ISO7820FDW [TI]

高隔离额定值、双通道、2/0、增强型数字隔离器 | DW | 16 | -55 to 125;
ISO7820FDW
型号: ISO7820FDW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高隔离额定值、双通道、2/0、增强型数字隔离器 | DW | 16 | -55 to 125

文件: 总24页 (文件大小:981K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ISO7820, ISO7820F  
ZHCSDV2 JULY 2015  
ISO7820 ISO7820F 高性能 8000 VPK 增强型双通道数字隔离器  
1 特性  
3 说明  
1
信号传输速率:高达 100Mbps  
ISO7820 是一款高性能双通道数字隔离器,隔离电压  
高达 8000 VPK。 该器件已通过符合 VDECSA 和  
CQC 标准的增强型隔离认证。 在隔离 CMOS 或者  
LVCMOS 数字 I/O 时,该隔离器可提供高电磁抗扰度  
和低辐射,且具有低功耗特性。 每个隔离通道的逻辑  
输入和输出缓冲器均由二氧化硅 (SiO2) 绝缘隔栅分离  
开来。 ISO7820 具有两个正向通道,但没有反向通  
道。 如果出现输入功率或信号丢失,ISO7820 器件默  
认输出电平,ISO7820F 器件默认输出电平。  
更多详细信息与隔离式电源一起使用时,此器件可防止  
数据总线或者其它电路上的噪音电流进入本地接地,以  
及干扰或损坏敏感电路。 凭借创新的芯片设计和布线  
技术,ISO7820 的电磁兼容性得到了显著增强,从而  
可确保提供系统级 ESDEFT 和浪涌保护并符合辐射  
标准。 ISO7820 采用 16 引脚 SOIC 宽体 (DW) 封  
装。  
宽电源范围:2.25V 5.5V  
2.25V 5.5V 电平转换  
宽温度范围:–55°C 125°C  
低功耗,每通道电流典型值为 1.7mA1Mbps 时)  
低传播延迟:典型值 11ns  
5V 电源供电时)  
行业领先的 CMTI±100kV/μs  
优异的电磁兼容性 (EMC)  
系统级静电放电 (ESD)、瞬态放电 (EFT) 以及抗浪  
涌保护  
低辐射  
隔离隔栅寿命:> 25 年  
宽体 (DW) 小外形尺寸集成电路 (SOIC)-16 封装  
安全及管理批准:中的安全及管理批准列表  
8000 VPK VIOTM 2121 VPK VIORM 增强型隔  
离,符合 DIN V VDE V 0884-10 (VDE V 0884-  
10):2006-12 标准  
器件信息(1)  
器件型号  
ISO7820/  
ISO7820F  
封装  
封装尺寸(标称值)  
符合 UL 1577 标准且长达 1 分钟的 5.7kVRMS  
隔离  
SOICDW (16) 10.30mm x 7.50mm  
CSA 组件接受通知 5AIEC 60950-1IEC  
60601-1 IEC 61010-1 终端设备标准  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
符合 GB4943.1-2011 CQC 认证  
空白  
2 应用范围  
工业自动化  
电机控制  
电源  
太阳能逆变器  
医疗设备  
混合动力电动汽车  
中添加了注释 1 2  
简化电路原理图  
VCCO  
VCCI  
Isolation  
Capacitor  
INx  
OUTx  
GNDI  
GNDO  
(1)  
(2)  
V
CCI GNDI 分别是输入通道的电源和接地连接。  
CCO GNDO 分别是输出通道的电源和接地连接。  
V
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEP0  
 
 
 
ISO7820, ISO7820F  
ZHCSDV2 JULY 2015  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 15  
Applications and Implementation ...................... 16  
9.1 Application Information............................................ 16  
9.2 Typical Application .................................................. 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Power Rating............................................................. 5  
6.6 Electrical Characteristics, 5 V ................................... 5  
6.7 Electrical Characteristics, 3.3 V ................................ 6  
6.8 Electrical Characteristics, 2.5 V ................................ 6  
6.9 Switching Characteristics, 5 V .................................. 7  
6.10 Switching Characteristics, 3.3 V ............................. 7  
6.11 Switching Characteristics, 2.5 V ............................. 7  
6.12 Typical Characteristics............................................ 8  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 10  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 19  
11.1 PCB Material......................................................... 19  
11.2 Layout Guidelines ................................................. 19  
11.3 Layout Example .................................................... 19  
12 器件和文档支持 ..................................................... 20  
12.1 文档支持................................................................ 20  
12.2 相关链接................................................................ 20  
12.3 社区资源................................................................ 20  
12.4 ....................................................................... 20  
12.5 静电放电警告......................................................... 20  
12.6 Glossary................................................................ 20  
13 机械、封装和可订购信息....................................... 20  
7
8
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
日期  
修订版本  
注释  
2015 7 月  
*
最初发布版本。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7820, ISO7820F  
www.ti.com.cn  
ZHCSDV2 JULY 2015  
5 Pin Configuration and Functions  
DW Package  
16-Pin (SOIC)  
Top View  
GND1  
1
GND2  
NC  
16  
15  
NC  
2
VCC1  
INA  
3
4
5
6
7
8
14 VCC2  
OUTA  
OUTB  
13  
12  
11  
10  
INB  
NC  
NC  
NC  
GND1  
NC  
GND2  
9
Pin Functions  
PIN  
NO.  
DW  
1, 7  
9, 16  
4
I/O  
DESCRIPTION  
NAME  
GND1  
GND2  
INA  
I
Ground connection for VCC1  
Ground connection for VCC2  
Input, channel A  
INB  
5
I
Input, channel B  
NC  
2, 6, 8, 10 ,11, 15  
O
O
Not connected  
OUTA  
OUTB  
VCC1  
VCC2  
13  
12  
3
Output, channel A  
Output, channel B  
Power supply, VCC1  
Power supply, VCC2  
14  
Copyright © 2015, Texas Instruments Incorporated  
3
ISO7820, ISO7820F  
ZHCSDV2 JULY 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.5  
–0.5  
-15  
MAX  
UNIT  
V
Supply voltage(2)  
VCC1, VCC2  
6
VCC + 0.5(3)  
15  
Voltage  
INx, OUTx  
IO  
V
Output Current  
mA  
kV  
°C  
°C  
Surge Immunity  
12.8  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
150  
–65  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins  
±6000  
V
(1)  
VESD  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
±1500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
2.25  
-4  
TYP  
MAX  
UNIT  
VCC1, VCC2  
Supply voltage  
5.5  
V
VCCO(1) = 5 V  
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 5 V  
IOH  
High-level output current  
-2  
mA  
mA  
-1  
4
IOL  
Low-level output current  
VCCO = 3.3 V  
VCCO = 2.5 V  
2
1
(1)  
VIH  
VIL  
DR  
TJ  
High-level input voltage  
Low-level input voltage  
Signaling rate  
0.7 x VCCI  
VCCI  
V
V
0
0
0.3 x VCCI  
100  
Mbps  
°C  
Junction temperature(2)  
-55  
-55  
150  
TA  
Ambient temperature  
25  
125  
°C  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
(2) To maintain the recommended operating conditions for TJ, see the Thermal Information table.  
4
Copyright © 2015, Texas Instruments Incorporated  
ISO7820, ISO7820F  
www.ti.com.cn  
ZHCSDV2 JULY 2015  
6.4 Thermal Information  
THERMAL METRIC  
DW (16 Pins)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
84.7  
47.3  
49.4  
19.1  
48.8  
n/a  
RθJC(top)  
RθJB  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
ψJB  
RθJC(bottom)  
6.5 Power Rating  
VALUE  
UNIT  
PD  
Maximum power dissipation by ISO7820  
100  
20  
VCC1 = VCC2 = 5.5 V, TJ = 150°C,  
PD1  
PD2  
Maximum power dissipation by side-1 of ISO7820 CL = 15 pF, input a 50 MHz 50% duty cycle  
mW  
square wave  
Maximum power dissipation by side-2 of ISO7820  
80  
6.6 Electrical Characteristics, 5 V  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
VOH  
VOL  
VI(HYS)  
IIH  
High-level output voltage  
Low-level output voltage  
Input threshold voltage hysteresis  
High-level input current  
Low-level input current  
IOH = –4 mA; see Figure 7  
VCCx(1) – 0.4  
VCCx – 0.2  
0.2  
V
V
V
IOL = 4 mA; see Figure 7  
0.4  
10  
(1)  
0.1 x VCCx  
VIH = VCCx(1) at INx  
VIL = 0 V at INx  
μA  
IIL  
-10  
70  
Common-mode transient  
immunity  
CMTI  
VI = VCCx(1) or 0 V; see Figure 9  
100  
kV/μs  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
0.9  
1.2  
3.2  
1.3  
2.1  
1.3  
2.1  
2.3  
2.7  
11.9  
1.3  
1.8  
4.6  
2
DC signal: VI = 0 V (Devices with suffix F) , VI = VCCI(Devices  
without suffix F)  
Supply current, DC Signal  
Supply current, DC Signal  
Supply current  
DC signal: VI = VCCI (Devices with suffix F) , VI = 0 V(Devices  
without suffix F)  
3
mA  
1 Mbps  
2
AC Signal: All channels  
3
switching with square wave  
clock input;  
Supply current  
10 Mbps  
3.8  
3.3  
15.3  
CL = 15 pF  
Supply current  
100 Mbps  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
Copyright © 2015, Texas Instruments Incorporated  
5
 
ISO7820, ISO7820F  
ZHCSDV2 JULY 2015  
www.ti.com.cn  
6.7 Electrical Characteristics, 3.3 V  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
VOH  
VOL  
VI(HYS)  
IIH  
High-level output voltage  
Low-level output voltage  
Input threshold voltage hysteresis  
High-level input current  
Low-level input current  
IOH = –2 mA; see Figure 7  
VCCx(1) – 0.4  
VCCx – 0.2  
V
V
V
IOL = 2 mA; see Figure 7  
0.2  
0.4  
10  
(1)  
0.1 x VCCx  
VIH = VCCx(1) at INx  
VIL = 0 V at INx  
μA  
IIL  
-10  
70  
Common-mode transient  
immunity  
CMTI  
VI = VCCx(1) or 0 V; see Figure 9  
100  
kV/μs  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
0.9  
1.2  
3.2  
1.3  
2.1  
1.3  
2.1  
2.3  
2.5  
8.9  
1.3  
1.8  
4.6  
2
DC signal: VI = 0 V (Devices with suffix F) , VI = VCCI(Devices  
without suffix F)  
Supply current, DC Signal  
Supply current, DC Signal  
Supply current  
DC signal: VI = VCCI (Devices with suffix F) , VI = 0 V(Devices  
without suffix F)  
3
mA  
1 Mbps  
2
AC Signal: All channels  
3
switching with square wave  
clock input;  
Supply current  
10 Mbps  
3.8  
3.2  
11.5  
CL = 15 pF  
Supply current  
100 Mbps  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
6.8 Electrical Characteristics, 2.5 V  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
VOH  
VOL  
VI(HYS)  
IIH  
High-level output voltage  
Low-level output voltage  
Input threshold voltage hysteresis  
High-level input current  
Low-level input current  
IOH = –1 mA; see Figure 7  
VCCx(1) – 0.4  
VCCx – 0.2  
V
V
V
IOL = 1 mA; see Figure 7  
0.2  
0.4  
10  
(1)  
0.1 x VCCx  
VIH = VCCx(1) at INx  
VIL = 0 V at INx  
μA  
IIL  
-10  
70  
Common-mode transient  
immunity  
CMTI  
VI = VCCx(1) or 0 V; see Figure 9  
100  
kV/μs  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
0.9  
1.2  
3.2  
1.3  
2.1  
1.3  
2.1  
1.8  
2.4  
7
1.3  
1.8  
4.6  
2
DC signal: VI = 0 V (Devices with suffix F) , VI = VCCI(Devices  
without suffix F)  
Supply current, DC Signal  
Supply current, DC Signal  
Supply current  
DC signal: VI = VCCI (Devices with suffix F) , VI = 0 V(Devices  
without suffix F)  
3
mA  
1 Mbps  
2
AC Signal: All channels  
3
switching with square wave  
clock input;  
Supply current  
10 Mbps  
2.7  
3.2  
9.1  
CL = 15 pF  
Supply current  
100 Mbps  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
6
Copyright © 2015, Texas Instruments Incorporated  
ISO7820, ISO7820F  
www.ti.com.cn  
ZHCSDV2 JULY 2015  
6.9 Switching Characteristics, 5 V  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
10.7  
0.6  
MAX UNIT  
tPLH, tPHL  
PWD(1)  
6
16  
ns  
4.6  
See Figure 7  
|
(2)  
tsk(pp)  
Part-to-part skew time  
Output signal rise time  
Output signal fall time  
4.5  
3.9  
3.9  
ns  
ns  
tr  
tf  
2.4  
2.4  
See Figure 7  
Measured from the time VCC  
goes below 1.7 V. See Figure 8  
tfs  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
1
9
μs  
216 - 1 PRBS data at 100 Mbps  
ns  
(1) Also known as Pulse Skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.10 Switching Characteristics, 3.3 V  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10.8  
0.7  
MAX  
16  
4.7  
4.5  
3
UNIT  
tPLH, tPHL  
PWD(1)  
Propagation delay time  
6
See Figure 7  
ns  
Pulse width distortion |tPHL – tPLH  
|
(2)  
tsk(pp)  
Part-to-part skew time  
tr  
tf  
Output signal rise time  
Output signal fall time  
1.3  
1.3  
ns  
See Figure 7  
3
Measured from the time VCC goes  
below 1.7 V. See Figure 8  
tfs  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
1
9
μs  
216 - 1 PRBS data at 100 Mbps  
ns  
(1) Also known as Pulse Skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.11 Switching Characteristics, 2.5 V  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
11.7  
0.7  
MAX  
17.5  
4.7  
UNIT  
tPLH, tPHL  
PWD(1)  
7.5  
See Figure 7  
ns  
|
(2)  
tsk(pp)  
Part-to-part skew time  
Output signal rise time  
Output signal fall time  
4.5  
tr  
tf  
1.8  
1.8  
3.5  
ns  
See Figure 7  
3.5  
Measured from the time VCC goes  
below 1.7 V. See Figure 8  
tfs  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
1
9
μs  
216 - 1 PRBS data at 100 Mbps  
ns  
(1) Also known as Pulse Skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2015, Texas Instruments Incorporated  
7
ISO7820, ISO7820F  
ZHCSDV2 JULY 2015  
www.ti.com.cn  
6.12 Typical Characteristics  
24  
10  
8
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
20  
16  
12  
8
ICC2 at 5 V  
6
4
2
4
0
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Data Rate (Mbps)  
Data Rate (Mbps)  
D001  
D002  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 1. Supply Current vs Data Rate (with 15 pF Load)  
Figure 2. Supply Current vs Data Rate (with No Load)  
6
1.0  
VCC at 2.5V  
VCC at 3.3V  
VCC at 5.0V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
5
4
3
2
VCC at 2.5V  
VCC at 3.3V  
VCC at 5.0V  
1
0
-15  
-10  
-5  
0
0
5
10  
15  
High-Level Output Current (mA)  
Low-Level Output Current (mA)  
D001  
D001  
TA = 25°C  
TA = 25°C  
Figure 3. High-Level Output Voltage vs High-level Output  
Current  
Figure 4. Low-Level Output Voltage vs Low-Level Output  
Current  
2.25  
15  
14  
13  
12  
11  
10  
VCC1 Rising  
VCC1 Falling  
VCC2 Rising  
VCC2 Falling  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
9
tPLH at 2.5 V  
8
7
6
5
tPHL at 2.5 V  
tPHL at 3.3 V  
tPLH at 3.3 V  
tPLH at 5 V  
tPHL at 5 V  
-50  
0
50  
100  
150  
-60  
-30  
0
30  
60  
90  
120  
Free-Air Temperature (oC )  
Free-Air Temperature (oC )  
D001  
D006  
Figure 5. Power Supply Undervoltage Threshold vs Free-Air  
Temperature  
Figure 6. Propagation Delay Time vs Free-Air Temperature  
8
Copyright © 2015, Texas Instruments Incorporated  
ISO7820, ISO7820F  
www.ti.com.cn  
ZHCSDV2 JULY 2015  
7 Parameter Measurement Information  
VCCI  
VI  
50%  
50%  
IN  
OUT  
VO  
0 V  
tPLH  
tPHL  
Input  
Generator  
Note A  
50 W  
VI  
CL  
VOH  
90%  
10%  
Note B  
50%  
50%  
VO  
VOL  
tr  
tf  
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3  
ns, tf 3ns, ZO = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in  
actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 7. Switching Characteristics Test Circuit and Voltage Waveforms  
V
I
V
V
CC  
CC  
2.7 V  
V
I
0 V  
V
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = VCC (Devices with suffix F)  
t
V
fs  
O
OH  
fs high  
fs low  
50%  
V
O
C
L
V
OL  
NOTE A  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 8. Default Output Delay Time Test Circuit and Voltage Waveforms  
VCCI  
VCCO  
C = 0.1 μF 1ꢀ  
C = 0.1 μF 1ꢀ  
Pass-fail criteria –  
output must remain  
stable.  
IN  
OUT  
S1  
+
CL  
Note A  
VOH or VOL  
GNDI  
GNDO  
+
VCM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 9. Common-Mode Transient Immunity Test Circuit  
Copyright © 2015, Texas Instruments Incorporated  
9
ISO7820, ISO7820F  
ZHCSDV2 JULY 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
ISO7820 employs an ON-OFF Keying (OOK) modulation scheme to transmit the digital data across a silicon  
dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to represent one  
digital state and sends no signal to represent the other digital state. The receiver demodulates the signal after  
advanced signal conditioning and produces the output through a buffer stage. These devices also incorporates  
advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions due the  
high frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator,  
Figure 10, shows a functional block diagram of a typical channel.  
8.2 Functional Block Diagram  
RECEIVER  
TRANSMITTER  
OOK  
MODULATION  
SiO2 based  
Capacitive  
Isolation  
TX SIGNAL  
CONDITIONING  
TX IN  
RX OUT  
RX SIGNAL  
CONDITIONING  
ENVELOPE  
DETECTION  
Barrier  
EMISSIONS  
REDUCTION  
TECHNIQUES  
OSCILLATOR  
Figure 10. Conceptual Block Diagram of a Digital Capacitive Isolator  
Also a conceptual detail of how the ON/OFF Keying scheme works is shown in Figure 11.  
TX IN  
Carrier signal  
through  
isolation barrier  
RX OUT  
Figure 11. On-Off Keying (OOK) Based Modulation Scheme  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ISO7820, ISO7820F  
www.ti.com.cn  
ZHCSDV2 JULY 2015  
8.3 Feature Description  
ISO7820 is available in two channel configurations and default output state options to enable a variety of  
application uses.  
PRODUCT  
ISO7820  
CHANNEL DIRECTION  
2 Forward, 0 Reverse  
2 Forward, 0 Reverse  
RATED ISOLATION  
5700 VRMS / 8000 VPK  
5700 VRMS / 8000 VPK  
MAX DATA RATE  
100 Mbps  
DEFAULT OUTPUT  
(1)  
(1)  
High  
Low  
ISO7820F  
100 Mbps  
(1) See the Regulatory Information section for detailed isolation ratings.  
8.3.1 High Voltage Feature Description  
8.3.1.1 Package Insulation and Safety-Related Specifications  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Shortest terminal-to-terminal distance  
through air  
MIN  
TYP MAX  
UNIT  
L(I01)  
L(I02)(1)  
CTI  
Minimum air gap (clearance)  
DW-16  
DW-16  
8
mm  
mm  
V
Minimum external tracking  
(creepage)  
Shortest terminal-to-terminal distance  
across the package surface  
8
Tracking resistance (comparative  
tracking index)  
DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A  
600  
VIO = 500 V, TA = 25°C  
1012  
1011  
RIO  
Isolation resistance, input to output(2)  
VIO = 500 V, 100°C TA max  
CIO  
CI  
Barrier capacitance, input to output(2) VIO = 0.4 x sin (2πft), f = 1 MHz  
Input capacitance(3)  
VI = VCC/2 + 0.4 x sin (2πft), f = 1 MHz, VCC = 5 V  
2
2
pF  
pF  
(1) Per JEDEC package dimensions.  
(2) All pins on each side of the barrier tied together creating a two-terminal device.  
(3) Measured from input pin to ground.  
NOTE  
Creepage and clearance requirements should be applied according to the specific  
equipment isolation standards of an application. Care should be taken to maintain the  
creepage and clearance distance of a board design to ensure that the mounting pads of  
the isolator on the printed-circuit board do not reduce this distance.  
Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to  
help increase these specifications.  
Copyright © 2015, Texas Instruments Incorporated  
11  
ISO7820, ISO7820F  
ZHCSDV2 JULY 2015  
www.ti.com.cn  
8.3.1.2 Insulation Characteristics  
PARAMETER(1)  
TEST CONDITIONS  
SPECIFICATION  
UNIT  
μm  
DTI  
Distance through the insulation  
Minimum internal gap (internal clearance)  
21  
1500  
2121  
VRMS  
VDC  
VIOWM  
Maximum isolation working voltage  
Time dependent dielectric breakdown (TDDB) test  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
VTEST = VIOTM  
VIOTM  
Maximum transient isolation voltage  
t = 60 sec (qualification)  
t= 1 sec (100% production)  
8000  
VPK  
Test method per IEC 60065, 1.2/50 µs waveform,  
VTEST = 1.6 x VIOSM = 12800 VPK (qualification)  
VIOSM  
VIORM  
Maximum surge isolation voltage  
8000  
2121  
VPK  
VPK  
Maximum repetitive peak isolation voltage  
Method a, After Input/Output safety test subgroup  
2/3,  
VPR = VIORM x 1.2, t = 10 s,  
Partial discharge < 5 pC  
2545  
Method a, After environmental tests subgroup 1,  
VPR = VIORM x 1.6, t = 10 s,  
Partial Discharge < 5 pC  
VPR  
Input-to-output test voltage  
VPK  
3394  
3977  
Method b1,After environmental tests subgroup 1,  
VPR = VIORM x 1.875, t = 1 s (100% Production test)  
Partial discharge < 5 pC  
RS  
Isolation resistance  
Pollution degree  
VIO = 500 V at TS  
>109  
2
UL 1577  
VISO  
VTEST = VISO = 5700 VRMS, t = 60 sec  
(qualification);  
VTEST = 1.2 x VISO = 6840 VRMS , t = 1 sec (100%  
production)  
Withstanding isolation voltage  
5700  
VRMS  
(1) Climatic Classification 55/125/21  
8.3.1.3 IEC 60664-1 Ratings Table  
PARAMETER  
TEST CONDITIONS  
Material group  
SPECIFICATION  
Basic isolation group  
I
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
I–IV  
I–III  
Installation classification  
DW package  
12  
Copyright © 2015, Texas Instruments Incorporated  
ISO7820, ISO7820F  
www.ti.com.cn  
ZHCSDV2 JULY 2015  
8.3.1.4 Regulatory Information  
DW package certifications are complete.  
VDE  
CSA  
UL  
CQC  
Certified according to DIN V VDE Approved under CSA  
Recognized under UL 1577  
Component Recognition  
Program  
V 0884-10 (VDE V 0884-  
Component Acceptance Notice  
Certified according to GB 4943.1-  
2011  
10):2006-12 and DIN EN 60950- 5A, IEC 60950-1, IEC 61010-1,  
1 (VDE 0805 Teil 1):2011-01  
and IEC 60601-1  
Reinforced insulation per CSA  
61010-1-12 and IEC 61010-1  
3rd Ed., 300 VRMS max working  
voltage;  
Reinforced insulation  
Maximum transient isolation  
Reinforced insulation per CSA  
60950-1-07+A1+A2 and IEC  
60950-1 2nd Ed.,  
voltage, 8000 VPK  
;
Reinforced Insulation, Altitude ≤  
5000 m, Tropical Climate, 250 VRMS  
maximum working voltage  
(1)  
Maximum repetitive peak  
isolation voltage, 2121 VPK  
Maximum surge isolation  
voltage, 8000 VPK  
Single protection, 5700 VRMS  
800 VRMS max working voltage  
(pollution degree 2, material  
group I);  
;
2 MOPP (Means of Patient  
Protection) per CSA 60601-  
1:14 and IEC 60601-1 Ed. 3.1,  
250 VRMS (354 VPK) max  
working voltage  
Master contract number:  
220991  
Certificate number:  
CQC15001121716  
Certificate number: 40040142  
File number: E181974  
(1) Production tested 6840 VRMS for 1 second in accordance with UL 1577.  
Copyright © 2015, Texas Instruments Incorporated  
13  
ISO7820, ISO7820F  
ZHCSDV2 JULY 2015  
www.ti.com.cn  
8.3.1.5 Safety Limiting Values  
Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of  
the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
268  
410  
537  
UNIT  
R
R
R
R
θJA = 84.7°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
θJA = 84.7°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C  
θJA = 84.7°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C  
θJA = 84.7°C/W, TJ = 150°C, TA = 25°C  
Safety input, output, or supply  
current for DW-16 package  
IS (DW-16)  
mA  
PS  
TS  
Safety input, output, or total  
power  
mW  
°C  
1476  
150  
Maximum case temperature  
The maximum safety temperature is the maximum junction temperature specified for the device. The power  
dissipation and junction-to-air thermal impedance of the device installed in the application hardware  
determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal  
Informationis that of a device installed on a High-K test board for Leaded Surface Mount Packages. The  
power is the recommended maximum input voltage times the current. The junction temperature is then the  
ambient temperature plus the power times the junction-to-air thermal resistance.  
600  
500  
400  
300  
200  
100  
0
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
Power  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Ambient Temperature (qC)  
Ambient Temperature (qC)  
D014  
D015  
Figure 12. θJC Thermal Derating Curve per VDE for  
Figure 13. Thermal Derating Curve for Safety Limiting  
Power per VDE  
DW-16 Package  
14  
Copyright © 2015, Texas Instruments Incorporated  
ISO7820, ISO7820F  
www.ti.com.cn  
ZHCSDV2 JULY 2015  
8.4 Device Functional Modes  
ISO7820DW functional modes are shown in Table 1.  
Table 1. ISO7820DW Function Table(1)  
INPUT  
OUTPUT  
(OUTx)  
VCCI  
VCCO  
COMMENTS  
(INx)(2)  
H
L
H
L
Normal Operation:  
A channel output assumes the logic state of its input.  
PU  
PU  
Default mode: When INx is open, the corresponding channel output goes to its  
default high logic state. Default= High for ISO7820 and Low for ISO7820F.  
Open  
Default  
Default mode: When VCCI is unpowered, a channel output assumes the logic  
state based on the selected default option.Default= High for ISO7820 and Low  
for ISO7820F.  
PD  
X
PU  
PD  
X
Default  
When VCCI transitions from unpowered to powered-up, a channel output  
assumes the logic state of its input.  
When VCCI transitions from powered-up to unpowered, channel output assumes  
the selected default state.  
(3)  
When VCCO is unpowered, a channel output is undetermined  
.
X
Undetermined  
When VCCO transitions from unpowered to powered-up, a channel output  
assumes the logic state of its input  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC 2.25 V); PD = Powered down (VCC 1.7 V); X = Irrelevant; H  
= High level; L = Low level  
(2) A strongly driven input signal can weakly power the floating VCC via an internal protection diode and cause undetermined output.  
(3) The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V.  
8.4.1 Device I/O Schematics  
Input  
V
Enable  
V
V
V
V
CCI  
V
V
V
CCO  
CCO  
CCI  
CCI  
CCI  
CCO  
CCO  
1.5 MW  
2 MW  
985 W  
1970 W  
INx  
ENx  
Output  
V
CCO  
~20 W  
OUTx  
Figure 14. Device I/O Schematics  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
ISO7820, ISO7820F  
ZHCSDV2 JULY 2015  
www.ti.com.cn  
9 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ISO7821 is a high-performance, dual-channel digital isolator with 5.7 kVRMS isolation voltage. It utilizes  
single-ended CMOS-logic switching technology. Its supply voltage range is from 2.25 V to 5.5 V for both  
supplies, VCC1 and VCC2. When designing with digital isolators, it is important to keep in mind that due to the  
single-ended design structure, digital isolators do not conform to any specific interface standard and are only  
intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the  
data controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the interface type  
or standard.  
9.2 Typical Application  
ISO7820DW can be used with Texas Instruments' mixed signal micro-controller, digital-to-analog converter,  
transformer driver, and voltage regulator to create an isolated 4-20 mA current loop.  
3
14  
VCC1  
VCC2  
4
5
13  
12  
ISO7821  
1, 7  
9, 16  
Figure 15. Isolated 4-20 mA Current Loop  
9.2.1 Design Requirements  
For the ISO7820, use the parameters shown in Table 2.  
Table 2. Design Parameters  
PARAMETER  
VALUE  
2.25 V to 5.5 V  
0.1 µF  
Supply voltage  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7820, ISO7820F  
www.ti.com.cn  
ZHCSDV2 JULY 2015  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which need external components to improve performance, provide bias, or limit current,  
ISO7820 only needs two external bypass capacitors to operate.  
ISO7820  
VCC1  
VCC2  
GND1  
GND2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
GND1  
GND2  
P
0.1  
F
P
0.1  
F
NC  
NC  
GND1  
GND2  
VCC1  
VCC2  
INA  
INA  
OUTA  
OUTA  
OUTB  
INB  
OUTB  
INB  
NC  
NC  
NC  
GND1  
GND1  
NC  
GND2  
9  
GND2  
Figure 16. Typical ISO7820DW Circuit Hook-up  
9.2.2.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO7820  
incorporate many chip-level design improvements for overall system robustness. Some of these improvements  
include:  
Robust ESD protection for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Copyright © 2015, Texas Instruments Incorporated  
17  
ISO7820, ISO7820F  
ZHCSDV2 JULY 2015  
www.ti.com.cn  
9.2.3 Application Performance Curve  
Typical eye diagram of ISO7820 indicate low jitter and wide open eye at the maximum data rate of 100 Mbps.  
Figure 17. Eye Diagram at 100 Mbps PRBS, 5 V and 25°C  
10 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, a 0.1 µF bypass capacitor is recommended at  
input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as  
possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501. For  
such applications, detailed power supply design and transformer selection recommendations are available in  
SN6501 datasheet (SLLSEA0) .  
18  
Copyright © 2015, Texas Instruments Incorporated  
ISO7820, ISO7820F  
www.ti.com.cn  
ZHCSDV2 JULY 2015  
11 Layout  
11.1 PCB Material  
For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of  
up to 10 inches, use standard FR-4 epoxy-glass as PCB material. FR-4 (Flame Retardant 4) meets the  
requirements of Underwriters Laboratories UL94-V0, and is preferred over cheaper alternatives due to its lower  
dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and its self-  
extinguishing flammability-characteristics.  
11.2 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 18). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power / ground plane system to the  
stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
For detailed layout recommendations, see Application Note SLLA284, Digital Isolator Design Guide.  
11.3 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
0 ~ 4.5  
space free  
from planes,  
traces , pads,  
and vias  
40 mils  
10 mils  
r
Power plane  
Low-speed traces  
Figure 18. Layout Example  
版权 © 2015, Texas Instruments Incorporated  
19  
 
ISO7820, ISO7820F  
ZHCSDV2 JULY 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参见隔离术语表 (SLLA353)  
12.2 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
3. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
ISO7820  
ISO7820F  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7820DW  
ISO7820DWR  
ISO7820DWW  
ISO7820DWWR  
ISO7820FDW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
ISO7820  
2000 RoHS & Green  
45 RoHS & Green  
1000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
45 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ISO7820  
ISO7820  
ISO7820  
ISO7820F  
ISO7820F  
ISO7820F  
ISO7820F  
DWW  
DWW  
DW  
ISO7820FDWR  
ISO7820FDWW  
ISO7820FDWWR  
DW  
DWW  
DWW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY