ISO7821DWW [TI]

高隔离额定值、双通道、1/1、增强型数字隔离器 | DWW | 16 | -55 to 125;
ISO7821DWW
型号: ISO7821DWW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高隔离额定值、双通道、1/1、增强型数字隔离器 | DWW | 16 | -55 to 125

文件: 总38页 (文件大小:1576K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
ISO7821x 高性8000VPK 增强型双通道数字隔离器  
1 特性  
3 说明  
• 信令速率100Mbps  
• 宽电源电压范围2.25V 5.5V  
2.25V 5.5V 电平转换  
• 宽温度范围-55°C 125°C  
• 低功耗每通道电流典型值1.8mA1Mbps )  
• 低传播延迟典型值11ns  
5V 电源)  
• 卓越CMTI下限值):±100kV/μs  
• 优异的电磁兼容(EMC)  
• 系统ESDEFT 和浪涌抗扰性  
• 低辐射  
ISO7821 是一款高性能双通道数字隔离器隔离电压  
高达 8000 VPK该器件已通过符合 VDECSA、  
CQC TUV 标准的增强型隔离认证。该隔离器以低  
功耗提供高电磁抗扰度和低辐射同时隔离 CMOS 或  
LVCMOS 数字 I/O。每个隔离通道都有逻辑输入和输  
出缓冲器由二氧化硅 (SiO2) 绝缘栅隔离。ISO7821  
具有一个正向通道和一个反向通道。。如果输入功率或  
信号丢失ISO7821 件默认输出‘高电平’,  
ISO7821F 器件默认输出‘低电平’。与隔离式电源一  
起使用时这款器件可防止数据总线或者其他电路上的  
噪音电流进入本地接地和干扰或损坏敏感电路。凭借创  
新的芯片设计和布线技术ISO7821 的电磁兼容性得  
到了显著增强从而可确保提供系统级 ESDEFT 和  
浪涌保护并符合辐射标准。ISO7821 可采用 16 引脚  
SOIC 宽体 (DW) 和超宽体 (DWW) 封装。DWW 封装  
选项带有使能引脚可用于将各自输出置于高阻抗适  
用于多主驱动应用并降低功耗。  
• 隔离栅寿命> 25 年  
SOIC-16 (DW) 和超宽(DWW) 封装选项  
• 安全和监管批准:  
8000VPK 增强型隔离DIN V VDE V  
0884-10 (VDE V 0884-10): 2006-12  
– 符UL 1577 标准且长1 分钟5.7kVRMS  
隔离  
CSA 组件验收通5AIEC 60950-1 IEC  
60601-1 终端设备标准  
– 符GB4943.1-2011 CQC 认证  
– 符EN 61010-1 EN 60950-1 标准TUV  
认证  
器件信息  
封装尺寸标称值)  
器件型号  
ISO7821、  
封装  
SOICDW (16) 10.30mm x 7.50mm  
SOIC、  
ISO7821F  
10.30mm x 14.0mm  
DWW (16)  
– 已完成所DW 封装认证已完成符UL、  
VDE 标准DWW 封装认证并已针VDE、  
CSA CQC 进行规划  
空白  
V
V
CCO  
CCI  
Isolation  
Capacitor  
2 应用  
INx  
OUTx  
ENx (DWW package only)  
• 工业自动化  
• 电机控制  
• 电源  
• 光伏逆变器  
• 医疗设备  
• 混合动力电动汽车  
GNDI  
GNDO  
A.  
B.  
V
CCI GNDI 分别是输入通道的电源和接地连接引脚。  
CCO GNDO 分别是输出通道的电源和接地连接引脚。  
V
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEM2  
 
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
Table of Contents  
7 Parameter Measurement Information..........................14  
8 Detailed Description......................................................16  
8.1 Overview...................................................................16  
8.2 Functional Block Diagram.........................................16  
8.3 Feature Description...................................................17  
8.4 Device Functional Modes..........................................21  
9 Application and Implementation..................................22  
9.1 Application Information............................................. 22  
9.2 Typical Application.................................................... 22  
10 Layout...........................................................................25  
10.1 PCB Material...........................................................25  
10.2 Layout Guidelines................................................... 25  
10.3 Layout Example...................................................... 25  
11 Device and Documentation Support..........................26  
11.1 Documentation Support.......................................... 26  
11.2 Trademarks............................................................. 26  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................5  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings ....................................... 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................7  
6.5 Power Dissipation Characteristics.............................. 7  
6.6 Electrical Characteristics, 5 V..................................... 8  
6.7 Electrical Characteristics, 3.3 V.................................. 9  
6.8 Electrical Characteristics, 2.5 V................................ 10  
6.9 Switching Characteristics, 5 V...................................11  
6.10 Switching Characteristics, 3.3 V..............................11  
6.11 Switching Characteristics, 2.5 V..............................12  
6.12 Typical Characteristics............................................13  
Information.................................................................... 26  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision F (March 2016) to Revision G (July 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式。..................................................................................... 1  
Changes from Revision E (December 2015) to Revision F (March 2016)  
Page  
• 更改了1 中的安全及管理批准列表..................................................................................................................1  
• 添加了1“符EN 61010-1 EN 60950-1 标准TUV 认证”...................................................................1  
• 将3 的第一段中的文本从“符VDECSA CQC 认证标准”更改为更改为“符VDECSACQC 和  
TUV 认证标准。”..............................................................................................................................................1  
Added Note 1 to 8-2 ....................................................................................................................................17  
Added TUV to the 8.3.1.1 section and 8-4. Deleted Note 1 in Table 4 ...................................................19  
Changed 8-5 ............................................................................................................................................... 21  
Changes from Revision D (July 2015) to Revision E (December 2015)  
Page  
1 8000VPK IOTM 2121VPK IORM 增强型更改为8000VPK 增强型.................................................1  
V
V
• 添加了1已完DW 封装认证已规DWW 认证.....................................................................................1  
• 在说明中添加了文本和超宽(DWW) 封装.................................................................................................... 1  
• 添加了封装器件信息表中添加了超SOICDWW (16).............................................................................1  
Added the DWW pinout image .......................................................................................................................... 5  
Added the DWW package to the 6.4 .............................................................................................................7  
Changed the MIN value of CMTI in 6.6 table From: 70 To: 100 kV/µs, deleted the TYP value of 100 kV/µs .  
8
Added the DW package value to the Supply Current section of the 6.6 ....................................................... 8  
Added the DWW package value to the Supply Current section of the 6.6 ....................................................8  
Changed the MIN value of CMTI in 6.7 table From: 70 To: 100 kV/µs, deleted the TYP value of 100 kV/µs .  
9
Added the DW package value to the Supply Current section of the 6.7 ....................................................... 9  
Added the DWW package value to the Supply Current section of the 6.7 ....................................................9  
Changed the MIN value of CMTI in 6.8 table From: 70 To: 100 kV/µs, deleted the TYP value of 100 kV/µs .  
10  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
Added the DW package value to the Supply Current section of the 6.8 ..................................................... 10  
Added the DWW package value to the Supply Current section of the 6.8 ..................................................10  
Added tPHZ, tPLZ, tPZH, and tPZL to 6.10 ....................................................................................................... 11  
Added tPHZ, tPLZ, tPZH, and tPZL to 6.11 ....................................................................................................... 12  
Added 7-2 ....................................................................................................................................................14  
Added the DWW package to 8-1 .................................................................................................................17  
Changed CIO typ value From: 2 To 1 pF in 8-1 ........................................................................................... 17  
Added the DWW package to 8-2 .................................................................................................................17  
Changed Parameter information and added the DWW package information in 8-3 ................................... 17  
Added the DWW package information to 8-4 ..............................................................................................19  
added DWW-16 package options to 8-5 ..................................................................................................... 20  
Changed 8-6 ............................................................................................................................................... 21  
Added text to the 9.1 section: "isolation voltage per UL 1577." .................................................................. 22  
Changes from Revision C (May 2015) to Revision D (July 2015)  
Page  
• 在数据表中添加ISO7821F 器件..................................................................................................................... 1  
• 更改了3以便包含ISO7821 器件默认输出为‘高电平’ISO7821F 器件默认输出为‘低电平’。... 1  
• 更改了3-1 ...................................................................................................................................................... 1  
Changed tPLH and tPHL From: 5.5 V to 5 V in 6-6 ........................................................................................13  
Changed 7-3 ............................................................................................................................................... 14  
Changed the 8.2 ..........................................................................................................................................16  
Changed 8-1 title From: IEC Insulation and Safety-Related Specifications for DW-16 Package To: Package  
Insulation and Safety-Related Specifications .................................................................................................. 17  
Changed 8-3 , Added 8-4 ....................................................................................................................... 20  
Changes from Revision B (April 2015) to Revision C (May 2015)  
Page  
• 在整个数据表VCC1 VCC2 更改为VCCI VCCOGND1 GND2 更改为GNDI GNDO并在3-1  
中添加了注1 2............................................................................................................................................1  
Changed the MIN value of CMTI in 6.6 table From: 50 To: 70 kV/µs ............................................................8  
Changed the MIN value of CMTI in 6.7 table From: 50 To: 70 kV/µs ............................................................9  
Changed the MIN value of CMTI in 6.8 table From: 50 To: 70 kV/µs ..........................................................10  
Added sentence "If the EN pin is available and low then the output goes to high impedance." to the 8.1  
section ............................................................................................................................................................. 16  
Changed the 8.2 to include the EN pin on the Receiver side.......................................................................16  
Changed the Installation classification of the 8-3 to include DW package information................................17  
Changed "ISO782W functional modes" To: "ISO7821DW functional modes" in 8.4 ...................................21  
Changed 8-6 title From: "Functional Table" To: "ISO7821DW Function Table"............................................21  
Added the 8.4.1 section .............................................................................................................................. 21  
Changed device number ISO7821 To: ISO7821DW in 9-2 .........................................................................23  
Changes from Revision A (December 2014) to Revision B (April 2015)  
Page  
• 将文档标题从“通道数字隔离器”更改为“通1/1 数字隔离器”................................................................1  
• 添加了12.25V 5.5V 电平转换.................................................................................................................1  
• 更改了1 中的安全及管理批准列表..................................................................................................................1  
• 将3 中的文本从“该器件正在接VDE CSA 的增强型隔离认证审核。更改为“该器件已通VDE、  
CSA CQC 的增强型隔离认证。”..................................................................................................................1  
Added Note (3) to the 6.1 table......................................................................................................................6  
Changed From: VCCX To: VCCO In IOH and IOL of the 6.3 table ..................................................................... 6  
Changed From: VCCX To: VCCI In VIH and VIL of the 6.3 table .......................................................................6  
Changed Note (1) of the 6.3 table .................................................................................................................6  
Changed From: VCCX To: VCCO In VOH of the 6.6 table .................................................................................8  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISO7821 ISO7821F  
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
Changed From: VCCX To: VCCO In VI(HYS) of the 6.6 table .............................................................................8  
Changed From: VCCX To: VCCI In IIH of the 6.6 table .....................................................................................8  
Changed From: VCCX To: VCCI In CMTI of the 6.6 table ................................................................................8  
Changed From: VCCX To: VCCI In Supply Current, DC Signal of the 6.6 table............................................... 8  
Changed Note (1) of the 6.6 table .................................................................................................................8  
Changed From: VCCX To: VCCO In VOH of the 6.7 table .................................................................................9  
Changed From: VCCX To: VCCO In VI(HYS) of the 6.7 table .............................................................................9  
Changed From: VCCX To: VCCI In IIH of the 6.7 table......................................................................................9  
Changed From: VCCX To: VCCI In CMTI of the 6.7 table ................................................................................9  
Changed From: VCCX To: VCCI In Supply Current, DC Signal of the 6.7 table .............................................. 9  
Changed Note (1) of the 6.7 table .................................................................................................................9  
Changed From: VCCX To: VCCO In VOH of the 6.8 table ...............................................................................10  
Changed From: VCCX To: VCCI In IIH of the 6.8 table ...................................................................................10  
Changed From: VCCX To: VCCI In Supply Current, DC Signal of the 6.8 table ............................................ 10  
Changed Note (1) of the 6.8 table ...............................................................................................................10  
Changed 7-1 ............................................................................................................................................... 14  
Changed From: VCC1 To: VCCI in 7-3 ...........................................................................................................14  
Changed 7-4 ............................................................................................................................................... 14  
Changed the Test Condition of CTI in 8-1 ...................................................................................................17  
Changed the MIN value of CTI From" > 600 V To: 600 V.................................................................................17  
Changed 8-2 title From: DIN V VDE 0884-10 (VDE V 0884-10) and UL 1577 Insulation Characteristics To:  
Added the DWW package to ........................................................................................................................... 17  
Changed 8-2 ............................................................................................................................................... 17  
Changed columns VDE and CSA to 8-4 ..................................................................................................... 19  
Changed title From: IEC Safety Limiting Values To: 8.3.1.2 ....................................................................... 20  
Changed the table in 8.3.1.2, added IS DW-16 package options.................................................................20  
Changed 8-3 ............................................................................................................................................... 20  
Deleted INPUT-SIDE and OUTPUT-SIDE from columns 1 and 2 of 8-6 .....................................................21  
Changed Note (1) of 8-6 ............................................................................................................................. 21  
Changed the 9.1 section.............................................................................................................................. 22  
Changed the 9.2 section and 9-1 ........................................................................................................... 22  
Added text and 9-2 to the 9.2.2 section ..................................................................................................23  
Changes from Revision * (November 2014) to Revision A (December 2014)  
Page  
• 将仅包含1 页和引脚分配部分的产品预发布更改为完整数据表...................................................................1  
Added Note: "This coupler..." to the 8.3.1 section .......................................................................................17  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
GND1  
1
2
3
4
5
6
7
8
16 GND2  
15 NC  
NC  
14  
V
V
CC2  
CC1  
OUTA  
13 INA  
12 OUTB  
11 NC  
10 NC  
INB  
NC  
GND1  
NC  
9
GND2  
5-1. DW Package 16-Pin (SOIC) Top View  
1
2
3
4
5
6
7
8
16  
V
V
CC1  
CC2  
GND1  
NC  
15 GND2  
14 NC  
13 EN2  
12 INA  
11 OUTB  
10 NC  
EN1  
OUTA  
INB  
NC  
GND1  
9 GND2  
5-2. DWW Package 16-Pin (SOIC) Top View  
5-1. Pin Functions  
PIN  
NO.  
NO.  
I/O  
DESCRIPTION  
NAME  
DW  
DWW  
GND1  
GND2  
INA  
1, 7  
2,8  
Ground connection for VCC1  
Ground connection for VCC2  
Input, channel A  
I
9, 16  
9,15  
13  
12  
INB  
5
6
I
Input, channel B  
NC  
2, 6, 8, 10 ,11, 15  
3,7,10,14  
Not connected  
O
O
OUTA  
OUTB  
VCC1  
VCC2  
4
12  
3
5
11  
1
Output, channel A  
Output, channel B  
Power supply, VCC1  
Power supply, VCC2  
14  
16  
Output enable 1. Output pins on side 1 are enabled when EN1 is high or open and  
in high-impedance state when EN1 is low.  
EN1  
EN2  
4
I
I
Output enable 2. Output pins on side 2 are enabled when EN2 is high or open and  
in high-impedance state when EN2 is low.  
13  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISO7821 ISO7821F  
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
MIN  
0.5  
0.5  
-15  
MAX  
UNIT  
V
Supply voltage(1)  
Voltage  
6
VCC + 0.5(2)  
15  
VCC1, VCC2  
INx, OUTx  
IO  
V
Output Current  
Surge Immunity  
Storage temperature, Tstg  
mA  
kV  
°C  
12.8  
150  
65  
(1) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(2) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins (1)  
±6000  
V
V
VESD  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification JESD22-  
C101, all pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
2.25  
-4  
TYP  
MAX  
UNIT  
VCC1, VCC2  
Supply voltage  
5.5  
V
VCCO (2) = 5 V  
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 5 V  
IOH  
High-level output current  
-2  
mA  
mA  
-1  
4
IOL  
Low-level output current  
VCCO = 3.3 V  
VCCO = 2.5 V  
2
1
(2)  
VIH  
VIL  
DR  
TJ  
High-level input voltage  
Low-level input voltage  
Signaling rate  
0.7 x VCC I  
VCCI  
V
V
0
0
0.3 x VCCI  
100  
Mbps  
°C  
Junction temperature(1)  
-55  
-55  
150  
TA  
Ambient temperature  
25  
125  
°C  
(1) To maintain the recommended operating conditions for TJ, see the Thermal Information table.  
(2) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
 
 
 
 
 
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
6.4 Thermal Information  
ISO7821  
THERMAL METRIC(1)  
DW (SOIC)  
16 PINS  
84.7  
DWW (SOIC)  
16-PINS  
84.7  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
47.3  
46.0  
49.4  
54.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
19.1  
18.5  
48.8  
53.8  
ψJB  
RθJC(bottom) Junction-to-case(bottom) thermal resistance  
n/a  
n/a  
(1) For more information about trdational and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Dissipation Characteristics  
VALUE  
UNIT  
PD  
Maximum power dissipation by ISO7821 x  
100  
Maximum power dissipation by side-1 of ISO7821 VCC1 = VCC2 = 5.5 V, TJ = 150°C,  
PD1  
50  
50  
x
CL = 15 pF, input a 50 MHz 50% duty cycle  
square wave  
mW  
Maximum power dissipation by side-2 of ISO7821  
x
PD2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISO7821 ISO7821F  
 
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
6.6 Electrical Characteristics, 5 V  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
CCO 0.2  
0.2  
MAX  
0.4  
UNIT  
IOH = 4 mA; see 7-1  
VCCO (1) 0.4  
V
VOH  
VOL  
VI(HYS)  
IIH  
High-level output voltage  
Low-level output voltage  
Input threshold voltage hysteresis  
High-level input current  
V
V
V
IOL = 4 mA; see 7-1  
(1)  
0.1 x VCCO  
VIH = VCCI (1) at INx or ENx  
VIL = 0 V at INx or ENx  
10  
μA  
IIL  
Low-level input current  
-10  
CMTI  
Common-mode transient immunity  
100  
VI = VCCI or 0 V; see 7-4  
kV/μs  
Supply Current - ISO7821DW and ISO7821FDW  
(1)  
VI = 0 V (ISO7821F) , VI = VCCI  
(ISO7821)  
ICC1, ICC2  
ICC1, ICC2  
DC Signal  
DC Signal  
1.2  
2.4  
1.7  
3.4  
mA  
mA  
VI = VCCI (1) (ISO7821F) , VI = 0 V  
(ISO7821)  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
1 Mbps  
1.8  
2.4  
7.5  
2.6  
3.2  
9.3  
mA  
mA  
mA  
All channels switching with square wave  
clock input;  
CL = 15 pF  
10 Mbps  
100 Mbps  
Supply Current - ISO7821DWW and ISO7821FDWW  
EN1 = EN2 = 0V, VI = 0 V (ISO7821F) ,  
VI = VCCI (1)(ISO7821)  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
Disable  
0.7  
1.8  
1.2  
2.4  
1.1  
2.9  
1.7  
3.5  
mA  
mA  
mA  
mA  
(1)  
EN1 = EN2 = 0V, VI = VCCI  
Disable  
(ISO7821F) , VI = 0 V (ISO7821)  
(1)  
VI = 0 V (ISO7821F) , VI = VCCI  
DC Signal  
DC Signal  
(ISO7821)  
VI = VCCI (1) (ISO7821F) , VI = 0 V  
(ISO7821)  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
1 Mbps  
1.9  
2.5  
7.7  
2.7  
3.2  
9.3  
mA  
mA  
mA  
All channels switching with square wave  
clock input; CL = 15 pF  
10 Mbps  
100 Mbps  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
6.7 Electrical Characteristics, 3.3 V  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
CCO 0.2  
0.2  
MAX  
0.4  
UNIT  
IOH = 2 mA; see 7-1  
VCCO (1) 0.4  
V
VOH  
VOL  
VI(HYS)  
IIH  
High-level output voltage  
Low-level output voltage  
Input threshold voltage hysteresis  
High-level input current  
V
V
V
IOL = 2 mA; see 7-1  
0.1 x VCCO  
VIH = VCCI (1) at INx or ENx  
VIL = 0 V at INx or ENx  
10  
μA  
IIL  
Low-level input current  
-10  
CMTI  
Common-mode transient immunity  
100  
VI = VCCI or 0 V; see 7-4  
kV/μs  
Supply Current - ISO7821DW and ISO7821FDW  
(1)  
VI = 0 V (ISO7821F) , VI = VCCI  
(ISO7821)  
ICC1, ICC2  
ICC1, ICC2  
DC Signal  
DC Signal  
1.2  
2.4  
1.7  
3.4  
mA  
mA  
VI = VCCI (1) (ISO7821F) , VI = 0 V  
(ISO7821)  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
1 Mbps  
1.8  
2.2  
5.8  
2.6  
3
mA  
mA  
mA  
All channels switching with square wave  
clock input; CL = 15 pF  
10 Mbps  
100 Mbps  
7.1  
Supply Current - ISO7821DWW and ISO7821FDWW  
EN1 = EN2 = 0V, VI = 0 V (ISO7821F) ,  
VI = VCCI (1)(ISO7821)  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
Disable  
0.7  
1.8  
1.2  
2.4  
1.1  
2.9  
1.7  
3.5  
mA  
mA  
mA  
mA  
(1)  
EN1 = EN2 = 0V, VI = VCCI  
Disable  
(ISO7821F) , VI = 0 V (ISO7821)  
(1)  
VI = 0 V (ISO7821F) , VI = VCCI  
DC Signal  
DC Signal  
(ISO7821)  
VI = VCCI (1) (ISO7821F) , VI = 0 V  
(ISO7821)  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
1 Mbps  
1.9  
2.3  
5.9  
2.6  
3
mA  
mA  
mA  
All channels switching with square wave  
clock input; CL = 15 pF  
10 Mbps  
100 Mbps  
7.1  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISO7821 ISO7821F  
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
6.8 Electrical Characteristics, 2.5 V  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
CCO 0.2  
0.2  
MAX  
0.4  
UNIT  
IOH = 1 mA; see 7-1  
VCCO (1) 0.4  
V
VOH  
VOL  
VI(HYS)  
IIH  
High-level output voltage  
Low-level output voltage  
Input threshold voltage hysteresis  
High-level input current  
V
V
V
IOL = 1 mA; see 7-1  
0.1 x VCCO  
VIH = VCCI (1) at INx or ENx  
VIL = 0 V at INx or ENx  
10  
μA  
IIL  
Low-level input current  
-10  
CMTI  
Common-mode transient immunity  
100  
VI = VCCI or 0 V; see 7-4  
kV/μs  
Supply Current - ISO7821DW and ISO7821FDW  
(1)  
VI = 0 V (ISO7821F) , VI = VCCI  
(ISO7821)  
ICC1, ICC2  
ICC1, ICC2  
DC Signal  
DC Signal  
1.2  
2.4  
1.7  
3.4  
mA  
mA  
VI = VCCI (1) (ISO7821F) , VI = 0 V  
(ISO7821)  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
1 Mbps  
1.8  
2.1  
4.9  
2.6  
2.8  
5.9  
mA  
mA  
mA  
All channels switching with square wave  
clock input; CL = 15 pF  
10 Mbps  
100 Mbps  
Supply Current - ISO7821DWW and ISO7821FDWW  
EN1 = EN2 = 0V, VI = 0 V (ISO7821F) ,  
VI = VCCI (1)(ISO7821)  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
Disable  
0.7  
1.8  
1.2  
2.4  
1.1  
2.9  
1.7  
3.5  
mA  
mA  
mA  
mA  
(1)  
EN1 = EN2 = 0V, VI = VCCI  
Disable  
(ISO7821F) , VI = 0 V (ISO7821)  
(1)  
VI = 0 V (ISO7821F) , VI = VCCI  
DC Signal  
DC Signal  
(ISO7821)  
VI = VCCI (1) (ISO7821F) , VI = 0 V  
(ISO7821)  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
1 Mbps  
1.9  
2.2  
5
2.6  
2.9  
6
mA  
mA  
mA  
All channels switching with square wave  
clock input; CL = 15 pF  
10 Mbps  
100 Mbps  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
6.9 Switching Characteristics, 5 V  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion |tPHL tPLH  
TEST CONDITIONS  
MIN  
TYP  
10.7  
0.6  
MAX UNIT  
tPLH, tPHL  
PWD(1)  
6
16  
ns  
4.6  
See 7-1  
|
(2)  
tsk(pp)  
Part-to-part skew time  
Output signal rise time  
Output signal fall time  
4.5  
3.9  
3.9  
ns  
ns  
tr  
tf  
2.4  
2.4  
See 7-1  
Disable propagation delay, high-to-high impedance output for  
ISO7821DWW and ISO7821FDWW  
tPHZ  
tPLZ  
12  
12  
10  
2
20  
20  
20  
2.5  
2.5  
20  
9
ns  
ns  
Disable propagation delay, low-to-high impedance output for  
ISO7821DWW and ISO7821FDWW  
Enable propagation delay, high impedance-to-high output for  
ISO7821DWW  
ns  
tPZH  
See 7-2  
Enable propagation delay, high impedance-to-high output for  
ISO7821FDWW  
μs  
μs  
ns  
Enable propagation delay, high impedance-to-low output for  
ISO7821DWW  
2
tPZL  
Enable propagation delay, high impedance-to-low output for  
ISO7821FDWW  
10  
Measured from the time VCC goes  
below 1.7 V. See 7-3  
tfs  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
1
μs  
216 - 1 PRBS data at 100 Mbps  
ns  
(1) Also known as Pulse Skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.10 Switching Characteristics, 3.3 V  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10.8  
0.7  
MAX  
16  
4.7  
4.5  
3
UNIT  
tPLH, tPHL  
PWD(1)  
Propagation delay time  
6
ns  
See 7-1  
Pulse width distortion |tPHL tPLH  
|
(2)  
tsk(pp)  
Part-to-part skew time  
tr  
tf  
Output signal rise time  
1.3  
1.3  
ns  
See 7-1  
Output signal fall time  
3
Disable propagation delay, high-to-high impedance output for  
ISO7821DWW and ISO7821FDWW  
tPHZ  
tPLZ  
17  
17  
17  
2
32  
32  
32  
2.5  
2.5  
32  
9
ns  
ns  
Disable propagation delay, low-to-high impedance output for  
ISO7821DWW and ISO7821FDWW  
Enable propagation delay, high impedance-to-high output for  
ISO7821DWW  
ns  
tPZH  
See 7-2  
Enable propagation delay, high impedance-to-high output for  
ISO7821FDWW  
μs  
μs  
ns  
Enable propagation delay, high impedance-to-low output for  
ISO7821DWW  
2
tPZL  
Enable propagation delay, high impedance-to-low output for  
ISO7821FDWW  
17  
Measured from the time VCC goes  
below 1.7 V. See 7-3  
tfs  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
1
μs  
216 - 1 PRBS data at 100 Mbps  
ns  
(1) Also known as Pulse Skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
MAX UNIT  
6.11 Switching Characteristics, 2.5 V  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
11.7  
0.7  
tPLH, tPHL  
PWD(1)  
Propagation delay time  
7.5  
17.5  
ns  
4.7  
See 7-1  
Pulse width distortion |tPHL tPLH  
|
(2)  
tsk(pp)  
Part-to-part skew time  
4.5  
tr  
tf  
Output signal rise time  
1.8  
1.8  
3.5  
3.5  
ns  
See 7-1  
Output signal fall time  
Disable propagation delay, high-to-high impedance output for  
ISO7821DWW and ISO7821FDWW  
tPHZ  
tPLZ  
22  
22  
18  
2
45  
45  
45  
2.5  
2.5  
45  
9
ns  
ns  
Disable propagation delay, low-to-high impedance output for  
ISO7821DWW and ISO7821FDWW  
Enable propagation delay, high impedance-to-high output for  
ISO7821DWW  
ns  
tPZH  
See 7-2  
Enable propagation delay, high impedance-to-high output for  
ISO7821FDWW  
μs  
μs  
ns  
Enable propagation delay, high impedance-to-low output for  
ISO7821DWW  
2
tPZL  
Enable propagation delay, high impedance-to-low output for  
ISO7821FDWW  
18  
Measured from the time VCC goes  
below 1.7 V. See 7-3  
tfs  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
1
μs  
216 - 1 PRBS data at 100 Mbps  
ns  
(1) Also known as Pulse Skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
6.12 Typical Characteristics  
24  
20  
16  
12  
8
10  
8
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5.0 V  
ICC2 at 5.0 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5.0 V  
ICC2 at 5.0 V  
6
4
2
4
0
0
0
25  
50  
75  
Data Rate (Mbps)  
100  
125  
150  
0
25  
50  
75  
Data Rate (Mbps)  
100  
125  
150  
D001  
D002  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
6-1. Supply Current vs Data Rate (with 15 pF  
6-2. Supply Current vs Data Rate (with No Load)  
Load)  
6
5
4
3
2
1.0  
VCC at 2.5V  
VCC at 3.3V  
VCC at 5.0V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC at 2.5V  
VCC at 3.3V  
VCC at 5.0V  
1
0
-15  
-10  
High-Level Output Current (mA)  
-5  
0
0
5 10  
Low-Level Output Current (mA)  
15  
D001  
D001  
TA = 25°C  
TA = 25°C  
6-3. High-Level Output Voltage vs High-level  
6-4. Low-Level Output Voltage vs Low-Level  
Output Current  
Output Current  
2.25  
VCC1 Rising  
2.20  
15  
14  
13  
12  
11  
10  
VCC1 Falling  
VCC2 Rising  
VCC2 Falling  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
9
tPLH at 2.5 V  
8
7
6
5
tPHL at 2.5 V  
tPHL at 3.3 V  
tPLH at 3.3 V  
tPLH at 5 V  
tPHL at 5 V  
-50  
0
50  
100  
150  
-60  
-30  
0
30  
60  
90  
120  
Free-Air Temperature (oC )  
Free-Air Temperature (oC )  
D001  
D006  
6-5. Power Supply Undervoltage Threshold vs  
6-6. Propagation Delay Time vs Free-Air  
Free-Air Temperature  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
V
t
t
PHL  
PLH  
Input  
Generator  
(See Note A)  
C
L
V
I
V
50  
O
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
Copyright © 2016, Texas Instruments Incorporated  
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3 ns, tf 3ns, ZO  
= 50 Ω. At the input, 50 Ωresistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
7-1. Switching Characteristics Test Circuit and Voltage Waveforms  
V
CCO  
V
CC  
R
L
= 1 k1%  
V
/ 2  
CC  
V
/ 2  
CC  
V
I
IN  
OUT  
0 V  
V
0 V  
O
t
t
PZL  
PLZ  
V
OH  
EN  
0.5 V  
V
V
O
50%  
C
L
OL  
See Note B  
Input  
Generator  
(See Note A)  
V
I
50 ꢀ  
V
CC  
V
O
IN  
OUT  
3 V  
V / 2  
CC  
V
/ 2  
CC  
V
I
0 V  
t
PZH  
EN  
See Note B  
R
L
= 1 k1%  
V
OH  
C
L
50%  
Input  
Generator  
(See Note A)  
0.5 V  
V
O
V
I
0 V  
t
50 ꢀ  
PHZ  
Copyright © 2016, Texas Instruments Incorporated  
A. The input pulse is supplied by a generator having the following characteristics: PRR 10 kHz, 50% duty cycle, tr 3 ns, tf 3 ns, ZO  
= 50 Ω.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
7-2. Enable/Disable Propagation Delay Time Test Circuit and Waveform  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
VI  
VCC  
VCC  
2.7 V  
VI  
0 V  
IN  
IN = 0 V (Devices without suffix F)  
IN = VCC (Devices with suffix F)  
OUT  
t
VO  
fs  
VOH  
fs high  
fs low  
50%  
VO  
CL  
See Note A  
VOL  
Copyright © 2016, Texas Instruments Incorporated  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
7-3. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CCO  
CCI  
C = 0.1 µF 1%  
C = 0.1 µF 1%  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
EN  
V
OH  
or V  
OL  
C
L
œ
See Note A  
GNDI  
GNDO  
Copyright © 2016, Texas Instruments Incorporated  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
7-4. Common-Mode Transient Immunity Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISO7821 ISO7821F  
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
ISO7821 employs an ON-OFF Keying (OOK) modulation scheme to transmit the digital data across a silicon  
dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to represent one  
digital state and sends no signal to represent the other digital state. The receiver demodulates the signal after  
advanced signal conditioning and produces the output through a buffer stage. These devices also incorporates  
advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions due the  
high frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, 图  
8-1, shows a functional block diagram of a typical channel.  
8.2 Functional Block Diagram  
Transmitter  
Receiver  
EN  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
Copyright © 2016, Texas Instruments Incorporated  
8-1. Conceptual Block Diagram of a Digital Capacitive Isolator  
Also a conceptual detail of how the ON/OFF Keying scheme works is shown in 8-2.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
8-2. On-Off Keying (OOK) Based Modulation Scheme  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
8.3 Feature Description  
ISO7821 is available in two channel configurations and default output state options to enable a variety of  
application uses.  
PRODUCT  
ISO7821  
CHANNEL DIRECTION  
1 Forward, 1 Reverse  
1 Forward, 1 Reverse  
RATED ISOLATION  
5700 VRMS / 8000 VPK  
5700 VRMS / 8000 VPK  
MAX DATA RATE  
100 Mbps  
DEFAULT OUTPUT  
(1)  
(1)  
High  
Low  
ISO7821F  
100 Mbps  
(1) See the Regulatory Information section for detailed isolation ratings.  
8.3.1 High Voltage Feature Description  
备注  
This coupler is suitable for 'safe electrical insulation' only within the safety ratings. Compliance with  
the safety ratings shall be ensured by means of suitable protective circuits.  
8-1. Package Insulation and Safety-Related Specifications  
(over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
DW-16  
8
Shortest terminal-to-terminal distance  
through air  
CLR  
External clearance  
mm  
DWW-16  
DW-16  
14.5  
8
Shortest terminal-to-terminal distance  
across the package surface  
CPG  
CTI  
RIO  
External creepage  
mm  
DWW-16  
14.5  
600  
1012  
1011  
Comparative tracking index  
Isolation resistance, input to output(1)  
DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A  
VIO = 500 V, TA = 25°C  
V
VIO = 500 V, 100°C TA max  
CIO  
CI  
Barrier capacitance, input to output(1)  
Input capacitance(2)  
1
2
pF  
pF  
VIO = 0.4 x sin (2πft), f = 1 MHz  
VI = VCC/2 + 0.4 x sin (2πft), f = 1 MHz, VCC = 5 V  
(1) All pins on each side of the barrier tied together creating a two-terminal device.  
(2) Measured from input pin to ground.  
备注  
Creepage and clearance requirements should be applied according to the specific equipment isolation  
standards of an application. Care should be taken to maintain the creepage and clearance distance of  
a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not  
reduce this distance.  
Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such  
as inserting grooves and/or ribs on a printed circuit board are used to help increase these  
specifications.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
8-2. Insulation Characteristics  
PARAMETER  
TEST CONDITIONS  
SPECIFICATION  
UNIT  
DW  
21  
DWW  
21  
DTI  
Distance through the insulation  
Minimum internal gap (internal clearance)  
μm  
VRMS  
VDC  
1500  
2121  
2000  
2828  
Maximum working isolation  
voltage  
VIOWM  
Time dependent dielectric breakdown (TDDB) test  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
VTEST = VIOTM  
t = 60 sec (qualification)  
t= 1 sec (100% production)  
Maximum transient isolation  
voltage  
VIOTM  
8000  
8000  
VPK  
Test method per IEC 60065, 1.2/50 µs waveform,  
VTEST = 1.6 x VIOSM = 12800 VPK (1) (qualification)  
VIOSM Maximum surge isolation voltage  
8000  
2121  
8000  
2828  
VPK  
VPK  
Maximum repetitive peak isolation  
VIORM  
voltage  
Method a, After Input/Output safety test subgroup 2/3,  
VPR = VIORM x 1.2, t = 10 s,  
Partial discharge < 5 pC  
2545  
3394  
3977  
3394  
4525  
5303  
Method a, After environmental tests subgroup 1,  
VPR = VIORM x 1.6, t = 10 s,  
Partial Discharge < 5 pC  
VPR  
Input-to-output test voltage  
VPK  
Method b1,After environmental tests subgroup 1,  
VPR = VIORM x 1.875, t = 1 s (100% Production test)  
Partial discharge < 5 pC  
RS  
Isolation resistance  
Pollution degree  
Climatic category  
VIO = 500 V at TS  
>109  
2
>109  
2
55/125/21 55/125/21  
UL 1577  
VTEST = VISO = 5700 VRMS, t = 60 sec (qualification);  
VTEST = 1.2 x VISO = 6840 VRMS , t = 1 sec (100%  
production)  
VISO  
Withstanding isolation voltage  
5700  
5700  
VRMS  
(1) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
8-3. IEC 60664-1 Ratings Table  
PARAMETER  
TEST CONDITIONS  
SPECIFICATION  
Material group  
I
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
Rated mains voltage 1000 VRMS  
IIV  
IIII  
IIV  
DW package  
Overvoltage category /  
Installation classification  
DWW package  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
8.3.1.1 Regulatory Information  
DW package certifications are complete; DWW package certifications completed for UL and TUV and planned  
for VDE, CSA, and CQC.  
8-4. Regulatory Information  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to  
DIN V VDE V 0884-10  
(VDE V  
0884-10):2006-12 and  
DIN EN 60950-1 (VDE  
0805 Teil 1):2011-01  
Approved under CSA  
Component Acceptance  
Notice 5A, IEC 60950-1  
and IEC 60601-1  
Certified according to  
Recognized under UL  
1577 Component  
Recognition Program  
Certified according to  
GB 4943.1-2011  
EN 61010-1:2010 (3rd Ed) and  
EN 60950-1:2006/A11:2009/  
A1:2010/A12:2011/A2:2013  
Reinforced insulation per  
CSA 60950-1-07+A1+A2  
and IEC 60950-1 2nd Ed.,  
800 VRMS (DW package)  
and 1450 VRMS (DWW  
package) max working  
voltage (pollution degree  
2, material group I);  
5700 VRMS Reinforced insulation  
per EN 61010-1:2010 (3rd Ed)  
up to working voltage of 600  
VRMS (DW package) and 1000  
VRMS (DWW package)  
Reinforced insulation  
Maximum transient  
isolation voltage, 8000  
Reinforced Insulation,  
Altitude 5000 m,  
Tropical Climate, 250  
VRMS maximum working  
voltage  
VPK  
;
Maximum repetitive peak  
isolation voltage, 2121  
VPK (DW), 2828 VPK  
(DWW);  
Maximum surge isolation  
voltage, 8000 VPK  
Single protection, 5700  
VRMS  
2 MOPP (Means of Patient  
Protection) per CSA  
60601-1:14 and IEC  
60601-1 Ed. 3.1,  
250 VRMS (354 VPK) max  
working voltage (DW  
package)  
5700 VRMS Reinforced insulation  
per EN 60950-1:2006/A11:2009/  
A1:2010/A12:2011/A2:2013 up  
to working voltage of 800 VRMS  
(DW package) and 1450 VRMS  
(DWW package)  
Certificate number:  
40040142  
Master contract number:  
220991  
Certificate number:  
CQC15001121716  
File number: E181974  
Client ID number: 77311  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISO7821 ISO7821F  
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
8.3.1.2 Safety Limiting Values  
Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry.  
A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate  
sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system  
failures.  
8-5. Safety Limiting  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
268  
410  
537  
UNIT  
R
R
R
R
θJA = 84.7°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
θJA = 84.7°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C  
θJA = 84.7°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C  
θJA = 84.7°C/W, TJ = 150°C, TA = 25°C  
Safety input, output, or supply  
current for DW-16 package  
and DWW-16 Packages  
IS  
mA  
PS  
TS  
Safety input, output, or total  
power  
mW  
°C  
1476  
150  
Maximum safety temperature  
The maximum safety temperature is the maximum junction temperature specified for the device. The power  
dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines  
the junction temperature. The assumed junction-to-air thermal resistance in the 6.4 is that of a device installed  
on a High-K test board for Leaded Surface Mount Packages. The power is the recommended maximum input  
voltage times the current. The junction temperature is then the ambient temperature plus the power times the  
junction-to-air thermal resistance.  
600  
500  
400  
300  
200  
100  
0
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
Power  
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D015  
D014  
8-4. Thermal Derating Curve for Safety Limiting  
8-3. Thermal Derating Curve for Safety Limiting  
Power per VDE  
Current per VDE  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
ISO7821 functional modes are shown in 8-6.  
8-6. ISO7821 Function Table  
OUTPUT ENABLE  
(ENx)  
(DWW Package Only)  
INPUT  
(INx)(2)  
OUTPUT  
(OUTx)  
VCCI  
VCCO  
COMMENTS  
H
L
H or open  
H or open  
H
L
Normal Operation:  
A channel output assumes the logic state of its input.  
PU  
X
PU  
PU  
Default mode: When INx is open, the corresponding channel output  
goes to its default high logic state. Default= High for ISO7821 and Low  
for ISO7821F.  
Open  
X
H or open  
L
Default  
Z
A low value of Output Enable causes the outputs to be high-  
impedance.  
Default mode: When VCCI is unpowered, a channel output assumes  
the logic state based on the selected default option.Default= High for  
ISO7821 and Low for ISO7821F.  
PD  
X
PU  
PD  
X
X
H or open  
Default  
When VCCI transitions from unpowered to powered-up, a channel  
output assumes the logic state of its input.  
When VCCI transitions from powered-up to unpowered, channel output  
assumes the selected default state.  
When VCCO is unpowered, a channel output is undetermined (1)  
.
X
Undetermined When VCCO transitions from unpowered to powered-up, a channel  
output assumes the logic state of its input  
(1) The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V.  
(2) A strongly driven input signal can weakly power the floating VCC via an internal protection diode and cause undetermined output.  
8.4.1 Device I/O Schematics  
Input (Device Without Suffix F)  
Input (Device With Suffix F)  
V
V
V
V
V
V
V
CCI  
CCI  
CCI  
CCI  
CCI  
CCI  
CCI  
1.5 MW  
985 W  
985 W  
INx  
INx  
1.5 MW  
Output  
Enable  
V
CCO  
V
V
V
V
CCO  
CCO  
CCO  
CCO  
2 MW  
1970 W  
~20 W  
Enx  
OUTx  
Copyright © 2016, Texas Instruments Incorporated  
8-5. Device I/O Schematics  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
 
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The ISO7821 is a high-performance, dual-channel digital isolator with 5.7 kVRMS isolation voltage per UL 1577. It  
utilizes single-ended CMOS-logic switching technology. Its supply voltage range is from 2.25 V to 5.5 V for both  
supplies, VCC1 and VCC2. When designing with digital isolators, it is important to keep in mind that due to the  
single-ended design structure, digital isolators do not conform to any specific interface standard and are only  
intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the  
data controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the interface type  
or standard.  
9.2 Typical Application  
ISO7821 can be used with Texas Instruments' mixed signal micro-controller, digital-to-analog converter,  
transformer driver, and voltage regulator to create an isolated 4-20 mA current loop .  
V
S
0.1 F  
3.3 V  
2
MBR0520L  
1:1.33  
3.3VISO  
3
1
1
3
5
2
V
CC  
D2  
D1  
IN  
OUT  
GND  
10 F  
TPS76333  
SN6501  
10 F 0.1 F  
EN  
GND  
4, 5  
10 F  
MBR0520L  
Isolation Barrier  
0.1 F  
0.1 F  
20 ꢁ  
LOOP+  
15  
VA  
3
0.1 F  
0.1 F  
0.1 F  
VD  
10  
16  
LOW  
BASE  
OUT  
3
14  
CC2  
0.1 F 1 F  
8
2
ERRLVL  
V
V
CC1  
DAC161P997  
DV  
CC  
13  
12  
5
4
5
6
22 ꢁ  
INA  
DBACK  
DIN  
11  
12  
4
5
XOUT  
XIN  
P3.0  
P3.1  
OUTA  
INB  
ISO7821  
9
MSP430G2132  
OUTB  
LOOPœ  
C1 C2 C3 COMA COMD  
GND1  
1, 7  
GND2  
9, 16  
14 13 12  
1
2
DV  
SS  
3 × 2.2 nF  
4
9-1. Isolated 4-20 mA Current Loop  
9.2.1 Design Requirements  
For the ISO7821, use the parameters shown in 9-1.  
9-1. Design Parameters  
PARAMETER  
VALUE  
Supply voltage  
2.25 V to 5.5 V  
0.1 µF  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which need external components to improve performance, provide bias, or limit current,  
ISO7821 only needs two external bypass capacitors to operate.  
ISO7821DW  
V
V
CC2  
CC1  
GND1  
NC  
1
2
3
4
5
6
7
8
16 GND2  
15 NC  
GND1  
GND2  
0.1 µF  
0.1 µF  
GND1  
GND2  
14  
V
V
CC2  
CC1  
INA  
OUTA  
OUTA  
INB  
13 INA  
12 OUTB  
11 NC  
10 NC  
INB  
OUTB  
NC  
GND1  
NC  
GND1  
9
GND2  
GND2  
9-2. Typical ISO7821 Circuit Hook-up  
9.2.2.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO7821  
incorporate many chip-level design improvements for overall system robustness. Some of these improvements  
include:  
Robust ESD protection for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISO7821 ISO7821F  
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
9.2.3 Application Performance Curve  
Typical eye diagram of ISO7821 indicate low jitter and wide open eye at the maximum data rate of 100 Mbps.  
9-3. Eye Diagram at 100 Mbps PRBS, 5 V and 25°C  
Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, a 0.1 µF bypass capacitor is recommended at  
input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as  
possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501. For  
such applications, detailed power supply design and transformer selection recommendations are available in  
SN6501 datasheet (SLLSEA0) .  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
10 Layout  
10.1 PCB Material  
For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of  
up to 10 inches, use standard FR-4 epoxy-glass as PCB material. FR-4 (Flame Retardant 4) meets the  
requirements of Underwriters Laboratories UL94-V0, and is preferred over cheaper alternatives due to its lower  
dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and its self-  
extinguishing flammability-characteristics.  
10.2 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see 10-1). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power / ground plane system to the  
stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
For detailed layout recommendations, see Application Note SLLA284, Digital Isolator Design Guide.  
10.3 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
0 ~ 4.5  
r
Power plane  
Low-speed traces  
10-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
See the Isolation Glossary (SLLA353)  
11.2 Trademarks  
所有商标均为其各自所有者的财产。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
 
 
 
 
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISO7821 ISO7821F  
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
16X (1.65)  
16X (0.6)  
SEE  
DETAILS  
SEE  
DETAILS  
1
1
16  
16  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
9
9
8
8
R0.05 TYP  
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
R0.05 TYP  
14X (1.27)  
8
9
8
9
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISO7821 ISO7821F  
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
PACKAGE OUTLINE  
DWW0016A  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
0
0
0
PLASTIC SMALL OUTLINE  
C
17.4  
17.1  
SEATING PLANE  
A
0.1 C  
PIN 1 ID AREA  
14X 1.27  
16  
1
10.4  
10.2  
NOTE 3  
2X  
8.89  
8
9
0.51  
16X  
(2.286)  
0.31  
14.1  
13.9  
NOTE 4  
B
0.25  
A B  
C
2.65 MAX  
0.28  
0.22  
TYP  
SEE DETAIL A  
(1.625)  
0.25  
GAGE PLANE  
0.3  
0.1  
1.1  
0.6  
0 -8  
DETAIL A  
TYPICAL  
4221501/A 11/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0,15 mm per side.  
4. This dimension does not include interlead flash.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DWW0016A  
SOIC - 2.65 mm max height  
PLASTIC SMALL OUTLINE  
16X (1.875)  
(14.5)  
16X (2)  
(14.25)  
16X (0.6)  
16X (0.6)  
1
1
16  
16  
SYMM  
SYMM  
14X  
(1.27)  
14X  
(1.27)  
8
9
8
9
SYMM  
(16.25)  
SYMM  
(16.375)  
LAND PATTERN EXAMPLE  
PCB CLEARANCE & CREEPAGE OPTIMIZED  
SCALE:3X  
LAND PATTERN EXAMPLE  
STANDARD  
SCALE:3X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221501/A 11/2014  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISO7821 ISO7821F  
ISO7821, ISO7821F  
ZHCSD31G NOVEMBER 2014 REVISED JULY 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DWW0016A  
SOIC - 2.65 mm max height  
PLASTIC SMALL OUTLINE  
16X (2)  
1
SYMM  
16  
16X (0.6)  
SYMM  
14X (1.27)  
8
9
(16.25)  
SOLDER PASTE EXAMPLE  
STANDARD  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
16X (1.875)  
1
SYMM  
16  
16X (0.6)  
SYMM  
14X (1.27)  
8
9
(16.375)  
SOLDER PASTE EXAMPLE  
PCB CLEARANCE & CREEPAGE OPTIMIZED  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221501/A 11/2014  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ISO7821 ISO7821F  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7821DW  
ISO7821DWR  
ISO7821DWW  
ISO7821DWWR  
ISO7821FDW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
ISO7821  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
2000 RoHS & Green  
45 RoHS & Green  
1000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
45 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ISO7821  
ISO7821  
ISO7821  
ISO7821F  
ISO7821F  
ISO7821F  
ISO7821F  
DWW  
DWW  
DW  
ISO7821FDWR  
ISO7821FDWW  
ISO7821FDWWR  
DW  
DWW  
DWW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Jul-2022  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7821DWR  
ISO7821DWWR  
ISO7821FDWR  
ISO7821FDWWR  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DWW  
DW  
16  
16  
16  
16  
2000  
1000  
2000  
1000  
330.0  
330.0  
330.0  
330.0  
16.4  
24.4  
16.4  
24.4  
10.75 10.7  
18.0 10.0  
10.75 10.7  
18.0 10.0  
2.7  
3.0  
2.7  
3.0  
12.0  
20.0  
12.0  
20.0  
16.0  
24.0  
16.0  
24.0  
Q1  
Q1  
Q1  
Q1  
DWW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7821DWR  
ISO7821DWWR  
ISO7821FDWR  
ISO7821FDWWR  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DWW  
DW  
16  
16  
16  
16  
2000  
1000  
2000  
1000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
DWW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO7821DW  
ISO7821DWW  
ISO7821FDW  
ISO7821FDWW  
DW  
DWW  
DW  
SOIC  
SOIC  
SOIC  
SOIC  
16  
16  
16  
16  
40  
45  
40  
45  
506.98  
507  
12.7  
20  
4826  
5000  
4826  
5000  
6.6  
9
506.98  
507  
12.7  
20  
6.6  
9
DWW  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY