Q1 Supply Current vs Data Rate  
7-8. ISO7761-Q1 Supply Current vs Data Rate  
(With 15-pF Load)  
(With No Load)  
48  
14  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
44  
12  
40  
36  
32  
28  
24  
20  
16  
12  
8
10  
8
6
4
2
4
0
0
0
25  
50  
Data Rate (Mbps)  
75  
100  
0
25  
50  
Data Rate (Mbps)  
75  
100  
D014  
D015  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
7-9. ISO7762-Q1 Supply Current vs Data Rate  
7-10. ISO7762-Q1 Supply Current vs Data Rate  
(With 15-pF Load)  
(With No Load)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
48  
14  
12  
10  
8
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
ICC2 at 5 V  
6
4
2
4
0
0
0
25  
50  
Data Rate (Mbps)  
75  
100  
0
25  
50  
Data Rate (Mbps)  
75  
100  
D016  
D017  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
7-11. ISO7763-Q1 Supply Current vs Data Rate 7-12. ISO7763-Q1 Supply Current vs Data Rate  
(With 15-pF Load) (With No Load)  
6
5
4
3
2
1
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5 V  
0
5
10  
Low-Level Output Current (mA)  
15  
-15  
-10 -5  
High-Level Output Current (mA)  
0
D004  
D003  
TA = 25°C  
TA = 25°C  
7-14. Low-Level Output Voltage vs Low-Level  
7-13. High-Level Output Voltage vs High-Level  
Output Current  
Output Current  
2.25  
14  
13  
12  
11  
10  
VCC1 Rising  
2.2  
VCC1 Falling  
VCC2 Rising  
VCC2 Falling  
2.15  
2.1  
2.05  
2
1.95  
1.9  
1.85  
1.8  
tPLH at 2.5 V  
tPHL at 2.5 V  
tPLH at 3.3 V  
tPHL at 3.3 V  
tPLH at 5 V  
tPHL at 5 V  
1.75  
1.7  
-60  
9
-55  
-30  
0
30  
60  
90  
120  
-10  
35  
Free-Air Temperature (èC)  
80  
125  
Free-Air Temperature (èC)  
D005  
D006  
7-15. Power Supply Undervoltage Threshold vs  
7-16. Propagation Delay Time vs Free-Air  
Free-Air Temperature  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
1600  
1400  
1200  
1000  
800  
Rising Edge Jitter at 2.5 V  
Falling Edge Jitter at 2.5 V  
Rising Edge Jitter at 3.3 V  
Falling Edge Jitter at 3.3 V  
Rising Edge Jitter at 5 V  
Falling Edge Jitter at 5 V  
600  
0
25  
50  
Data Rate (Mbps)  
75  
100  
D007  
TA = 25°C  
7-17. Peak-to-Peak Output Jitter vs Data Rate  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
Parameter Measurement Information  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
V
t
t
PHL  
PLH  
Input  
Generator  
(See Note A)  
C
L
V
I
V
50  
O
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
Copyright © 2016, Texas Instruments Incorporated  
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3 ns, tf 3 ns, ZO  
= 50 Ω. At the input, a 50-Ωresistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
8-1. Switching Characteristics Test Circuit and Voltage Waveforms  
V
I
See Note B  
V
CC  
V
CC  
V
1.7 V  
I
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. Power-supply ramp rate = 10 mV/ns  
8-2. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CCO  
CCI  
C = 0.1 µF 1%  
C = 0.1 µF 1%  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
V
OH  
or V  
OL  
C
L
œ
See Note A  
GNDI  
GNDO  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
8-3. Common-Mode Transient Immunity Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
8 Detailed Description  
8.1 Overview  
The ISO776x-Q1 family of devices uses an ON-OFF keying (OOK) modulation scheme to transmit the digital  
data across a silicon-dioxide based isolation barrier. The transmitter sends a high-frequency carrier across the  
barrier to represent one digital state and sends no signal to represent the other digital state. The receiver  
demodulates the signal after advanced signal conditioning and produces the output through a buffer stage. The  
ISO776x-Q1 family of devices also incorporates advanced circuit techniques to maximize the CMTI performance  
and minimize the radiated emissions because of the high-frequency carrier and IO buffer switching. The  
conceptual block diagram of a digital capacitive isolator, 8-1, shows a functional block diagram of a typical  
channel. 8-2 shows a conceptual detail of how the ON-OFF keying scheme works.  
8.2 Functional Block Diagram  
Transmitter  
Receiver  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
Copyright © 2016, Texas Instruments Incorporated  
8-1. Conceptual Block Diagram of a Digital Capacitive Isolator  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
8-2. ON-OFF Keying (OOK) Based Modulation Scheme  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
8.3 Feature Description  
8-1 lists the device features.  
8-1. Device Features  
MAXIMUM DATA  
RATE  
DEFAULT  
OUTPUT  
PART NUMBER  
CHANNEL DIRECTION  
PACKAGE  
RATED ISOLATION(1)  
DW-16  
DBQ-16  
DW-16  
DBQ-16  
DW-16  
DBQ-16  
DW-16  
DBQ-16  
DW-16  
DBQ-16  
DW-16  
DBQ-16  
DW-16  
DBQ-16  
DW-16  
DBQ-16  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
6 Forward,  
0 Reverse  
ISO7760-Q1  
100 Mbps  
100 Mbps  
100 Mbps  
100 Mbps  
100 Mbps  
100 Mbps  
100 Mbps  
100 Mbps  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
6 Forward,  
0 Reverse  
ISO7760-Q1 with F suffix  
ISO7761-Q1  
5 Forward,  
1 Reverse  
5 Forward,  
1 Reverse  
ISO7761-Q1 with F suffix  
ISO7762-Q1  
4 Forward,  
2 Reverse  
4 Forward,  
2 Reverse  
ISO7762-Q1 with F suffix  
ISO7763-Q1  
3 Forward,  
3 Reverse  
3 Forward,  
3 Reverse  
ISO7763-Q1 with F suffix  
(1) See 7.7 for detailed isolation ratings.  
8.3.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO776x-  
Q1 family of devices incorporates many chip-level design improvements for overall system robustness. Some of  
these improvements include:  
Robust ESD protection for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
8.4 Device Functional Modes  
8-2 lists the functional modes for the ISO776x-Q1.  
8-2. Function Table  
INPUT  
(INx)(3)  
OUTPUT  
(OUTx)  
(1)  
VCCI  
VCCO  
COMMENTS  
H
L
H
L
Normal Operation:  
A channel output assumes the logic state of the input.  
PU  
PU  
Default mode: When INx is open, the corresponding channel output goes to its  
default logic state. Default is High for ISO776x-Q1 and Low for ISO776x-Q1  
with F suffix.  
Open  
Default  
Default mode: When VCCI is unpowered, a channel output assumes the logic  
state based on the selected default option. Default is High for ISO776x-Q1 and  
Low for ISO776x-Q1 with F suffix.  
PD  
X
PU  
PD  
X
X
Default  
When VCCI transitions from unpowered to powered-up, a channel output  
assumes the logic state of its input.  
When VCCI transitions from powered-up to unpowered, channel output  
assumes the selected default state.  
When VCCO is unpowered, a channel output is undetermined (2)  
.
Undetermined  
When VCCO transitions from unpowered to powered-up, a channel output  
assumes the logic state of the input  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC 2.25 V); PD = Powered down (VCC 1.7 V); X = Irrelevant;  
H = High level; L = Low level  
(2) The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V.  
(3) A strongly driven input signal can weakly power the floating VCC via an internal protection diode and cause undetermined output.  
8.4.1 Device I/O Schematics  
Input (Devices without F suffix)  
Input (Devices with F suffix)  
V
V
V
V
CCI  
V
V
V
CCI  
CCI  
CCI  
CCI  
CCI  
CCI  
1.5 M  
985 ꢀ  
985 ꢀ  
INx  
INx  
1.5 Mꢀ  
Output  
V
CCO  
~20 ꢀ  
OUTx  
Copyright © 2016, Texas Instruments Incorporated  
8-3. Device I/O Schematics  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The ISO776x-Q1 family of devices is a high-performance, six-channel digital isolators. The ISO776x-Q1 family of  
devices uses single-ended CMOS-logic switching technology. The voltage range is from 2.25 V to 5.5 V for both  
supplies, VCC1 and VCC2. When designing with digital isolators, keep in mind that because of the single-ended  
design structure, digital isolators do not conform to any specific interface standard and are only intended for  
isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data  
controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the interface type or  
standard.  
9.2 Typical Application  
9-1 shows the isolated serial-peripheral interface (SPI) and controller-area network (CAN) interface  
implementation.  
VS  
10 F  
3.3 V  
2
MBR0520L  
Vcc  
1:1.33  
ISO 3.3V  
3
1
1
5
D2  
D1  
IN  
OUT  
10 F  
TPS76333-Q1  
2
4
6
SN6501-Q1  
VIN  
VOUT  
0.1 F  
10 F  
3
2
EN  
GND  
1 µF  
REF5025A-Q1  
GND  
22 µF  
MBR0520L  
GND  
GND  
4
5
ISO Barrier  
0.1 F  
0.1 µF  
0.1 F  
8
7
36  
5
4
16  
1
0.1 F  
AINP MXO +VBD +VA REFP  
31  
VCC2  
28  
VCC1  
CS  
CH0  
32  
33  
34  
2
3
SCLK  
SDI  
16 Analog  
Inputs  
INA  
OUTA  
OUTB  
29, 57  
ADS7953-Q1  
44  
15  
14  
INB  
11  
SPICLKA  
VDDIO  
SDO  
CH15  
33  
BDGND AGND  
27 1, 22  
REFM  
30  
4
6
ISO7762-Q1  
INC  
SPISIMOA  
SPISOMIA  
OUTC  
INE  
36  
34  
13  
OUTE  
11  
10  
TMS320F28035Q  
7
5
CANRXA  
CANTXA  
INF  
OUTF  
IND  
0.1 F  
26  
25  
OUTD  
12  
3
VSS  
VCC  
RS  
8
GND1  
8
GND2  
9
10 (optional)  
6, 28  
4
1
R
CANH  
CAN Bus  
7
6
SN65HVD231Q-Q1  
CANL  
Vref  
10 (optional)  
D
GND  
5
SM712  
2
4.7 nF /  
2 kV  
Copyright © 2016, Texas Instruments Incorporated  
Multiple pins and discrete components omitted for clarity purpose.  
9-1. Isolated SPI and CAN Interface  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETER  
VALUE  
2.25 to 5.5 V  
0.1 µF  
Supply voltage, VCC1 and VCC2  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,  
the ISO776x-Q1 family of devices only requires two external bypass capacitors to operate.  
0.1 µF  
0.1 µF  
VCC1  
1
16  
VCC2  
2
3
INA  
INB  
15  
14  
OUTA  
OUTB  
13  
OUTC  
INC  
4
IND  
INE  
12  
11  
10  
9
OUTD  
OUTE  
5
6
7
8
OUTF  
INF  
GND1  
GND2  
9-2. Typical ISO7761-Q1 Circuit Hook-up  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2.3 Application Curves  
The typical eye diagram of the ISO776x-Q1 family of devices indicates low jitter and a wide open eye at the  
maximum data rate of 100 Mbps.  
9-4. Eye Diagram at 100 Mbps PRBS 216 1  
9-3. Eye Diagram at 100 Mbps PRBS 216 1  
Data,  
Data,  
3.3 V and 25°C  
5 V and 25°C  
9-5. Eye Diagram at 100 Mbps PRBS 216 1 Data,  
2.5 V and 25°C  
9.2.3.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See 9-6 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation  
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 50% for  
lifetime which translates into minimum required insulation lifetime of 30 years at a working voltage that's 20%  
higher than the specified value.  
9-7 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the intrinsic capability of the insulation is 1500 VRMS with a lifetime of 169 years. Other  
factors, such as package size, pollution degree, material group, etc. can further limit the working voltage of the  
component. The working voltage of DW-16 package is specified upto 1500 VRMS and DBQ-16 package up to  
400 VRMS. At the lower working voltages, the corresponding insulation lifetime is much longer than 169 years.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
9-6. Test Setup for Insulation Lifetime Measurement  
9-7. Insulation Lifetime Projection Data  
10 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended  
at input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as  
possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501 or  
SN6505. For such applications, detailed power supply design and transformer selection recommendations are  
available in the SN6501 Transformer Driver for Isolated Power Supplies data sheet or the SN6505 Low-Noise 1-  
A Transformer Drivers for Isolated Power Supplies data sheet.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see 11-1). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/inch2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
For detailed layout recommendations, see the Digital Isolator Design Guide application report.  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength  
and stiffness, and the self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
0 ~ 4.5  
r
Power plane  
Low-speed traces  
11-1. Layout Example Schematic  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Digital Isolator Design Guide application report  
Texas Instruments, How to use isolation to improve ESD, EFT and Surge immunity in industrial systems  
application report  
Texas Instruments, Isolation Glossary  
Texas Instruments, TMS320F2803xPiccoloMicrocontrollers data sheet  
Texas Instruments, ADS7953-Q1 Automotive 12-Bit, 1MSPS, 16-Channel Single-Ended Micropower, Serial  
Interface ADC data sheet  
Texas Instruments, REF50xxA-Q1 Low-Noise, Very Low Drift, Precision Voltage Reference data sheet  
Texas Instruments, SN6501-Q1 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, SN65HVD231Q-Q1 3.3-V CAN Transceiver data sheet  
Texas Instruments, TPS76333-Q1 Low-Power 150-mA Low-Dropout Linear Regulators data sheet  
12.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
12-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
ISO7760-Q1  
ISO7761-Q1  
ISO7762-Q1  
ISO7763-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
Piccolois a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
 
 
 
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
 
 
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
16X (1.65)  
16X (0.6)  
SEE  
DETAILS  
SEE  
DETAILS  
1
1
16  
16  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
9
9
8
8
R0.05 TYP  
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1  
www.ti.com.cn  
ZHCSJ25C NOVEMBER 2018 REVISED OCTOBER 2022  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
R0.05 TYP  
14X (1.27)  
8
9
8
9
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7760FQDBQQ1  
ISO7760FQDBQRQ1  
ISO7760FQDWQ1  
ISO7760FQDWRQ1  
ISO7760QDBQQ1  
ISO7760QDBQRQ1  
ISO7760QDWQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SOIC  
SOIC  
SSOP  
SSOP  
SOIC  
SOIC  
SSOP  
SSOP  
SOIC  
SOIC  
SSOP  
SSOP  
SOIC  
SOIC  
SSOP  
SSOP  
SOIC  
SOIC  
DBQ  
DBQ  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
7760FQ  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
7760FQ  
ISO7760FQ  
ISO7760FQ  
7760Q  
DW  
DBQ  
DBQ  
DW  
7760Q  
ISO7760Q  
ISO7760Q  
7761FQ  
ISO7760QDWRQ1  
ISO7761FQDBQQ1  
ISO7761FQDBQRQ1  
ISO7761FQDWQ1  
ISO7761FQDWRQ1  
ISO7761QDBQQ1  
ISO7761QDBQRQ1  
ISO7761QDWQ1  
DW  
DBQ  
DBQ  
DW  
7761FQ  
ISO7761FQ  
ISO7761FQ  
7761Q  
DW  
DBQ  
DBQ  
DW  
7761Q  
ISO7761Q  
ISO7761Q  
7762FQ  
ISO7761QDWRQ1  
ISO7762FQDBQQ1  
ISO7762FQDBQRQ1  
ISO7762FQDWQ1  
ISO7762FQDWRQ1  
DW  
DBQ  
DBQ  
DW  
7762FQ  
ISO7762FQ  
ISO7762FQ  
DW  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2022  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7762QDBQQ1  
ISO7762QDBQRQ1  
ISO7762QDWQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SOIC  
SOIC  
SSOP  
SSOP  
SOIC  
SOIC  
SSOP  
SSOP  
SOIC  
SOIC  
DBQ  
DBQ  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
7762Q  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
7762Q  
ISO7762Q  
ISO7762Q  
7763FQ  
ISO7762QDWRQ1  
ISO7763FQDBQQ1  
ISO7763FQDBQRQ1  
ISO7763FQDWQ1  
ISO7763FQDWRQ1  
ISO7763QDBQQ1  
ISO7763QDBQRQ1  
ISO7763QDWQ1  
DW  
DBQ  
DBQ  
DW  
7763FQ  
ISO7763FQ  
ISO7763FQ  
7763Q  
DW  
DBQ  
DBQ  
DW  
7763Q  
ISO7763Q  
ISO7763Q  
ISO7763QDWRQ1  
DW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2022  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 :  
Catalog : ISO7760, ISO7761, ISO7762, ISO7763  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7760FQDBQRQ1  
ISO7760FQDWRQ1  
ISO7760QDBQRQ1  
ISO7760QDWRQ1  
ISO7761FQDBQRQ1  
ISO7761FQDWRQ1  
ISO7761QDBQRQ1  
ISO7761QDWRQ1  
ISO7762FQDBQRQ1  
ISO7762FQDWRQ1  
ISO7762QDBQRQ1  
ISO7762QDWRQ1  
ISO7763FQDBQRQ1  
ISO7763FQDWRQ1  
ISO7763QDBQRQ1  
ISO7763QDWRQ1  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
DBQ  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2500  
2000  
2500  
2000  
2500  
2000  
2500  
2000  
2500  
2000  
2500  
2000  
2500  
2000  
2500  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
16.4  
12.4  
16.4  
12.4  
16.4  
12.4  
16.4  
12.4  
16.4  
12.4  
16.4  
12.4  
16.4  
12.4  
16.4  
6.4  
10.75 10.7  
6.4 5.2  
10.75 10.7  
6.4 5.2  
10.75 10.7  
6.4 5.2  
10.75 10.7  
6.4 5.2  
10.75 10.7  
6.4 5.2  
10.75 10.7  
6.4 5.2  
10.75 10.7  
6.4 5.2  
10.75 10.7  
5.2  
2.1  
2.7  
2.1  
2.7  
2.1  
2.7  
2.1  
2.7  
2.1  
2.7  
2.1  
2.7  
2.1  
2.7  
2.1  
2.7  
8.0  
12.0  
8.0  
12.0  
16.0  
12.0  
16.0  
12.0  
16.0  
12.0  
16.0  
12.0  
16.0  
12.0  
16.0  
12.0  
16.0  
12.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
DBQ  
DW  
12.0  
8.0  
DBQ  
DW  
12.0  
8.0  
DBQ  
DW  
12.0  
8.0  
DBQ  
DW  
12.0  
8.0  
DBQ  
DW  
12.0  
8.0  
DBQ  
DW  
12.0  
8.0  
DBQ  
DW  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7760FQDBQRQ1  
ISO7760FQDWRQ1  
ISO7760QDBQRQ1  
ISO7760QDWRQ1  
ISO7761FQDBQRQ1  
ISO7761FQDWRQ1  
ISO7761QDBQRQ1  
ISO7761QDWRQ1  
ISO7762FQDBQRQ1  
ISO7762FQDWRQ1  
ISO7762QDBQRQ1  
ISO7762QDWRQ1  
ISO7763FQDBQRQ1  
ISO7763FQDWRQ1  
ISO7763QDBQRQ1  
ISO7763QDWRQ1  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
DBQ  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2500  
2000  
2500  
2000  
2500  
2000  
2500  
2000  
2500  
2000  
2500  
2000  
2500  
2000  
2500  
2000  
350.0  
350.0  
367.0  
350.0  
367.0  
350.0  
367.0  
350.0  
367.0  
350.0  
367.0  
350.0  
350.0  
350.0  
367.0  
350.0  
350.0  
350.0  
367.0  
350.0  
367.0  
350.0  
367.0  
350.0  
367.0  
350.0  
367.0  
350.0  
350.0  
350.0  
367.0  
350.0  
43.0  
43.0  
38.0  
43.0  
38.0  
43.0  
38.0  
43.0  
38.0  
43.0  
38.0  
43.0  
43.0  
43.0  
38.0  
43.0  
DBQ  
DW  
DBQ  
DW  
DBQ  
DW  
DBQ  
DW  
DBQ  
DW  
DBQ  
DW  
DBQ  
DW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Feb-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO7760FQDBQQ1  
ISO7760FQDWQ1  
ISO7760QDBQQ1  
ISO7760QDWQ1  
ISO7761FQDBQQ1  
ISO7761FQDWQ1  
ISO7761QDBQQ1  
ISO7761QDWQ1  
ISO7762FQDBQQ1  
ISO7762FQDWQ1  
ISO7762QDBQQ1  
ISO7762QDWQ1  
ISO7763FQDBQQ1  
ISO7763FQDWQ1  
ISO7763QDBQQ1  
ISO7763QDWQ1  
DBQ  
DW  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
SSOP  
SOIC  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
75  
40  
75  
40  
75  
40  
75  
40  
75  
40  
75  
40  
75  
40  
75  
40  
505.46  
506.98  
505.46  
506.98  
505.46  
506.98  
505.46  
506.98  
505.46  
506.98  
505.46  
506.98  
505.46  
506.98  
505.46  
506.98  
6.76  
12.7  
6.76  
12.7  
6.76  
12.7  
6.76  
12.7  
6.76  
12.7  
6.76  
12.7  
6.76  
12.7  
6.76  
12.7  
3810  
4826  
3810  
4826  
3810  
4826  
3810  
4826  
3810  
4826  
3810  
4826  
3810  
4826  
3810  
4826  
4
6.6  
4
DBQ  
DW  
6.6  
4
DBQ  
DW  
6.6  
4
DBQ  
DW  
6.6  
4
DBQ  
DW  
6.6  
4
DBQ  
DW  
6.6  
4
DBQ  
DW  
6.6  
4
DBQ  
DW  
6.6  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DW 16  
7.5 x 10.3, 1.27 mm pitch  
SOIC - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224780/A  
www.ti.com  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
R0.05 TYP  
9
9
8
8
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
R0.05 TYP  
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY