ISOW7841AQDWERQ1 [TI]

具有集成电源的汽车类、四通道、3/1、增强型数字隔离器 | DWE | 16 | -40 to 125;
ISOW7841AQDWERQ1
型号: ISOW7841AQDWERQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成电源的汽车类、四通道、3/1、增强型数字隔离器 | DWE | 16 | -40 to 125

文件: 总41页 (文件大小:2137K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
ISOW7841A-Q1 具有集成式高效低辐射直流/直流转换器的汽车类高性能  
5000VRMS 四通道增强型数字隔离器  
1 特性  
2 应用  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性:  
电池管理系(BMS)  
车载充电(OBC)  
牵引逆变器  
– 器件温度等140°C 125°C 环境工作温  
直流/直流转换器  
100Mbps 数据速率  
提供功能安全  
3 说明  
ISOW7841A-Q1 是具有集成式高效电源转换器且符合  
汽车标准的高性能四通道增强型数字隔离器。低排放集  
成式直流/直流转换器高效运行提供最高可650mW  
的隔离式电源可按各种输入和输出电压进行配置。因  
空间受限的隔离设计凭借该器件无需单独使用隔离  
式电源。  
可提供用于功能安全系统设计的文档  
• 稳健可靠的隔离栅:  
1 kVRMS 工作电压下预计寿命超100 年  
– 隔离等级高5000 VRMS  
– 浪涌抗扰度高10 kVPK  
±100 kV/µs CMTI  
• 集成式高效直流/直流转换器与片上变压器  
3V 5.5V 宽电源电压范围  
5V 3.3V 稳压输出  
器件信1  
封装  
封装尺寸标称值)  
器件型号  
ISOW7841A-Q1  
SOIC (16)  
10.30mm × 7.50mm  
• 高0.65W 的输出功率  
5V 5V5V 3.3V可用负载电130 mA  
3.3V 3.3V可用负载电75mA3.3V 至  
5V可用负载电40 mA  
1. 如需了解所有可用封装请参阅数据表末尾的可订  
购产品附录。  
Isolation Transformer  
• 软启动可限制浪涌电流  
• 过载和短路保护  
• 热关断  
DC-DC  
Primary  
DC-DC  
Secondary  
VCC  
VISO  
• 默认输出高电平低电平选项  
• 低传播延迟13 ns典型值5V 电源)  
• 优异的电磁兼容(EMC)  
VSI  
VSO  
Isolation Capacitors  
INx  
OUTx  
– 系统ESDEFT 和浪涌抗扰性  
– 在整个隔离栅具±8kV IEC 61000-4-2 接触放  
电保护  
GNDI  
GNDO  
1. VCC GND1 为基准的主电源电压。VISO 是以  
GND2 为基准的隔离式电源电压。  
2. VSI VSO 可以VCC VISO具体取决于通道  
方向。  
– 低干(EMI)  
16 引脚宽SOIC 封装  
• 安全相关认证:  
– 符DIN V VDE V 0884-11:2017-01 标准的  
7071VPK 增强型隔离  
3. VSI GNDI 为基准的输入侧电源电压VSO  
GNDO 为基准的输出侧电源电压。  
– 符UL 1577 标准且长1 分钟5000VRMS  
隔离  
简化原理图  
– 符IEC 60950-1IEC 62368-1 IEC  
60601-1 终端设备标准CSA 认证  
– 符GB4943.1-2011 标准CQC 认证  
– 符EN 60950-1 EN 61010-1 标准TUV  
认证  
– 所有认证已列入计划  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFG1  
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Description Continued ...................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Power Ratings.............................................................6  
7.6 Insulation Specifications............................................. 6  
7.7 Safety-Related Certifications...................................... 7  
7.8 Safety Limiting Values.................................................7  
7.9 Electrical Characteristics5-V Input, 5-V Output.......8  
7.10 Supply Current Characteristics5-V Input, 5-V  
Output............................................................................9  
7.11 Electrical Characteristics3.3-V Input, 5-V  
Output............................................................................9  
7.12 Supply Current Characteristics3.3-V Input, 5-  
V Output...................................................................... 10  
7.13 Electrical Characteristics5-V Input, 3.3-V  
Output..........................................................................10  
7.14 Supply Current Characteristics5-V Input, 3.3-  
V Output...................................................................... 11  
7.15 Electrical Characteristics3.3-V Input, 3.3-V  
7.17 Switching Characteristics5-V Input, 5-V Output.. 12  
7.18 Switching Characteristics3.3-V Input, 5-V  
Output..........................................................................13  
7.19 Switching Characteristics5-V Input, 3.3-V  
Output..........................................................................13  
7.20 Switching Characteristics3.3-V Input, 3.3-V  
Output..........................................................................13  
7.21 Insulation Characteristics Curves........................... 14  
7.22 Typical Characteristics............................................14  
8 Parameter Measurement Information..........................19  
9 Detailed Description......................................................20  
9.1 Overview...................................................................20  
9.2 Functional Block Diagram.........................................20  
9.3 Feature Description...................................................21  
9.4 Device Functional Modes..........................................22  
10 Application and Implementation................................24  
10.1 Application Information........................................... 24  
10.2 Typical Application ................................................. 24  
11 Layout...........................................................................29  
11.1 Layout Guidelines................................................... 29  
11.2 Layout Example...................................................... 30  
12 Device and Documentation Support..........................31  
12.1 Device Support....................................................... 31  
12.2 Documentation Support.......................................... 31  
12.3 Receiving Notification of Documentation Updates..31  
12.4 Community Resources............................................31  
12.5 Glossary..................................................................31  
13 Mechanical, Packaging, and Orderable  
Output..........................................................................11  
7.16 Supply Current Characteristics3.3-V Input,  
Information.................................................................... 32  
3.3-V Output................................................................12  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (June 2020) to Revision B (December 2020)  
Page  
• 向“特性”中添加了功能安全要点......................................................................................................................1  
Changes from Revision * (February 2020) to Revision A (June 2020)  
Page  
• 将器件状态更新为“量产数据”.........................................................................................................................1  
Changed the maximum limit for output signal rise and fall times from 3 to 4 ns in the //Switching  
Characteristics5-V Input, 3.3-V Output// table...............................................................................................13  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
2
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
5 Description Continued  
The ISOW7841A-Q1 device provides high electromagnetic immunity and low emissions while isolating CMOS or  
LVCMOS digital I/Os. The signal-isolation channel has a logic input and output buffer separated by a double  
capacitive silicon dioxide (SiO2) insulation barrier, whereas, power isolation uses on-chip transformers separated  
by thin film polymer as insulating material. If the input signal is lost, the default output is high for the  
ISOW7841A-Q1 without the F suffix and low for the device with the F suffix.  
These devices help prevent noise currents on data buses, such as CAN, or other circuits from entering the local  
ground and interfering with or damaging sensitive circuitry. Through innovative chip design and layout  
techniques, electromagnetic compatibility of the device has been significantly enhanced to ease system-level  
ESD, EFT, surge and emissions compliance. The high-efficiency of the power converter allows operation at a  
higher ambient temperature. The device is available in a 16-pin SOIC wide-body (SOIC-WB) DWE package.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6 Pin Configuration and Functions  
VCC  
1
16 VISO  
GND1  
INA  
2
3
15 GND2  
14 OUTA  
INB  
INC  
4
5
13 OUTB  
12 OUTC  
OUTD  
NC  
6
7
11  
10 SEL  
IND  
GND1  
8
9 GND2  
ISOW7841A-Q1 DWE Package. 16-Pin SOIC-WB. Top View.  
6-1. Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
GND1  
ISOW7841A-Q1  
2, 8  
9, 15  
3
Ground connection for VCC  
Ground connection for VISO  
Input channel A  
GND2  
INA  
I
I
I
I
INB  
4
Input channel B  
INC  
5
Input channel C  
IND  
11  
7
Input channel D  
NC  
Not connected  
O
O
O
O
OUTA  
OUTB  
OUTC  
OUTD  
14  
13  
12  
6
Output channel A  
Output channel B  
Output channel C  
Output channel D  
VISO selection pin. VISO = 5 V when SEL shorted to VISO. VISO = 3.3 V,  
when SEL shorted to GND2 or when left floating. For more information see  
9.4.  
SEL  
10  
I
VCC  
1
Supply voltage  
VISO  
16  
Isolated supply voltage determined by SEL pin  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
See (1) (2)  
MIN  
0.5  
0.5  
MAX  
UNIT  
V
VCC  
Supply voltage  
6
6
VISO  
Isolated supply voltage  
V
VCC + 0.5,  
VIO  
Voltage at INx, OUTx, SEL pins  
V
VISO + 0.5(3)  
0.5  
15  
IO  
Maximum output current through data channels  
Junction temperature  
15  
150  
150  
mA  
°C  
TJ  
Tstg  
Storage temperature  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground pin (GND1 or GND2) and are peak voltage  
values.  
(3) This value depends on whether the pin is located on the VCC or VISO side. The maximum voltage at the I/O pins should not exceed 6 V.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±2000  
Electrostatic  
discharge  
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C6  
Contact discharge per IEC 61000-4-2(2)  
Isolation barrier withstand test  
V(ESD)  
±1000  
±8000  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
7.3 Recommended Operating Conditions  
See 1  
MIN  
3
NOM  
MAX  
UNIT  
VCC  
IOH  
Supply voltage  
5.5  
V
VSO = 5 V  
VSO = 3.3 V  
VSO = 5 V  
VSO = 3.3 V  
4  
2  
High level output current 2  
mA  
mA  
4
2
IOL  
Low level output current 2  
VIH  
VIL  
DR  
TA  
High-level input voltage  
Low-level input voltage  
Data rate  
0.7 × VSI  
0
VSI  
V
V
0.3 × VSI  
100  
Mbps  
°C  
Ambient temperature  
125  
40  
1. VSI is the input side supply, VSO is the output side supply  
2. This current is for data output channel.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
 
 
 
 
 
 
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.4 Thermal Information  
ISOW7841A-Q1  
DWE (SOIC)  
16 PINS  
56.8  
THERMAL METRIC1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
15.6  
28.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.4  
ΨJT  
28.5  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.02  
0.51  
0.51  
UNIT  
W
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
VCC = 5.5 V, IISO = 110 mA, TJ = 150°C,  
TA 80°C, CL = 15 pF, input a 50-MHz  
50% duty-cycle square wave  
PD1  
PD2  
W
W
7.6 Insulation Specifications  
PARAMETER  
GENERAL  
TEST CONDITIONS  
VALUE  
UNIT  
CLR  
CPG  
External clearance(1)  
Shortest terminal-to-terminal distance through air  
>8  
>8  
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
External creepage(1)  
Minimum internal gap (internal clearance capacitive  
signal isolation)  
> 21  
DTI  
CTI  
Distance through the insulation  
µm  
V
Minimum internal gap (internal clearance –  
transformer power isolation)  
>120  
Comparative tracking index  
Material group  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
> 600  
I
I-IV  
I-IV  
I-III  
Rated mains voltage 300 VRMS  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
Overvoltage category per IEC 60664-1  
DIN V VDE 0884-11:2017-01(2)  
Maximum repetitive peak isolation  
VIORM  
AC voltage (bipolar)  
1414  
VPK  
voltage  
AC voltage; Time dependent dielectric breakdown  
(TDDB) Test ; See 10-5  
1000  
1414  
7071  
VRMS  
VDC  
VPK  
VIOWM  
Maximum working isolation voltage  
DC voltage  
VTEST = VIOTM; t = 60 s (qualification);  
VTEST = 1.2 × VIOTM; t = 1 s (100% production)  
VIOTM  
VIOSM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
Test method per IEC 62368-1, 1.2/50 µs waveform,  
VTEST = 1.6 × VIOSM = 10000 VPK(qualification)  
6250  
VPK  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
6
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
 
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
Method a, after input/output safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
5  
Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM, tm = 10 s  
5  
5  
qpd  
Apparent charge(4)  
pC  
Method b1, at routine test (100% production) and  
preconditioning (type test),  
Vini = 1.2 × VIOTM, tini = 1 s;  
Vpd(m) = 1.875 × VIORM, tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance(5)  
~3.5  
> 1012  
> 1011  
> 109  
pF  
VIO = 0.4 × sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V, TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
40/125/21  
UL 1577  
VTEST = VISO(UL)= 5000 VRMS, t = 60 s (qualification),  
VTEST = 1.2 × VISO(UL) = 6000 VRMS, t = 1 s (100%  
production)  
VISO(UL) Withstand isolation voltage  
5000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these  
specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device.  
7.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Plan to certify according to Plan to certify according to IEC Plan to certify under  
Plan to certify according to  
EN 61010-1:2010 and EN  
60950- 1:2006/A2:2013  
Plan to certify according  
to GB 4943.1-2011  
DIN V VDE V  
60950-1, IEC 62368-1, and IEC UL 1577 Component  
0884-11:2017-01  
60601-1  
Recognition Program  
Reinforced insulation per CSA  
60950-1-07+A1+A2, IEC  
60950-1 2nd Ed.+A1+A2, CSA  
62368-1-14 and IEC 62368-1  
2nd Ed., 800 VRMS maximum  
working voltage (pollution  
Reinforced insulation;  
Maximum transient  
isolation voltage, 7071  
5000 VRMS Reinforced  
insulation per EN 61010-  
1:2010 up to working  
Reinforced Insulation,  
Altitude 5000 m,  
Tropical Climate, 700  
VRMS maximum working  
voltage;  
VPK  
;
degree 2, material group I);  
voltage of 600 VRMS;  
Single protection, 5000  
VRMS  
Maximum repetitive peak 2 MOPP (Means of Patient  
5000 VRMS Reinforced  
insulation per EN 60950-  
1:2006/A2:2013 up to  
working voltage of 800  
VRMS  
isolation voltage, 1414  
VPK  
Protection) per CSA 60601-1:14  
and IEC 60601-1 Ed. 3+A1, 250  
Maximum surge isolation VRMS maximum working voltage;  
;
voltage, 6250 VPK  
Temperature rating is 90°C for  
reinforced insulation and 125°C  
for basic insulation; see  
certificate for details.  
Certification planned  
Certification planned  
Certification planned  
Certification planned  
Certification planned  
7.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output  
circuitry.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
 
 
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 56.8°C/W, VI = 5.5 V, TJ = 150°C,  
TA = 25°C, see Thermal Derating Curve  
for Safety Limiting Current per VDE  
400  
611  
IS  
Safety input, output, or supply current(1)  
mA  
R
θJA = 56.8°C/W, VI = 3.6 V, TJ = 150°C,  
TA = 25°C, see Thermal Derating Curve  
for Safety Limiting Current per VDE  
R
θJA = 56.8°C/W, TJ = 150°C, TA = 25°C,  
PS  
TS  
Safety input, output, or total power(1)  
Maximum safety temperature(1)  
see Thermal Derating Curve for Safety  
Limiting Power per VDE  
2200  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use the following equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
7.9 Electrical Characteristics5-V Input, 5-V Output  
VCC = 5 V ±10%, SEL shorted to VISO (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
External IISO = 0 to 50 mA  
MIN  
4.75  
4.5  
TYP  
5.07  
5.07  
2
MAX  
5.43  
5.43  
UNIT  
V
VISO  
Isolated supply voltage  
External IISO = 0 to 130 mA  
IISO = 50 mA, VCC = 4.5 V to 5.5 V  
IISO = 0 to 130 mA  
VISO(LINE)  
VISO(LOAD)  
DC line regulation  
DC load regulation  
mV/V  
1%  
IISO = 130 mA, CLOAD = 0.1 µF || 10 µF;  
VI = VSI (ISOW7841A-Q1); VI =0 V  
(ISOW7841A-Q1 with F suffix)  
Efficiency at maximum load  
current  
EFF  
53%  
Positive-going UVLO threshold  
on VCC, VISO  
VCC+(UVLO)  
VCC(UVLO)  
VHYS (UVLO)  
2.7  
0.7  
V
V
V
Negative-going UVLO threshold  
on VCC, VISO  
2.1  
UVLO threshold hysteresis on  
VCC, VISO  
0.2  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
VSI  
VSI  
0.3  
0.1  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
VSI  
IIL  
Low level input current  
High level input current  
VIL = 0 at INx or SEL  
µA  
µA  
10  
IIH  
VIH = VSI>(1) at INx or SEL  
10  
(1)  
VSO  
0.4  
VSO –  
VOH  
VOL  
High level output voltage  
Low level output voltage  
V
V
IO = 4 mA, see 8-1  
0.2  
0.2  
0.4  
IO = 4 mA, see 8-1  
Common mode transient  
immunity  
CMTI  
100  
kV/us  
VI = VSI or 0 V, VCM = 1000 V; see 8-2  
DC current from supply under  
short circuit on VISO  
ICC_SC  
VISO shorted to GND2  
137  
100  
mA  
mV  
Output ripple on isolated supply 20-MHz bandwidth, CLOAD = 0.1 µF || 20 µF,  
(pk-pk) IISO = 130 mA  
VISO(RIP)  
(1) VSI = input side supply; VSO = output side supply  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
8
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.10 Supply Current Characteristics5-V Input, 5-V Output  
VCC = 5 V ±10%, SEL shorted to VISO (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
No external ILOAD; VI = 0 V (ISOW7841A-Q1);  
(1)  
23  
(
VI = VSI ) (ISOW7841A-Q1 with F suffix)  
No external ILOAD; VI = VSI (ISOW7841A-Q1);  
VI = 0V (ISOW7841A-Q1 with F suffix)  
17  
20  
24  
54  
Current drawn from  
supply  
All channels switching with square wave clock input of 1 Mbps;  
CL = 15 pF, No external ILOAD  
ICC  
mA  
All channels switching with square wave clock input of 10 Mbps;  
CL = 15 pF, No external ILOAD  
All channels switching with square wave clock input of 100 Mbps;  
CL = 15 pF, No external ILOAD  
VI = 0 V (ISOW7841A-Q1); VI = VSI (ISOW7841A-Q1 with F suffix)  
VI = VSI (ISOW7841A-Q1); VI = 0V (ISOW7841A-Q1 with F suffix)  
128  
130  
All channels switching with square wave clock input of 1 Mbps;  
CL = 15 pF  
128  
127  
112  
(2) Current available to  
(
)
IISO(OUT)  
mA  
isolated supply  
All channels switching with square wave clock input of 10 Mbps;  
CL = 15 pF  
All channels switching with square wave clock input of 100 Mbps;  
CL = 15 pF  
(1) VSI = input side supply; VSO = output side supply  
(2) Current available to load should be derated by 2 mA/°C for TA > 80°C.  
7.11 Electrical Characteristics3.3-V Input, 5-V Output  
VCC = 3.3 V ±10%, SEL shorted to VISO (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
External IISO = 0 to 40 mA  
MIN  
TYP  
5.07  
2
MAX  
UNIT  
V
VISO  
Isolated supply voltage  
DC line regulation  
DC load regulation  
4.5  
5.43  
VISO(LINE)  
VISO(LOAD)  
IISO = 20 mA, VCC = 4.5 V to 5.5 V  
IISO = 0 to 40 mA  
mV/V  
1%  
IISO = 40 mA, CLOAD = 0.1 µF || 10 µF;  
VI = VSI (ISOW7841A-Q1); VI =0 V  
(ISOW7841A-Q1 with F suffix)  
Efficiency at maximum load  
current  
EFF  
42%  
Positive-going UVLO threshold  
on VCC, VISO  
VCC+(UVLO)  
VCC(UVLO)  
VHYS (UVLO)  
2.7  
0.7  
V
V
V
Negative-going UVLO threshold  
on VCC, VISO  
2.1  
UVLO threshold hysteresis on  
VCC, VISO  
0.2  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
VSI  
VSI  
0.3  
0.1  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
VSI  
IIL  
Low level input current  
High level input current  
VIL = 0 at INx or SEL  
µA  
µA  
10  
IIH  
VIH = VSI (1) at INx or SEL  
10  
(1)  
VSO  
0.4  
VSO –  
VOH  
VOL  
High level output voltage  
Low level output voltage  
V
V
IO = 4 mA, see 8-1  
0.2  
0.2  
0.4  
IO = 4 mA, see 8-1  
Common mode transient  
immunity  
CMTI  
100  
kV/us  
VI = VSI or 0 V, VCM = 1000 V; see 8-2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC current from supply under  
ICC_SC  
VISO shorted to GND2  
137  
mA  
short circuit on VISO  
Output ripple on isolated supply 20-MHz bandwidth, CLOAD = 0.1 µF || 20 µF,  
(pk-pk) IISO = 40 mA  
VISO(RIP)  
90  
mV  
(1) VSI = input side supply; VSO = output side supply  
7.12 Supply Current Characteristics3.3-V Input, 5-V Output  
VCC = 3.3 V ±10%, SEL shorted to VISO (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
No external ILOAD; VI = 0 V (ISOW7841A-Q1);  
(1)  
31  
(
VI = VSI ) (ISOW7841A-Q1 with F suffix)  
No external ILOAD; VI = VSI (ISOW7841A-Q1);  
VI = 0V (ISOW7841A-Q1 with F suffix)  
24  
28  
33  
80  
Current drawn from  
supply  
All channels switching with square wave clock input of 1 Mbps;  
CL = 15 pF, No external ILOAD  
ICC  
mA  
All channels switching with square wave clock input of 10 Mbps;  
CL = 15 pF, No external ILOAD  
All channels switching with square wave clock input of 100 Mbps;  
CL = 15 pF, No external ILOAD  
VI = 0 V (ISOW7841A-Q1); VI = VSI (ISOW7841A-Q1 with F suffix)  
VI = VSI (ISOW7841A-Q1); VI = 0V (ISOW7841A-Q1 with F suffix)  
38  
40  
All channels switching with square wave clock input of 1 Mbps;  
CL = 15 pF  
38  
37  
22  
(2) Current available to  
(
)
IISO(OUT)  
mA  
isolated supply  
All channels switching with square wave clock input of 10 Mbps;  
CL = 15 pF  
All channels switching with square wave clock input of 100 Mbps;  
CL = 15 pF  
(1) VSI = input side supply; VSO = output side supply  
(2) Current available to load should be derated by 2 mA/°C for TA > 80°C.  
7.13 Electrical Characteristics5-V Input, 3.3-V Output  
VCC = 5 V ±10%, SEL shorted to GND2 (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
External IISO = 0 to 50 mA  
MIN  
3.13  
3
TYP  
3.34  
3.34  
2
MAX  
3.56  
3.56  
UNIT  
V
VISO  
Isolated supply voltage  
External IISO = 0 to 130 mA  
IISO = 50 mA, VCC = 4.5 V to 5.5 V  
IISO = 10 to 130 mA  
VISO(LINE)  
VISO(LOAD)  
DC line regulation  
DC load regulation  
mV/V  
1%  
IISO = 130 mA, CLOAD = 0.1 µF || 10 µF;  
VI = VSI (ISOW7841A-Q1); VI = 0 V  
(ISOW7841A-Q1 with F suffix)  
Efficiency at maximum load  
current  
EFF  
48%  
Positive-going UVLO threshold  
on VCC, VISO  
VCC+(UVLO)  
VCC(UVLO)  
VHYS (UVLO)  
2.7  
0.7  
V
V
V
Negative-going UVLO threshold  
on VCC, VISO  
2.1  
UVLO threshold hysteresis on  
VCC, VISO  
0.2  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
VSI  
VSI  
0.3  
0.1  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
VSI  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
10  
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
 
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
PARAMETER  
TEST CONDITIONS  
VIL = 0 at INx or SEL  
MIN  
TYP  
MAX  
UNIT  
µA  
IIL  
Low level input current  
High level input current  
10  
IIH  
VIH = VSI (1) at INx or SEL  
10  
µA  
(1)  
VSO  
0.3  
VSO –  
VOH  
VOL  
High level output voltage  
Low level output voltage  
V
V
IO = 2 mA, see 8-1  
0.1  
0.1  
0.3  
IO = 2 mA, see 8-1  
Common mode transient  
immunity  
CMTI  
100  
kV/us  
VI = VSI or 0 V, VCM = 1000 V; see 8-2  
DC current from supply under  
short circuit on VISO  
ICC_SC  
VISO shorted to GND2  
137  
100  
mA  
mV  
Output ripple on isolated supply 20-MHz bandwidth, CLOAD = 0.1 µF || 20 µF,  
(pk-pk) IISO = 130 mA  
VISO(RIP)  
(1) VSI = input side supply; VSO = output side supply  
7.14 Supply Current Characteristics5-V Input, 3.3-V Output  
VCC = 5 V ±10%, SEL shorted to GND2 (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
No external ILOAD; VI = 0 V (ISOW7841A-Q1);  
(1)  
20  
(
VI = VSI ) (ISOW7841A-Q1 with F suffix)  
No external ILOAD; VI = VSI (ISOW7841A-Q1);  
VI = 0 V (ISOW7841A-Q1 with F suffix)  
14  
17  
20  
40  
Current drawn from  
supply  
All channels switching with square wave clock input of 1 Mbps;  
CL = 15 pF, No external ILOAD  
ICC  
mA  
All channels switching with square wave clock input of 10 Mbps;  
CL = 15 pF, No external ILOAD  
All channels switching with square wave clock input of 100 Mbps;  
CL = 15 pF, No external ILOAD  
VI = 0 V (ISOW7841A-Q1); VI = VSI (ISOW7841A-Q1 with F suffix)  
VI = VSI (ISOW7841A-Q1); VI = 0 V (ISOW7841A-Q1 with F suffix)  
128  
130  
All channels switching with square wave clock input of 1 Mbps;  
CL= 15 pF  
129  
128  
118  
(2) Current available to  
(
)
IISO(OUT)  
mA  
isolated supply  
All channels switching with square wave clock input of 10 Mbps;  
CL = 15 pF  
All channels switching with square wave clock input of 100 Mbps;  
CL = 15 pF  
(1) VSI = input side supply; VSO = output side supply  
(2) Current available to load should be derated by 2 mA/°C for TA > 105°C.  
7.15 Electrical Characteristics3.3-V Input, 3.3-V Output  
VCC = 3.3 V ±10%, SEL shorted to GND2 (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
External IISO = 0 to 30 mA  
MIN  
3.13  
3
TYP  
3.34  
3.34  
2
MAX  
3.58  
3.58  
UNIT  
V
VISO  
Isolated supply voltage  
External IISO = 0 to 75 mA  
IISO = 30 mA, VCC = 3 V to 3.6 V  
IISO = 0 to 75 mA  
VISO(LINE)  
DC line regulation  
mV/V  
VISO(LOAD) DC load regulation  
1%  
IISO = 75 mA, CLOAD = 0.1 µF || 10 µF;  
VI = VSI (ISOW7841A-Q1); VI = 0 V  
(ISOW7841A-Q1 with F suffix)  
Efficiency at maximum load  
current  
EFF  
47%  
Positive-going UVLO threshold  
on VCC, VISO  
VCC+(UVLO)  
2.7  
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Negative-going UVLO threshold  
on VCC, VISO  
VCC(UVLO)  
2.1  
V
UVLO threshold hysteresis on  
VCC, VISO  
VHYS (UVLO)  
0.2  
V
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
0.7  
VSI  
VSI  
0.3  
0.1  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
VSI  
IIL  
Low level input current  
High level input current  
VIL = 0 at INx or SEL  
µA  
µA  
10  
IIH  
VIH = VSI (1) at INx or SEL  
10  
(1)  
VSO  
VSO –  
VOH  
VOL  
High level output voltage  
Low level output voltage  
V
V
IO = 2 mA, see 8-1  
0.3  
0.1  
0.1  
0.3  
IO = 2 mA, see 8-1  
Common mode transient  
immunity  
CMTI  
100  
kV/us  
VI = VSI or 0 V, VCM = 1000 V; see 8-2  
DC current from supply under  
short circuit on VISO  
ICC_SC  
VISO shorted to GND2  
143  
90  
mA  
mV  
Output ripple on isolated supply 20-MHz bandwidth, CLOAD = 0.1 µF || 20 µF, IISO  
(pk-pk) = 75 mA  
VISO(RIP)  
(1) VSI= input side supply; VSO = output side supply  
7.16 Supply Current Characteristics3.3-V Input, 3.3-V Output  
VCC = 3.3 V ±10%, SEL shorted to GND2 (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
No external ILOAD; VI = 0 V (ISOW7841A-Q1);  
(1)  
26  
(
VI = VSI ) (ISOW7841A-Q1 with F suffix)  
No external ILOAD; VI = VSI (ISOW7841A-Q1);  
VI = 0 V (ISOW7841A-Q1 with F suffix)  
20  
23  
26  
53  
Current drawn from  
supply  
All channels switching with square wave clock input of 1 Mbps;  
CL = 15 pF, No external ILOAD  
ICC  
mA  
All channels switching with square wave clock input of 10 Mbps;  
CL = 15 pF, No external ILOAD  
All channels switching with square wave clock input of 100 Mbps;  
CL = 15 pF, No external ILOAD  
VI = 0 V (ISOW7841A-Q1);  
VI = VSI (ISOW7841A-Q1 with F suffix)  
73  
75  
74  
73  
61  
VI = VSI(ISOW7841A-Q1);  
VI = 0V (ISOW7841A-Q1 with F suffix)  
(2) Current available to  
All channels switching with square wave clock input of 1 Mbps;  
CL = 15 pF  
(
)
IISO(OUT)  
mA  
isolated supply  
All channels switching with square wave clock input of 10 Mbps;  
CL = 15 pF  
All channels switching with square wave clock input of 100 Mbps;  
CL = 15 pF  
(1) VSI = input side supply; VSO = output side supply  
(2) Current available to load should be derated by 2 mA/°C for TA > 115°C.  
7.17 Switching Characteristics5-V Input, 5-V Output  
VCC = 5 V ±10%, SEL shorted to VISO (over recommended operating conditions, unless otherwise specified)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
12  
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
 
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
PARAMETER  
TEST CONDITIONS  
See 8-1  
MIN  
TYP  
13  
MAX  
17.6  
4.7  
2.5  
4.5  
4
UNIT  
ns  
tPLH, tPHL Propagation delay time  
PWD  
Pulse width distortion1 |tPHL tPLH  
|
0.6  
ns  
tSK(o)  
tSK(p-p)  
tr, tf  
Channel-channel output skew time2  
Part-part skew time3  
Same-direction channels  
ns  
ns  
Output signal rise and fall times  
2
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
7.18 Switching Characteristics3.3-V Input, 5-V Output  
VCC = 3.3 V ±10%, SEL shorted to VISO (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
See 8-1  
MIN  
TYP  
13.5  
0.6  
MAX  
19.6  
4.7  
2.5  
4.5  
4
UNIT  
ns  
tPLH, tPHL Propagation delay time  
Pulse width distortion(1) |tPHL tPLH  
|
PWD  
tSK(o)  
tSK(p-p)  
tr, tf  
ns  
Channel-channel output skew time(2)  
Part-part skew time(3)  
Same-direction channels  
ns  
ns  
Output signal rise and fall times  
2
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
7.19 Switching Characteristics5-V Input, 3.3-V Output  
VCC = 5 V ±10%, SEL shorted to GND2 (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
tPLH, tPHL Propagation delay time  
PWD  
TEST CONDITIONS  
See 8-1  
MIN  
TYP  
14  
MAX  
19.7  
4.4  
2
UNIT  
ns  
Pulse width distortion1 |tPHL tPLH  
|
0.6  
ns  
tSK(o)  
tSK(p-p)  
tr, tf  
Channel-channel output skew time2  
Part-part skew time3  
Same-direction channels  
ns  
4.5  
4
ns  
Output signal rise and fall times  
1
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
7.20 Switching Characteristics3.3-V Input, 3.3-V Output  
VCC = 3.3 V ±10%, SEL shorted to GND2 (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
tPLH, tPHL Propagation delay time  
PWD  
TEST CONDITIONS  
See 8-1  
MIN  
TYP  
14.5  
0.6  
MAX  
20.2  
4.4  
UNIT  
ns  
Pulse width distortion1 |tPHL tPLH  
|
ns  
tSK(o)  
Channel-channel output skew time2  
Part-part skew time3  
Same-direction channels  
2.2  
ns  
tSK(p-p)  
4.5  
ns  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
 
 
 
 
 
 
 
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tr, tf  
Output signal rise and fall times  
1
3
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
7.21 Insulation Characteristics Curves  
700  
600  
500  
400  
300  
200  
100  
0
2500  
2000  
1500  
1000  
500  
VCC = 3.6 V  
VCC = 5.5 V  
0
0
50  
100  
Ambient Temperature (°C)  
150  
200  
0
20  
40  
60  
80  
100  
Ambient Temperature (°C)  
120  
140  
160  
7-2. Thermal Derating Curve for Safety Limiting  
7-1. Thermal Derating Curve for Safety Limiting  
Power per VDE  
Current per VDE  
7.22 Typical Characteristics  
5.2  
5.15  
5.1  
5.05  
5
0
20  
40  
60  
80  
Load Current (mA)  
100  
120  
140  
VISO = 3.3 V  
TA = 25°C  
VISO = 5 V  
TA = 25°C  
7-3. Isolated Supply Voltage (VISO) vs Load  
Current (IISO  
7-4. Isolated Supply Voltage (VISO) vs Load  
Current (IISO  
)
)
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
14  
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
 
 
 
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCC = 3.3 V, VISO = 3.3 V  
VCC = 5 V, VISO = 3.3 V  
VCC = 5 V, VISO = 5 V  
VCC = 3.3 V, VISO = 5 V  
VCC = 3.3 V, VISO = 3.3 V  
VCC = 5 V, VISO = 3.3 V  
VCC = 5 V, VISO = 5 V  
VCC = 3.3 V, VISO = 5 V  
50  
25  
0
0
20  
40  
60  
Load Current (mA)  
80  
100  
120  
140  
160  
0
20  
40  
60 80  
Load Current (mA)  
100  
120  
140  
TA = 25°C  
TA = 25°C  
7-5. ISOW7841 Supply Current (ICC) vs Load  
7-6. ISOW7841 Efficiency vs Load Current (IISO)  
Current (IISO  
)
3.4  
640  
560  
480  
400  
320  
240  
160  
80  
VCC = 3.3 V, VISO = 3.3 V  
VCC = 5 V, VISO = 3.3 V  
VCC = 5 V, VISO = 5 V  
VCC = 3.3 V, VISO = 5 V  
3.35  
3.3  
3.25  
3.2  
-40  
0
-20  
0
20  
40  
60  
Free-Air Temperature (°C)  
80  
100  
120  
0
20  
40  
60 80  
Load Current (mA)  
100  
120  
140  
No IISO load  
VCC = 5 V  
VISO = 3.3 V  
TA = 25°C  
7-8. 3.3-V Isolated Supply Voltage (VISO) vs Free-  
7-7. ISOW7841 Power Dissipation vs Load  
Air Temperature  
Current (IISO  
)
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
130  
125  
120  
115  
110  
105  
100  
95  
800  
700  
600  
500  
400  
300  
200  
100  
5.14  
5.09  
5.04  
4.99  
4.94  
Short-circuit Supply Current  
Short-circuit Power  
90  
0
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8  
Input Supply Voltage (V)  
5
5.2 5.4  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Free-Air Temperature (èC)  
VISO shorted to GND2  
TA = 25°C  
No IISO load  
VCC = 5 V  
VISO = 5 V  
7-10. Short-Circuit Supply Current (ICC) and  
Power (P) vs Supply Voltage (VCC  
)
7-9. 5-V Isolated Supply Voltage (VISO) vs Free-  
Air Temperature  
120  
80  
70  
60  
50  
40  
30  
20  
10  
0
ICC (mA) at VCC = 5 V, VISO = 5 V  
110  
ICC (mA) at VCC = 5 V, VISO = 3.3 V  
100  
ICC (mA) at VCC = 5 V, VISO = 5 V  
ICC (mA) at VCC = 5 V, VISO = 3.3 V  
ICC (mA) at VCC = 3.3 V, VISO = 3.3 V  
ICC (mA) at VCC = 3.3 V, VISO = 5 V  
ICC (mA) at VCC = 3.3 V, VISO = 3.3 V  
ICC (mA) at VCC = 3.3 V, VISO = 5 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
25  
50  
Data Rate (Mbps)  
75  
100  
0
25  
50  
Data Rate (Mbps)  
75  
100  
CL = 15 pF  
TA = 25°C  
No IISO load  
CL = no load  
TA = 25°C  
No IISO load  
7-11. ISOW7841A-Q1 Supply Current vs Data  
7-12. ISOW7841A-Q1 Supply Current vs Data  
Rate  
Rate  
2.6  
2.5  
2.4  
2.3  
2.2  
20  
18  
16  
14  
12  
tPLH(ns) at VCC = 5 V, VISO = 5 V  
tPHL(ns) at VCC = 5 V, VISO = 5 V  
tPLH(ns) at VCC = 5 V, VISO = 3.3 V  
tPHL(ns) at VCC = 5 V, VISO = 3.3 V  
tPLH(ns) at VCC = 3.3 V, VISO = 3.3 V  
tPHL(ns) at VCC = 3.3 V, VISO = 3.3 V  
tPLH(ns) at VCC = 3.3 V, VISO = 5 V  
tPHL(ns) at VCC = 3.3 V, VISO = 5 V  
10  
8
6
2.1  
4
VCC Rising  
VCC Falling  
2
-40  
-20  
0
20  
40  
60  
Free Air Temperature (°C)  
80  
100 120 140  
2
-40  
-20  
0
20  
40  
60  
80  
100 120  
Free-Air Temperature (èC)  
7-14. Propagation Delay Time vs Free-Air  
7-13. Power-Supply Undervoltage Threshold vs  
Temperature  
Free Air Temperature  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
4
3
2
1
VSO = 3.3 V  
VSO = 5 V  
VSO = 3.3 V  
VSO = 5 V  
0
0
5
10  
Low-Level Output Current (mA)  
15  
-15  
-10 -5  
High-Level Output Current (mA)  
0
TA = 25°C  
TA = 25°C  
7-16. Low-Level Output Voltage vs Low-Level  
7-15. High-Level Output Voltage vs High-Level  
Output Current  
Output Current  
VISO = 3.3 V (50 mV/div)(1)  
ICC (40 mA/div)  
IISO  
110 mA  
VISO = 3.3 V (1 V/div)  
10 mA  
10 mA  
2
100 µs/div  
2 ms/div  
VCC = 5 V  
VISO = 3.3 V  
VCC = 5 V  
VISO = 3.3 V  
Negligible undershoot and overshoot because of load transient  
Current spike is because of charging the input supply capacitor  
7-17. 10-mA to 110-mA Load Transient  
7-18. Soft Start at 10-mA Load  
Response  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
ICC (40 mA/div)  
ICC (40 mA/div)  
VISO = 5 V (1 V/div)  
VISO = 3.3 V (1 V/div)  
2 ms/div  
2 ms/div  
VCC = 5 V  
VISO = 5 V  
VCC = 5 V  
VISO = 3.3 V  
Input current spike is because of charging the input supply  
decoupling capacitor  
Input current spike is because of charging the input supply  
decoupling capacitor  
7-20. Soft Start at 10-mA Load  
7-19. Soft Start at 120-mA Load  
ICC (40 mA/div)  
VISO = 5 V (20 mV/div)  
VISO = 5 V (1 V/div)  
5 µs/div  
2 ms/div  
VCC = 5 V  
VISO = 5 V  
VCC = 5 V  
VISO = 5 V  
Input current spike is because of charging the input supply  
decoupling capacitor  
7-22. VISO Ripple Voltage at 130 mA  
7-21. Soft Start at 130-mA Load  
VISO = 3.3 V (20 mV/div)  
5 µs/div  
VCC = 5 V  
VISO = 3.3 V  
7-23. VISO Ripple Voltage at 130 mA  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
18  
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
8 Parameter Measurement Information  
V
SI  
V
50%  
I
50%  
IN  
OUT  
0 V  
t
t
PHL  
PLH  
Input Generator  
(See Note A)  
C
L
V
I
V
O
50  
V
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
1. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty  
cycle, tr 3 ns, tf 3 ns, ZO = 50 Ω. At the input, 50-Ωresistor is required to terminate the input generator  
signal. The resistor is not required in the actual application.  
2. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
8-1. Switching Characteristics Test Circuit and Voltage Waveforms  
5 V  
5 V  
V
SO  
V
SI  
10 F || 0.1 µF  
C3  
C4  
10 F  
0.1 F  
GNDI  
IN  
OUT  
C
L
GNDI  
GNDO  
+
œ
V
CM  
1. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
2. Pass-fail criteria: Outputs must remain stable.  
8-2. Common-Mode Transient Immunity Test Circuit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The ISOW7841A-Q1 has a high-efficiency, low-emissions isolated DC-DC converter, and four high-speed  
isolated data channels. Block Diagram shows the functional block diagram of the ISOW7841A-Q1.  
The integrated DC-DC converter uses switched mode operation and proprietary circuit techniques to reduce  
power losses and boost efficiency. Specialized control mechanisms, clocking schemes, and the use of a high-Q  
on-chip transformer provide high efficiency and low radiated emissions. The integrated transformer uses thin film  
polymer as the insulation barrier.  
The VCC supply is provided to the primary power controller that switches the power stage connected to the  
integrated transformer. Power is transferred to the secondary side, rectified and regulated to either 3.3 V or 5 V,  
depending on the SEL pin. The output voltage, VISO, is monitored and feedback information is conveyed to the  
primary side through a dedicated isolation channel. The duty cycle of the primary switching stage is adjusted  
accordingly. The fast feedback control loop of the power converter ensures low overshoots and undershoots  
during load transients. Undervoltage lockout (UVLO) with hysteresis is integrated on the VCC and VISO supplies  
which ensures robust system performance under noisy conditions. An integrated soft-start mechanism ensures  
controlled inrush current and avoids any overshoot on the output during power up.  
The integrated signal-isolation channels employ an ON-OFF keying (OOK) modulation scheme to transmit the  
digital data across a silicon-dioxide based isolation barrier. The transmitter sends a high-frequency carrier across  
the barrier to represent one state and sends no signal to represent the other state. The receiver demodulates the  
signal after signal conditioning and produces the output through a buffer stage. The signal-isolation channels  
incorporate advanced circuit techniques to maximize the CMTI performance and minimize the radiated  
emissions from the high frequency carrier and IO buffer switching. 9-2 shows a functional block diagram of a  
typical signal isolation channel.  
The ISOW7841A-Q1 is suitable for applications that have limited board space and require more integration. This  
device is also suitable for very-high voltage applications, where power transformers meeting the required  
isolation specifications are bulky and expensive.  
9.2 Functional Block Diagram  
Transformer  
V
CC  
V
ISO  
Power  
Controller  
Transformer  
Driver  
Rectifier  
UVLO, Soft-start  
Thermal  
Shutdown,  
UVLO, Soft-start  
FB Channel (Tx)  
FB Controller  
I/O Channels  
FB Channel (Rx)  
V
ref  
I/O Channels  
Data Channels  
(4)  
Data Channels  
(4)  
Isolation Barrier  
9-1. Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
20  
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
Transmitter  
Receiver  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
9-2. Conceptual Block Diagram of a Capacitive Data Channel  
9-3 shows a conceptual detail of how the OOK scheme works.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
9-3. On-Off Keying (OOK) Based Modulation Scheme  
9.3 Feature Description  
9-1 shows an overview of the device features.  
9-1. Device Features  
DEFAULT OUTPUT  
STATE  
PART NUMBER(1)  
CHANNEL DIRECTION  
MAXIMUM DATA RATE  
RATED ISOLATION(2)  
ISOW7841A-Q1  
ISOW7841FA-Q1  
High  
Low  
3 forward, 1 reverse  
100 Mbps  
5 kVRMS / 7071 VPK  
(1) The F suffix is part of the orderable part number. See the section for the full orderable part number.  
(2) For detailed isolation ratings, see the table.  
9.3.1 Electromagnetic Compatibility (EMC) Considerations  
The ISOW7841A-Q1 uses emissions reduction schemes for the internal oscillator and advanced internal layout  
scheme to minimize radiated emissions at the system level.  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
 
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
performance and reliability depends, to a large extent, on the application board design and layout, the  
ISOW7841A-Q1 incorporates many chip-level design improvements for overall system robustness. Some of  
these improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
9.3.2 Power-Up and Power-Down Behavior  
The ISOW7841A-Q1 has built-in UVLO on the VCC and VISO supplies with positive-going and negative-going  
thresholds and hysteresis. When the VCC voltage crosses the positive-going UVLO threshold during power-up,  
the DC-DC converter initializes and the power converter duty cycle is increased in a controlled manner. This soft-  
start scheme limits primary peak currents drawn from the VCC supply and charges the VISO output in a controlled  
manner, avoiding overshoots. Outputs of the isolated data channels are in an indeterminate state until the VCC or  
VISO voltage crosses the positive-going UVLO threshold. When the UVLO positive-going threshold is crossed on  
the secondary side VISO pin, the feedback data channel starts providing feedback to the primary controller. The  
regulation loop takes over and the isolated data channels go to the normal state defined by the respective input  
channels or their default states. Design should consider a sufficient time margin (typically 10 ms with 10-µF load  
capacitance) to allow this power up sequence before valid data channels are accounted for system functionality.  
When VCC power is lost, the primary side DC-DC controller turns off when the UVLO lower threshold is reached.  
The VISO capacitor then discharges depending on the external load. The isolated data outputs on the VISO side  
are returned to the default state for the brief time that the VISO voltage takes to discharge to zero.  
9.3.3 Current Limit, Thermal Overload Protection  
The ISOW7841A-Q1 is protected against output overload and short circuit. Output voltage starts dropping when  
the power converter is not able to deliver the current demanded during overload conditions. For a VISO short-  
circuit to ground, the duty cycle of the converter is limited to help protect against any damage.  
Thermal protection is also integrated to help prevent the device from getting damaged during overload and  
short-circuit conditions on the isolated output. Under these conditions, the device temperature starts to increase.  
When the temperature goes above 180°C, thermal shutdown activates and the primary controller turns off which  
removes the energy supplied to the VISO load, which causes the device to cool off. When the junction  
temperature goes below 150°C, the device starts to function normally. If an overload or output short-circuit  
condition prevails, this protection cycle is repeated. Care should be taken in the design to prevent the device  
junction temperatures from reaching such high values.  
9.4 Device Functional Modes  
9-2 lists the supply configurations for these devices.  
9-2. Supply Configurations  
SEL INPUT  
VCC  
5 V  
VISO  
5 V  
Shorted to VISO  
Shorted to VISO  
3.3 V  
5 V  
5 V  
Shorted to GND2 or floating  
Shorted to GND2 or floating  
3.3 V  
3.3 V(1)  
3.3 V  
(1) The SEL pin has a weak pulldown internally. Therefore for VISO = 3.3 V, the SEL pin should be  
strongly connected to the GND2 pin in noisy system scenarios.  
9-3 lists the functional modes for ISOW7841A-Q1.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
22  
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
9-3. Function Table  
INPUT SUPPLY  
INPUT  
(INx)  
OUTPUT  
(OUTx)  
COMMENTS  
(VCC  
)
H
L
H
Output channel assumes the logic state of its input  
L
PU  
Default mode(1): When INx is open, the corresponding  
output channel assumes logic based on default output  
mode of selected version  
Open  
X
Default  
PD  
Undetermined(2)  
(1) In the default condition, the output is high for ISOW7841A-Q1 and low for ISOW7841A-Q1 with the F suffix.  
(2) The outputs are in an undetermined state when VCC < 2.1 V.  
9.4.1 Device I/O Schematics  
Input (Device without F suffix)  
Input (Device with F suffix)  
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
1.5 M  
985  
985 ꢀ  
INx  
INx  
1.5 Mꢀ  
SEL Pin  
Output  
V
ISO  
V
V
V
ISO  
ISO  
ISO  
~20 ꢀ  
1970 ꢀ  
OUTx  
SEL  
2 Mꢀ  
9-4. Device I/O Schematics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
10 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
The device is a high-performance, quad channel digital isolator with integrated DC-DC converter. Typically digital  
isolators require two power supplies isolated from each other to power up both sides of device. Due to the  
integrated DC-DC converter in the device, the isolated supply is generated inside the device that can be used to  
power isolated side of the device and peripherals on isolated side, thus saving board space. The device uses  
single-ended CMOS-logic switching technology. When designing with digital isolators, keep in mind that because  
of the single-ended design structure, digital isolators do not conform to any specific interface standard and are  
only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between  
the data controller (that is Microcontroller or UART), and a data converter or a line transceiver, regardless of the  
interface type or standard.  
The device is suitable for applications that have limited board space and desire more integration. The device is  
also suitable for very high voltage applications, where power transformers meeting the required isolation  
specifications are bulky and expensive.  
10.2 Typical Application  
10-1 shows the typical schematic for SPI isolation. Typically, an ADC is used to monitor HV battery to chassis  
insulation resistance.  
Reference  
0.1 F  
22 F  
22 F  
0.1 F  
3.3VIN  
VISO  
SEL  
VCC  
3.3VOUT  
DVCC  
MCU  
DVSS  
AVDD  
DVDD  
REF  
CS  
CS  
INA  
INB  
OUTA  
ISOW7841A-Q1  
HV+ to Chassis  
HV- to Chassis  
SCLK  
SCLK  
OUTB  
ADC  
SDI  
SDO  
SDI  
INC  
OUTC  
IND  
SDO  
OUTD  
AGND  
DGND  
GND1  
GND2  
10-1. Isolated Power and SPI for Automotive BMS Insulation monitoring Application with ISOW7841A-  
Q1  
10.2.1 Design Requirements  
To design with this device, use the parameters listed in 10-1.  
10-1. Design Parameters  
PARAMETER  
VALUE  
Input voltage  
3 V to 5.5 V  
Decoupling capacitor between VCC and GND1  
Decoupling capacitor between VISO and GND2  
0.1 µF to 10 µF  
0.1 µF to 10 µF  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
24  
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
 
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
Because of very-high current flowing through the ISOW7841A-Q1 device VCC and VISO supplies, higher  
decoupling capacitors typically provide better noise and ripple performance. Although a 10-µF capacitor is  
adequate, higher decoupling capacitors (such as 22 µF or 47 µF) on both the VCC and VISO pins to the  
respective grounds are strongly recommended to achieve the best performance.  
10.2.2 Detailed Design Procedure  
The devices requires only external bypass capacitors to operate. These low-ESR ceramic bypass capacitors  
must be placed as close to the chip pads as possible.  
10 F  
10 F  
2 mm Maximum  
from Vcc  
2 mm Maximum  
from VISO  
0.1 F  
0.1 F  
VCC  
VISO  
1
16  
GND1  
2
3
15  
14  
GND2  
INA  
INB  
OUTA  
OUTB  
4
13  
INC  
5
6
12  
11  
OUTC  
IND  
OUTD  
7
8
10  
9
SEL  
GND1  
GND2  
10-2. Typical ISOW7841A-Q1 Circuit Hook-Up  
The VCC power-supply input provides power to isolated data channels and to the isolated DC-DC converter. Use  
方程1 to calculate the total power budget on the primary side.  
ICC = (VISO × IISO) / (η× VCC) + Iinpx  
(1)  
where  
ICC is the total current required by the primary supply.  
VISO is the isolated supply voltage.  
IISO is the external load on the isolated supply voltage.  
ηis the efficiency.  
VCC is the supply voltage.  
Iinpx is the total current drawn for the isolated data channels and power converter when data channels are  
toggling at a specific data rate. This data is shown in the 7.9 table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
10.2.3 Application Curve  
ICC (40 mA/div)  
VISO (600 mV/div)  
VCC = 3.3 V  
IISO = 70 mA  
Input current spike is because of charging the input supply decoupling capacitor  
10-3. Soft-Start Waveform  
10.2.3.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See 10-4 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation  
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for  
lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20%  
higher than the specified value.  
10-5 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the intrinsic capability of the insulation is 1000 VRMS with a lifetime of 1184 years.  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
10-4. Test Setup for Insulation Lifetime Measurement  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
10-5. Insulation Lifetime Projection Data  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
Power Supply Recommendations  
To help make sure that operation is reliable at data rates and supply voltages, adequate decoupling capacitors  
must be located as close to supply pins as possible. The input supply (VCC) must have an appropriate current  
rating to support output load and switching at the maximum data rate required by the end application. For more  
information, refer to the Detailed Design Procedure section.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
28  
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low-EMI PCB design (see 11-1). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane, and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
Keep decoupling capacitors as close as possible to the VCC and VISO pins.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
Because the device has no thermal pad to dissipate heat, the device dissipates heat through the respective  
GND pins. Ensure that enough copper is present on both GND pins to prevent the internal junction temperature  
of the device from rising to unacceptable levels.  
The integrated signal and power isolation device simplifies system design and reduces board area. The use of  
low-inductance micro-transformers in the device necessitates the use of high frequency switching, resulting in  
higher radiated emissions compared to discrete solutions. The device uses on-chip circuit techniques to reduce  
emissions compared to competing solutions. For further reduction in radiated emissions at system level, refer to  
the Low-Emission Designs With ISOW7841 Integrated Signal and Power Isolator application report.  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength  
and stiffness, and the self-extinguishing flammability-characteristics.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
11.2 Layout Example  
Solid supply islands reduce  
inductance because large peak  
currents flow into the VCC pin  
2 mm  
maximum  
from VCC  
2 mm  
maximum  
from VISO  
VCC  
VISO  
1
16  
0.1 F  
GND2  
10 F  
0.1 F  
10 F  
GND1  
2
3
15  
14  
4
13  
5
6
12  
11  
SEL  
7
8
10  
9
GND2  
GND1  
Solid ground islands help  
dissipate heat through PCB  
11-1. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
30  
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
For development support, refer to:  
8-ch Isolated High Voltage Analog Input Module with ISOW7841 Reference Design  
Isolated CAN Module With Integrated Power Reference Design  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, Isolation Glossary  
Texas Instruments, ISOW784x Quad-Channel Digital Isolator With Integrated DC-DC Converter Evaluation  
Module user's guide  
Texas Instruments, Low-Emission Designs With ISOW7841 Integrated Signal and Power Isolator application  
report  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E Online  
Community  
TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among  
engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas  
and help solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
 
 
 
 
 
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
32  
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
 
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
PACKAGE OUTLINE  
DWE0016A  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4223098/A 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DWE0016A  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
16X (1.65)  
16X (0.6)  
SEE  
DETAILS  
SEE  
DETAILS  
1
1
16  
16  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
9
9
8
8
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223098/A 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFG1  
34  
Submit Document Feedback  
Product Folder Links: ISOW7841A-Q1  
ISOW7841A-Q1  
ZHCSKT4B FEBRUARY 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DWE0016A  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4223098/A 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ISOW7841A-Q1  
English Data Sheet: SLLSFG1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISOW7841AQDWEQ1  
ISOW7841AQDWERQ1  
ISOW7841FAQDWEQ1  
ISOW7841FAQDWERQ1  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
DWE  
16  
16  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
W7841A  
Q1  
ACTIVE  
ACTIVE  
ACTIVE  
DWE  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
W7841A  
Q1  
DWE  
W7841FA  
Q1  
DWE  
W7841FA  
Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Feb-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DWE0016A  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4223098/A 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWE0016A  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
8
14X (1.27)  
9
9
8
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223098/A 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWE0016A  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
8
14X (1.27)  
8
9
9
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4223098/A 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ISOW7841DWE

具有集成电源的四通道、3/1、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7841DWER

具有集成电源的四通道、3/1、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7841FAQDWEQ1

具有集成电源的汽车类、四通道、3/1、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7841FAQDWERQ1

具有集成电源的汽车类、四通道、3/1、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7841FDWE

具有集成电源的四通道、3/1、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7841FDWER

具有集成电源的四通道、3/1、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7842

具有集成电源的四通道、2/2、增强型数字隔离器
TI

ISOW7842DWE

具有集成电源的四通道、2/2、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7842DWER

具有集成电源的四通道、2/2、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7842FDWE

具有集成电源的四通道、2/2、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7842FDWER

具有集成电源的四通道、2/2、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7843

具有集成电源的四通道、1/3、增强型数字隔离器
TI