ISO7810DWR [TI]

高隔离额定值、单通道、增强型数字隔离器 | DW | 16 | -55 to 125;
ISO7810DWR
型号: ISO7810DWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高隔离额定值、单通道、增强型数字隔离器 | DW | 16 | -55 to 125

文件: 总26页 (文件大小:1583K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ISO7810, ISO7810F  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
ISO7810 高性能 8000 VPK 增强型单通道数字隔离器  
1 特性  
2 应用范围  
1
信号传输速率:高达 100Mbps  
工业自动化  
电机控制  
宽电源电压范围:2.25V 5.5V  
2.25V 5.5V 电平转换  
电源  
宽温度范围:-55°C 125°C  
太阳能逆变器  
医疗设备  
低功耗,每通道电流典型值为 1.8mA1Mbps 时)  
低传播延迟:典型值 11ns  
5V 电源供电时)  
混合动力电动汽车  
3 说明  
行业领先的 CMTI±100kV/μs  
优异的电磁兼容性 (EMC)  
7810ISO 是一款高性能单通道数字隔离器,隔离电压  
高达 8000 VPK。 该器件已通过符合 VDECSA 和  
CQC 标准的增强型隔离认证。 在隔离 CMOS 或者  
LVCMOS 数字 I/O 时,该隔离器可提供高电磁抗扰度  
和低辐射,且具有低功耗特性。 每个隔离通道的逻辑  
输入和输出缓冲器均由二氧化硅 (SiO2) 绝缘隔栅分离  
开来。 如果出现输入功率或信号丢失,ISO7810 器件  
默认输出电平,ISO7810F 器件默认输出电  
平。 更多详细信息,请参见器件功能模式。与隔离式  
电源一起使用时,此器件可防止数据总线或者其它电路  
上的噪音电流进入本地接地,以及干扰或损坏敏感电  
路。 凭借创新的芯片设计和布线技术,ISO7810 的电  
磁兼容性得到了显著增强,从而可确保提供系统级  
ESDEFT 和浪涌保护并符合辐射标准。 ISO7810 采  
16 引脚 SOIC 宽体 (DW) 封装。  
系统级静电放电 (ESD)、瞬态放电 (EFT) 以及抗浪  
涌保护  
低辐射  
隔离隔栅寿命:> 25 年  
宽体 (DW) 小外形尺寸集成电路 (SOIC)-16 封装  
安全及管理批准:  
8000 VPK VIOTM 2121 VPK VIORM 增强型隔  
离,符合 DIN V VDE V 0884-10 (VDE V 0884-  
10):2006-12 标准  
符合 UL 1577 标准且长达 1 分钟的 5.7kVRMS  
隔离  
CSA 组件接受通知 5AIEC 60950-1IEC  
60601-1 IEC 61010-1 终端设备标准  
通过 GB4943.1-2011 CQC 认证  
器件信息(1)  
部件号  
ISO7810  
ISO7810F  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
封装  
封装尺寸(标称值)  
SOICDW (16) 10.30mm x 7.50mm  
简化电路原理图  
ë//h  
ë//L  
Lsolation  
/apacitor  
Lbx  
hÜÇx  
Db5L  
Db5h  
(1)  
(2)  
V
CCI GNDI 分别是输入通道的电源和接地连接。  
CCO GNDO 分别是输出通道的电源和接地连接。  
V
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEP1  
 
 
 
 
ISO7810, ISO7810F  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 15  
Applications and Implementation ...................... 16  
9.1 Application Information............................................ 16  
9.2 Typical Application .................................................. 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Power Rating............................................................. 5  
6.6 Electrical Characteristics, 5 V ................................... 5  
6.7 Electrical Characteristics, 3.3 V ................................ 6  
6.8 Electrical Characteristics, 2.5 V ................................ 6  
6.9 Switching Characteristics, 5 V .................................. 7  
6.10 Switching Characteristics, 3.3 V ............................. 7  
6.11 Switching Characteristics, 2.5 V ............................. 7  
6.12 Typical Characteristics............................................ 8  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 10  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 19  
11.1 PCB Material......................................................... 19  
11.2 Layout Guidelines ................................................. 19  
11.3 Layout Example .................................................... 19  
12 器件和文档支持 ..................................................... 20  
12.1 文档支持................................................................ 20  
12.2 相关链接................................................................ 20  
12.3 社区资源................................................................ 20  
12.4 ....................................................................... 20  
12.5 静电放电警告......................................................... 20  
12.6 Glossary................................................................ 20  
13 机械、封装和可订购信息....................................... 20  
7
8
4 修订历史记录  
Changes from Original (July 2015) to Revision A  
Page  
已从单页产品预览更改为量产数据表 ................................................................................................................................. 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7810, ISO7810F  
www.ti.com.cn  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
5 Pin Configuration and Functions  
DW Package  
16-Pin (SOIC)  
Top View  
GND1  
GND2  
1
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
2
VCC1  
VCC2  
3
INA  
OUTA  
4
NC  
NC  
5
NC  
NC  
NC  
6
GND1  
7
NC  
GND2  
8
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND1  
GND2  
INA  
NO.  
1, 7  
9, 16  
4
I
Ground connection for VCC1  
Ground connection for VCC2  
Input, channel A  
2, 5, 6, 8, 10 , 11,  
12, 15  
NC  
Not connected  
OUTA  
VCC1  
VCC2  
13  
3
O
Output, channel A  
Power supply, VCC1  
Power supply, VCC2  
14  
Copyright © 2015, Texas Instruments Incorporated  
3
ISO7810, ISO7810F  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.5  
–0.5  
-15  
MAX  
UNIT  
V
Supply voltage(2)  
Voltage  
VCC1, VCC2  
6
VCC + 0.5(3)  
15  
INx, OUTx  
IO  
V
Output Current  
Storage temperature, Tstg  
mA  
°C  
–65  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins  
±6000  
V
(1)  
VESD  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
±1500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
2.25  
-4  
TYP  
MAX  
UNIT  
VCC1, VCC2  
Supply voltage  
5.5  
V
VCCO(1) = 5 V  
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 5 V  
IOH  
High-level output current  
-2  
mA  
mA  
-1  
4
IOL  
Low-level output current  
VCCO = 3.3 V  
VCCO = 2.5 V  
2
1
(1)  
VIH  
VIL  
tui  
High-level input voltage  
Low-level input voltage  
Input pulse duration  
Signaling rate  
0.7 x VCCI  
VCCI  
V
V
0
7
0.3 x VCCI  
ns  
DR  
TJ  
0
100  
150  
125  
Mbps  
°C  
Junction temperature(2)  
-55  
-55  
TA  
Ambient temperature  
25  
°C  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
(2) To maintain the recommended operating conditions for TJ, see the Thermal Information table.  
4
Copyright © 2015, Texas Instruments Incorporated  
ISO7810, ISO7810F  
www.ti.com.cn  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
6.4 Thermal Information  
SOIC  
UNIT  
THERMAL METRIC  
16 Pins (DW)  
RθJA  
Junction-to-ambient thermal resistance  
84.7  
47.3  
RθJC(top)  
RθJB  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
49.4  
°C/W  
19.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
ψJB  
48.8  
n/a  
RθJC(bottom)  
6.5 Power Rating  
VALUE  
100  
40  
UNIT  
PD  
Maximum power dissipation by ISO7810  
VCC1 = VCC2 = 5.5 V, TJ = 150°C,  
PD1  
PD2  
Maximum power dissipation by side-1 of ISO7810 CL = 15 pF, input a 50 MHz 50% duty cycle  
mW  
square wave  
Maximum power dissipation by side-2 of ISO7810  
60  
6.6 Electrical Characteristics, 5 V  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOH  
VOL  
VI(HYS)  
IIH  
High-level output voltage  
Low-level output voltage  
Input threshold voltage hysteresis  
High-level input current  
Low-level input current  
IOH = –4 mA; see Figure 7  
VCCX(1) – 0.4 VCCX(1) – 0.2  
V
IOL = 4 mA; see Figure 7  
0.2  
0.4  
10  
V
V
(1)  
0.1 x VCCX  
VIH = VCCX(1) at INx or ENx  
VIL = 0 V at INx or ENx  
μA  
IIL  
-10  
CMTI  
ICC1  
Common-mode transient immunity VI = VCCX(1) or 0 V; see Figure 9  
50  
100  
0.6  
kV/μs  
DC signal: VI = 0 V (Devices with  
1.1  
1.1  
2.7  
1.1  
suffix F) , VI = VCCX (Devices without  
suffix F)  
ICC2  
ICC1  
ICC2  
0.6  
1.8  
0.7  
Supply current  
Supply current  
DC Signal  
mA  
mA  
DC signal: VI = VCCX (Devices with  
suffix F) , VI = 0 V (Devices without  
suffix F)  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.2  
0.6  
1.2  
1.1  
1.3  
5.7  
1.9  
1.1  
1.9  
1.6  
2
1 Mbps  
AC Signal: All channels switching with  
square wave clock input;  
CL = 15 pF  
10 Mbps  
100 Mbps  
6.7  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
Copyright © 2015, Texas Instruments Incorporated  
5
 
ISO7810, ISO7810F  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
6.7 Electrical Characteristics, 3.3 V  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
VCCX(1) – 0.4 VCCX(1) – 0.2  
0.2  
TYP  
MAX UNIT  
VOH  
VOL  
VI(HYS)  
IIH  
High-level output voltage  
Low-level output voltage  
Input threshold voltage hysteresis  
High-level input current  
Low-level input current  
IOH = –2 mA; see Figure 7  
V
IOL = 2 mA; see Figure 7  
0.4  
10  
V
V
(1)  
0.1 x VCCX  
VIH = VCCX(1) at INx or ENx  
VIL = 0 V at INx or ENX  
μA  
IIL  
-10  
CMTI  
ICC1  
Common-mode transient immunity VI = VCCX or 0 V; see Figure 9  
DC signal: VI = 0 V (Devices with  
50  
100  
0.6  
kV/μs  
1.1  
1
suffix F) , VI = VCCX (Devices without  
suffix F)  
ICC2  
ICC1  
ICC2  
0.6  
1.8  
0.6  
Supply current  
DC Signal  
mA  
mA  
DC signal: VI = VCCx (Devices with  
suffix F) , VI = 0 V(Devices without  
suffix F)  
2.7  
1.1  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.2  
0.6  
1.2  
0.9  
1.3  
4.1  
1.9  
1.1  
1.9  
1.4  
2
1 Mbps  
AC Signal: All channels switching with  
square wave clock input; CL = 15 pF  
Supply current  
10 Mbps  
100 Mbps  
4.9  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
6.8 Electrical Characteristics, 2.5 V  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOH  
VOL  
VI(HYS)  
IIH  
High-level output voltage  
Low-level output voltage  
Input threshold voltage hysteresis  
High-level input current  
Low-level input current  
IOH = –1 mA; see Figure 7  
VCCX(1) – 0.4 VCCX(1) – 0.2  
V
IOL = 1 mA; see Figure 7  
0.2  
0.4  
10  
V
V
(1)  
0.1 x VCCX  
VIH = VCCX(1) at INx or ENx  
VIL = 0 V at INx or ENx  
μA  
IIL  
-10  
CMTI  
ICC1  
Common-mode transient immunity VI = VCCX or 0 V; see Figure 9  
DC signal: VI = 0 V (Devices with  
70  
100  
0.6  
kV/μs  
1.1  
1
suffix F) , VI = VCCX (Devices without  
suffix F)  
ICC2  
ICC1  
ICC2  
0.6  
1.8  
0.6  
Supply current  
DC Signal  
mA  
mA  
DC signal: VI = VCCX (Devices with  
suffix F) , VI = 0 V(Devices without  
suffix F)  
2.7  
1.1  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.2  
0.6  
1.2  
0.9  
1.3  
3.3  
1.9  
1.1  
1.9  
1.3  
2
1 Mbps  
AC Signal: All channels switching with  
square wave clock input; CL = 15 pF  
Supply current  
10 Mbps  
100 Mbps  
4.1  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
6
Copyright © 2015, Texas Instruments Incorporated  
ISO7810, ISO7810F  
www.ti.com.cn  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
6.9 Switching Characteristics, 5 V  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
10.7  
0.6  
MAX UNIT  
tPLH, tPHL  
PWD(1)  
6
16  
ns  
4.6  
See Figure 7  
|
(2)  
tsk(pp)  
Part-to-part skew time  
Output signal rise time  
Output signal fall time  
4.5  
3.9  
3.9  
ns  
ns  
tr  
tf  
2.4  
2.4  
See Figure 7  
Measured from the time VCC  
goes below 1.7 V. See Figure 8  
tfs  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
1
9
μs  
216 - 1 PRBS data at 100 Mbps  
ns  
(1) Also known as Pulse Skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.10 Switching Characteristics, 3.3 V  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10.8  
0.7  
MAX  
16  
4.7  
4.5  
3
UNIT  
tPLH, tPHL  
PWD(1)  
Propagation delay time  
6
See Figure 7  
ns  
Pulse width distortion |tPHL – tPLH  
|
(2)  
tsk(pp)  
Part-to-part skew time  
tr  
tf  
Output signal rise time  
Output signal fall time  
1.3  
1.3  
ns  
See Figure 7  
3
Measured from the time VCC goes  
below 1.7 V. See Figure 8  
tfs  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
1
9
μs  
216 - 1 PRBS data at 100 Mbps  
ns  
(1) Also known as Pulse Skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.11 Switching Characteristics, 2.5 V  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
11.7  
0.7  
MAX  
17.5  
4.7  
UNIT  
tPLH, tPHL  
PWD(1)  
7.5  
See Figure 7  
ns  
|
(2)  
tsk(pp)  
Part-to-part skew time  
Output signal rise time  
Output signal fall time  
4.5  
tr  
tf  
1.8  
1.8  
3.5  
ns  
See Figure 7  
3.5  
Measured from the time VCC goes  
below 1.7 V. See Figure 8  
tfs  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
1
9
μs  
216 - 1 PRBS data at 100 Mbps  
ns  
(1) Also known as Pulse Skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2015, Texas Instruments Incorporated  
7
ISO7810, ISO7810F  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
6.12 Typical Characteristics  
12  
8
6
4
2
0
ICC1 at 2.5 V (mA)  
ICC2 at 2.5 V (mA)  
ICC1 at 3.3 V (mA)  
ICC2 at 3.3 V (mA)  
ICC1 at 5 V (mA)  
ICC1 at 2.5 V (mA)  
ICC2 at 2.5 V (mA)  
ICC1 at 3.3 V (mA)  
ICC2 at 3.3 V (mA)  
ICC1 at 5 V (mA)  
ICC2 at 5 V (mA)  
8
ICC2 at 5 V (mA)  
4
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Data Rate (Mbps)  
Data Rate (Mbps)  
D001  
D002  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 1. Supply Current vs Data Rate (with 15 pF Load)  
Figure 2. Supply Current vs Data Rate (with No Load)  
6
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC at 2.5V  
VCC at 3.3V  
VCC at 5.0V  
5
4
3
2
VCC at 2.5V  
VCC at 3.3V  
VCC at 5.0V  
1
0
-15  
-10  
-5  
0
0
5
10  
15  
High-Level Output Current (mA)  
Low-Level Output Current (mA)  
D001  
D001  
TA = 25°C  
TA = 25°C  
Figure 3. High-Level Output Voltage vs High-level Output  
Current  
Figure 4. Low-Level Output Voltage vs Low-Level Output  
Current  
2.25  
15  
14  
13  
12  
11  
10  
VCC1 Rising  
VCC1 Falling  
VCC2 Rising  
VCC2 Falling  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
9
tPLH at 2.5 V  
8
7
6
5
tPHL at 2.5 V  
tPHL at 3.3 V  
tPLH at 3.3 V  
tPLH at 5 V  
tPHL at 5 V  
-50  
0
50  
100  
150  
-60  
-30  
0
30  
60  
90  
120  
Free-Air Temperature (oC )  
Free-Air Temperature (oC )  
D001  
D006  
Figure 5. Power Supply Undervoltage Threshold vs Free-Air  
Temperature  
Figure 6. Propagation Delay Time vs Free-Air Temperature  
8
Copyright © 2015, Texas Instruments Incorporated  
ISO7810, ISO7810F  
www.ti.com.cn  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
7 Parameter Measurement Information  
VCCI  
VI  
50%  
50%  
IN  
OUT  
VO  
0 V  
tPLH  
tPHL  
Input  
Generator  
Note A  
50 W  
VI  
CL  
VOH  
VOL  
90%  
10%  
Note B  
50%  
50%  
VO  
tr  
tf  
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3  
ns, tf 3ns, ZO = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in  
actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 7. Switching Characteristics Test Circuit and Voltage Waveforms  
V
I
V
V
CC  
CC  
2.7 V  
V
I
0 V  
V
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = VCC (Devices with suffix F)  
t
V
fs  
O
OH  
fs high  
fs low  
50%  
V
O
C
L
V
OL  
NOTE A  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 8. Default Output Delay Time Test Circuit and Voltage Waveforms  
VCCI  
VCCO  
C = 0.1 μF 1ꢀ  
C = 0.1 μF 1ꢀ  
Pass-fail criteria –  
output must remain  
stable.  
IN  
OUT  
S1  
+
CL  
Note A  
VOH or VOL  
GNDI  
GNDO  
+
VCM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 9. Common-Mode Transient Immunity Test Circuit  
Copyright © 2015, Texas Instruments Incorporated  
9
ISO7810, ISO7810F  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
ISO7810 employs an ON-OFF Keying (OOK) modulation scheme to transmit the digital data across a silicon  
dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to represent one  
digital state and sends no signal to represent the other digital state. The receiver demodulates the signal after  
advanced signal conditioning and produces the output through a buffer stage. These devices also incorporates  
advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions due the  
high frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator,  
Figure 10, shows a functional block diagram of a typical channel.  
8.2 Functional Block Diagram  
RECEIVER  
TRANSMITTER  
OOK  
MODULATION  
SiO2 based  
Capacitive  
Isolation  
TX SIGNAL  
CONDITIONING  
TX IN  
RX OUT  
RX SIGNAL  
CONDITIONING  
ENVELOPE  
DETECTION  
Barrier  
EMISSIONS  
REDUCTION  
TECHNIQUES  
OSCILLATOR  
Figure 10. Conceptual Block Diagram of a Digital Capacitive Isolator  
Also a conceptual detail of how the ON/OFF Keying scheme works is shown in Figure 11.  
TX IN  
Carrier signal  
through  
isolation barrier  
RX OUT  
Figure 11. On-Off Keying (OOK) Based Modulation Scheme  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ISO7810, ISO7810F  
www.ti.com.cn  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
8.3 Feature Description  
ISO7810 is available in two channel configurations and default output state options to enable a variety of  
application uses.  
PRODUCT  
ISO7810  
CHANNEL DIRECTION  
1 Forward  
RATED ISOLATION  
5700 VRMS / 8000 VPK  
5700 VRMS / 8000 VPK  
MAX DATA RATE  
100 Mbps  
DEFAULT OUTPUT  
(1)  
(1)  
High  
Low  
ISO7810F  
1 Forward  
100 Mbps  
(1) See the Regulatory Information section for detailed isolation ratings.  
8.3.1 High Voltage Feature Description  
8.3.1.1 Package Insulation and Safety-Related Specifications  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Shortest terminal-to-terminal distance  
through air  
MIN  
TYP MAX  
UNIT  
L(I01)  
L(I02)(1)  
CTI  
Minimum air gap (clearance)  
DW-16  
DW-16  
8
mm  
mm  
V
Minimum external tracking  
(creepage)  
Shortest terminal-to-terminal distance  
across the package surface  
8
Tracking resistance (comparative  
tracking index)  
DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A  
600  
VIO = 500 V, TA = 25°C  
1012  
1011  
RIO  
Isolation resistance, input to output(2)  
VIO = 500 V, 100°C TA max  
CIO  
CI  
Barrier capacitance, input to output(2) VIO = 0.4 x sin (2πft), f = 1 MHz  
Input capacitance(3)  
VI = VCC/2 + 0.4 x sin (2πft), f = 1 MHz, VCC = 5 V  
2
2
pF  
pF  
(1) Per JEDEC package dimensions.  
(2) All pins on each side of the barrier tied together creating a two-terminal device.  
(3) Measured from input pin to ground.  
NOTE  
Creepage and clearance requirements should be applied according to the specific  
equipment isolation standards of an application. Care should be taken to maintain the  
creepage and clearance distance of a board design to ensure that the mounting pads of  
the isolator on the printed-circuit board do not reduce this distance.  
Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to  
help increase these specifications.  
Copyright © 2015, Texas Instruments Incorporated  
11  
ISO7810, ISO7810F  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
8.3.1.2 Insulation Characteristics  
PARAMETER(1)  
TEST CONDITIONS  
SPECIFICATION  
UNIT  
μm  
DTI  
Distance through the insulation  
Minimum internal gap (internal clearance)  
21  
1500  
2121  
VRMS  
VDC  
VIOWM  
Maximum isolation working voltage  
Time dependent dielectric breakdown (TDDB) test  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
VTEST = VIOTM  
VIOTM  
Maximum transient isolation voltage  
t = 60 sec (qualification)  
t= 1 sec (100% production)  
8000  
VPK  
Test method per IEC 60065, 1.2/50 µs waveform,  
VTEST = 1.6 x VIOSM = 12800 VPK (qualification)  
VIOSM  
VIORM  
Maximum surge isolation voltage  
8000  
2121  
VPK  
VPK  
Maximum repetitive peak isolation voltage  
Method a, After Input/Output safety test subgroup  
2/3,  
VPR = VIORM x 1.2, t = 10 s,  
Partial discharge < 5 pC  
2545  
Method a, After environmental tests subgroup 1,  
VPR = VIORM x 1.6, t = 10 s,  
Partial Discharge < 5 pC  
VPR  
Input-to-output test voltage  
VPK  
3394  
3977  
Method b1,After environmental tests subgroup 1,  
VPR = VIORM x 1.875, t = 1 s (100% Production test)  
Partial discharge < 5 pC  
RS  
Isolation resistance  
Pollution degree  
VIO = 500 V at TS  
>109  
2
UL 1577  
VISO  
VTEST = VISO = 5700 VRMS, t = 60 sec  
(qualification);  
VTEST = 1.2 x VISO = 6840 VRMS , t = 1 sec (100%  
production)  
Withstanding isolation voltage  
5700  
VRMS  
(1) Climatic Classification 55/125/21  
8.3.1.3 IEC 60664-1 Ratings Table  
PARAMETER  
TEST CONDITIONS  
Material group  
SPECIFICATION  
Basic isolation group  
I
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
I–IV  
I–III  
Installation classification  
DW package  
12  
Copyright © 2015, Texas Instruments Incorporated  
ISO7810, ISO7810F  
www.ti.com.cn  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
8.3.1.4 Regulatory Information  
DW package certifications are complete.  
VDE  
CSA  
UL  
CQC  
Certified according to DIN V VDE Approved under CSA  
Recognized under UL 1577  
Component Recognition  
Program  
V 0884-10 (VDE V 0884-  
Component Acceptance Notice  
Certified according to GB 4943.1-  
2011  
10):2006-12 and DIN EN 60950- 5A, IEC 60950-1, IEC 61010-1,  
1 (VDE 0805 Teil 1):2011-01  
and IEC 60601-1  
Reinforced insulation per CSA  
61010-1-12 and IEC 61010-1  
3rd Ed., 300 VRMS max working  
voltage;  
Reinforced insulation  
Maximum transient isolation  
Reinforced insulation per CSA  
60950-1-07+A1+A2 and IEC  
60950-1 2nd Ed.,  
voltage, 8000 VPK  
;
Reinforced Insulation, Altitude ≤  
5000 m, Tropical Climate, 250 VRMS  
maximum working voltage  
(1)  
Maximum repetitive peak  
isolation voltage, 2121 VPK  
Maximum surge isolation  
voltage, 8000 VPK  
Single protection, 5700 VRMS  
800 VRMS max working voltage  
(pollution degree 2, material  
group I);  
;
2 MOPP (Means of Patient  
Protection) per CSA 60601-  
1:14 and IEC 60601-1 Ed. 3.1,  
250 VRMS (354 VPK) max  
working voltage  
Master contract number:  
220991  
Certificate number:  
CQC15001121716  
Certificate number: 40040142  
File number: E181974  
(1) Production tested 6840 VRMS for 1 second in accordance with UL 1577.  
Copyright © 2015, Texas Instruments Incorporated  
13  
ISO7810, ISO7810F  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
8.3.1.5 Safety Limiting Values  
Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of  
the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
268  
410  
537  
UNIT  
R
R
R
R
θJA = 84.7°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
θJA = 84.7°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C  
θJA = 84.7°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C  
θJA = 84.7°C/W, TJ = 150°C, TA = 25°C  
Safety input, output, or supply  
current for DW-16 package  
IS (DW-16)  
mA  
PS  
TS  
Safety input, output, or total  
power  
mW  
°C  
1476  
150  
Maximum case temperature  
The maximum safety temperature is the maximum junction temperature specified for the device. The power  
dissipation and junction-to-air thermal impedance of the device installed in the application hardware  
determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal  
Informationis that of a device installed on a High-K test board for Leaded Surface Mount Packages. The  
power is the recommended maximum input voltage times the current. The junction temperature is then the  
ambient temperature plus the power times the junction-to-air thermal resistance.  
600  
500  
400  
300  
200  
100  
0
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
Power  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D014  
D015  
Figure 12. Thermal Derating Curve per VDE for  
DW-16 Package  
Figure 13. Thermal Derating Curve for Safety Limiting  
Power per VDE  
14  
Copyright © 2015, Texas Instruments Incorporated  
ISO7810, ISO7810F  
www.ti.com.cn  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
8.4 Device Functional Modes  
ISO7810DW functional modes are shown in Table 1.  
Table 1. ISO7810DW Function Table(1)  
INPUT  
(INx)(2)  
OUTPUT  
(OUTx)  
VCCI  
VCCO  
COMMENTS  
H
L
H
L
Normal Operation:  
A channel output assumes the logic state of its input.  
PU  
PU  
Default mode: When INx is open, the corresponding channel output goes to its  
default high logic state. Default= High for ISO7810 and Low for ISO7810F.  
Open  
Default  
Default mode: When VCCI is unpowered, a channel output assumes the logic  
state based on the selected default option.Default= High for ISO7810 and Low  
for ISO7810F.  
PD  
X
PU  
PD  
X
Default  
When VCCI transitions from unpowered to powered-up, a channel output  
assumes the logic state of its input.  
When VCCI transitions from powered-up to unpowered, channel output assumes  
the selected default state.  
(3)  
When VCCO is unpowered, a channel output is undetermined  
.
X
Undetermined  
When VCCO transitions from unpowered to powered-up, a channel output  
assumes the logic state of its input  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC 2.25 V); PD = Powered down (VCC 1.7 V); X = Irrelevant; H  
= High level; L = Low level  
(2) A strongly driven input signal can weakly power the floating VCC via an internal protection diode and cause undetermined output.  
(3) The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V.  
8.4.1 Device I/O Schematics  
Input (Devices without suffix F)  
Input (Devices with suffix F)  
V
V
V
V
CCI  
V
V
V
CCI  
CCI  
CCI  
CCI  
CCI  
CCI  
1.5 MW  
985 W  
985 W  
INx  
INx  
1.5 MW  
Output  
V
CCO  
~20 W  
OUTx  
Figure 14. Device I/O Schematics  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
ISO7810, ISO7810F  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
9 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ISO7810 is a high-performance, dual-channel digital isolator with 5.7 kVRMS isolation voltage. It utilizes  
single-ended CMOS-logic switching technology. Its supply voltage range is from 2.25 V to 5.5 V for both  
supplies, VCC1 and VCC2. When designing with digital isolators, it is important to keep in mind that due to the  
single-ended design structure, digital isolators do not conform to any specific interface standard and are only  
intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the  
data controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the interface type  
or standard.  
9.2 Typical Application  
ISO7810DW can be used with Texas Instruments' mixed signal micro-controller, gatedrivers, transformer driver,  
and voltage regulator to create an isolated MOSFET/IGBT drive circuit.  
Figure 15. Low Side Gate Driver Hookup  
9.2.1 Design Requirements  
For the ISO7810, use the parameters shown in Table 2.  
Table 2. Design Parameters  
PARAMETER  
VALUE  
2.25 V to 5.5 V  
0.1 µF  
Supply voltage  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7810, ISO7810F  
www.ti.com.cn  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which need external components to improve performance, provide bias, or limit current,  
ISO7810 only needs two external bypass capacitors to operate.  
VCC1  
VCC2  
GND1  
GND2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND1  
GND2  
m
0.1 F  
m
0.1 F  
NC  
NC  
GND1  
GND2  
VCC1  
VCC2  
INA  
INA  
OUTA  
OUTA  
NC  
NC  
NC  
NC  
NC  
GND1  
GND1  
NC  
GND2  
GND2  
Figure 16. Typical ISO7810DW Circuit Hook-up  
9.2.2.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO7810  
incorporate many chip-level design improvements for overall system robustness. Some of these improvements  
include:  
Robust ESD protection for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Copyright © 2015, Texas Instruments Incorporated  
17  
ISO7810, ISO7810F  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
9.2.3 Application Performance Curve  
Typical eye diagram of ISO7810 indicate low jitter and wide open eye at the maximum data rate of 100 Mbps.  
Figure 17. Eye Diagram at 100 Mbps PRBS, 5 V and 25°C  
10 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, a 0.1 µF bypass capacitor is recommended at  
input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as  
possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501. For  
such applications, detailed power supply design and transformer selection recommendations are available in  
SN6501 datasheet (SLLSEA0) .  
18  
Copyright © 2015, Texas Instruments Incorporated  
ISO7810, ISO7810F  
www.ti.com.cn  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
11 Layout  
11.1 PCB Material  
For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of  
up to 10 inches, use standard FR-4 epoxy-glass as PCB material. FR-4 (Flame Retardant 4) meets the  
requirements of Underwriters Laboratories UL94-V0, and is preferred over cheaper alternatives due to its lower  
dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and its self-  
extinguishing flammability-characteristics.  
11.2 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 18). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power / ground plane system to the  
stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
For detailed layout recommendations, see Application Note SLLA284, Digital Isolator Design Guide.  
11.3 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
0 ~ 4.5  
space free  
from planes,  
traces , pads,  
and vias  
40 mils  
10 mils  
r
Power plane  
Low-speed traces  
Figure 18. Layout Example  
版权 © 2015, Texas Instruments Incorporated  
19  
 
ISO7810, ISO7810F  
ZHCSE63A JULY 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
请参见隔离术语表 (SLLA353)  
12.2 相关链接  
下面的表格列出了快速访问链接。 范围包括技术文档、支持和社区资源、工具和软件,以及样片或购买的快速访  
问。  
3. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
ISO7810  
ISO7810F  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7810DW  
ISO7810DWR  
ISO7810DWW  
ISO7810DWWR  
ISO7810FDW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
ISO7810  
2000 RoHS & Green  
45 RoHS & Green  
1000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
45 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ISO7810  
ISO7810  
ISO7810  
ISO7810F  
ISO7810F  
ISO7810F  
ISO7810F  
DWW  
DWW  
DW  
ISO7810FDWR  
ISO7810FDWW  
ISO7810FDWWR  
DW  
DWW  
DWW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7810DWR  
ISO7810DWWR  
ISO7810FDWR  
ISO7810FDWWR  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DWW  
DW  
16  
16  
16  
16  
2000  
1000  
2000  
1000  
330.0  
330.0  
330.0  
330.0  
16.4  
24.4  
16.4  
24.4  
10.75 10.7  
18.0 10.0  
10.75 10.7  
18.0 10.0  
2.7  
3.0  
2.7  
3.0  
12.0  
20.0  
12.0  
20.0  
16.0  
24.0  
16.0  
24.0  
Q1  
Q1  
Q1  
Q1  
DWW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7810DWR  
ISO7810DWWR  
ISO7810FDWR  
ISO7810FDWWR  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DWW  
DW  
16  
16  
16  
16  
2000  
1000  
2000  
1000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
DWW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO7810DW  
ISO7810DWW  
ISO7810FDW  
ISO7810FDWW  
DW  
DWW  
DW  
SOIC  
SOIC  
SOIC  
SOIC  
16  
16  
16  
16  
40  
45  
40  
45  
506.98  
507  
12.7  
20  
4826  
5000  
4826  
5000  
6.6  
9
506.98  
507  
12.7  
20  
6.6  
9
DWW  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY