ISOW7721FDFMR [TI]

具有集成电源的低发射、双通道、1/1、增强型数字隔离器 | DFM | 20 | -40 to 125;
ISOW7721FDFMR
型号: ISOW7721FDFMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成电源的低发射、双通道、1/1、增强型数字隔离器 | DFM | 20 | -40 to 125

文件: 总51页 (文件大小:4098K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISOW7721  
ZHCSPK0 JULY 2022  
ISOW7721 具有集成式低辐射、低噪声直流/直流转换器的双通道数字隔离器  
1 特性  
2 应用  
100 Mbps 数据速率  
• 低辐射、低噪声的集成式直流/直流转换器  
工厂自动化  
电机控制  
电网基础设施  
医疗设备  
测试和测量  
– 辐射经过优化CISPR 32 EN 55032 B  
类标准2 层电路板上的裕>5dB  
25 MHz 的低频电源转换器可实现低噪声性能  
– 低输出波纹24 mV  
3 说明  
• 高效率输出功率  
ISOW7721 器件是具有低辐射集成式高效电源转换器  
的电隔离双通道数字隔离器。集成式直流/直流转换器  
提供高550mW 的隔离式电源无需在空间受限的隔  
离设计中单独使用隔离式电源。如果需要额外的电源,  
ISOW7721 支持多器件链通过在系统中使用两个器  
件将集成电源输出增加>1W。  
– 最大负载时的效率46%  
– 高0.55W 的输出功率  
VISOOUT 精度±5%  
5V 5V最大可用负载电= 110 mA  
5V 3.3V最大可用负载电= 140 mA  
3.3V 3.3V最大可用负载电= 60 mA  
• 支持ISOW7721 可将系统功率输出提高至  
>1W >200mA  
• 用于通道隔离器和电源转换器的独立电源  
– 逻辑电(VIO)1.71V 5.5V  
– 电源转换器电(VDD)3V 5.5V  
• 优异的电磁兼容(EMC)  
器件信息  
ISOW7721  
特性  
ISOW7721F  
保护级别  
浪涌测试电压  
隔离额定值  
工作电压  
增强型  
10kVPK  
5000VRMS  
– 系统ESDEFT 和浪涌抗扰性  
– 在整个隔离栅具±8kV IEC 61000-4-2 接触放  
电保护  
1000VRMS/1500VPK  
DFM (20)  
封装  
12.83 mm x 7.5 mm  
封装尺寸标称值)  
• 增强型和基础型隔离选项  
CMTI100kV/µs典型值)  
• 安全相关认证计划):  
VISOIN  
VIO  
– 符DIN VDE V 0884-11:2017-01 标准VDE  
增强型和基础型绝缘  
UL 1577 组件认证计划  
Tx  
Rx  
INA  
OUTA  
Rx  
Tx  
OUTB  
INB  
EN_IO2  
EN_IO1  
IEC 62368-1IEC 61010-1IEC 60601-1 和  
GB 4943.1-2011 认证  
GISOIN  
GNDIO  
GND2  
GND1  
• 工作温度范围40°C +125°C  
20 引脚宽SOIC 封装  
VDD  
LF  
VSEL  
DC-DC  
Primary  
DC-DC  
Secondary  
CC  
EN  
VISOOUT  
GND2  
GND1  
ISOW7721 简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFP4  
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
Table of Contents  
7.18 Supply Current Characteristics Channel  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................7  
7.4 Thermal Information....................................................8  
7.5 Power Ratings.............................................................8  
7.6 Insulation Specifications............................................. 9  
7.7 Safety-Related Certifications.................................... 10  
7.8 Safety Limiting Values...............................................10  
7.9 Electrical Characteristics - Power Converter.............11  
7.10 Supply Current Characteristics - Power  
Converter.....................................................................12  
7.11 Electrical Characteristics Channel Isolator -  
VIO, VISOIN = 5-V..........................................................13  
7.12 Supply Current Characteristics Channel  
Isolator - VIO, VISOIN = 5-V...........................................13  
7.13 Electrical Characteristics Channel Isolator -  
VIO, VISOIN = 3.3-V.......................................................14  
7.14 Supply Current Characteristics Channel  
Isolator - VIO, VISOIN = 1.8-V........................................16  
7.19 Switching Characteristics - 5-V Supply...................17  
7.20 Switching Characteristics - 3.3-V Supply................18  
7.21 Switching Characteristics - 2.5-V Supply................19  
7.22 Switching Characteristics - 1.8-V Supply................20  
7.23 Insulation Characteristics Curves........................... 21  
7.24 Typical Characteristics............................................22  
8 Parameter Measurement Information..........................27  
9 Detailed Description......................................................29  
9.1 Overview...................................................................29  
9.2 Functional Block Diagram.........................................30  
9.3 Feature Description...................................................31  
9.4 Device Functional Modes..........................................35  
10 Application and Implementation................................37  
10.1 Application Information........................................... 37  
10.2 Typical Application.................................................. 37  
11 Power Supply Recommendations..............................41  
12 Layout...........................................................................42  
12.1 Layout Guidelines................................................... 42  
12.2 Layout Example...................................................... 43  
13 Device and Documentation Support..........................44  
13.1 Device Support....................................................... 44  
13.2 Documentation Support.......................................... 44  
13.3 Receiving Notification of Documentation Updates..44  
13.4 支持资源..................................................................44  
13.5 Trademarks.............................................................44  
13.6 Electrostatic Discharge Caution..............................44  
13.7 术语表..................................................................... 44  
14 Mechanical, Packaging, and Orderable  
Isolator - VIO, VISOIN = 3.3-V........................................14  
7.15 Electrical Characteristics Channel Isolator -  
VIO, VISOIN = 2.5-V.......................................................15  
7.16 Supply Current Characteristics Channel  
Isolator - VIO, VISOIN = 2.5-V........................................15  
7.17 Electrical Characteristics Channel Isolator -  
Information.................................................................... 45  
VIO, VISOIN = 1.8-V.......................................................16  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
July 2022  
*
Initial release.  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
5 说明)  
电源转换器可在 –40°C +125°C 的宽工作环境温度范围内高效运行。该器件提供改进的发射性能简化了电路  
板设计并提供了铁氧体磁珠以进一步衰减发射。ISOW7721 旨在提供增强的保护功能包括限制浪涌电流的软  
启动、过压和欠压锁定、过载和短路保护以及热关断。  
ISOW7721 在隔离 CMOS LVCMOS 数字 I/O 可提供高电磁抗扰度。该信号隔离通道具有逻辑输入和输出  
缓冲器由双电容二氧化硅 (SiO2) 绝缘栅隔开而电源隔离使用片上变压器采用薄膜聚合物作为绝缘材料进行  
隔离。ISOW7721 具有 1 个正向通道和 1 个反向通道。如果输入信号丢失不具有 F 后缀的 ISOW7721 器件默  
认输出高电平而具有 F 后缀的 ISOW7721F 器件默认输出低电平。ISOW7721 通过将 VIO VDD 一起连接到  
PCB 可在 3V 5.5V 的单一电源下运行。如果需要较低的逻辑电平这些器件支持 1.71V 5.5V 逻辑电源  
(VIO)该电源独立于 3V 5.5V 的电源转换器电源 (VDD)VISOIN VISOOUT 需要通过铁氧体磁珠或通过 LDO  
馈电连接到电路板。  
这些器件有助于防止数据总线例如UARTRS-485RS-232 CAN或者其他电路上的噪声电流进入本地  
接地以及干扰或损坏敏感电路。通过创新的芯片设计和布线技术该器件的电磁兼容性得到了显著增强可缓解  
系统ESDEFT 、浪涌和辐射合规性。器件采20 SOIC (SOIC-WB) DFM 封装。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISOW7721  
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
VIO  
INA  
1
2
3
20  
19  
18  
VISOIN  
OUTA  
INB  
OUTB  
EN_IO1  
EN  
4
5
6
17  
16  
15  
EN_IO2  
NC  
GNDIO  
GISOIN  
LF  
7
14  
NC  
CC  
VDD  
8
13  
12  
11  
VSEL  
VISOOUT  
GND2  
9
GND1  
10  
6-1. ISOW7721 DFM Package 20-Pin SOIC Top View  
6-1. Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
ISOW7721  
Output Enable 1: When EN_IO1 is high or open then the channel output pin on side 1 is enabled.  
When EN_IO1 is low then the channel output pin on side 1 is in a high impedance state and the  
transmitter of the channel input pin on side 1 is disabled.  
EN_IO1  
4
I
I
Output Enable 2: When EN_IO2 is high or open then the channel output pin on side 2 is enabled.  
When EN_IO2 is low then the channel output pin on side 2 is in a high impedance state and the  
transmitter of the channel input pin on side 2 is disabled.  
EN_IO2  
17  
GNDIO  
GISOIN  
GND1  
6
Ground connection for VIO. GND1 and GNDIO need to be shorted on board.  
Ground connection for VISOIN. GND2 and GISOIN pins can be shorted on board or connected  
through a ferrite bead. See the Layout Section for more information.  
15  
10  
11  
Ground connection for VDD. GND1 and GNDIO needs to be shorted on board.  
Ground connection for VISOOUT. GND2 and GISOIN pins can be shorted on board or connected  
through a ferrite bead. See the Layout Section for more information.  
GND2  
INA  
INB  
2
I
I
Input channel A  
Input channel B  
18  
Multiple device pimary/secondary synchronization pin.  
When LF is set to GND1, CC is an output used to sync to an additional ISOW7721. When LF is set to  
VDD, CC is an input. Connect the CC pin of the primary device to all the secondary devices. Leave  
CC floating if unused.  
CC  
8
I/O  
See Multi-Device Chaining for Increased Power Output for more information.  
Multiple device primary/secondary control logic.  
Connect the LF to GND1 when used as the primary device or to VDD if used as the secondary device.  
LF  
7
I
Tie LF to GND1 if used as a standalone device when not chaining the power converters.  
See Multi-Device Chaining for Increased Power Output for more information.  
OUTA  
OUTB  
19  
3
O
O
Output channel A  
Output channel B  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
NAME  
6-1. Pin Functions (continued)  
PIN  
NO.  
I/O  
DESCRIPTION  
ISOW7721  
Power converter enable input pin: enables and disables the integrated DC-DC power converter.  
Connect directly to microcontroller or through a series current limiting resistor to use as an enable  
input pin. DC-DC power converter is enabled when EN is high to the VIO voltage level and disabled  
when low at GND1 voltage level.  
EN  
5
I/O  
See 9.3.3 for more information  
VISOOUT selection pin. VISOOUT = 5 V when VSEL shorted to VISOOUT. VISOOUT = 3.3 V, when VSEL  
shorted to GND2. For more information see the Device Functional Modes.  
VSEL  
13  
I
VIO  
1
9
Side 1 logic supply.  
VDD  
Side 1 DC-DC converter power supply.  
Side 2 supply voltage for isolation channels. VISOIN and VISOOUT pins can be shorted on board or  
connected through a ferrite bead. See Application and Implementation for more information.  
VISOIN  
20  
12  
Isolated power converter output voltage. VISOIN and VISOOUT pins can be shorted on board or  
connected through a ferrite bead. See Application and Implementation for more information.  
VISOOUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISOW7721  
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.5  
0.5  
MAX  
UNIT  
V
VDD  
Power converter supply voltage  
6
6
VISOIN  
Isolated supply voltage, input supply for secondary side isolation channels  
V
Isolated supply voltage, Power converter output  
VSEL shorted to GND2  
VISOOUT  
VISOOUT  
4
6
V
V
0.5  
0.5  
Isolated supply voltage, Power converter output  
VSEL shorted to VISOOUT  
VIO  
VLF  
Primary side logic supply voltage  
Voltage at LF  
6
V
V
0.5  
-0.5  
6
VSI + 0.5  
VSI + 0.5  
VISOOUT + 0.5  
15  
Voltage at INx, OUTx, EN_IOx(3)  
V
0.5  
0.5  
0.5  
15  
40  
65  
V
Voltage at EN/FLT  
V
Voltage at VSEL  
V
IO  
Maximum output current through data channels  
Junction temperature  
mA  
°C  
°C  
TJ  
150  
Tstg  
Storage temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) VDD, VISOIN VISOOUT, and VIO are with respect to the local ground pin (GND1 or GND2). All voltage values except differential I/O bus  
voltages are peak voltage values.  
(3) VSI = input side supply; Cannot exceed 6 V.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±3000  
Electrostatic  
discharge  
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C6  
V(ESD)  
±1500  
±8000  
V
Contact discharge per IEC 61000-4-2(2)  
Isolation barrier withstand test  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
 
 
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
Over recommended operating conditions, typical values are at VDD = VIO = 3.3 V and TA =25°C, GND1 = GNDIO, GND2 =  
GISOIN (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Power Converter  
3.3 V operation  
5 V operation  
2.97  
4.5  
3.3  
5
3.63  
5.5  
V
V
Power converter supply  
voltage  
VDD  
Positive threshold when  
power converter supply is  
rising  
Positive threshold when power  
converter supply is rising  
VDD(UVLO+)  
2.7  
2.95  
V
Positive threshold when  
power converter supply is  
falling  
Positive threshold when power  
converter supply is falling  
VDD(UVLO-)  
2.40  
0.15  
2.55  
V
V
Power converter supply  
voltage hysteresis  
Power converter supply voltage  
hysteresis  
VDD(HYS)  
Channel Isolation  
1.8 V operation  
1.71  
2.25  
1.89  
5.5  
V
V
(3)  
VIO, VISOIN  
Channel logic supply voltage  
2.5 V, 3.3 V, and 5 V operation  
VIO(UVLO+)  
VIO(UVLO-)  
VIO(HYS)  
Rising threshold of logic supply voltage  
1.55  
1.41  
1.7  
V
Falling threshold of logic supply voltage  
Logic supply voltage hysteresis  
1.0  
75  
V
mV  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
VISOIN = 5 V  
4  
2  
1  
1  
VISOIN = 3.3 V  
VISOIN = 2.5 V  
VISOIN = 1.8 V  
VISOIN = 5 V  
IOH  
High level output current(1)  
Low level output current(1)  
4
VISOIN = 3.3 V  
VISOIN = 2.5 V  
VISOIN = 1.8 V  
2
IOL  
1
1
VIH  
VIL  
DR  
High-level input voltage(2)  
Low-level input voltage  
Data rate  
0.7 × VSI  
0
VSI  
0.3 × VSI  
100  
V
Mbps  
Channel isolator ready after  
power up or EN/FLT high  
tPWRUP  
TA  
VISOIN > VIO(UVLO+)  
5
ms  
°C  
Ambient temperature  
125  
40  
(1) This current is for data output channel.  
(2) VSI = input side supply; VSO = output side supply  
(3) The channel outputs are in undetermined state when 1.89 V < VSI < 2.25 V and 1.05 V < VSI < 1.71 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISOW7721  
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
UNIT  
7.4 Thermal Information  
ISOW7721  
DFM (SOIC)  
20 PINS  
68.5  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
24.6  
53.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
17.1  
ΨJT  
50.9  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Power Ratings  
VDD = VIO = 5.5 V, IISO = 110 mA, TJ = 150°C, TA 80°C, CL = 15 pF, input a 50-MHz 50% duty-cycle square wave  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.48  
0.74  
0.74  
UNIT  
W
PD  
Maximum power dissipation (both sides) VDD = 5.5 V, VIO = 5.5 V, VISOOUT  
=
VISOIN, IISOOUT = 100 mA, TJ = 150°C,  
TA 80°C, CL = 15 pF, input a 50-MHz  
50% duty-cycle square wave  
PD1  
PD2  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
W
W
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.6 Insulation Specifications  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
GENERAL  
CLR  
CPG  
External clearance(1)  
Shortest terminal-to-terminal distance through air  
>8  
>8  
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
External creepage(1)  
Minimum internal gap (internal clearance capacitive  
signal isolation)  
> 17  
DTI  
CTI  
Distance through the insulation  
µm  
V
Minimum internal gap (internal clearance –  
transformer power isolation)  
>120  
Comparative tracking index  
Material group  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
> 600  
I
I-IV  
I-IV  
I-III  
Rated mains voltage 300 VRMS  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
Overvoltage category per IEC 60664-1  
DIN VDE V 0884-11:2017-01(2)  
Maximum repetitive peak isolation  
VIORM  
AC voltage (bipolar)  
1500  
VPK  
voltage  
AC voltage; Time dependent dielectric breakdown  
(TDDB) Test  
1000  
1500  
7071  
VRMS  
VDC  
VPK  
VIOWM  
Maximum working isolation voltage  
DC voltage  
VTEST = VIOTM; t = 60 s (qualification);  
VTEST = 1.2 × VIOTM; t = 1 s (100% production)  
VIOTM  
VIOSM  
Maximum transient isolation voltage  
Maximum surge isolation voltage  
ISOW7721(3)  
Test method per IEC 62368-1, 1.2/50 µs waveform,  
VTEST = 1.6 × VIOSM = 10000 VPK(qualification)  
6250  
5  
5  
VPK  
Method a, after input/output safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a, after environmental tests subgroup 1, Vini  
VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM, tm = 10 s  
=
qpd  
Apparent charge(4)  
pC  
Method b1, at routine test (100% production) and  
preconditioning (type test), Vini = 1.2 × VIOTM, tini = 1  
s, Vpd(m) = 1.875 × VIORM, tm = 1 s  
5  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance(5)  
~3.5  
> 1012  
> 1011  
> 109  
pF  
VIO = 0.4 × sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V, TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
40/125/21  
UL 1577  
VTEST = VISO(UL)= 5000 VRMS, t = 60 s (qualification),  
VTEST = 1.2 × VISO(UL) = 6000 VRMS, t = 1 s (100%  
production)  
VISO(UL) Withstand isolation voltage  
5000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these  
specifications.  
(2) ISOW77xx is suitable for safe electrical insulation and ISOW77xxB is suitable for basic electrical insulation only within the safety  
ratings.. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISOW7721  
 
 
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Recognized under UL  
1577 Component  
Recognition Program  
Certified according to EN  
61010-1:2010/A1:2019  
and EN 62368-1:2014  
Certified according to DIN Certified according to IEC  
Certified according to  
GB 4943.1-2011  
VDE V 0884-11:2017-01  
62368-1, and IEC 60601-1  
CSA 62368-1-19 and IEC  
62368-1:2018 Ed. 3 and EN  
62368-1:2020. (pollution degree  
2, material group I) 600  
VRMS maximum working voltage;  
2 MOPP (Means of Patient  
Reinforced insulation;  
Maximum transient  
isolation voltage, 7071  
5000 VRMS Reinforced  
insulation per EN 61010-  
1:2010 up to working  
voltage of 600 VRMS;  
5000 VRMS Reinforced  
insulation per EN  
Reinforced Insulation,  
Altitude 5000 m,  
Tropical Climate, 700  
VRMS maximum working  
voltage;  
VPK  
;
Single protection, 5000  
VRMS  
Maximum repetitive peak Protection) per CSA 60601-1:14  
isolation voltage, 1500  
VPK  
and IEC 60601-1 Ed. 3+A1, 250  
VRMS maximum working  
Maximum surge isolation voltage. Temperature rating is  
;
62368-1:2014 up to  
working voltage of 600  
voltage, 6250 VPK  
.
90°C for reinforced insulation  
and 125°C for basic insulation;  
see certificate for details.  
VRMS.  
Certificate #: Pending  
Basic: Pending  
Master Contract#: Pending  
File #: Pending  
Certificate #: Pending  
Client ID: Pending  
7.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 68.5°C/W, VI = 5.5 V, TJ = 150°C,  
332  
TA = 25°C  
θJA = 68.5°C/W, VI = 3.6 V, TJ = 150°C,  
TA = 25°C  
θJA = 68.5°C/W, TJ = 150°C, TA = 25°C  
IS  
Safety input, output, or supply current(1)  
mA  
R
507  
PS  
TS  
Safety input, output, or total power(1)  
Maximum safety temperature(1)  
R
1825  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use the following equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.9 Electrical Characteristics - Power Converter  
VDD = 5 V ±10% or 3.3 V ±10% and VISOIN power externally, GND1 = GNDIO, GND2 = GISOIN (over recommended  
operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD = 5 V, VISOOUT = 5 V, VSEL = VISOOUT  
VISOOUT  
VISOOUT  
Isolated supply voltage  
Isolated supply voltage  
External IISOOUT = 0 to 55 mA  
External IISOOUT = 0 to 110 mA  
4.75  
4.5  
5
5
5.25  
5.25  
V
V
VISOOUT(LINE  
DC line regulation  
DC load regulation  
IISOOUT = 55 mA, VDD = 4.5 V to 5.5 V  
IISOOUT = 0 to 110 mA  
2
mV/V  
)
VISOOUT(LOA  
1%  
D)  
IISOOUT = 110 mA, CLOAD = 0.01 µF || 10 µF;  
VI = VDD (ISOW772x); VI =0 V (ISOW772x  
with F suffix).  
Efficiency at maximum load  
current (1)  
EFF  
46%  
Output ripple on isolated supply 20-MHz bandwidth, CLOAD = 0.01 µF || 20 µF,  
VISOOUT(RIP)  
24  
mV  
mA  
(pk-pk)  
IISOOUT = 110 mA  
DC current from VDD supply  
under short circuit on VISOOUT  
IISOOUT_SC  
VISOOUT shorted to GND2  
250  
VDD = 5 V, VISOOUT = 3.3 V, VSEL = GND2  
VISOOUT  
VISOOUT  
Isolated supply voltage  
Isolated supply voltage  
External IISOOUT = 0 to 70 mA  
External IISOOUT = 0 to 140 mA  
3.135  
3.135  
3.3  
3.3  
3.465  
3.465  
V
V
VISOOUT(LINE  
DC line regulation  
DC load regulation  
IISOOUT = 70 mA, VDD = 4.5 V to 5.5 V  
IISOOUT = 0 to 140 mA  
2
mV/V  
)
VISOOUT(LOA  
1%  
D)  
IISOOUT = 140 mA, CLOAD = 0.01 µF || 10 µF;  
VI = VDD (ISOW772x); VI =0 V (ISOW772x  
with F suffix).  
Efficiency at maximum load  
current (1)  
EFF  
36%  
Output ripple on isolated supply 20-MHz bandwidth , CLOAD = 0.01 µF || 20 µF,  
VISOOUT(RIP)  
30  
mV  
mA  
(pk-pk)  
IISOOUT = 110 mA  
DC current from VDD supply  
under short circuit on VISOOUT  
IISOOUT_SC  
VISOOUT shorted to GND2  
250  
VDD = 3.3 V, VISOOUT = 3.3 V, VSEL = GND2  
VISOOUT  
VISOOUT  
Isolated supply voltage  
Isolated supply voltage  
External IISOOUT = 0 to 30 mA  
External IISOOUT = 0 to 60 mA  
3.135  
3.135  
3.3  
3.3  
3.465  
3.465  
V
V
VISOOUT(LINE  
DC line regulation  
DC load regulation  
IISOOUT = 30 mA, VDD = 3.0 V to 3.6 V  
IISOOUT = 0 to 60 mA  
2
mV/V  
)
VISOOUT(LOA  
1%  
D)  
IISOOUT = 60 mA, CLOAD = 0.01 µF || 10 µF;  
VI = VDD (ISOW772x); VI =0 V (ISOW772x  
with F suffix).  
Efficiency at maximum load  
current (1)  
EFF  
43%  
Output ripple on isolated supply 20-MHz bandwidth, CLOAD = 0.01 µF || 20 µF,  
VISOOUT(RIP)  
14  
mV  
mA  
(pk-pk)  
IISOOUT = 60 mA  
DC current from VDD supply  
under short circuit on VISOOUT  
IISOOUT_SC  
VISOOUT shorted to GND2  
185  
(1) Power converter ILOAD = current required to power the secondary side. ILOAD does not take into account the channel isolator current.  
See Supply Current Characteristics Channel Isolator section for details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISOW7721  
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.10 Supply Current Characteristics - Power Converter  
VDD = 5 V ±10% or 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless otherwise  
noted).  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Power Converter Disabled  
Power converter supply  
current  
EN/FLT = GND1, VISOOUT = No ILOAD  
EN/FLT = GND1  
IDD  
0.28  
0.27  
0.45  
0.57  
mA  
mA  
Logic supply current  
IIO  
Power Converter Enabled  
VDD = 5 V, VSEL = VISOOUT  
VDD = 5 V, VSEL = VISOOUT  
VDD = 5 V, VSEL = GND2  
VDD = 5 V, VSEL = GND2  
VDD = 3.3 V, VSEL = GND2  
VDD = 3.3 V, VSEL = GND2  
VDD = 5 V  
ILOAD = 55 mA  
ILOAD = 110 mA  
ILOAD = 70 mA  
ILOAD = 140 mA  
ILOAD = 30 mA  
ILOAD = 60 mA  
VSEL = VISOOUT  
VSEL = GND2  
VSEL = GND2  
115  
225  
127  
250  
74  
171  
316  
169  
310  
112  
216  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Power converter supply  
current input  
IDD  
143  
110  
140  
60  
Power converter output  
current (1)  
VDD = 5 V  
IISOOUT  
VDD = 3.3 V  
(1) ILOAD does not take into account the channel isolator current. See Supply Current Characteristics Channel Isolator section for details.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.11 Electrical Characteristics Channel Isolator - VIO, VISOIN = 5-V  
VIO, VISOIN = 5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
PARAMETER  
Channel Isolation  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
0.7 x VSI  
V
V
0.3 x VSI  
0.1 x VSI  
25  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
V
IIL  
Low level input current  
High level input current  
VIL = 0 at INx  
µA  
µA  
IIH  
VIH = VSI (1) at INx  
25  
(1)  
IO = 4 mA, see Switching Characteristics  
VSO  
0.4  
VOH  
VOL  
High level output voltage  
Low level output voltage  
V
V
Test Circuit and Voltage Waveforms  
IO = 4 mA, see Switching Characteristics Test  
Circuit and Voltage Waveforms  
0.4  
Common mode transient  
immunity  
VI = VSI or 0 V, VCM = 1000 V; see Common-  
Mode Transient Immunity Test Circuit  
CMTI  
85  
100  
kV/us  
(1) VSI = input side supply; VSO = output side supply  
7.12 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 5-V  
VIO, VISOIN = 5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISOW7721 Channel Supply Current  
IDD_IO  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
4.5  
5
6
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7721);  
VI = 0 V (ISOW7721 with F suffix)  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Supply current - Disable  
6
5
6
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7721);  
VI = 0 V (ISOW7721 with F suffix)  
5
Channel Supply current -  
DC signal  
7
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7721);  
VI = VCCI (ISOW7721 with F suffix)  
7
4
6.5  
6
1 Mbps  
4
4.8  
4.9  
11.6  
11.8  
7
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
6.7  
14.6  
14.3  
100 Mbps  
(1) VCCI = VIO or VISOIN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISOW7721  
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.13 Electrical Characteristics Channel Isolator - VIO, VISOIN = 3.3-V  
VIO, VISOIN = 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
PARAMETER  
Channel Isolation  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
0.7 x VSI  
V
V
0.3 x VSI  
0.1 x VSI  
-25  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
V
IIL  
Low level input current  
High level input current  
VIL = 0 at INx  
µA  
µA  
IIH  
VIH = VSI (1) at INx  
25  
(1)  
IO = 4 mA, see Switching Characteristics  
VSO  
0.3  
VOH  
VOL  
High level output voltage  
Low level output voltage  
V
V
Test Circuit and Voltage Waveforms  
IO = 4 mA, see Switching Characteristics Test  
Circuit and Voltage Waveforms  
0.3  
Common mode transient  
immunity  
VI = VSI or 0 V, VCM = 1000 V; see Common-  
Mode Transient Immunity Test Circuit  
CMTI  
85  
100  
kV/us  
(1) VSI = input side supply; VSO = output side supply  
7.14 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 3.3-V  
VIO, VISOIN = 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISOW7721 Channel Supply Current  
IDD_IO  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
4.5  
5
6
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7721);  
VI = 0 V (ISOW7721 with F suffix)  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Supply current - Disable  
6
5
6
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7721);  
VI = 0 V (ISOW7721 with F suffix)  
5
Channel Supply current -  
DC signal  
7
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7721);  
VI = VCCI (ISOW7721 with F suffix)  
7
4
6.5  
6
1 Mbps  
4
4.4  
4.6  
8.6  
8.7  
6.7  
6.4  
11.7  
11.4  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
(1) VCCI = VIO or VISOIN  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.15 Electrical Characteristics Channel Isolator - VIO, VISOIN = 2.5-V  
VIO, VISOIN = 2.5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
PARAMETER  
Channel Isolation  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
0.7 x VSI  
V
V
0.3 x VSI  
0.1 x VSI  
-25  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
V
IIL  
Low level input current  
High level input current  
VIL = 0 at INx  
µA  
µA  
IIH  
VIH = VSI (1) at INx  
25  
(1)  
IO = 4 mA, see Switching Characteristics  
VSO  
0.1  
VOH  
VOL  
High level output voltage  
Low level output voltage  
V
V
Test Circuit and Voltage Waveforms  
IO = 4 mA, see Switching Characteristics Test  
Circuit and Voltage Waveforms  
0.1  
Common mode transient  
immunity  
VI = VSI or 0 V, VCM = 1000 V; see Common-  
Mode Transient Immunity Test Circuit  
CMTI  
85  
100  
kV/us  
(1) VSI = input side supply; VSO = output side supply  
7.16 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 2.5-V  
VIO, VISOIN = 2.5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISOW7721 Channel Supply Current  
IDD_IO  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
4.5  
5
6
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7721);  
VI = 0 V (ISOW7721 with F suffix)  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Supply current - Disable  
6
5
6
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7721);  
VI = 0 V (ISOW7721 with F suffix)  
5
Channel Supply current -  
DC signal  
7
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7721);  
VI = VCCI (ISOW7721 with F suffix)  
7
4
6
1 Mbps  
4
6
4.3  
4.4  
7.2  
7.4  
6.5  
6.1  
10  
9.7  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
(1) VCCI = VIO or VISOIN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISOW7721  
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.17 Electrical Characteristics Channel Isolator - VIO, VISOIN = 1.8-V  
VIO, VISOIN = 1.8 V ±5% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
PARAMETER  
Channel Isolation  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
0.7 x VSI  
V
V
0.3 x VSI  
0.1 x VSI  
-25  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
V
IIL  
Low level input current  
High level input current  
VIL = 0 at INx  
µA  
µA  
IIH  
VIH = VSI (1) at INx  
25  
(1)  
IO = 4 mA, see Switching Characteristics  
VSO  
0.1  
VOH  
VOL  
High level output voltage  
Low level output voltage  
V
V
Test Circuit and Voltage Waveforms  
IO = 4 mA, see Switching Characteristics Test  
Circuit and Voltage Waveforms  
0.1  
Common mode transient  
immunity  
VI = VSI or 0 V, VCM = 1000 V; see Common-  
Mode Transient Immunity Test Circuit  
CMTI  
85  
100  
kV/us  
(1) VSI = input side supply; VSO = output side supply  
7.18 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 1.8-V  
VIO, VISOIN = 1.8 V ±5% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISOW7721 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7721);  
VI = 0 V (ISOW7721 with F suffix)  
IDD_IO  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
4.5  
5
6
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Supply current - Disable  
6
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7721);  
VI = VCCI (ISOW7721 with F suffix)  
5
6
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7721);  
VI = 0 V (ISOW7721 with F suffix)  
5
Channel Supply current -  
DC signal  
7
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7721);  
VI = VCCI (ISOW7721 with F suffix)  
6
4
6
1 Mbps  
3.5  
4.3  
4.4  
6.7  
6.9  
5
6.5  
6.1  
9.1  
8.8  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
(1) VCCI = VIO or VISOIN  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.19 Switching Characteristics - 5-V Supply  
VISOIN = 5 V ±10%, VIO = 5 V ±10%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL tPLH  
TEST CONDITIONS  
MIN  
TYP  
10.7  
0.9  
MAX UNIT  
tPLH, tPHL  
PWD  
7.6  
15.7  
5
ns  
ns  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
|
ENIO_tPLH  
ENIO_tPHL  
,
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
ENIO propagation delay time (opposite side)  
210  
473.8  
ns  
tsk(o)  
tsk(pp)  
tr  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
4
5.5  
3.6  
3.5  
ns  
ns  
ns  
ns  
Output signal rise time  
2.5  
2.4  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
tf  
Output signal fall time  
Channel disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
217  
217  
237  
237  
237  
237  
286  
286  
333  
333  
333  
333  
ns  
ns  
ns  
ns  
ns  
ns  
Channel disable propagation delay, low-to-high impedance  
output  
Channel enable propagation delay, high impedance-to-high  
output for ISOW7721  
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
tPZH  
Channel enable propagation delay, high impedance-to-high  
output for ISOW7721 with F suffix  
Channel enable propagation delay, high impedance-to-low  
output for ISOW7721  
tPZL  
Channel enable propagation delay, high impedance-to-low  
output for ISOW7721 with F suffix  
Measured from the time VIO or VISOIN  
goes below 1.6 V at 10 mV/ns.  
See Default Output Delay Time Test  
Circuit and Voltage Waveforms  
tDO  
Default output delay time from input power loss  
Time interval error  
0.1  
0.7  
0.3  
μs  
216 1 PRBS data at 100 Mbps  
tie  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISOW7721  
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.20 Switching Characteristics - 3.3-V Supply  
VISOIN = 3.3 V ±10%, VIO = 3.3 V ±10%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL tPLH  
TEST CONDITIONS  
MIN  
TYP  
11  
MAX UNIT  
tPLH, tPHL  
PWD  
6
16.2  
4.7  
ns  
ns  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
0.6  
|
ENIO_tPLH  
ENIO_tPHL  
,
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
ENIO propagation delay time (opposite side)  
220  
474  
ns  
tsk(o)  
tsk(pp)  
tr  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
4.1  
4.5  
2.7  
2.4  
ns  
ns  
ns  
ns  
Output signal rise time  
1.8  
1.6  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
tf  
Output signal fall time  
Channel disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
230  
230  
226  
226  
225  
225  
300.4  
299.6  
318.9  
319.1  
317.9  
317.6  
ns  
ns  
ns  
ns  
ns  
ns  
Channel disable propagation delay, low-to-high impedance  
output  
Channel enable propagation delay, high impedance-to-high  
output for ISOW7721  
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
tPZH  
Channel enable propagation delay, high impedance-to-high  
output for ISOW7721 with F suffix  
Channel enable propagation delay, high impedance-to-low  
output for ISOW7721  
tPZL  
Channel enable propagation delay, high impedance-to-low  
output for ISOW7721 with F suffix  
Measured from the time VIO or VISOIN  
goes below 1.6 V at 10 mV/ns.  
See Default Output Delay Time Test  
Circuit and Voltage Waveforms  
tDO  
Default output delay time from input power loss  
Time interval error  
0.1  
0.3  
μs  
216 1 PRBS data at 100 Mbps  
tie  
0.65  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.21 Switching Characteristics - 2.5-V Supply  
VISOIN = 2.5 V ±10%, VIO = 2.5 V ±10%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL tPLH  
TEST CONDITIONS  
MIN  
TYP  
12  
MAX UNIT  
tPLH, tPHL  
PWD  
7.5  
18  
ns  
ns  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
0.36  
5.1  
|
ENIO_tPLH  
ENIO_tPHL  
,
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
ENIO propagation delay time (opposite side)  
225  
478  
ns  
tsk(o)  
tsk(pp)  
tr  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
4.1  
6
ns  
ns  
ns  
ns  
Output signal rise time  
2
3.26  
3.2  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
tf  
Output signal fall time  
1.8  
Channel disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
237  
236  
228  
228  
227  
227  
326  
325  
360  
360  
350  
350  
ns  
ns  
ns  
ns  
ns  
ns  
Channel disable propagation delay, low-to-high impedance  
output  
Channel enable propagation delay, high impedance-to-high  
output for ISOW7721  
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
tPZH  
Channel enable propagation delay, high impedance-to-high  
output for ISOW7721 with F suffix  
Channel enable propagation delay, high impedance-to-low  
output for ISOW7721  
tPZL  
Channel enable propagation delay, high impedance-to-low  
output for ISOW7721 with F suffix  
Measured from the time VIO or VISOIN  
goes below 1.6 V at 10 mV/ns.  
See Default Output Delay Time Test  
Circuit and Voltage Waveforms  
tDO  
Default output delay time from input power loss  
Time interval error  
0.1  
0.7  
0.3  
μs  
216 1 PRBS data at 100 Mbps  
tie  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISOW7721  
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.22 Switching Characteristics - 1.8-V Supply  
VISOIN = 1.8 V ±5%, VIO = 1.8 V ±5%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL tPLH  
TEST CONDITIONS  
MIN  
TYP  
15  
0
MAX UNIT  
tPLH, tPHL  
PWD  
7.5  
21.5  
5.8  
ns  
ns  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
|
ENIO_tPLH  
ENIO_tPHL  
,
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
ENIO propagation delay time (opposite side)  
243  
475  
ns  
tsk(o)  
tsk(pp)  
tr  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
4.1  
8.6  
3
ns  
ns  
ns  
ns  
Output signal rise time  
1.9  
1.8  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
tf  
Output signal fall time  
3
Channel disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
260  
260  
240  
240  
237  
237  
410  
406  
444  
444  
439  
439  
ns  
ns  
ns  
ns  
ns  
ns  
Channel disable propagation delay, low-to-high impedance  
output  
Channel enable propagation delay, high impedance-to-high  
output for ISOW7721  
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
tPZH  
Channel enable propagation delay, high impedance-to-high  
output for ISOW7721 with F suffix  
Channel enable propagation delay, high impedance-to-low  
output for ISOW7721  
tPZL  
Channel enable propagation delay, high impedance-to-low  
output for ISOW7721 with F suffix  
Measured from the time VIO or VISOIN  
goes below 1.6 V at 10 mV/ns.  
See Default Output Delay Time Test  
Circuit and Voltage Waveforms  
tDO  
Default output delay time from input power loss  
Time interval error  
0.1  
0.7  
0.3  
μs  
216 1 PRBS data at 100 Mbps  
tie  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.23 Insulation Characteristics Curves  
550  
VDD = VIO = VISOIN = 3.6 V  
VDD = VIO = VISOIN = 5.5 V  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
Ambient Temperature (C)  
7-2. Thermal Derating Curve for Safety Limiting  
7-1. Thermal Derating Curve for Safety Limiting  
Power for DFM-20 Package  
Current for DFM-20 Package  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISOW7721  
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
7.24 Typical Characteristics  
3.4  
3.38  
3.36  
3.34  
3.32  
3.3  
5.1  
5.08  
5.06  
5.04  
5.02  
5
VDD = 5 V  
VDD = 3.3 V  
3.28  
3.26  
3.24  
3.22  
3.2  
4.98  
4.96  
4.94  
4.92  
4.9  
0
20  
40  
60  
80  
100  
120  
140  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Load Current (mA)  
Load Current (mA)  
VSEL = GND2  
TA = 25°C  
VISOOUT = 3.3 V  
VSEL = VISOOUT  
TA = 25°C  
VISOOUT = 5 V  
7-3. Isolated Supply Voltage (VISOOUT) vs Load  
Current (IISOOUT  
7-4. Isolated Supply Voltage (VISOOUT) vs Load  
Current (IISOOUT  
)
)
270  
240  
210  
180  
150  
120  
90  
48  
45  
42  
39  
36  
33  
30  
27  
24  
21  
VDD = 5 V, VISOOUT = 5 V  
VDD = 3.3 V, VISOOUT = 3.3 V  
VDD = 5 V, VISOOUT = 3.3 V  
VDD = 5 V, VISOOUT = 5 V  
VDD = 3.3 V, VISOOUT = 3.3 V  
VDD = 5 V, VISOOUT = 3.3 V  
60  
30  
0
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
Load Current (mA)  
Load Current (mA)  
TA = 25°C  
TA = 25°C  
7-5. Supply Current (IDD) vs Load Current  
(IISOOUT  
7-6. Efficiency vs Load Current (IVISOOUT  
)
)
800  
700  
600  
500  
400  
300  
200  
100  
0
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
3.29  
3.28  
3.27  
3.26  
3.25  
VDD = 5 V, VISOOUT = 5 V  
VDD = 3.3 V, VISOOUT = 3.3 V  
VDD = 5 V, VISOOUT = 3.3 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
0
20  
40  
60  
80  
100  
120  
140  
Output Load Current (mA)  
VSEL = GND2  
VDD = 5 V  
No VISOOUT Load  
TA = 25°C  
7-8. 3.3-V Isolated Supply Voltage (VISOOUT) vs  
7-7. Power Dissipation vs Load Current (IISOOUT  
)
Free-Air Temperature  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
5.05  
5.04  
5.03  
5.02  
5.01  
5
340  
320  
300  
280  
260  
240  
220  
200  
180  
160  
4.99  
4.98  
4.97  
4.96  
4.95  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
Temperature (C)  
Input Supply Voltage, VDD (mA)  
VSEL = VISOOUT  
VDD = 5 V  
No VISOOUT Load  
VSEL = VISOOUT VISOOUT = GND2 TA = 25°C = GND1  
7-9. 5-V Isolated Supply Voltage (VISOOUT) vs  
7-10. Short-Circuit Supply Current (ICC) vs  
Free-Air Temperature  
Supply Voltage (VCC)  
11  
10  
9
7
6.5  
6
8
5.5  
5
7
6
5
4.5  
IIO, VIO = 5 V  
IISOIN, VISOIN = 5 V  
IIO, VIO = 3.3 V  
IISOIN, VISOIN = 3.3 V  
IIO, VIO = 5 V  
IISOIN, VISOIN = 5 V  
IIO, VIO = 3.3 V  
4
3
2
4
IISOIN, VISOIN = 3.3 V  
3.5  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Data Rate (Mbps)  
Data Rate (Mbps)  
CL = 15 pF  
TA = 25°C  
CL = 0 pF  
TA = 25°C  
7-12. ISOW7721 Channel Supply Currents vs  
7-11. ISOW7721 Channel Supply Currens vs  
Data Rate For CL = 0 pF  
Data Rate For CL = 15pF  
3
17  
tPHL, VIO = 5 V, VISOIN = 5 V  
tPLH, VIO = 5 V, VISOIN = 5 V  
tPHL, VIO = 5 V, VISOIN = 3.3 V  
tPLH, VIO = 5 V, VISOIN = 3.3 V  
tPHL, VIO = 3.3 V, VISOIN = 3.3 V  
tPLH, VIO = 3.3 V, VISOIN = 3.3 V  
16  
15  
14  
13  
12  
11  
10  
9
2.75  
2.5  
VIO UVLO+  
VIO UVLO-  
VISOIN UVLO+  
VISOIN UVLO-  
VDD UVLO+  
VDD UVLO-  
2.25  
2
1.75  
1.5  
1.25  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Temperature (C)  
CL = 0 pF  
TA = 25°C  
7-14. Propagation Delay Time vs Free-Air  
7-13. Power-Supply Undervoltage Threshold vs  
Temperature  
Free Air Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISOW7721  
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
5
4.5  
4
0.8  
0.6  
0.4  
0.2  
0
VSO = 3.3 V  
VSO = 5 V  
3.5  
3
VSO = 3.3 V  
VSO = 5 V  
2.5  
0
3
6
9
12  
15  
-15  
-12  
-9  
-6  
-3  
0
Low-Level Output Current (mA)  
High-Level Output Current (mA)  
7-16. Low-Level Output Voltage vs Low-Level  
7-15. High-Level Output Voltage vs High-Level  
Output Current  
Output Current  
VDD = 5 V VISOOUT = 3.3  
V
TA = 25°C  
VDD = 5 V VISOOUT = 3.3  
V
10 uF  
Capacitor on  
VISOOUT  
7-17. 10-mA to 110-mA Load Transient  
Response  
7-18. Soft Start at 10-mA Load For VISOOUT = 3.3  
V
VDD = 5 V VISOOUT = 3.3  
V
10 uF  
Capacitor on  
VISOOUT  
VDD = 5 V VISOOUT = 3.3  
V
10 uF  
Capacitor on  
VISOOUT  
7-19. Soft Start at 50-mA Load For VISOOUT = 3.3 7-20. Soft Start at 110-mA Load For VISOOUT = 3.3  
V
V
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ISOW7721  
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
VDD = 5 V VISOOUT = 5 V  
10 uF  
VDD = 5 V VISOOUT = 5 V  
10 uF  
Capacitor on  
VISOOUT  
Capacitor on  
VISOOUT  
7-22. Soft Start at 50-mA Load For VISOOUT = 5 V  
7-21. Soft Start at 10-mA Load For VISOOUT = 5 V  
VDD = 3.3 V VISOOUT = 3.3  
V
10 uF  
Capacitor on  
VISOOUT  
VDD = 5 V VISOOUT = 5 V  
10 uF  
Capacitor on  
VISOOUT  
7-24. VISOOUT Ripple Voltage at 3.3 V with 10 uF  
Capacitor and 60 mA load  
7-23. Soft Start at 110-mA Load For VISOOUT = 5  
V
VDD = 5 V VISOOUT = 5 V  
10 uF  
Capacitor on  
VISOOUT  
VDD = 3.3 V VISOOUT = 3.3  
V
100 uF  
Capacitor on  
VISOOUT  
7-25. VISOOUT Ripple Voltage at 5 V with 10 uF  
7-26. VISOOUT Ripple Voltage at 3.3 V with 100 uF  
Capacitor and 110 mA load  
Capacitor and 60 mA load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISOW7721  
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 5 V, VISOOUT = 5 V, 110 mA load  
VDD = 5 V, VISOOUT = 3.3 V, 140 mA load  
VDD = 3.3 V, VISOOUT = 3.3 V, 60 mA load  
VDD = 5 V VISOOUT = 5 V  
100 uF  
Capacitor on  
VISOOUT  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
VISOOUT Capacitor (F)  
TA = 25°C  
7-27. VISOOUT Ripple Voltage at 5 V with 100 uF  
7-28. VISOOUT Ripple Voltage vs Load Capacitor  
Capacitor and 110 mA load  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ISOW7721  
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
In the below images, VCCI and VCCO refers to the power supplies VIO and VISOIN, respectively.  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
V
t
t
PHL  
PLH  
Input Generator  
(See Note A)  
C
L
V
I
V
50  
O
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
Copyright © 2016, Texas Instruments Incorporated  
A. CL = 15 pF and The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3  
ns, tf 3ns, ZO = 50 Ω. At the input, 50 Ωresistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
8-1. Switching Characteristics Test Circuit and Voltage Waveforms  
VCC1  
VCC / 2  
VCC / 2  
VI  
0 V  
VOH  
tPZH  
VO  
IN  
OUT  
0 V or 3 V  
50%  
0.5 V  
VO  
EN  
0 V  
RL = 1 k1%  
tPHZ  
CL  
See Note B  
tPZL  
tPLZ  
Input  
Generator  
(See Note A)  
VOH  
0.5 V  
VOL  
VI  
50 ꢀ  
VO  
50%  
A. A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3 ns, tf 3ns,  
ZO = 50 Ω. At the input, 50 Ωresistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
8-2. Enable/Disable Propagation Delay Time Test Circuit and Waveform  
VCCI  
See Note B  
V
CCI  
V
1.4 V  
I
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
备注  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISOW7721  
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
备注  
B. Power Supply Ramp Rate = 10 mV/ns.  
8-3. Default Output Delay Time Test Circuit and Voltage Waveforms  
5V  
Connected to Visoout on PCB  
VISOIN  
VIO  
0.01uF  
1uF  
10uF  
10uF  
1uF  
0.01uF  
VIO  
GND1  
OUT  
IN  
5V  
GND1  
VDD  
C
L
10uF  
1uF  
0.01uF  
GND1  
GND2  
+
V
CM  
备注  
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
备注  
Pass-fail criteria: Outputs must remain stable.  
8-4. Common-Mode Transient Immunity Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The ISOW7721 family of devices have a low-noise, low-emissions isolated DC-DC converter, and two high-  
speed isolated data channels. 9.2 shows the functional block diagram of the ISOW7721 device.  
9.1.1 Power Isolation  
The integrated isolated DC-DC converter uses advanced circuit and on-chip layout techniques to reduce  
radiated emissions and achieve up to 46% typical efficiency. The integrated transformer uses thin film polymer  
as the insulation barrier. Output voltage of power converter can be controlled to 3.3 V or 5 V using VSEL pin. The  
DC-DC converter can be switched off using the EN pin to save power. The output voltage, VISOOUT , is monitored  
and feedback information is conveyed to the primary side through a dedicated isolation channel. VISOOUT needs  
to be connected to VISOIN to ensure the feedback channel is properly powered to regulate the DC-DC converter.  
This can be achieved by connecting the pins directly or through an LDO that remains powered up at all times. A  
ferrite bead is recommended between VISOOUT and VISOIN to further reduce emissions. See the 10.2 section.  
The duty cycle of the primary switching stage is adjusted accordingly. The fast feedback control loop of the  
power converter ensures low overshoots and undershoots during load transients. Undervoltage lockout (UVLO)  
with hysteresis is integrated on the VIO, VDD and VISOIN supplies which ensures robust fails-safe system  
performance under noisy conditions. An integrated soft-start mechanism ensures controlled inrush current and  
avoids any overshoot on the output during power up.  
9.1.2 Signal Isolation  
The integrated signal isolation channels employ an ON-OFF keying (OOK) modulation scheme to transmit the  
digital data across a silicon-dioxide based isolation barrier. The transmitter sends a high frequency carrier across  
the barrier to represent one state and sends no signal to represent the other state. The receiver demodulates the  
signal after signal conditioning and produces the output through a buffer stage. The signal-isolation channels  
incorporate advanced circuit techniques to maximize the CMTI performance and minimize the radiated  
emissions from the high frequency carrier and IO buffer switching. 9-1 shows a functional block diagram of a  
typical signal isolation channel. In order to keep any noise coupling from the power converter away from the  
signal path, power supplies on side 1 for the power converter (VDD) and the signal path(VIO) are kept separate.  
Similarly on side 2, the power converter output (VISOOUT) needs to be connected to VISOIN externally on PCB.  
Emissions can be further improved by placing a ferrite bead between VISOOUT and VISOIN as well as between the  
GND2 pins. For more details, refer to the Layout Guidelines section.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISOW7721  
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
9.2 Functional Block Diagram  
V
V
ISOIN  
IO  
Isolation Barrier  
VISOOUT and  
VISOIN needs to  
be directly  
connected or  
through an  
LDO on board  
that is always  
powered.  
Data Channels  
(2)  
Data Channels  
(2)  
I/O Channels  
I/O Channels  
FB Controller  
V
ref  
FB Channel (Rx)  
FB Channel (Tx)  
Thermal  
Shutdown,  
UVLO, Soft-start  
UVLO, Soft-start  
Transformer  
Driver  
Power  
Controller  
Rectifier  
V
ISOOUT  
LF  
CC  
V
DD  
Transformer  
9-1. Block Diagram  
Transmitter  
Receiver  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
9-2. Conceptual Block Diagram of a Capacitive Data Channel  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
9-3 shows a conceptual detail of how the OOK scheme works.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
9-3. On-Off Keying (OOK) Based Modulation Scheme  
9.3 Feature Description  
Device Features shows an overview of the device features.  
9-1. Device Features  
DEFAULT OUTPUT  
STATE  
PART NUMBER(1)  
CHANNEL DIRECTION  
MAXIMUM DATA RATE  
RATED ISOLATION(2)  
ISOW7721  
High  
Low  
1 forward, 1 reverse  
100 Mbps  
5 kVRMS / 7071 VPK  
ISOW7721 with F suffix  
(1) The F suffix is part of the orderable part number. See the 14 section for the full orderable part number.  
(2) For detailed isolation ratings, see the 7.7 table.  
9.3.1 Electromagnetic Compatibility (EMC) Considerations  
The ISOW7721 uses emissions reduction schemes for the internal oscillator and advanced internal layout  
scheme to minimize radiated emissions at the system level.  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 32. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the  
ISOW7721 incorporates many chip-level design improvements for overall system robustness. Some of these  
improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Power path and signal path separated to minimize internal high frequency coupling and an external filtering  
knob using ferrite beads available to further reduce emissions  
Reduced power converter switching frequency to 25 MHz to reduce strength of high frequency components in  
emissions spectrum  
9.3.2 Power-Up and Power-Down Behavior  
The ISOW7721 has built-in UVLO on the VIO, VDD, and VISOIN supplies with positive-going and negative-going  
thresholds and hysteresis. Both the power converter supply (VDD) and logic supply (VIO) need to be present for  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISOW7721  
 
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
the device to work. If either of them is below its UVLO, both the signal path and the power converter are  
disabled.  
When the VDD voltage crosses the positive-going UVLO threshold during power-up, the DC-DC converter  
initializes and the power converter duty cycle is increased in a controlled manner. This soft-start scheme limits  
primary peak currents drawn from the VDD supply and charges the VISOOUT output in a controlled manner,  
avoiding overshoots. Outputs of the isolated data channels are in an indeterminate state until the VIO and VDD  
voltage crosses the positive-going UVLO threshold. When the UVLO positive-going threshold is crossed on the  
secondary side VISOOUT pin, the feedback data channel starts providing feedback to the primary controller. The  
regulation loop takes over and the isolated data channels go to the normal state defined by the respective input  
channels or their default states. Design should consider a sufficient time margin (typically 10 ms with 10-µF load  
capacitance) to allow this power up sequence before valid data channels are accounted for system functionality.  
When either VIO or VDD power is lost, the primary side DC-DC controller turns off when the UVLO lower  
threshold is reached. The VISOOUT capacitor then discharges depending on the external load. The isolated data  
outputs on the VISOIN side are returned to the default state for the brief time that the VISOIN voltage takes to  
discharge to zero.  
9.3.3 Protection Features  
The ISOW7721 has multiple protection features to create a robust system level solution.  
An over-voltage clamp feature is present on VISOOUT which will clamp the voltage at 6 V, when VSEL =  
VISOOUT, or 4 V, when VSEL = GND2, if there is an increase in voltage seen on VISOOUT. It is recommended  
that the VISOOUT stays lower than the over-clamp voltage for device reliability.  
Over-voltage lock out on VDD will occur when a voltage higher than 7 V is seen. The device will go into a low  
power state and the EN pin will go low.  
The device is protected against output overload and short circuit. Output voltage starts dropping when the  
power converter is not able to deliver the current demanded during overload conditions. For a VISOOUT short-  
circuit to ground, the duty cycle of the converter is limited to help protect against any damage.  
Thermal protection is also integrated to help prevent the device from getting damaged during overload and  
short-circuit conditions on the isolated output. Under these conditions, the device temperature starts to  
increase. When the temperature goes above 165°C, thermal shutdown activates and the primary controller  
turns off which removes the energy supplied to the VISOOUT load, which causes the device to cool off. When  
the junction temperature goes below 150°C, the device starts to function normally. If an overload or output  
short-circuit condition prevails, this protection cycle is repeated. Care should be taken in the design to  
prevent the device junction temperatures from reaching such high values.  
9.3.4 Multi-Device Chaining for Increased Power Output  
The ISOW7721 supports daisy chaining multiple ISOW7721 devices to achive > 110 mA load as shown in 图  
9-4. The below equation provides an estimate for the required number of ISOW7721 devices to meet a target  
load current.  
Target load current − Maxiumum available load current  
Number of device = ceil  
+ 1  
0.8 Maxiumum available load current  
Example:  
Design a multi-device chaning using ISOW7721 to drive a 680 mA load for VDD = 5 V and VSEL = 5 V.  
The Maximum avaialble load current for VDD = 5 V, and VSEL = 5 V is 100 mA from page 1.  
680 110  
Number of device = ceil  
+ 1 = 8  
0.8 110  
From the above calculation, we need 8 ISOW7721 to drive a 680 mA load.  
Follow the procedures below to configure multi-device chaining.  
1. Set LF to GND1 to make a device as the leader of the daisy chain (only one leader is allowed in a daisy  
chain). The CC pin of the leader is configured as an output  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
2. Set LF to VDD to make the other device as a follower (may use more than one follower to meet your system  
current requirement). The CC pin of the follower is configured as an input.  
3. A voltage change on the LF pin requires a power cycling to put the device into the desired role. Please  
ensure that all devices are powered during multi-device chaining operation to prevent the VISOOUT pin of  
an unpowered device from exposing to an overvoltage condition. An unpowered device can cause the VSEL  
to set to GND and thus the maximum rating for its VISOOUT is 4 V. Device damage is possible if this  
VISOOUT pin is driven by another 5 V VISOOUT pin for an extensive long time.  
4. Connect the CC pin of the leader to the CC pin of the follower (may use more than one follower) and this will  
allow the leader to synchronize with the follower.  
5. Connect all the VISOOUT pins and VISOIN pins together for the leader and the follower(s).  
6. Connect all the GISOUT pins together for the leader and the follower(s).  
7. Connect all the VDD pins together for the leader and the follower(s).  
8. All the VSEL pins should be set to the same logic state.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ISOW7721  
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
Leader  
VIO  
INA  
1
2
3
20  
19  
18  
VISOIN  
OUTA  
INB  
OUTB  
EN_IO1  
EN  
4
5
6
17  
16  
15  
EN_IO2  
NC  
GNDIO  
GISOIN  
LF  
7
14  
NC  
CC  
VDD  
8
13  
12  
11  
VSEL  
VISOOUT  
GND2  
9
FB  
GND1  
10  
FB  
VIO  
INA  
1
2
3
20  
19  
18  
VISOIN  
OUTA  
INB  
OUTB  
EN_IO1  
EN  
4
5
6
17  
16  
15  
EN_IO2  
NC  
GNDIO  
GISOIN  
LF  
7
14  
NC  
CC  
VDD  
8
13  
12  
11  
VSEL  
VISOOUT  
GND2  
9
FB  
GND1  
10  
FB  
Follower  
9-4. Multi-Device Chaining  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
9.4 Device Functional Modes  
9-2 lists the supply configurations for these devices.  
9-2. Supply Configuration Function Table  
(2)  
VDD  
VIO  
VSEL  
VISOOUT  
< VDD(UVLO+)  
>VDD(UVLO+)  
5 V  
>VIO(UVLO+)  
<VIO(UVLO+)  
1.71 V to 5.5 V  
1.71 V to 5.5 V  
X
OFF  
OFF  
5 V  
X
High (shorted to VISOOUT  
)
5 V or 3.3 V  
Low (shorted to GND2)(1)  
3.3 V  
(1) The VSEL pin has a weak pulldown internally. Therefore for VISOOUT = 3.3 V, the VSEL pin should be strongly connected to the GND2  
pin in noisy system scenarios.  
(2) VISOOUT shorted to VISOIN on PCB and both GND2 and GISOIN pins are shorted to each other and EN=High  
9-3 lists the channel isolators functional modes for these devices.  
9-3. Channel Isolator Function Table  
CHANNEL  
OUTPUT  
SUPPLY (VCCO  
IO ENABLE  
(EN_IOx)  
CHANNEL INPUT  
OUTPUT  
(OUTx)  
(1)  
INPUT (INx)  
COMMENTS  
SUPPLY (VCCI  
)
(1)  
)
H or  
Open  
H
L
H
L
Normal Operation: A channel output  
assumes the logic state of its input.  
H or Open  
Default mode(2): When INx is open, the  
corresponding channel output goes to its  
default logic state.  
Open  
X
H or Open  
Default  
PU  
PU  
A low value of output enable causes the  
outputs of the same side to be high  
impedance and the output of opposite  
side to be fail-safe default state.  
L
Z and Default  
Default mode(2): When VCCI is  
unpowered, a channel output assumes  
the logic state based on the selected  
default option. When VCCI transitions  
from unpowered to powered-up, a  
channel output assumes the logic state of  
the input. When VCCI transitions from  
powered-up to unpowered, channel  
output assumes the selected default  
state.  
PD  
PU  
X
H or Open  
Default  
(1) VCCI = Input-side VIO or VISOIN; VCCO = Output-side VIO or VISOIN; PU = Powered up (VIO > 1.7 V, VISOIN > 1.7 V); PD = Powered down  
(VIO < 1 V, VISOIN < 1 V); X = Irrelevant; H = High level; L = Low level.  
(2) In the default condition, the output is high for the ISOW7721 and low with the F suffix.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ISOW7721  
 
 
 
 
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
9.4.1 Device I/O Schematics  
CC  
LF  
VDD  
VDD  
LF  
1 kΩ  
1 kΩ  
600 kΩ  
LF  
9-5. Device I/O Schematics  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ISOW7721  
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
This device is a high-performance, two channel digital isolator with integrated DC-DC converter. Typically digital  
isolators require two power supplies isolated from each other to power up both sides of device. Due to the  
integrated DC-DC converter in the device, the isolated supply is generated inside the device that can be used to  
power isolated side of the device and peripherals on isolated side, thus saving board space. The device uses  
single-ended CMOS-logic switching technology. When designing with digital isolators, keep in mind that because  
of the single-ended design structure, digital isolators do not conform to any specific interface standard and are  
only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between  
the data controller (Microcontroller or UART), and a data converter or a line transceiver, regardless of the  
interface type or standard.  
The device is suitable for applications that have limited board space and desire more integration. The device is  
also suitable for very high voltage applications, where power transformers meeting the required isolation  
specifications are bulky and expensive.  
10.2 Typical Application  
For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files,  
simulation results, and test results, refer to TI Design TIDA-01333, Eight-Channel, Isolated, High-Voltage  
Analog Input Module With ISOW7841 Reference Design.  
10-1 shows the typical schematic for SPI isolation.  
Reference  
10 F  
1 F 10 nF  
10 nF  
1 F  
10 F  
3.3 VIN  
VIO  
VISOIN  
3.3VOUT  
DVCC  
AVDD  
DVDD  
REF  
TX  
RX  
INA  
OUTA  
RX  
TX  
HV+ to  
Chassis  
HV- to Chassis  
ADC  
MCU  
DVSS  
OUTB  
INB  
AGND  
DGND  
ISOW7721  
GNDIO  
GISOIN  
330 at 100 MHz  
(BLM15EX331SN1D)  
VSEL  
VISOOUT  
VDD  
IN OUT  
1 F  
10 nF  
10 nF  
1 F  
10 F  
10 F  
GND  
GND1  
GND2  
330 at 100 MHz  
(BLM15EX331SN1D)  
Optional LDO  
10-1. Isolated Power and UART for ADC Sensing Application with ISOW7721  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ISOW7721  
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
10.2.1 Design Requirements  
To design with this device, use the parameters listed in 10-1.  
10-1. Design Parameters  
PARAMETER  
VDD input voltage  
VALUE  
3 V to 5.5 V  
VIO input voltage  
1.71 V to 5.5 V  
1.71 V to 5.5 V  
VISOIN input voltage  
VDD decoupling capacitors  
VIO decoupling capacitors  
VISOIN decoupling capacitors  
VISOOUT decoupling capacitors  
VISOOUT to VISOIN series inductor  
GND2 to GISOIN series inductor  
VIO series inductor  
10 µF + 1 µF + 0.01 µF + optional additional capacitance  
0.1 µF + optional additional capacitance  
0.1 µF + optional additional capacitance  
10 µF + 1 µF + 0.01 µF + optional additional capacitance  
BLM15ELX9331SN1D  
BLM15ELX9331SN1D  
BLM15ELX9331SN1D  
VDD series inductor  
BLM15ELX9331SN1D  
Because of very-high current flowing through the ISOW7721 VDD and VISOOUT supplies, higher decoupling  
capacitors typically provide better noise and ripple performance. Although a 10-µF capacitor is adequate, higher  
decoupling capacitors (such as 47 µF) on both the VDD and VISOOUT pins to the respective grounds are strongly  
recommended to achieve the best performance.  
10.2.2 Detailed Design Procedure  
The devices requires specific placement of external bypass capacitors and ferrite beads to operate at high  
performance. These low-ESR ceramic bypass capacitors must be placed as close to the chip pads as possible.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
10 μF  
1 μF  
10 μF  
VIO  
330 Ω at 100 MHz  
(BLM15EX331SN1D)  
1 μF  
10 nF  
10 nF  
VISOIN  
1
20  
OUTA  
2
3
19  
18  
INA  
INB  
OUTB  
VIO  
EN_IO2  
EN_IO1  
VISOIN  
4
5
17  
16  
NC  
EN  
GNDIO  
GISOIN  
6
7
15  
14  
LF  
NC  
VSEL  
8
9
13  
12  
VISOOUT  
CC  
330 Ω at 100 MHz  
(BLM15EX331SN1D)  
330 Ω at 100 MHz  
(BLM15EX331SN1D)  
VISOOUT  
GND2  
VISOIN  
VDD  
1 μF  
10 nF 1 μF  
10 μF  
10 nF  
10 μF  
330 Ω at 100 MHz  
GND1  
10  
11  
330 Ω at 100 MHz  
(BLM15EX331SN1D)  
(BLM15EX331SN1D)  
10-2. Typical ISOW7721Circuit Hook-Up  
10.2.3 Application Curve  
VDD = 5 V  
VISOOUT = 5 V  
IISOOUT = 100 mA  
10-3. ISOW77xx Radiated Emissions versus CISPR32B line (Blue)  
10.2.4 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See 10-4 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation  
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ISOW7721  
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20%  
higher than the specified value.  
10-5 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the intrinsic capability of the insulation is 1000 VRMS with a lifetime of 1184 years.  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
10-4. Test Setup for Insulation Lifetime Measurement  
10-5. Insulation Lifetime Projection Data  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
11 Power Supply Recommendations  
To help make sure that operation is reliable at data rates and supply voltages, adequate decoupling capacitors  
must be located as close to supply pins as possible. VISOOUT needs to be connected to VISOIN to ensure the  
feedback channel is properly powered to regulate the DC-DC converter. If VISOOUT and VISOIN are not connected,  
the DC-DC converter will run open loop and the VISOOUT voltage will drift until the over-voltage clamp clamps at 6  
V. There are two ways to connect VISOOUTand VISOIN  
:
1) Connect VISOOUT and VISOIN directly with a ferrite bead. A ferrite bead is recommended between VISOOUTand  
VISOIN to further reduce emissions.  
2) Connect VISOOUT and VISOIN with a ferrite bead through an LDO that remains powered up at all times. If the  
LDO has an EN pin then keep the EN high at all times.  
The input supply (VIO and VDD) must have an appropriate current rating to support output load and switching at  
the maximum data rate required by the end application. For more information, refer to the 10.2 section.  
For an output load current of 110 mA, it is recommended to have >600 mA of input current limit and for lower  
output load currents, the input current limit can be proportionally lower.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ISOW7721  
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
A low cost two layer PCB should be sufficient to achieve good EMC performance:  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
Because the device has no thermal pad to dissipate heat, the device dissipates heat through the respective  
GND pins. Ensure that enough copper is present on both GND pins to prevent the internal junction temperature  
of the device from rising to unacceptable levels.  
12-1 shows the recommended placement and routing of device bypass capacitors. Below guidelines must be  
followed to meet application EMC requirements:  
High frequency bypass capacitors 10 nF must be placed close to VDD and VISOOUT pins, less than 1 mm  
distance away from device pins. This is very essential for optimised radiated emissions performance. Ensure  
that these capacitors are 0402 size so that they offer least inductance (ESL).  
Bulk capacitors of atleast 10 μF must be placed on power converter input (VDD) and output (VISOOUT) supply  
pins.  
Traces on VDD and GND1 must be symmetric till bypass capacitors. Similarly traces on VISOOUT and GND2  
must be symmetric.  
Place two 0402 size Ferrite beads (Part number: BLM15EX331SN1) on VISOOUT and GND2 path so that any  
high frequency noise from power converter output sees a high impedance before it goes to other components  
on PCB.  
Do not have any metal traces or ground pour within 4 mm of power converter output terminals VISOOUT pin12  
and GND2 pin11. VSEL pin is also in VISOOUT domain and should be shorted to either pin 11 or pin 12 for  
output voltage selection.  
Following the layout guidelines of EVM as much as possible is highly recommended for a low radiated  
emissions design.  
12.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength  
and stiffness, and the self-extinguishing flammability-characteristics.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
12.2 Layout Example  
Ground plane on  
side 2  
Ground plane on  
side 1  
<2mm  
<2mm  
C
C
C
C
C
C
FB  
5
VISOIN  
Input Supply 1  
VIO  
20  
19  
10 nF 1 μF 10 μF  
1
10 μF 1 μF  
10 nF  
INA  
OUTA  
2
OUTB  
EN_IO1  
INB  
3
4
18  
17  
16  
15  
14  
13  
EN_IO2  
EN/FLT  
GNDIO  
5
NC  
GISOIN  
Ground plane on side 1  
6
LF  
CC  
7
NC  
Ground  
plane on  
side 2  
VSEL  
8
10 μF 1 μF  
10 nF  
10 nF  
1 μF 10 μF  
FB  
4
FB  
1
Input Supply 2  
VDD  
9
12 VISOOUT  
C
C
C
C
C
C
FB  
3
FB  
2
GND1  
GND2  
11  
Ground plane  
on side 1  
10  
<1mm  
2-4mm  
Keep-out zone for any metal  
2-4mm  
<1mm  
12-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ISOW7721  
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 Development Support  
For development support, refer to:  
8-ch Isolated High Voltage Analog Input Module with ISOW7841 Reference Design  
Isolated RS-485 With Integrated Signal and Power Reference Design  
Isolated RS-232 With Integrated Signal and Power Reference Design  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, Isolation Glossary  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ISOW7721  
 
 
 
 
 
 
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ISOW7721  
 
 
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ISOW7721  
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ISOW7721  
ISOW7721  
ZHCSPK0 JULY 2022  
www.ti.com.cn  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ISOW7721  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISOW7721DFMR  
ISOW7721FDFMR  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DFM  
DFM  
20  
20  
850  
850  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
ISOW7721  
ISOW7721F  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Aug-2022  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY