ISO7840DW [TI]

高隔离额定值、四通道、4/0、增强型数字隔离器 | DW | 16 | -55 to 125;
ISO7840DW
型号: ISO7840DW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高隔离额定值、四通道、4/0、增强型数字隔离器 | DW | 16 | -55 to 125

文件: 总38页 (文件大小:1729K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
ISO7840x 高性能、8000VPK 增强型四通道数字隔离器  
1 特性  
3 说明  
1
信号传输速率:高达 100Mbps  
ISO7840x 器件是一款高性能四通道数字隔离器,隔离  
电压为 8000VPK。该器件已通过符合 VDECSA、  
CQC TUV 标准的增强型隔离认证。在隔离互补金  
属氧化物半导体 (CMOS) 或者低电压互补金属氧化物  
半导体 (LVCMOS) 数字 I/O 时,该隔离器可提供高电  
磁抗扰度和低辐射,同时具备低功耗特性。每个隔离通  
道都有一个由二氧化硅 (SiO2) 绝缘隔栅分开的逻辑输  
入和输出缓冲器。  
宽电源电压范围:2.25V 5.5V  
2.25V 5.5V 电平转换  
宽温度范围:–55°C +125°C  
低功耗:电流典型值为 1.7mA/通道(1Mbps 时)  
低传播延迟:典型值为 11ns  
5V 电源供电时)  
行业领先的 CMTI(最小值):±100 kV/μs  
优异的电磁兼容性 (EMC)  
该器件配有使能引脚,可用于将多个主驱动应用中的相  
应输出置于 高阻抗状态, 也可用于降低功耗。  
ISO7840 器件具有 4 个正向通道和 0 个反向通道。如  
果出现输入功率或信号丢失,ISO7840 器件默认输出  
高电平,ISO7840F 器件默认输出低电平。有关更多详  
细信息,请参阅 Device Functional Modes器件功能模  
部分。  
系统级静电放电 (ESD)、瞬态放电 (EFT) 以及抗浪  
涌保护  
低辐射  
隔离层寿命:40 年以上  
宽体 SOIC-16 封装和超宽体 SOIC-16 封装选项  
安全及管理批准:中的安全及管理批准列表中的  
安全及管理批准列表  
8000 VPK 增强型隔离,符合 DIN V VDE V  
0884-10 (VDE V 0884-10)2006-12  
与隔离式电源结合使用时,该器件有助于防止数据总线  
或者其他电路中的噪声电流进入本地接地,进而干扰或  
损坏敏感电路。凭借创新的芯片设计和布线技  
术,ISO7840 器件的电磁兼容性得到了显著增强,可  
确保提供系统级 ESDEFT 和浪涌保护并符合辐射标  
准。  
符合 UL 1577 标准且长达 1 分钟的 5.7kVRMS  
隔离  
CSA 组件验收通知 5AIEC 60950-1 IEC  
60601-1 终端设备标准  
符合 GB4943.1-2011 标准的 CQC 认证  
ISO7840 器件采用 16 引脚 SOIC 宽体 (DW) 和超宽体  
(DWW) 封装。  
符合 EN 61010-1 EN 60950-1 标准的 TUV  
认证  
完成了所有 DW 封装认证;完成了符合 UL、  
VDETUV 标准的 DWW 封装认证并且已针对  
CSA CQC 进行了规划  
器件信息(1)  
产品型号  
ISO7840  
封装  
封装尺寸(标称值)  
10.30mm x 7.50mm  
10.30mm x 14.0mm  
DW (16)  
DWW (16)  
ISO7840F  
2 应用  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
工业自动化  
电机控制  
简化电路原理图  
电源  
V
V
CCI  
CCO  
Isolation  
Capacitor  
太阳能逆变器  
医疗设备  
INx  
OUTx  
ENx  
混合动力电动汽车  
GNDI  
GNDO  
V
CCI GNDI 分别是输入通道的电源和接地  
连接。  
CCO GNDO 分别是输出通道的电源和接  
地连接。  
V
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEN2  
 
 
 
 
 
 
 
 
 
 
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
目录  
6.19 Typical Characteristics.......................................... 15  
Parameter Measurement Information ................ 16  
Detailed Description ............................................ 18  
8.1 Overview ................................................................. 18  
8.2 Functional Block Diagram ....................................... 18  
8.3 Feature Description................................................. 19  
8.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 21  
9.1 Application Information............................................ 21  
9.2 Typical Application .................................................. 21  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Power Ratings........................................................... 6  
6.6 Insulation Specifications............................................ 7  
6.7 Safety-Related Certifications..................................... 8  
6.8 Safety Limiting Values .............................................. 8  
6.9 Electrical Characteristics—5-V Supply ..................... 9  
6.10 Supply Characteristics—5-V Supply ....................... 9  
6.11 Electrical Characteristics—3.3-V Supply .............. 10  
6.12 Supply Current Characteristics—3.3-V Supply..... 10  
6.13 Electrical Characteristics—2.5-V Supply .............. 11  
6.14 Supply Current Characteristics—2.5-V Supply..... 11  
6.15 Switching Characteristics—5-V Supply................. 12  
6.16 Switching Characteristics—3.3-V Supply.............. 12  
6.17 Switching Characteristics—2.5-V Supply.............. 13  
6.18 Insulation Characteristics Curves ......................... 14  
7
8
9
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 24  
12 器件和文档支持 ..................................................... 25  
12.1 文档支持................................................................ 25  
12.2 相关链接................................................................ 25  
12.3 接收文档更新通知 ................................................. 25  
12.4 社区资源................................................................ 25  
12.5 ....................................................................... 25  
12.6 静电放电警告......................................................... 25  
12.7 Glossary................................................................ 25  
13 机械、封装和可订购信息....................................... 26  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (March 2016) to Revision B  
Page  
特性部分添加了“2.25V 5.5V 电平转换”........................................................................................................................... 1  
已更改 隔离层寿命年数(特性部分) ..................................................................................................................................... 1  
VDE 认证现在已完成 .............................................................................................................................................................. 1  
Changed the input-to-output test voltage parameter to apparent charge in the Insulation Specifications ............................ 7  
Changed VCCO to VCCI for the minimum value of the input threshold voltage hysteresis parameter in all electrical  
characteristics tables .............................................................................................................................................................. 9  
Added VCM to the test condition of the common-mode transient immunity parameter in all electrical characteristics tables 9  
Added the lifetime projection graphs for DW and DWW packages to the Safety Limiting Values section ......................... 14  
Changes from Original (July 2015) to Revision A  
Page  
特性中的行业领先的 CMTI”更改为行业领先的 CMTI(最小值)...................................................................................... 1  
更改了特性中的安全及管理批准列表 ................................................................................................................................. 1  
特性中添加了符合 EN 61010-1 EN 60950-1 标准的 TUV 认证” ................................................................................... 1  
说明的第一段中的文本从符合 VDECSA CQC 的认证更改为符合 VDECSACQC TUV 的认证。” ............ 1  
Added the DWW pinout image ............................................................................................................................................... 4  
Added the DWW package to the Thermal Information .......................................................................................................... 6  
Changed Package Insulation and Safety-Related Specifications, added the 16-DWW Package information....................... 7  
Added the DWW package information, added "Climatic category", and deleted Note 1 in Insulation Characteristics ......... 7  
Added Note 1 to Insulation Characteristics ........................................................................................................................... 7  
Changed IEC 60664-1 Ratings Table ................................................................................................................................... 7  
2
Copyright © 2015–2016, Texas Instruments Incorporated  
 
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
Added the TUV and DWW package information to the Regulatory Information section and Regulatory Information.  
Deleted Note 1 in Regulatory Information .............................................................................................................................. 8  
Changed the Supply Current section of Supply Characteristics—5-V Supply ....................................................................... 9  
Changed the Supply Current section of Supply Current Characteristics—3.3-V Supply ..................................................... 10  
Changed the Supply Current section ofSupply Current Characteristics—2.5-V Supply ..................................................... 11  
Changed Device I/O Schematics ......................................................................................................................................... 20  
Copyright © 2015–2016, Texas Instruments Incorporated  
3
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
5 Pin Configuration and Functions  
DW and DWW Packages  
16-Pin SOIC  
Top View  
1
2
3
4
5
6
7
8
16  
V
V
CC1  
CC2  
GND1  
INA  
15 GND2  
14 OUTA  
13 OUTB  
12 OUTC  
11 OUTD  
10 EN2  
9 GND2  
INB  
INC  
IND  
NC  
GND1  
Pin Functions  
PIN  
I/O  
I
DESCRIPTION  
NAME  
EN2  
NO.  
Output enable 2. Output pins on side 2 are enabled when EN2 is high or open and in high-  
impedance state when EN2 is low.  
10  
2
8
GND1  
GND2  
Ground connection for VCC1  
Ground connection for VCC2  
9
15  
3
INA  
I
I
Input, channel A  
Input, channel B  
Input, channel C  
Input, channel D  
Not connected  
INB  
4
INC  
5
I
IND  
6
I
NC  
7
O
O
O
O
OUTA  
OUTB  
OUTC  
OUTD  
VCC1  
VCC2  
14  
13  
12  
11  
1
Output, channel A  
Output, channel B  
Output, channel C  
Output, channel D  
Power supply, VCC1  
Power supply, VCC2  
16  
4
Copyright © 2015–2016, Texas Instruments Incorporated  
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)  
See  
MIN  
MAX  
UNIT  
VCC1  
VCC2  
,
Supply voltage(2)  
Voltage  
–0.5  
6
V
INx  
–0.5  
–0.5  
–0.5  
–15  
VCCX + 0.5(3)  
VCCX + 0.5(3)  
VCCX + 0.5(3)  
15  
OUTx  
EN2  
V
IO  
Output current  
Surge immunity  
mA  
kV  
°C  
12.8  
Tstg  
Storage temperature  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(3) Maximum voltage must not exceed 6 V  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±6000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
VCC1  
VCC2  
,
Supply voltage  
2.25  
5.5  
V
VCCO(1) = 5 V  
VCCO(1) = 3.3 V  
VCCO(1) = 2.5 V  
VCCO(1) = 5 V  
VCCO(1) = 3.3 V  
VCCO(1) = 2.5 V  
–4  
–2  
–1  
IOH  
High-level output current  
mA  
mA  
4
2
IOL  
Low-level output current  
1
(1)  
(1)  
VIH  
VIL  
DR  
TJ  
High-level input voltage  
Low-level input voltage  
Signaling rate  
0.7 × VCCI  
VCCI  
V
V
(1)  
0
0
0.3 × VCCI  
100  
150  
125  
Mbps  
°C  
Junction temperature(2)  
–55  
–55  
TA  
Ambient temperature  
25  
°C  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
(2) To maintain the recommended operating conditions for TJ, see Thermal Information.  
Copyright © 2015–2016, Texas Instruments Incorporated  
5
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
6.4 Thermal Information  
ISO7840  
DW (SOIC)  
16 Pins  
78.9  
DWW (SOIC)  
16 Pins  
78.9  
UNIT  
THERMAL METRIC(1)  
Junction-to-ambient thermal resistance  
RθJA  
RθJC(top)  
RθJB  
ψJT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
41.6  
41.1  
43.6  
49.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
15.5  
15.2  
ψJB  
43.1  
48.8  
RθJC(bottom) Junction-to-case(bottom) thermal resistance  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50 MHz 50% duty cycle square wave  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PD  
Maximum power dissipation by ISO7840x  
200  
mW  
Maximum power dissipation by side-1 of  
ISO7840x  
PD1  
40  
mW  
mW  
Maximum power dissipation by side-2 of  
ISO7840x  
PD2  
160  
6
Copyright © 2015–2016, Texas Instruments Incorporated  
 
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
6.6 Insulation Specifications  
SPECIFICATION  
UNIT  
PARAMETER  
TEST CONDITIONS  
DW  
DWW  
GENERAL  
CLR  
CPG  
External clearance(1)  
External creepage(1)  
Shortest pin-to-pin distance through air  
>8  
>8  
>14.5  
>14.5  
mm  
mm  
Shortest pin-to-pin distance across the package  
surfaceHigh Voltage Feature Description  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material group  
Minimum internal gap (internal clearance)  
>21  
>600  
I
>21  
>600  
I
μm  
DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A  
V
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
I–IV  
I–III  
I–IV  
I–IV  
Overvoltage category per IEC  
60664-1  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12(2)  
Maximum repetitive peak isolation  
voltage  
VIORM  
2121  
2828  
VPK  
AC voltage (sine wave); Time dependent dielectric  
breakdown (TDDB) Test, see Figure 1 and Figure 2  
1500  
2121  
2000  
2828  
VRMS  
VDC  
VIOWM Maximum isolation working voltage  
DC voltage  
VTEST = VIOTM  
t = 60 s (qualification)  
t= 1 s (100% production)  
Maximum transient isolation  
voltage  
VIOTM  
8000  
8000  
8000  
8000  
VPK  
VPK  
Test method per IEC 60065, 1.2/50 µs waveform,  
VTEST = 1.6 × VIOSM = 12800 VPK (qualification)  
VIOSM Maximum surge isolation voltage(3)  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.2 × VIORM = 2545 VPK (DW) and 3394 VPK  
(DWW), tm = 10 s  
5  
5  
5  
5  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM = 3394 VPK (DW) and 4525 VPK  
(DWW), tm = 10 s  
qpd  
Apparent charge(4)  
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test)  
Vini = VIOTM, tini = 1 s;  
5  
5  
Vpd(m) = 1.875 × VIORM = 3977 VPK (DW) and 5303 VPK  
(DWW), tm = 1 s  
Barrier capacitance, input to  
output(5)  
CIO  
RIO  
VIO = 0.4 × sin (2πft), f = 1 MHz  
2
2
pF  
VIO = 500 V, TA = 25°C  
>1012  
>1011  
>109  
>1012  
>1011  
>109  
Isolation resistance, input to  
output(5)  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
2
2
55/125/21  
55/125/21  
UL 1577  
VTEST = VISO = 5700 VRMS, t = 60 s (qualification),  
VTEST = 1.2 × VISO = 6840 VRMS, t = 1 s (100%  
production)  
VISO  
Withstand isolation voltage  
5700  
5700  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
Copyright © 2015–2016, Texas Instruments Incorporated  
7
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
6.7 Safety-Related Certifications  
Certifications for the DW package are complete. DWW package certifications are complete for UL, VDE and TUV and  
planned for CSA and CQC.  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to DIN  
V VDE V 0884-10 (VDE V  
0884-10):2006-12 and DIN  
EN 60950-1 (VDE 0805  
Teil 1):2011-01  
Approved under CSA  
Component Acceptance  
Notice 5A, IEC 60950-1 and  
IEC 60601-1  
Certified according to  
Certified according to UL  
1577 Component  
Recognition Program  
Certified according to GB  
4943.1-2011  
EN 61010-1:2010 (3rd Ed) and  
EN 60950-1:2006/A11:2009/A1:2010/  
A12:2011/A2:2013  
Reinforced insulation per CSA  
60950-1-07+A1+A2 and IEC  
60950-1 2nd Ed., 800 VRMS  
(DW package) and 1450 VRMS  
(DWW package) max working  
voltage (pollution degree 2,  
material group I);  
2 MOPP (Means of Patient  
Protection) per CSA 60601-  
1:14 and IEC 60601-1 Ed. 3.1,  
250 VRMS (354 VPK) max  
5700 VRMS Reinforced insulation per  
EN 61010-1:2010 (3rd Ed) up to  
working voltage of 600 VRMS (DW  
package) and 1000 VRMS (DWW  
package)  
5700 VRMS Reinforced insulation per  
EN 60950-1:2006/A11:2009/A1:2010/  
A12:2011/A2:2013 up to working  
voltage of 800 VRMS (DW package) and  
1450 VRMS (DWW package)  
Reinforced insulation  
Maximum transient  
isolation voltage, 8000 VPK  
Maximum repetitive peak  
isolation voltage, 2121 VPK  
(DW), 2828 VPK (DWW);  
Maximum surge isolation  
voltage, 8000 VPK  
;
Reinforced Insulation,  
Altitude 5000 m, Tropical  
Climate, 250 VRMS  
Single protection, 5700  
VRMS  
maximum working voltage  
working voltage (DW package)  
Certificate number:  
40040142  
Master contract number:  
220991  
Certificate number:  
CQC15001121716  
File number: E181974  
Client ID number: 77311  
6.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of  
the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RθJA = 78.9°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
RθJA = 78.9°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C  
RθJA = 78.9°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C  
288  
Safety input, output, or supply  
current  
IS  
440  
576  
mA  
Safety input, output, or total  
power  
PS  
TS  
RθJA = 78.9°C/W, TJ = 150°C, TA = 25°C  
1584  
150  
mW  
°C  
Maximum safety temperature  
The maximum safety temperature is the maximum junction temperature specified for the device. The power  
dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines  
the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information is that of a  
device installed on a high-K test board for leaded surface-mount packages. The power is the recommended  
maximum input voltage times the current. The junction temperature is then the ambient temperature plus the  
power times the junction-to-air thermal resistance.  
8
Copyright © 2015–2016, Texas Instruments Incorporated  
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
6.9 Electrical Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = –4 mA; see Figure 11  
MIN  
TYP  
VCCO – 0.2  
0.2  
MAX UNIT  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
VCCO – 0.4  
V
IOL = 4 mA; see Figure 11  
0.4  
10  
V
Input threshold voltage  
hysteresis  
VI(HYS)  
0.1 × VCCI  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI at INx or EN2  
VIL = 0 V at INx or EN2  
μA  
μA  
–10  
100  
Common-mode transient  
immunity  
VI = VCCI or 0 V, VCM = 1500 V; see  
Figure 14  
CMTI  
CI  
kV/μs  
VI = VCC/2 + 0.4 × sin (2πft), f = 1 MHz, VCC  
5 V  
=
Input capacitance  
2
pF  
6.10 Supply Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
1.3  
0.4  
6
2
mA  
0.6  
EN2 = 0 V, VI = 0 V (ISO7840F), VI =  
VCCI(1) (ISO7840)  
ICC2  
Disable  
ICC1  
8.5  
mA  
0.6  
EN2 = 0 V, VI = VCCI (ISO7840F), VI = 0  
V (ISO7840) EN2 = 0 V  
ICC2  
0.4  
1.3  
2.2  
5.9  
2.5  
3.6  
2.6  
3.8  
4.5  
5.1  
23.8  
5.1  
23.8  
ICC1  
2
mA  
3.1  
VI = 0 V (ISO7840F), VI = VCCI  
(ISO7840)  
ICC2  
DC signal  
ICC1  
8.6  
mA  
3.3  
VI = VCCI (ISO7840F), VI = 0 V  
(ISO7840)  
ICC2  
Supply current  
ICC1  
5.3  
mA  
3.7  
1 Mbps  
ICC2  
ICC1  
5.4  
mA  
5.9  
10 Mbps  
All channels switching with  
square wave clock input;  
CL = 15 pF  
ICC2  
ICC1  
5.9  
mA  
DW package  
ICC2  
27.4  
100 Mbps  
ICC1  
5.9  
mA  
DWW package  
ICC2  
28.5  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
Copyright © 2015–2016, Texas Instruments Incorporated  
9
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
6.11 Electrical Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = –2 mA; see Figure 11  
MIN  
TYP  
VCCO – 0.2  
0.2  
MAX  
UNIT  
V
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
VCCO – 0.4  
IOL = 2 mA; see Figure 11  
0.4  
10  
V
Input threshold voltage  
hysteresis  
VI(HYS)  
0.1 × VCCI  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI at INx or EN2  
VIL = 0 V at INx or EN2  
μA  
μA  
–10  
100  
Common-mode transient  
immunity  
CMTI  
VI = VCCI or 0 V, VCM = 1500 V; see Figure 14  
kV/μs  
6.12 Supply Current Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICC1  
1.3  
0.4  
6
2
0.6  
8.5  
0.6  
2
EN2 = 0 V, VI = 0 V (ISO7840F), VI =  
mA  
VCCI(1) (ISO7840)  
ICC2  
Disable  
EN2 = 0 V, VI = VCCI(1) (ISO7840F), VI  
= 0 V (ISO7840)  
ICC1  
mA  
mA  
mA  
mA  
mA  
mA  
ICC2  
0.4  
1.3  
2.2  
5.9  
2.4  
3.6  
2.5  
3.7  
3.9  
4.5  
17.7  
(1)  
ICC1  
VI = 0 V (ISO7840F), VI = VCCI  
(ISO7840)  
ICC2  
3
DC signal  
VI = VCCI(1) (ISO7840F), VI = 0 V  
(ISO7840)  
ICC1  
8.6  
3.3  
5.3  
3.6  
5.3  
5.1  
5.8  
20.6  
Supply current  
ICC2  
ICC1  
1 Mbps  
ICC2  
All channels switching with  
square wave clock input;  
CL = 15 pF  
ICC1  
10 Mbps  
100 Mbps  
ICC2  
ICC1  
ICC2  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
10  
Copyright © 2015–2016, Texas Instruments Incorporated  
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
6.13 Electrical Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = –1 mA; see Figure 11  
MIN  
TYP  
MAX  
UNIT  
V
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
VCCO – 0.4 VCCO – 0.2  
0.2  
IOL = 1 mA; see Figure 11  
0.4  
V
Input threshold voltage  
hysteresis  
VI(HYS)  
0.1 × VCCI  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI at INx or EN2  
VIL = 0 V at INx or EN2  
10  
μA  
μA  
–10  
100  
Common-mode transient  
immunity  
CMTI  
VI = VCCI or 0 V, VCM = 1500 V; see Figure 14  
kV/μs  
6.14 Supply Current Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICC1  
1.3  
0.4  
6
2
0.6  
8.5  
EN2 = 0 V, VI = 0 V (Devices with suffix  
F), VI = VCCI(1) (Devices without suffix F)  
mA  
ICC2  
Disable  
EN2 = 0 V, VI = VCCI(1) (Devices with  
ICC1  
suffix F), VI = 0 V (Devices without suffix  
F)  
mA  
ICC2  
0.4  
0.6  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.3  
2.2  
5.9  
2.4  
3.6  
2.5  
3.7  
3.5  
4.4  
13.9  
2
3
VI = 0 V (Devices with suffix F), VI =  
VCCI(1) (Devices without suffix F)  
mA  
mA  
mA  
mA  
mA  
DC signal  
VI = VCCI(1) (Devices with suffix F), VI =  
0 V (Devices without suffix F)  
8.6  
3.3  
5.3  
3.5  
5.3  
4.7  
5.7  
16.4  
Supply current  
1 Mbps  
All channels switching  
with square wave clock  
input;  
10 Mbps  
100 Mbps  
CL = 15 pF  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
Copyright © 2015–2016, Texas Instruments Incorporated  
11  
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
MAX UNIT  
6.15 Switching Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
11  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
6
16  
4.1  
2.5  
4.5  
3.9  
3.9  
ns  
ns  
ns  
ns  
ns  
ns  
See Figure 11  
|
0.55  
Same-direction channels  
Output signal rise time  
1.7  
1.9  
See Figure 11  
tf  
Output signal fall time  
Disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
12  
12  
10  
2
20  
20  
20  
2.5  
2.5  
20  
9
ns  
ns  
ns  
μs  
μs  
ns  
Disable propagation delay, low-to-high impedance  
output  
Enable propagation delay, high impedance-to-high  
output for ISO7840  
tPZH  
See Figure 12  
Enable propagation delay, high impedance-to-high  
output for ISO7840F  
Enable propagation delay, high impedance-to-low  
output for ISO7840  
2
tPZL  
Enable propagation delay, high impedance-to-low  
output for ISO7840F  
10  
Measured from the time VCC goes below 1.7 V. See  
Figure 13  
tfs  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
μs  
216 – 1 PRBS data at 100 Mbps  
0.90  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.16 Switching Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10.8  
0.7  
MAX  
16  
UNIT  
ns  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
6
See Figure 11  
|
4.2  
2.2  
4.5  
3
ns  
Same-direction channels  
ns  
ns  
Output signal rise time  
0.8  
0.8  
ns  
See Figure 11  
tf  
Output signal fall time  
3
ns  
Disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
17  
17  
17  
2
32  
32  
32  
2.5  
2.5  
32  
9
ns  
ns  
ns  
μs  
μs  
ns  
Disable propagation delay, low-to-high impedance  
output  
Enable propagation delay, high impedance-to-high  
output for ISO7840  
tPZH  
See Figure 12  
Enable propagation delay, high impedance-to-high  
output for ISO7840F  
Enable propagation delay, high impedance-to-low  
output for ISO7840  
2
tPZL  
Enable propagation delay, high impedance-to-low  
output for ISO7840F  
17  
Measured from the time VCC goes below 1.7 V.  
See Figure 13  
tfs  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
μs  
216 – 1 PRBS data at 100 Mbps  
0.91  
ns  
(1) Also known as Pulse Skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
12  
Copyright © 2015–2016, Texas Instruments Incorporated  
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
6.17 Switching Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
11.7  
0.66  
MAX  
17.5  
4.2  
UNIT  
ns  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
7.5  
See Figure 11  
|
ns  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction Channels  
2.2  
ns  
4.5  
ns  
Output signal rise time  
1
3.5  
ns  
See Figure 11  
tf  
Output signal fall time  
1.2  
3.5  
ns  
Disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
22  
22  
18  
2
45  
45  
45  
2.5  
2.5  
45  
9
ns  
ns  
ns  
μs  
μs  
ns  
Disable propagation delay, low-to-high impedance  
output  
Enable propagation delay, high impedance-to-high  
output for ISO7840  
tPZH  
See Figure 12  
Enable propagation delay, high impedance-to-high  
output for ISO7840F  
Enable propagation delay, high impedance-to-low  
output for ISO7840  
2
tPZL  
Enable propagation delay, high impedance-to-low  
output for ISO7840F  
18  
Measured from the time VCC goes below 1.7 V.  
See Figure 13  
tfs  
tie  
Default output delay time from input power loss  
Time interval error  
0.2  
μs  
216 – 1 PRBS data at 100 Mbps  
0.91  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2015–2016, Texas Instruments Incorporated  
13  
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
6.18 Insulation Characteristics Curves  
1.E+11  
1.E+11  
1.E+10  
1.E+9  
1.E+8  
1.E+7  
1.E+6  
1.E+5  
1.E+4  
1.E+3  
1.E+2  
1.E+1  
Safety Margin Zone: 1800 VRMS, 254 Years  
Operating Zone: 1500 VRMS, 135 Years  
TDDB Line (<1 PPM Fail Rate)  
Safety Margin Zone: 2400 VRMS, 63 Years  
Operating Zone: 2000 VRMS, 34 Years  
TDDB Line (<1 PPM Fail Rate)  
1.E+10  
1.E+9  
1.E+8  
1.E+7  
1.E+6  
1.E+5  
1.E+4  
1.E+3  
1.E+2  
1.E+1  
87.5%  
87.5%  
20%  
20%  
500 1500 2500 3500 4500 5500 6500 7500 8500 9500  
400 1400 2400 3400 4400 5400 6400 7400 8400 9400  
Stress Voltage (VRMS  
)
Stress Voltage (VRMS  
)
TA upto 150°C  
Operating lifetime = 135 years  
Stress-voltage frequency = 60 Hz  
Isolation working voltage = 1500 VRMS  
TA upto 150°C  
Operating lifetime = 34 years  
Stress-voltage frequency = 60 Hz  
Isolation working voltage = 2000 VRMS  
Figure 1. Reinforced Isolation Capacitor Life Time  
Projection for Devices in DW Package  
Figure 2. Reinforced Isolation Capacitor Life Time  
Projection for Devices in DWW Package  
700  
600  
500  
400  
300  
200  
100  
0
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
Power  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D014  
D015  
Figure 3. Thermal Derating Curve for Limiting Current per  
VDE  
Figure 4. Thermal Derating Curve for Limiting Power per  
VDE  
14  
Copyright © 2015–2016, Texas Instruments Incorporated  
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
6.19 Typical Characteristics  
24  
10  
8
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
20  
16  
12  
8
ICC2 at 5 V  
6
4
2
4
0
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Data Rate (Mbps)  
Data Rate (Mbps)  
D001  
D002  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 5. Supply Current vs Data Rate (With 15-pF Load)  
Figure 6. Supply Current vs Data Rate (With No Load)  
6
1
VCC at 2.5 V  
VCC at 3.3 V  
VCC at 5.0 V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
4
3
2
VCC at 2.5 V  
VCC at 3.3 V  
VCC at 5.0 V  
1
0
-15  
-10  
-5  
0
0
5
10  
15  
High-Level Output Current (mA)  
Low-Level Output Current (mA)  
D003  
D0041  
TA = 25°C  
TA = 25°C  
Figure 7. High-Level Output Voltage vs High-level Output  
Current  
Figure 8. Low-Level Output Voltage vs Low-Level Output  
Current  
2.25  
13  
12  
11  
10  
9
VCC1 Rising  
VCC1 Falling  
VCC2 Rising  
VCC2 Falling  
2.2  
2.15  
2.1  
2.05  
2
1.95  
1.9  
1.85  
1.8  
tPLH at 2.5 V  
tPHL at 2.5 V  
tPLH at 3.3 V  
tPHL at 3.3 V  
tPLH at 5.0 V  
tPHL at 5.0 V  
1.75  
1.7  
8
-50  
0
50  
Free-Air Temperature (oC)  
100  
150  
-60  
-30  
0
30  
60  
90  
120  
Free-Air Temperature (oC)  
D005  
D006  
Figure 9. Power Supply Undervoltage Threshold vs Free-Air  
Temperature  
Figure 10. Propagation Delay Time vs Free-Air Temperature  
Copyright © 2015–2016, Texas Instruments Incorporated  
15  
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
7 Parameter Measurement Information  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
V
t
t
PHL  
PLH  
Input  
Generator  
(See Note A)  
C
L
V
I
V
50  
O
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
Copyright © 2016, Texas Instruments Incorporated  
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3  
ns, tf 3 ns, ZO = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in  
actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 11. Switching Characteristics Test Circuit and Voltage Waveforms  
V
CCO  
V
CC  
R
L
= 1 k±1%  
V
/ 2  
CC  
V
/ 2  
CC  
V
I
IN  
OUT  
0 V  
V
0 V  
O
t
t
PZL  
PLZ  
V
OH  
EN  
0.5 V  
V
V
O
50%  
C
L
OL  
See Note B  
Input  
Generator  
(See Note A)  
V
I
50 ꢀ  
V
CC  
V
O
IN  
OUT  
3 V  
V / 2  
CC  
V
/ 2  
CC  
V
I
0 V  
t
PZH  
EN  
See Note B  
R
L
= 1 k±1%  
V
OH  
C
L
50%  
Input  
Generator  
(See Note A)  
0.5 V  
V
O
V
I
0 V  
t
50 ꢀ  
PHZ  
Copyright © 2016, Texas Instruments Incorporated  
A. The input pulse is supplied by a generator having the following characteristics: PRR 10 kHz, 50% duty cycle,  
tr 3 ns, tf 3 ns, ZO = 50 Ω.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 12. Enable/Disable Propagation Delay Time Test Circuit and Waveform  
16  
Copyright © 2015–2016, Texas Instruments Incorporated  
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
Parameter Measurement Information (continued)  
VI  
VCC  
VCC  
2.7 V  
VI  
0 V  
VOH  
IN  
IN = 0 V (Devices without suffix F)  
IN = VCC (Devices with suffix F)  
OUT  
t
VO  
fs  
fs high  
fs low  
50%  
VO  
CL  
See Note A  
VOL  
Copyright © 2016, Texas Instruments Incorporated  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 13. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CCO  
CCI  
C = 0.1 µF ±1%  
C = 0.1 µF ±1%  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
EN  
V
OH  
or V  
OL  
C
L
œ
See Note A  
GNDI  
GNDO  
Copyright © 2016, Texas Instruments Incorporated  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 14. Common-Mode Transient Immunity Test Circuit  
Copyright © 2015–2016, Texas Instruments Incorporated  
17  
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ISO7840 device uses an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a  
silicon-dioxide based isolation barrier. The transmitter sends a high-frequency carrier across the barrier to  
represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the  
signal after advanced signal conditioning and produces the output through a buffer stage. If the EN pin is low  
then the output goes to high impedance. The ISO7840 device also incorporates advanced circuit techniques to  
maximize the CMTI performance and minimize the radiated emissions because of the high-frequency carrier and  
IO buffer switching. The conceptual block diagram of a digital capacitive isolator, Figure 15, shows a functional  
block diagram of a typical channel.  
8.2 Functional Block Diagram  
Transmitter  
Receiver  
EN  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Oscillator  
Techniques  
Copyright © 2016, Texas Instruments Incorporated  
Figure 15. Conceptual Block Diagram of a Digital Capacitive Isolator  
Figure 16 shows a conceptual detail of how the ON-OFF keying scheme works.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
Figure 16. On-Off Keying (OOK) Based Modulation Scheme  
18  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
8.3 Feature Description  
Table 1 lists the device features.  
Table 1. Device Features  
PART NUMBER  
CHANNEL DIRECTION  
RATED ISOLATION  
MAXIMUM DATA RATE  
DEFAULT OUTPUT  
4 Forward,  
0 Reverse  
4 Forward,  
0 Reverse  
(1)  
ISO7840  
5700 VRMS / 8000 VPK  
100 Mbps  
100 Mbps  
High  
(1)  
ISO7840F  
5700 VRMS / 8000 VPK  
Low  
(1) See for detailed isolation ratings.  
8.3.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge, and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO7840  
device incorporates many chip-level design improvements for overall system robustness. Some of these  
improvements include  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Copyright © 2015–2016, Texas Instruments Incorporated  
19  
 
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
8.4 Device Functional Modes  
Table 2 lists the ISO7840 functional modes.  
Table 2. Function Table(1)  
OUTPUT  
INPUT  
OUTPUT  
(OUTx)  
VCCI  
VCCO  
ENABLE  
(EN2)  
COMMENTS  
(INx)(2)  
H
L
H or open  
H or open  
H
Normal Operation:  
A channel output assumes the logic state of its input.  
L
Default  
Z
PU  
X
PU  
PU  
Default mode: When INx is open, the corresponding channel output goes to  
its default logic state. Default= High for ISO7840 and Low for ISO7840F.  
Open  
X
H or open  
L
A low value of Output Enable causes the outputs to be high-impedance  
Default mode: When VCCI is unpowered, a channel output assumes the logic  
state based on the selected default option. Default= High for IISO7840 and  
Low for ISO7840F.  
PD  
X
PU  
PD  
X
X
H or open  
Default  
When VCCI transitions from unpowered to powered-up, a channel output  
assumes the logic state of its input.  
When VCCI transitions from powered-up to unpowered, channel output  
assumes the selected default state.  
(3)  
When VCCO is unpowered, a channel output is undetermined  
.
X
Undetermined When VCCO transitions from unpowered to powered-up, a channel output  
assumes the logic state of its input  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC 2.25 V); PD = Powered down (VCC 1.7 V); X = Irrelevant; H  
= High level; L = Low level ; Z = High Impedance  
(2) A strongly driven input signal can weakly power the floating VCC through an internal protection diode and cause undetermined output.  
(3) The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V.  
8.4.1 Device I/O Schematics  
Input (Device Without Suffix F)  
Input (Device With Suffix F)  
V
V
V
V
V
V
V
CCI  
CCI  
CCI  
CCI  
CCI  
CCI  
CCI  
1.5 MW  
985 W  
985 W  
INx  
INx  
1.5 MW  
Output  
Enable  
V
CCO  
V
V
V
V
CCO  
CCO  
CCO  
CCO  
2 MW  
1970 W  
~20 W  
Enx  
OUTx  
Copyright © 2016, Texas Instruments Incorporated  
Figure 17. Device I/O Schematics  
20  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ISO7840 device is a high-performance, quad-channel digital isolator with a 5.7-kVRMS isolation voltage. The  
device comes with enable pins on each side that can be used to put the respective outputs in high impedance for  
multi-master driving applications and reduce power consumption. The ISO7840 device uses single-ended  
CMOS-logic switching technology. The supply voltage range is from 2.25 V to 5.5 V for both supplies, VCC1 and  
VCC2. When designing with digital isolators, keep in mind that because of the single-ended design structure,  
digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended  
CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μC or  
UART), and a data converter or a line transceiver, regardless of the interface type or standard.  
9.2 Typical Application  
Isolation  
5 VISO 5 VISO  
Barrier  
5 VISO  
3.3 V  
3.3 V  
0.1 F  
0.1 F  
0.1 F  
16  
10  
14  
13  
12  
11  
1
22  
AVDD DVDD  
AIN1+  
1
VCC2  
VCC1  
EN1  
INA  
0.1 F  
0.1 F  
2
7
EN2  
11  
DVcc  
8
3
11  
12  
14  
13  
5
P3.0  
P3.1  
A0  
OUTA  
OUTB  
OUTC  
IND  
XOUT  
RTD  
12  
7
4
ISO7841  
AIN1œ  
A1  
INB  
IN  
C
MSP430F2132  
CLK  
27  
5
6
SCLK  
XIN  
P3.7  
P3.6  
P3.5  
18  
17  
28  
6
18  
17  
16  
Bridge  
AIN2+  
DOUT  
OUTD  
SOMI  
9, 15  
2, 8  
ADS1234  
AIN2œ  
5 VISO  
GND2  
GND1  
5 VISO  
3.3 V  
15  
20  
19  
P3.4  
REF+  
DVss  
4
16  
10  
1
0.1 F  
0.1 F  
13  
14  
VCC2  
VCC1  
NC  
AIN3+  
REFœ  
0.1 F  
7
Thermo  
couple  
EN  
AIN3œ  
23  
24  
25  
26  
14  
3
GAIN0  
GAIN1  
SPEED  
PWDN  
OUTA  
OUTB  
OUTC  
OUTD  
GND2  
INA  
13  
4
ISO7840  
INB  
IN  
C
16  
15  
AIN4+  
12  
5
Current  
shunt  
11  
6
AIN4œ  
IND  
9, 15  
2, 8  
AGND DGND  
GND1  
21  
2
Copyright © 2016, Texas Instruments Incorporated  
Figure 18. Isolated Data Acquisition System for Process Control  
Copyright © 2015–2016, Texas Instruments Incorporated  
21  
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
For this design example, use the parameters shown in Table 3.  
Table 3. Design Parameters  
PARAMETER  
VALUE  
2.25 to 5.5 V  
0.1 µF  
Supply voltage  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,  
the ISO7840 device only requires two external bypass capacitors to operate.  
VCC1  
VCC2  
0.1 µF  
0.1 µF  
1
16  
V
CC1  
V
CC2  
GND1  
GND2  
GND1  
INA  
2
3
GND2  
OUTA  
OUTB  
OUTC  
OUTD  
INA  
14  
13  
OUTB  
INB  
OUTC  
INB  
4
INC  
INC  
IND  
12  
11  
OUTC  
OUTD  
5
6
7
8
IND  
EN  
NC  
10 EN2  
GND1  
9
GND2  
GND1  
GND2  
ISO7840  
Copyright © 2016, Texas Instruments Incorporated  
Figure 19. Typical ISO7840 Circuit Hook-Up  
9.2.3 Application Curve  
The typical eye diagram of the ISO7840 device indicates low jitter and wide open eye at the maximum data rate  
of 100 Mbps.  
Figure 20. Eye Diagram at 100 Mbps PRBS, 5 V and 25°C  
22  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
10 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended  
at input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as  
possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas InstrumentsSN6501. For  
such applications, detailed power supply design and transformer selection recommendations are available in  
SN6501 Transformer Driver for Isolated Power Supplies.  
Copyright © 2015–2016, Texas Instruments Incorporated  
23  
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 21). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/inch2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
For detailed layout recommendations, refer to Digital Isolator Design Guide.  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and the self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Yeep this  
FR-4  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
0 ~ 4.5  
r
Power plane  
Low-speed traces  
Figure 21. Layout Example Schematic  
24  
版权 © 2015–2016, Texas Instruments Incorporated  
 
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
相关文档如下:  
ADS1234 用于桥式传感器的 24 位模数转换器》  
数字隔离器设计指南  
隔离相关术语  
MSP430G2x32MSP430G2x02 混合信号微控制器》  
SN6501 用于隔离电源的变压器驱动器》  
12.2 相关链接  
以下表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
ISO7840  
ISO7840F  
12.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2015–2016, Texas Instruments Incorporated  
25  
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2015–2016, Texas Instruments Incorporated  
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
版权 © 2015–2016, Texas Instruments Incorporated  
27  
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
16X (1.65)  
16X (0.6)  
SEE  
DETAILS  
SEE  
DETAILS  
1
1
16  
16  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
R0.05 TYP  
14X (1.27)  
9
9
8
8
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
28  
版权 © 2015–2016, Texas Instruments Incorporated  
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
R0.05 TYP  
14X (1.27)  
8
9
8
9
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
版权 © 2015–2016, Texas Instruments Incorporated  
29  
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
PACKAGE OUTLINE  
DWW0016A  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
0
0
0
PLASTIC SMALL OUTLINE  
C
17.4  
17.1  
SEATING PLANE  
A
0.1 C  
PIN 1 ID AREA  
14X 1.27  
16  
1
10.4  
10.2  
NOTE 3  
2X  
8.89  
8
9
0.51  
16X  
(2.286)  
0.31  
14.1  
13.9  
NOTE 4  
B
0.25  
A B  
C
2.65 MAX  
0.28  
0.22  
TYP  
SEE DETAIL A  
(1.625)  
0.25  
GAGE PLANE  
0.3  
0.1  
1.1  
0.6  
0 -8  
DETAIL A  
TYPICAL  
4221501/A 11/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0,15 mm per side.  
4. This dimension does not include interlead flash.  
www.ti.com  
30  
版权 © 2015–2016, Texas Instruments Incorporated  
ISO7840, ISO7840F  
www.ti.com.cn  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
EXAMPLE BOARD LAYOUT  
DWW0016A  
SOIC - 2.65 mm max height  
PLASTIC SMALL OUTLINE  
16X (1.875)  
(14.5)  
16X (2)  
(14.25)  
16X (0.6)  
16X (0.6)  
1
1
16  
16  
SYMM  
SYMM  
14X  
(1.27)  
14X  
(1.27)  
8
9
8
9
SYMM  
(16.25)  
SYMM  
(16.375)  
LAND PATTERN EXAMPLE  
PCB CLEARANCE & CREEPAGE OPTIMIZED  
SCALE:3X  
LAND PATTERN EXAMPLE  
STANDARD  
SCALE:3X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221501/A 11/2014  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
版权 © 2015–2016, Texas Instruments Incorporated  
31  
ISO7840, ISO7840F  
ZHCSDU2B JULY 2015REVISED APRIL 2016  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DWW0016A  
SOIC - 2.65 mm max height  
PLASTIC SMALL OUTLINE  
16X (2)  
SYMM  
1
16  
16X (0.6)  
SYMM  
14X (1.27)  
8
9
(16.25)  
SOLDER PASTE EXAMPLE  
STANDARD  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
16X (1.875)  
SYMM  
1
16  
16X (0.6)  
SYMM  
14X (1.27)  
8
9
(16.375)  
SOLDER PASTE EXAMPLE  
PCB CLEARANCE & CREEPAGE OPTIMIZED  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221501/A 11/2014  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
32  
版权 © 2015–2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7840DW  
ISO7840DWR  
ISO7840DWW  
ISO7840DWWR  
ISO7840FDW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
ISO7840  
2000 RoHS & Green  
45 RoHS & Green  
1000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
45 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ISO7840  
ISO7840  
ISO7840  
ISO7840F  
ISO7840F  
ISO7840F  
ISO7840F  
DWW  
DWW  
DW  
ISO7840FDWR  
ISO7840FDWW  
ISO7840FDWWR  
DW  
DWW  
DWW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7840DWR  
ISO7840DWWR  
ISO7840FDWR  
ISO7840FDWWR  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DWW  
DW  
16  
16  
16  
16  
2000  
1000  
2000  
1000  
330.0  
330.0  
330.0  
330.0  
16.4  
24.4  
16.4  
24.4  
10.75 10.7  
18.0 10.0  
10.75 10.7  
18.0 10.0  
2.7  
3.0  
2.7  
3.0  
12.0  
20.0  
12.0  
20.0  
16.0  
24.0  
16.0  
24.0  
Q1  
Q1  
Q1  
Q1  
DWW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7840DWR  
ISO7840DWWR  
ISO7840FDWR  
ISO7840FDWWR  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DWW  
DW  
16  
16  
16  
16  
2000  
1000  
2000  
1000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
DWW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO7840DW  
ISO7840DWW  
ISO7840FDW  
ISO7840FDWW  
DW  
DWW  
DW  
SOIC  
SOIC  
SOIC  
SOIC  
16  
16  
16  
16  
40  
45  
40  
45  
506.98  
507  
12.7  
20  
4826  
5000  
4826  
5000  
6.6  
9
506.98  
507  
12.7  
20  
6.6  
9
DWW  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY