IWR1443FQAGABLR [TI]

集成 MCU 和硬件加速器的 76GHz 至 81GHz 单芯片毫米波传感器 | ABL | 161 | -40 to 105;
IWR1443FQAGABLR
型号: IWR1443FQAGABLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

集成 MCU 和硬件加速器的 76GHz 至 81GHz 单芯片毫米波传感器 | ABL | 161 | -40 to 105

传感器
文件: 总74页 (文件大小:1716K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
IWR1443 单芯片 76 81GHz 毫米波传感器  
1 器件概述  
1.1 特性  
1
– I2C(支持主模式和从模式)  
• FMCW 收发器  
两个 SPI 端口  
– CAN 端口  
多达六个通用 ADC 端口  
集成式 PLL、发送器、接收器、基带和 A2D  
– 76 81GHz 覆盖范围,具有 4GHz 的连续带宽  
四个接收通道  
支持分布式 应用  
主机接口  
三个发送通道(可以同时使用两个通道)  
基于分数 N PLL 的超精确线性调频脉冲引擎  
– TX 功率:12dBm  
通过 SPI 与外部处理器进行控制连接  
通过 MIPI D-PHY CSI2 V1.1 与外部处理器进  
行数据连接  
– RX 噪声系数:  
– 14dB76 77GHz)  
用于故障报告的中断  
• IWR1443 高级 特性  
嵌入式自监控,无需使用主机处理器  
复基带架构  
嵌入式干扰检测功能  
电源管理  
内置的 LDO 网络,可增强 PSRR  
– I/O 支持双电压 3.3V/1.8V  
时钟源  
– 15dB77 81GHz)  
– 1MHz 时的相位噪声:  
– –95dBc/Hz76 77GHz)  
– –93dBc/Hz77 81GHz)  
内置的校准和自检  
– ARM® Cortex®基于 ARM® Cortex®-R4F 的无线  
电控制系统  
内置的固件 (ROM)  
针对频率和温度进行自校准的系统  
适用于嵌入式用户应用的片上可编程内核  
支持频率为 40MHz 的外部振荡器  
支持外部驱动、频率为 40MHz 的时钟(方波/正  
弦波)  
计时频率为 200MHz 的集成 Cortex®-R4F 微控  
制器  
轻松的硬件设计  
片上引导加载程序支持自主模式(从 QSPI 闪存  
加载用户应用)  
– 0.65mm 间距、161 引脚 10.4mm × 10.4mm 覆  
BGA 封装,可实现轻松组装和低成本 PCB 设  
集成外设  
具有 ECC 的内部存储器  
雷达硬件加速器(FFT、对数幅度计算等)  
集成计时器(看门狗以及多达四个 32 位计时  
器或两个 64 位计时器)  
小尺寸解决方案  
运行条件  
结温范围:–40°C 105°C  
1.2 应用  
用于测量距离、速度和角度的工业传感器  
接近和位置感应  
安全和监控  
液箱液位探测雷达  
位移感应  
工厂自动化  
现场发送器  
交通监控  
安全防护装置  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SWRS211  
 
 
 
 
 
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Stored  
Program  
40 Mhz  
Crystal  
QSPI  
Flash  
Rx1  
Control and Data  
SPI  
Communication  
Interface  
Rx2  
Rx3  
Control and Data  
Communication  
Interface  
UART  
CAN  
Rx4  
Radar  
Front  
End  
R4F ARM  
Control and Computation Processor  
Hardware Accelerator, and Peripherals  
Control and Data  
Communication  
Interface  
Tx1  
Tx2  
High Speed  
Data Interface  
LVDS or  
CSI-2  
LVDS  
Tx3  
CSI-2  
DC Power  
and Power  
Management  
1-1. 适用于工业应用的自主 传感器  
1.3 说明  
IWR1443 器件是一款能够在 76 81GHz 频带中运行且基于 FMCW 雷达技术的集成式单芯片毫米波传感  
器,具有高达 4GHz 的连续线性调频脉冲。该器件采用 TI 的低功耗 45nm RFCMOS 工艺进行构建,并且此  
解决方案在极小的封装中实现了前所未有的集成度。IWR1443 是适用于工业 应用 (如楼宇自动化、工厂自  
动化、无人机、物料处理、交通监控和监视)中的低功耗、自监控、超精确雷达系统的理想解决方案。  
IWR1443 器件是一种自包含单芯片解决方案,能够简化 76 81GHz 频带中的毫米波传感器实施。  
IWR1443 包含一个具有内置 PLL 和模数转换器的单片实施 3TX4RX 系统。该器件包含一个支持复数 FFT  
CFAR 检测且完全可配置的硬件加速器。此外,该器件还包含两个基于 ARM R4F 的处理器子系统:一个  
处理器子系统用于主控制和其他算法;另一个处理器子系统负责前端配置、控制和校准。简单编程模型更改  
可支持各种传感器实施,并且能够进行动态重新配置,从而实现多模式传感器。此外,该器件作为完整的平  
台解决方案进行提供,该解决方案包括硬件参考设计、软件驱动程序、样例配置、API 指南、培训以及用户  
文档。  
器件信息(1)  
封装  
器件编号  
IWR1443FQAGABLR(卷带)  
IWR1443FQAGABL(托盘)  
封装尺寸  
FCBGA (161)  
10.4mm × 10.4mm  
(1) 更多信息请参见 9机械封装和可订购产品信息。  
2
器件概述  
版权 © 2017–2018, Texas Instruments Incorporated  
 
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
1.4 功能框图  
Rx1  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Cortex R4F  
@ 200MHz  
Rx2  
Digital Front-  
end  
LNA  
(User programmable)  
Rx3  
(Decimation  
filter chain)  
LNA  
Prog  
RAM  
Data  
RAM (*) ROM  
Boot  
Rx4  
LNA  
QSPI Flash  
interface  
QSPI  
SPI  
Hardware  
Accelerator  
(**)  
ADC Buffer  
(**)  
External MCU  
interface  
Tx1  
PA  
BPM  
BPM  
BPM  
RF/Analog sub-system  
DMA  
SPI / I2C  
DCAN  
PMIC control  
Tx2  
Optional communicatio  
interface  
PA  
Master sub-system  
(Customer programmed)  
Ramp  
Generator  
Control UART,  
And Debug UART  
Debug  
UARTs  
Synth  
Tx3  
x4  
PA  
(20 GHz)  
Radar Data  
Memory (*)  
(L3)  
Test/  
Debug  
JTAG for debug/  
development  
Temp  
6
RF Control  
BIST  
Mailbox  
GPADC  
High-speed Rx or  
process  
Data for recording or  
External DSP  
LVDS/  
CSI-2  
Osc.  
(*) Total RAM available in Master subsystem is divided into ARM-Data RAM, Tightly Coupled Memory, Radar Data Memory, Patch Memory  
(**) Shared Memory for ADC Buffer and Hardware Accelerator  
版权 © 2017–2018, Texas Instruments Incorporated  
器件概述  
3
 
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 1  
1.3 说明 ................................................... 2  
1.4 功能框图 .............................................. 3  
修订历史记录............................................... 5  
Device Comparison ..................................... 7  
3.1 Related Products ..................................... 8  
Terminal Configuration and Functions.............. 9  
4.1 Pin Diagram .......................................... 9  
4.2 Signal Descriptions.................................. 13  
4.3 Pin Multiplexing ..................................... 16  
Specifications ........................................... 21  
5.1 Absolute Maximum Ratings......................... 21  
5.2 ESD Ratings ........................................ 21  
5.3 Power-On Hours (POH)............................. 21  
5.4 Recommended Operating Conditions............... 22  
5.5 Power Supply Specifications........................ 22  
5.6 Power Consumption Summary...................... 23  
5.7 RF Specification..................................... 24  
6.1 Overview ............................................ 51  
6.2 Functional Block Diagram........................... 51  
6.3 External Interfaces .................................. 52  
6.4 Subsystems ......................................... 52  
6.5 Accelerators and Coprocessors..................... 57  
6.6 Other Subsystems................................... 58  
6.7 Identification ......................................... 62  
6.8 Boot Modes.......................................... 62  
Applications, Implementation, and Layout........ 65  
7.1 Application Information.............................. 65  
7.2 Reference Schematic ............................... 65  
7.3 Layout ............................................... 66  
Device and Documentation Support ............... 67  
8.1 Device Nomenclature ............................... 67  
8.2 Tools and Software ................................. 68  
8.3 Documentation Support ............................. 68  
8.4 Community Resources.............................. 69  
8.5 商标.................................................. 69  
8.6 静电放电警告 ........................................ 69  
8.7 Export Control Notice ............................... 69  
8.8 Glossary ............................................. 69  
2
3
4
7
8
5
5.8  
Thermal Resistance Characteristics for FCBGA  
Package [ABL0161] ................................. 25  
9
Mechanical, Packaging, and Orderable  
5.9 Timing and Switching Characteristics............... 25  
Information .............................................. 70  
9.1 Packaging Information .............................. 70  
6
Detailed Description ................................... 51  
4
内容  
版权 © 2017–2018, Texas Instruments Incorporated  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from February 20, 2018 to October 31, 2018 (from B Revision (February 2018) to C Revision)  
Page  
RX 噪声系数从“15dB76 77GHz更新成了“14dB76 77GHz................................................ 1  
RX 噪声系数从“16dB77 81GHz更新成了“15dB77 81GHz................................................ 1  
1MHz 时的相位噪声从“–94dBc/Hz76 77GHz更新成了“–95dBc/Hz76 77GHz......................... 1  
1MHz 时的相位噪声从“–91dBc/Hz77 81GHz更新成了“–93dBc/Hz77 81GHz......................... 1  
“...的高速数据接口项目中删除了(即中间数据)............................................................................ 1  
从外部驱动振荡器和外部驱动时钟中删除了 50MHz.............................................................................. 1  
更新了器件信息...................................................................................................................... 2  
功能方框图 中删除了“VMON”.................................................................................................. 3  
Added table note to "Number of transmitters" in Device Features Comparison.............................................. 7  
Updated IWR1443 and IWR1642 Product status from AI to PD ............................................................... 7  
Updated OSC_CLKOUT ........................................................................................................... 13  
Updated P7 from "Open Drain" to "Pull Up'...................................................................................... 13  
Updated B10 DESCRIPTION...................................................................................................... 14  
Updated A10, A13, A2, and B2 DESCRIPTION ................................................................................ 14  
Removed footnote from Flash programming and RS232 UART.............................................................. 15  
Updated ESD Ratings .............................................................................................................. 21  
Updated/Changed Power-On Hours (POH) ..................................................................................... 21  
Updated VIOIN in Recommended Operating Conditions ...................................................................... 22  
Updated VIL 1.8V MAX from "3*VIOIN" to "0.3*VIOIN"......................................................................... 22  
Updated VOH in Recommended Operating Conditions ......................................................................... 22  
Updated VOH in Recommended Operating Conditions ......................................................................... 22  
Updated Recommended Operating Conditions ................................................................................. 22  
Added "VNWA" to 1.2 V Supply in Power Supply Rails Characteristics ..................................................... 22  
Completely updated Ripple Specifications table ................................................................................ 23  
Updated Receiver Noise figure values in RF Specification.................................................................... 24  
Updated Receiver 1-dB compression point value from "–5" to "–8".......................................................... 24  
Updated "IQ gain mismatch" to "Image Rejection Ratio (IMRR)"............................................................. 24  
Removed IQ phase mismatch from RF Specification .......................................................................... 24  
Updated RF Specification table ................................................................................................... 24  
Updated footnote in RF Specification............................................................................................. 25  
Removed 1v4 signal from Device Wakeup ..................................................................................... 26  
Updated Device Wake-up Sequence ............................................................................................. 26  
Updated Synchronized Frame Triggering text .................................................................................. 27  
Added Synchronized Frame Triggering subsection............................................................................. 27  
Removed TLag from Frame Trigger Timing table ............................................................................... 27  
Updated Crystal Implementation note ............................................................................................ 28  
Updated/Changed fP Parallel resonance crystal frequency from " 40, 50" to "40".......................................... 28  
Completely updated External Clock Mode Specifications ..................................................................... 29  
Updated SPI Slave Mode Timing Requirements................................................................................ 35  
Added LVDS Interface Configuration ............................................................................................. 38  
Updated LVDS Interface Lane Config image.................................................................................... 38  
Updated Timing Parameters....................................................................................................... 38  
Updated LVDS Electrical Characteristics ....................................................................................... 39  
Updated Timing Requirements for QSPI Input (Read) Timings............................................................... 44  
Added Q12, Q13, Q14, and Q15 to QSPI Switching Characteristics ........................................................ 45  
Updated Data bit rate from 900 Mbps to 600 Mbps ............................................................................ 48  
Removed TCLK-SETTLE and THS-SETTLE............................................................................................... 48  
Updated Clock Subsystem diagram .............................................................................................. 53  
Updated/Changed Transmit Subsystem (Per Channel)........................................................................ 54  
Removed Master System Memory Map.......................................................................................... 56  
Updated Host Interface............................................................................................................. 57  
Updated text in "A2D Data Format Over CSI2 Interface"...................................................................... 58  
Updated text in ADC Channels (Service) for User Application................................................................ 60  
Completely updated GP-ADC Parameter table ................................................................................. 60  
Copyright © 2017–2018, Texas Instruments Incorporated  
修订历史记录  
5
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Updated text in Functional Mode.................................................................................................. 64  
Updated Application Information .................................................................................................. 65  
Updated Device Nomenclature.................................................................................................... 68  
6
修订历史记录  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
3 Device Comparison  
Table 3-1. Device Features Comparison  
FUNCTION  
IWR1443  
4
IWR1642  
Number of receivers  
Number of transmitters  
On-chip memory  
4
2
3
576KB  
15  
1.5MB  
5
Max I/F (Intermediate Frequency) (MHz)  
Max real sampling rate (Msps)  
Max complex sampling rate (Msps)  
Processor  
37.5  
18.75  
12.5  
6.25  
MCU (R4F)  
Yes  
Yes  
Yes  
DSP (C674x)  
Peripherals  
Serial Peripheral Interface (SPI) ports  
Quad Serial Peripheral Interface (QSPI)  
Inter-Integrated Circuit (I2C) interface  
Controller Area Network (DCAN) interface  
Trace  
1
2
Yes  
1
Yes  
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PWM  
Hardware In Loop (HIL/DMM)  
GPADC  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
LVDS/Debug  
CSI2  
Hardware accelerator  
1-V bypass mode  
Yes  
Yes  
JTAG  
Product Preview (PP),  
Advance Information (AI),  
or Production Data (PD)  
Product status  
PD(1)  
PD(1)  
(1) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Device Comparison  
7
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
3.1 Related Products  
For information about other devices in this family of products or related products see the links that follow.  
mmWave Sensors TI’s mmWave sensors rapidly and accurately sense range, angle and velocity with  
less power using the smallest footprint mmWave sensor portfolio for industrial applications.  
mmWave IWR The Texas Instruments IWR1xxx family of mmWave Sensors are highly integrated and  
built on RFCMOS technology operating in 76- to 81-GHz frequency band. The devices have  
a closed-loop PLL for precise and linear chirp synthesis, includes a built-in radio processor  
(BIST) for RF calibration and safety monitoring. The devices have a very small-form factor,  
low power consumption, and are highly accurate. Industrial applications from long range to  
ultra short range can be realized using these devices.  
Companion Products for IWR1443 Review products that are frequently purchased or used in  
conjunction with this product.  
IWR1443 Reference Designs The IWR1443 TI Designs Reference Design Library is a robust reference  
design library spanning analog, embedded processor and connectivity. Created by TI experts  
to help you jump-start your system design, all TI Designs include schematic or block  
diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at ti.com/tidesigns.  
Power Optimization for IWR1443 77GHz-Level Transmitter Reference Design  
The  
TIDEP-0091  
highlights strategies for power optimization of a IWR1443 76- to 81-GHz mmWave sensor in  
tank level-probing applications, displacement sensors, 4- to 20-mA sensors, and other low-  
power applications for detecting range with high accuracy in minimal power envelope.  
8
Device Comparison  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
4 Terminal Configuration and Functions  
4.1 Pin Diagram  
Figure 4-1 shows the pin locations for the 161-pin FCBGA package. Figure 4-2, Figure 4-3, Figure 4-4,  
and Figure 4-5 show the same pins, but split into four quadrants.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VOUT  
_14APLL  
VOUT  
_14SYNTH  
OSC  
_CLKOUT  
A
B
C
D
E
F
VSSA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VIN  
_18CLK  
VIN  
_18VCO  
RESERVED  
RESERVED  
VOUT_PA  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VSSA  
VSSA  
VBGAP  
VSSA  
VSSA  
VIN  
_13RF2  
ANAMUX/  
GPADC5  
VSENSE/  
GPADC6  
VSSA  
RESERVED  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RESERVED  
VSSA  
VIN  
_13RF2  
VIOIN  
_18DIFF  
VSSA  
RX4  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSA  
VDDIN  
Reserved  
TDI  
CLKP  
CLKM  
VIN_18BB  
VSS  
VSS  
VSS  
VIN  
_13RF1  
CSI2  
_TXM[0]  
CSI2  
_TXP[0]  
G
H
J
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VIN  
_13RF1  
CSI2  
_TXM[1]  
CSI2  
_TXP[1]  
VSS  
VIN  
_13RF1  
VSSA  
RX2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
TDO  
CSI2_CLKM  
CSI2_CLKP  
CSI2  
_TXM[2]  
CSI2  
_TXP[2]  
K
L
VIN_18BB  
VSS  
VIOIN_18  
CSI2  
_TXM[3]  
CSI2  
_TXP[3]  
VSSA  
RX1  
VSS  
VSS  
TMS  
HS_M  
_Debug1  
HS_P  
_Debug1  
M
N
P
R
TCK  
WARM  
_RESET  
HS_M  
_Debug2  
HS_P  
_Debug2  
VSSA  
GPIO[0]  
Reserved  
Reserved  
RS232_RX  
RS232_TX  
GPIO[1]  
NERROR_OUTMCU_CLK_OUT  
Sync_in  
QSPI[3]  
VDDIN  
Sync_out  
QSPI[0]  
GPIO[2]  
Analog Test 1/ Analog Test 2/ Analog Test 3/  
GPADC3  
MISO_1 SPI_HOST_INTR_NERROR_IN  
QSPI_CS  
MOSI_1  
QSPI[1]  
NRESET PMIC_CLK_OUT  
VNWA  
VDDIN  
GPADC1  
GPADC2  
Analog Test 4/  
GPADC4  
VSSA  
Reserved  
Reserved  
VDDIN  
SPI_CS_1  
SPI_CLK_1  
QSPI_CLK  
QSPI[2]  
VIOIN  
VIN_SRAM  
VSS  
Not to scale  
Figure 4-1. Pin Diagram  
Copyright © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
VSSA  
VOUT_PA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
RESERVED  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VIN  
_13RF2  
VSSA  
VSSA  
VSSA  
VSSA  
VIN  
_13RF2  
RESERVED  
VSSA  
VSSA  
RX4  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VIN_18BB  
VIN  
_13RF1  
G
VSSA  
VSSA  
VSS  
VSS  
VSS  
Not to scale  
1
2
4
3
Figure 4-2. Top Left Quadrant  
9
10  
11  
12  
13  
14  
15  
VOUT  
_14APLL  
VOUT  
_14SYNTH  
OSC  
_CLKOUT  
A
VSSA  
VSSA  
VIN  
_18CLK  
VIN  
_18VCO  
RESERVED  
B
C
D
E
F
VSSA  
VSSA  
VBGAP  
VSSA  
VSSA  
ANAMUX/  
GPADC5  
VSENSE/  
GPADC6  
VSSA  
RESERVED  
VSSA  
VIOIN  
_18DIFF  
VSS  
VSS  
VSS  
VSSA  
VDDIN  
CLKP  
CLKM  
VSS  
CSI2  
_TXM[0]  
CSI2  
_TXP[0]  
G
VSS  
Reserved  
Not to scale  
1
3
2
4
Figure 4-3. Top Right Quadrant  
10  
Terminal Configuration and Functions  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
1
2
3
4
5
6
7
8
VIN  
_13RF1  
H
RX3  
VSSA  
VSS  
VIN  
_13RF1  
J
VSSA  
VSSA  
RX2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
L
VIN_18BB  
VSSA  
VSSA  
RX1  
VSS  
VSS  
M
N
P
R
VSSA  
VSSA  
GPIO[0]  
Reserved  
Reserved  
RS232_RX  
RS232_TX  
GPIO[1]  
NERROR_OUT  
Analog Test 1/ Analog Test 2/ Analog Test 3/  
GPADC3  
MISO_1 SPI_HOST_INTR_NERROR_IN  
QSPI_CS  
GPADC1  
GPADC2  
Analog Test 4/  
GPADC4  
VSSA  
Reserved  
Reserved  
VDDIN  
SPI_CS_1  
MOSI_1  
Not to scale  
1
3
2
4
Figure 4-4. Bottom Left Quadrant  
Copyright © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
9
10  
11  
12  
13  
14  
15  
CSI2  
_TXM[1]  
CSI2  
_TXP[1]  
H
J
VSS  
VSS  
TDI  
VSS  
VSS  
VSS  
TDO  
VIOIN_18  
TMS  
CSI2_CLKM  
CSI2_CLKP  
CSI2  
_TXM[2]  
CSI2  
_TXP[2]  
K
L
VSS  
VSS  
CSI2  
_TXM[3]  
CSI2  
_TXP[3]  
HS_M  
_Debug1  
HS_P  
_Debug1  
M
N
P
R
TCK  
WARM  
_RESET  
HS_M  
_Debug2  
HS_P  
_Debug2  
MCU_CLK_OUT  
Sync_in  
QSPI[3]  
VDDIN  
Sync_out  
QSPI[0]  
GPIO[2]  
QSPI[1]  
NRESET PMIC_CLK_OUT  
VNWA  
VDDIN  
SPI_CLK_1  
QSPI_CLK  
QSPI[2]  
VIOIN  
VIN_SRAM  
VSS  
Not to scale  
1
3
2
4
Figure 4-5. Bottom Right Quadrant  
12  
Terminal Configuration and Functions  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
4.2 Signal Descriptions  
Table 4-1. Signal Descriptions  
PIN  
NUMBER  
PIN  
TYPE  
DEFAULT PULL  
STATUS(1)  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
TX1  
B4  
B6  
O
O
O
I
Single-ended transmitter1 o/p  
Single-ended transmitter2 o/p  
Single-ended transmitter3 o/p  
Single-ended receiver1 i/p  
Single-ended receiver2 i/p  
Single-ended receiver3 i/p  
Single-ended receiver4 i/p  
Transmitters  
TX2  
TX3  
B8  
RX1  
M2  
RX2  
K2  
I
Receivers  
RX3  
H2  
I
RX4  
F2  
I
CSI2_TXP[0]  
CSI2_TXM[0]  
CSI2_CLKP  
CSI2_CLKM  
CSI2_TXP[1]  
CSI2_TXM[1]  
CSI2_TXP[2]  
CSI2_TXM[2]  
CSI2_TXP[3]  
CSI2_TXM[3]  
HS_DEBUG1_P  
HS_DEBUG1_M  
HS_DEBUG2_P  
HS_DEBUG2_M  
G15  
G14  
J15  
J14  
H15  
H14  
K15  
K14  
L15  
L14  
M15  
M14  
N15  
N14  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Differential data Out – Lane 0  
Differential clock Out  
Differential data Out – Lane 1  
Differential data Out – Lane 2  
Differential data Out – Lane 3  
Differential debug port 1  
CSI2 TX/LVDS  
TX  
Differential debug port 2  
B1, B15,  
D1, D15  
RESERVED  
Reference clock output from clocking subsystem  
after cleanup PLL.  
Reference clock OSC_CLKOUT  
A14  
P11  
O
O
Low-frequency frame synchronization signal output.  
Can be used by slave chip in multichip cascading  
SYNC_OUT  
Pull Down  
System  
synchronization  
SYNC_IN  
N10  
R7  
R9  
R8  
P5  
I
I
Pull Down  
Pull Up  
Low-frequency frame synchronization signal input.  
SPI_CS_1  
SPI_CLK_1  
MOSI_1  
SPI chip select  
SPI clock  
SPI control  
interface from  
external MCU  
(default slave  
mode)  
I
Pull Down  
Pull Up  
I
SPI data input  
SPI data output  
SPI interrupt to host  
MISO_1  
O
O
Pull Up  
SPI_HOST_INTR_1  
P6  
Pull Down  
R3, R4, R5,  
P4  
RESERVED  
NRESET  
P12  
I
Open Drain  
Power on reset for chip. Active low  
Open-drain fail-safe warm reset signal. Can be  
driven from PMIC for diagnostic or can be used as  
status signal that the device is going through reset.  
Reset  
Safety  
WARM_RESET  
N12  
IO  
Open Drain  
Open-drain fail-safe output signal. Connected to  
PMIC/Processor/MCU to indicate that some severe  
criticality fault has happened. Recovery would be  
through reset.  
NERROR_OUT  
N8  
P7  
O
I
Open Drain  
Fail-safe input to the device. Error output from any  
other device can be concentrated in the error  
signaling monitor module inside the device and  
appropriate action can be taken by firmware  
NERROR_IN  
Pull Up  
(1) Status of PULL structures associated with the IO after device POWER UP.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Terminal Configuration and Functions  
13  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Table 4-1. Signal Descriptions (continued)  
PIN  
NUMBER  
PIN  
TYPE  
DEFAULT PULL  
STATUS(1)  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
TMS  
TCK  
TDI  
L13  
M13  
H13  
J13  
I
I
Pull Up  
Pull Down  
Pull Up  
JTAG  
JTAG port for standard boundary scan  
I
TDO  
CLKP  
O
I
E14  
In XTAL mode: Differential port for reference crystal  
In External clock mode: Single ended input  
reference clock port (Output CLKM is grounded in  
this case)  
Reference  
oscillator  
CLKM  
F14  
B10  
O
Band-gap  
voltage  
VBGAP  
VDDIN  
O
Internal voltage reference 0.9V  
1.2-V digital power supply  
F13,N11,P1  
5,R6  
POW  
VIN_SRAM  
VNWA  
R14  
P14  
POW  
POW  
1.2-V power rail for internal SRAM  
1.2-V power rail for SRAM array back bias  
I/O supply (3.3-V or 1.8-V): All CMOS I/Os would  
operate on this supply.  
VIOIN  
R13  
POW  
VIOIN_18  
K13  
B11  
POW  
POW  
POW  
POW  
POW  
1.8-V supply for CMOS IO  
1.8-V supply for clock module  
1.8-V supply for CSI2 port  
No connect  
VIN_18CLK  
VIOIN_18DIFF  
Reserved  
D13  
G13  
VIN_13RF1  
G5,J5,H5  
1.3-V Analog and RF supply,VIN_13RF1 and  
VIN_13RF2 could be shorted on the board  
1.0-V Analog and RF supply input if RFLDO is  
bypassed  
VIN_13RF2  
C2,D2  
POW  
VIN_18BB  
K5,F5  
B12  
POW  
POW  
1.8-V Analog baseband power supply  
1.8-V RF VCO supply  
VIN_18VCO  
E5,E6,E8,E  
10,E11,F9,F  
11,G6,G7,G  
8,G10,H7,H  
Power supply  
VSS  
9,H11,J6,J7 GND  
,J8,J10,K7,  
Digital ground  
K8,K9,K10,  
K11,L5,L6,L  
8,L10,R15  
A1,A3,A5,A  
7,A9,A15,B  
3,B5,B7,B9,  
B13,B14,C1  
,C3,C4,C5,  
C6,C7,C8,C  
9,C15,E1,E  
2,E3,E13,E  
VSSA  
GND  
Analog ground  
15,F3,G1,G  
2,G3,H3,J1,  
J2,J3,K3,L1  
,L2,L3,  
M3,N1,N2,N  
3,R1  
VOUT_14APLL  
VOUT_14SYNTH  
VOUT_PA  
A10  
A13  
O
O
O
O
1.4V internal regulator  
1.4V internal regulator  
1.0V internal regulator  
Dithered clock input to PMIC  
Internal LDO  
output/inputs  
A2,B2  
P13  
PMIC_CLK_OUT  
External clock  
out  
Programmable clock given out to external MCU or  
the processor  
MCU_CLK_OUT  
N9  
O
14  
Terminal Configuration and Functions  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
FUNCTION  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
Table 4-1. Signal Descriptions (continued)  
PIN  
NUMBER  
PIN  
TYPE  
DEFAULT PULL  
STATUS(1)  
SIGNAL NAME  
DESCRIPTION  
GPIO[0]  
GPIO[1]  
GPIO[2]  
N4  
N7  
IO  
IO  
IO  
Pull Down  
Pull Down  
Pull Down  
General-purpose IO  
General-purpose IO  
General-purpose IO  
General-  
purpose I/Os  
N13  
Chip-select output from the device. Device is a  
master connected to serial flash slave.  
QSPI_CS  
P8  
O
O
Pull Up  
Clock output from the device. Device is a master  
connected to serial flash slave.  
QSPI_CLK  
R10  
Pull Down  
QSPI for Serial  
Flash  
QSPI[0]  
QSPI[1]  
QSPI[2]  
QSPI[3]  
RS232_TX  
R11  
P9  
IO  
IO  
IO  
IO  
O
Pull Down  
Pull Down  
Pull Up  
Data IN/OUT  
Data IN/OUT  
Data IN/OUT  
Data IN/OUT  
R12  
P10  
N6  
Pull Up  
Flash  
Pull Down  
programming  
and RS232  
UART  
UART pins for programming external flash in  
preproduction/debug hardware.  
RS232_RX  
N5  
I
Pull Up  
Analog Test1 /  
GPADC1  
P1  
P2  
P3  
R2  
IO  
IO  
IO  
IO  
GP ADC channel 1  
GP ADC channel 2  
GP ADC channel 3  
GP ADC channel 4  
Test and Debug  
output for  
preproduction  
phase. Can be  
pinned out on  
production  
Analog Test2 /  
GPADC2  
Analog Test3 /  
GPADC3  
Analog Test4 /  
GPADC4  
hardware for  
field debug  
ANAMUX / GPADC5  
VSENSE / GPADC6  
C13  
C14  
IO  
IO  
GP ADC channel 5  
GP ADC channel 6  
Copyright © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
4.3 Pin Multiplexing  
Table 4-2. Pin Multiplexing  
PAD STATE  
nReset = 0 [ASSERTED]  
FUNCTION  
SIGNAL DESCRIPTION  
General Purpose IO  
DIGITAL PIN  
MUX CONFIG  
VALUE [Bits3:0]  
REGISTER  
PIN NAME  
PIN  
ADDRESS(1)  
INTERNAL WEAK  
PULL STATE  
SIGNAL NAME  
GPIO_12  
SIGNAL TYPE  
STATE  
0
1
0
1
2
0
1
IO  
O
Hi-Z  
Hi-Z  
Weak Pull Down  
EA00h  
GPIO_12  
GPIO_0  
P6  
N4  
SPI_HOST1_INTR  
GPIO_13  
General Purpose IO [IWR14xx]  
General Purpose IO  
IO  
IO  
O
Weak Pull Down  
Weak Pull Down  
EA04h  
EA08h  
GPIO_0  
General Purpose IO  
PMIC_CLKOUT  
GPIO_16  
Dithered Clock Output for PMIC  
General Purpose IO  
IO  
IO  
Hi-Z  
GPIO_1  
General Purpose IO  
GPIO_1  
N7  
Low Frequency Synchronization  
Signal output  
2
SYNC_OUT  
O
0
1
2
0
1
2
0
1
GPIO_19  
MOSI_1  
General Purpose IO  
SPI Channel#1 Data Input  
CAN Interface  
IO  
IO  
I
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Weak Pull Up  
Weak Pull Up  
Weak Pull Up  
Weak Pull Up  
EA0Ch  
EA10h  
EA14h  
EA18h  
EA1Ch  
EA20h  
MOSI_1  
MISO_1  
R8  
P5  
R9  
R7  
R3  
P4  
CAN_RX  
GPIO_20  
MISO_1  
General Purpose IO  
SPI Channel#1 Data Output  
CAN Interface  
IO  
IO  
O
CAN_TX  
GPIO_3  
General Purpose IO  
SPI Channel#1 Clock  
IO  
IO  
O
SPI_CLK_1  
SPI_CS_1  
MOSI_2  
SPI_CLK_1  
RCOSC_CLK  
GPIO_30  
SPI_CS_1  
RCOSC_CLK  
GPIO_21  
MOSI_2  
0
1
General Purpose IO  
IO  
IO  
O
SPI Channel#1 Chip Select  
0
1
2
0
1
2
General Purpose IO  
SPI Channel#2 Data Input  
I2C Data  
IO  
IO  
IO  
IO  
IO  
IO  
I2C_SDA  
GPIO_22  
MISO_2  
General Purpose IO  
SPI Channel#2 Data Output  
I2C Clock  
MISO_2  
I2C_SCL  
(1) Register addresses are of the form FFFF XXXXh, where XXXX is listed here.  
16 Terminal Configuration and Functions  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
Table 4-2. Pin Multiplexing (continued)  
PAD STATE  
nReset = 0 [ASSERTED]  
FUNCTION  
DIGITAL PIN  
MUX CONFIG  
VALUE [Bits3:0]  
REGISTER  
PIN NAME  
PIN  
ADDRESS(1)  
INTERNAL WEAK  
PULL STATE  
SIGNAL NAME  
GPIO_5  
SIGNAL DESCRIPTION  
General Purpose IO  
SIGNAL TYPE  
STATE  
Hi-Z  
0
1
IO  
IO  
IO  
O
SPI_CLK_2  
MSS_UARTA_RX  
MSS_UARTB_TX  
BSS_UART_TX  
GPIO_4  
SPI Channel#2 Clock  
EA24h  
EA28h  
SPI_CLK_2  
R5  
6
7
0
1
Debug: Firmware Trace  
Debug: Firmware Trace  
General Purpose IO  
O
IO  
IO  
IO  
O
Hi-Z  
SPI_CS_2  
MSS_UARTA_TX  
MSS_UARTB_TX  
BSS_UART_TX  
GPIO_8  
SPI Channel#2 Chip Select  
SPI_CS_2  
R4  
6
7
0
1
2
0
1
2
0
1
0
1
0
Debug: Firmware Trace  
Debug: Firmware Trace  
General Purpose IO  
QSPI Data IN/OUT  
O
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
Hi-Z  
Hi-Z  
Weak Pull Down  
Weak Pull Down  
EA2Ch  
EA30h  
QSPI[0]  
QSPI[1]  
R11  
P9  
QSPI[0]  
MISO_2  
SPI Channel#1 Data Output  
General Purpose IO  
QSPI Data IN/OUT  
GPIO_9  
QSPI[1]  
MOSI_2  
SPI Channel#2 Data Input  
General Purpose IO  
QSPI Data IN/OUT  
GPIO_10  
Hi-Z  
Hi-Z  
Hi-Z  
Weak Pull Down  
Weak Pull Down  
Weak Pull Down  
EA34h  
EA38h  
QSPI[2]  
QSPI[3]  
R12  
P10  
QSPI[2]  
GPIO_11  
General Purpose IO  
QSPI Data IN/OUT  
QSPI[3]  
GPIO_7  
General Purpose IO  
IO  
QSPI Clock output from the device.  
Device operates as a master with  
the serial flash being a slave  
EA3Ch  
EA40h  
QSPI_CLK  
QSPI_CS  
R10  
P8  
1
QSPI_CLK  
O
2
0
SPI_CLK_2  
GPIO_6  
SPI Channel#2 Clock  
General Purpose IO  
IO  
IO  
Hi-Z  
Weak Pull Up  
QSPI Chip Select output from the  
device.  
Device operates as a master with  
the serial flash being a slave  
1
2
QSPI_CS  
SPI_CS_2  
O
SPI Channel#2 Chip Select  
IO  
Copyright © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Table 4-2. Pin Multiplexing (continued)  
PAD STATE  
nReset = 0 [ASSERTED]  
FUNCTION  
DIGITAL PIN  
MUX CONFIG  
VALUE [Bits3:0]  
REGISTER  
PIN NAME  
PIN  
ADDRESS(1)  
INTERNAL WEAK  
PULL STATE  
SIGNAL NAME  
SIGNAL DESCRIPTION  
SIGNAL TYPE  
STATE  
Failsafe input to the device. Nerror  
output from any other device can be  
concentrated in the error signaling  
monitor module inside the device  
and appropriate action can be taken  
by Firmware  
NERROR_IN  
P7  
NERROR_IN  
I
Hi-Z  
Open drain fail safe warm reset  
signal. Can be driven from PMIC for  
diagnostic or can be used as status  
signal that the device is going  
through reset.  
WARM_RESET  
NERROR_OUT  
N12  
N8  
WARM_RESET  
NERROR_OUT  
IO  
O
Hi-Z Input  
Open Drain  
Open drain fail safe output signal.  
Connected to PMIC/Processor/MCU  
to indicate that some severe  
criticality fault has happened.  
Recovery would be through reset.  
Hi-Z  
Hi-Z  
Open Drain  
0
1
2
6
0
1
2
0
1
GPIO_17  
General Purpose IO  
JTAG Clock  
IO  
I
Weak Pull Down  
TCK  
EA50h  
TCK  
M13  
MSS_UARTB_TX  
BSS_UART_RX  
GPIO_18  
Debug: Firmware Trace  
Debug: Firmware Trace  
General Purpose IO  
JTAG Test Mode Select  
Debug: Firmware Trace  
General Purpose IO  
JTAG Test Data In  
O
I
IO  
IO  
O
IO  
I
Hi-Z  
Hi-Z  
Hi-Z  
Weak Pull Up  
Weak Pull Up  
EA54h  
EA58h  
TMS  
TDI  
L13  
H13  
TMS  
BSS_UART_TX  
GPIO_23  
TDI  
MSS_UARTA_RX  
GPIO_24  
IO  
IO  
O
IO  
O
O
0
1
General Purpose IO  
JTAG Test Data Out  
TDO  
MSS_UARTA_TX  
MSS_UARTB_TX  
BSS_UART_TX  
EA5Ch  
TDO  
J13  
6
7
Debug: Firmware Trace  
Debug: Firmware Trace  
Sense On Power [Reset] Line  
Impacts boot mode  
SOP0  
I
18  
Terminal Configuration and Functions  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
Table 4-2. Pin Multiplexing (continued)  
PAD STATE  
nReset = 0 [ASSERTED]  
FUNCTION  
DIGITAL PIN  
MUX CONFIG  
VALUE [Bits3:0]  
REGISTER  
PIN NAME  
PIN  
ADDRESS(1)  
INTERNAL WEAK  
PULL STATE  
SIGNAL NAME  
GPIO_25  
SIGNAL DESCRIPTION  
General Purpose IO  
SIGNAL TYPE  
STATE  
Hi-Z  
0
1
IO  
O
Weak Pull Down  
Programmable clock given out to  
external MCU or the processor  
EA60h  
EA64h  
MCU_CLKOUT  
N9  
MCU_CLKOUT  
10  
0
BSS_UART_RX  
GPIO_26  
Debug: Firmware Trace  
General Purpose IO  
I
IO  
IO  
O
Hi-Z  
Weak Pull Down  
1
GPIO_2  
General Purpose IO  
7
MSS_UARTB_TX  
BSS_UART_TX  
Debug: Firmware Trace  
Debug: Firmware Trace  
GPIO_2  
N13  
8
O
Low frequency Synchronization  
signal output  
9
SYNC_OUT  
O
10  
0
PMIC_CLKOUT  
GPIO_27  
Dithered clock input to PMIC  
General Purpose IO  
O
IO  
O
Hi-Z  
Hi-Z  
Hi-Z  
Weak Pull Down  
Weak Pull Down  
Weak Pull Down  
1
PMIC_CLKOUT  
Dithered Clock Output for PMIC  
EA68h  
EA6Ch  
PMIC_CLKOUT  
SYNC_IN  
P13  
N10  
Sense On Power [Reset] Line  
Impacts boot mode  
SOP2  
I
IO  
I
0
1
GPIO_28  
SYNC_IN  
General Purpose IO  
Low frequency Synchronization  
signal input  
6
0
MSS_UARTB_RX  
GPIO_29  
Debug: Firmware Trace  
General Purpose IO  
I
IO  
Low frequency Synchronization  
signal output  
1
SYNC_OUT  
RCOSC_CLK  
SOP1  
O
O
I
EA70h  
EA74h  
SYNC_OUT  
RS232_RX  
P11  
Sense On Power [Reset] Line  
Impacts boot mode  
0
1
GPIO_15  
General Purpose IO  
IO  
IO  
Hi-Z  
Weak Pull Up  
RS232_RX  
Debug: Firmware load to RAM  
FLASH Programming  
Bootloader Controlled  
N5  
2
MSS_UARTA_RX  
I
6
7
BSS_UART_TX  
Debug: Firmware Trace  
Debug: Firmware Trace  
O
I
MSS_UARTB_RX  
Copyright © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Table 4-2. Pin Multiplexing (continued)  
PAD STATE  
nReset = 0 [ASSERTED]  
FUNCTION  
DIGITAL PIN  
MUX CONFIG  
VALUE [Bits3:0]  
REGISTER  
PIN NAME  
PIN  
ADDRESS(1)  
INTERNAL WEAK  
PULL STATE  
SIGNAL NAME  
GPIO_14  
SIGNAL DESCRIPTION  
General Purpose IO  
SIGNAL TYPE  
STATE  
0
1
IO  
IO  
RS232_TX  
Debug: Firmware load to RAM  
FLASH Programming  
Bootloader Controlled  
EA78h  
RS232_TX  
N6  
5
MSS_UARTA_TX  
O
6
7
MSS_UARTB_TX  
BSS_UART_TX  
Debug: Firmware Trace  
Debug: Firmware Trace  
O
O
20  
Terminal Configuration and Functions  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
5 Specifications  
5.1 Absolute Maximum Ratings(1)(2)  
over operating Tj temperature range (unless otherwise noted)  
PARAMETERS  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
1.4  
UNIT  
VDDIN  
1.2 V digital power supply  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
1.4  
1.4  
I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this  
supply.  
VIOIN  
–0.5  
3.8  
V
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for CSI2 port  
–0.5  
–0.5  
–0.5  
2
2
2
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
VIN_13RF1  
1.3 V Analog and RF supply, VIN_13RF1 and VIN_13RF2 could  
be shorted on the board.  
–0.5  
1.45  
V
1-V Internal LDO bypass mode. Device supports mode where  
external Power Management block can supply 1 V on  
VIN_13RF1 and VIN_13RF2 rails. In this configuration, the  
internal LDO of the device would be kept bypassed.  
–0.5  
1.4  
V
VIN_13RF2  
VIN_18BB  
1.8-V Analog baseband power supply  
1.8-V RF VCO supply  
–0.5  
–0.5  
2
2
V
V
VIN_18VCO supply  
Dual-voltage LVCMOS inputs, 3.3 V or 1.8 V (Steady State)  
–0.3V  
VIOIN + 0.3  
Input and output  
voltage range  
V
Dual-voltage LVCMOS inputs, operated at 3.3 V/1.8 V  
(Transient Overshoot/Undershoot) or external oscillator input  
VIOIN + 20% up to  
20% of signal period  
CLKP, CLKM  
Clamp current  
Input ports for reference crystal  
–0.5  
2
V
Input or Output Voltages 0.3 V above or below their respective  
power rails. Limit clamp current that flows through the internal  
diode protection cells of the I/O.  
–20  
20  
mA  
TJ  
Operating junction temperature range  
–40  
–55  
105  
150  
ºC  
ºC  
TSTG  
Storage temperature range after soldered onto PC board  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
5.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM)  
V(ESD)  
Electrostatic discharge  
All other pins  
Corner pins  
V
Charged-device model (CDM)  
±750  
5.3 Power-On Hours (POH)(1)  
JUNCTION  
TEMPERATURE (Tj)  
OPERATING  
CONDITION  
NOMINAL CVDD VOLTAGE (V)  
POWER-ON HOURS [POH] (HOURS)  
90% at 85ºC Tj  
10% at 105ºC Tj  
80,000  
50% duty cycle  
1.2  
100% at 85ºC Tj  
100,000  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms  
and conditions for TI semiconductor products.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
5.4 Recommended Operating Conditions  
Tjunction temperature range (unless otherwise noted)  
MIN  
1.14  
1.14  
1.14  
3.15  
1.71  
1.71  
1.71  
1.71  
NOM  
1.2  
1.2  
1.2  
3.3  
1.8  
1.8  
1.8  
1.8  
MAX  
UNIT  
VDDIN  
1.2 V digital power supply  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
I/O supply (3.3 V)  
1.32  
1.32  
1.32  
3.45  
1.89  
1.9  
V
V
V
VIN_SRAM  
VNWA  
VIOIN  
V
I/O supply (1.8 V)  
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for CSI2 port  
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
1.9  
1.9  
1.3 V Analog and RF supply. VIN_13RF1 and VIN_13RF2  
could be shorted on the board  
1.23  
1.3  
1.36  
V
VIN_13RF1  
(1-V Internal LDO  
bypass mode)  
Device supports mode where external Power Management  
block can supply 1 V on VIN_13RF1 and VIN_13RF2 rails. In  
this configuration, the internal LDO of the device would be  
kept bypassed.  
0.95  
1
1.05  
V
VIN_13RF2  
(1-V Internal LDO  
bypass mode)  
VIN18BB  
1.8-V Analog baseband power supply  
1.8V RF VCO supply  
1.71  
1.71  
1.17  
2.25  
1.8  
1.8  
1.9  
1.9  
V
V
VIN_18VCO  
Voltage Input High (1.8 V mode)  
Voltage Input High (3.3 V mode)  
Voltage Input Low (1.8 V mode)  
Voltage Input Low (3.3 V mode)  
High-level output threshold (IOH = 6 mA) (1.8V)  
VIH  
VIL  
V
V
0.3*VIOIN  
0.62  
85%*VIOIN  
VOH  
VOL  
mV  
mV  
VIOIN –  
450mV  
High-level output threshold (IOH = 6 mA) (3.3V)  
Low-level output threshold (IOL = 6 mA)  
VIL (1.8V Mode)  
450  
0.2  
VIH (1.8V Mode)  
0.96  
1.57  
NRESET  
SOP[2:0]  
V
VIL (3.3V Mode)  
0.3  
VIH (3.3V Mode)  
5.5 Power Supply Specifications  
Table 5-1 describes the four rails from an external power supply block of the IWR1443 device.  
Table 5-1. Power Supply Rails Characteristics  
SUPPLY  
DEVICE BLOCKS POWERED FROM THE SUPPLY  
RELEVANT IOS IN THE DEVICE  
Input: VIN_18VCO, VIN18CLK, VIN_18BB,  
VIOIN_18DIFF, VIOIN_18IO  
LDO Output: VOUT_14SYNTH, VOUT_14APLL  
Synthesizer and APLL VCOs, crystal oscillator, IF  
Amplifier stages, ADC, LVDS  
1.8 V  
1.3 V (or 1 V in internal  
LDO bypass mode)  
Power Amplifier, Low Noise Amplifier, Mixers and LO  
Distribution  
Input: VIN_13RF2, VIN_13RF1  
LDO Output: VOUT_PA  
3.3 V (or 1.8 V for 1.8 V  
I/O mode)  
Digital I/Os  
Input VIOIN  
1.2 V  
Core Digital and SRAMs  
Input: VDDIN, VIN_SRAM, VNWA  
22  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
The 1.3V (1.0V) and 1.8V power supply ripple specifications mentioned in Table 5-2 are defined to meet a  
target spur level of –105dBc (RF Pin = –15dBm) at the RX. The spur and ripple levels have a dB to dB  
relationship, for example, a 1dB increase in supply ripple leads to a ~1dB increase in spur level. Values  
quoted are rms levels for a sinusoidal input applied at the specified frequency.  
Table 5-2. Ripple Specifications  
RF RAIL  
1.0 V (INTERNAL LDO BYPASS)  
VCO/IF RAIL  
FREQUENCY (kHz)  
1.3 V (µVRMS  
)
1.8 V (µVRMS)  
(µVRMS  
)
137.5  
275  
744  
4
648  
76  
22  
4
83  
21  
11  
6
550  
3
1100  
2200  
4400  
6600  
2
11  
13  
22  
82  
93  
117  
13  
19  
29  
5.6 Power Consumption Summary  
Table 5-3 and Table 5-4 summarize the power consumption at the power terminals.  
Table 5-3. Maximum Current Ratings at Power Terminals  
PARAMETER  
SUPPLY NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Total current drawn by  
all nodes driven by  
1.2V rail  
VDDIN, VIN_SRAM, VNWA  
500  
Total current drawn by  
all nodes driven by  
1.3V rail  
VIN_13RF1, VIN_13RF2  
2000  
850  
50  
Current consumption  
mA  
VIOIN_18, VIN_18CLK,  
VIOIN_18DIFF, VIN_18BB,  
VIN_18VCO  
Total current drawn by  
all nodes driven by  
1.8V rail  
Total current drawn by  
all nodes driven by  
3.3V rail  
VIOIN  
Table 5-4. Average Power Consumption at Power Terminals  
PARAMETER  
CONDITION  
DESCRIPTION  
MIN  
TYP  
MAX UNIT  
1.0-V internal  
LDO bypass  
mode  
1TX, 4RX  
2TX, 4RX  
1TX, 4RX  
2TX, 4RX  
1.73  
Sampling: 16.66 MSps complex  
Transceiver, 40-ms frame time, 512  
chirps, 512 samples/chirp, 8.5-μs  
interchirp time (50% duty cycle)  
Data Port: MIPI-CSI-2  
1.88  
1.92  
2.1  
Average power  
consumption  
W
1.3-V internal  
LDO enabled  
mode  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
 
 
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
5.7 RF Specification  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
14  
15  
–8  
48  
24  
2
MAX UNIT  
76 to 77 GHz  
Noise figure  
dB  
77 to 81 GHz  
1-dB compression point(1)  
Maximum gain  
dBm  
dB  
Gain range  
dB  
Gain step size  
dB  
Image Rejection Ratio (IMRR)  
IF bandwidth(2)  
30  
dB  
15  
MHz  
A2D sampling rate (real)  
A2D sampling rate (complex)  
A2D resolution  
37.5 Msps  
18.75 Msps  
Receiver  
12  
–10  
±0.5  
±3  
Bits  
dB  
dB  
°
Return loss (S11)  
Gain mismatch variation (over temperature)  
Phase mismatch variation (over temperature)  
RX gain = 30dB  
IF = 1.5, 2 MHz at  
–12 dBFS  
In-band IIP2  
16  
24  
dBm  
dBm  
RX gain = 24dB  
IF = 10 kHz at -10dBm,  
1.9 MHz at -30 dBm  
Out-of-band IIP2  
Idle Channel Spurs  
Output power  
–90  
12  
dBFS  
dBm  
Transmitter  
Amplitude noise  
Frequency range  
Ramp rate  
–145  
dBc/Hz  
76  
81  
GHz  
100 MHz/µs  
Clock  
subsystem  
76 to 77 GHz  
77 to 81 GHz  
–95  
–93  
Phase noise at 1-MHz offset  
dBc/Hz  
(1) 1-dB Compression Point (Out Of Band) is measured by feed a Continuous wave Tone below the lowest HPF cut-off frequency (50 kHz).  
(2) The analog IF stages include high-pass filtering, with two independently configurable first-order high-pass corner frequencies. The set of  
available HPF corners is summarized as follows:  
Available HPF Corner Frequencies (kHz)  
HPF1  
HPF2  
175, 235, 350, 700  
350, 700, 1400, 2800  
The filtering performed by the digital baseband chain is targeted to provide:  
Less than ±0.5 dB pass-band ripple/droop, and  
Better than 60 dB anti-aliasing attenuation for any frequency that can alias back into the pass-band.  
24  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
Figure 5-1 shows variations of noise figure and in-band P1dB parameters with respect to receiver gain  
programmed.  
15.6  
15.3  
15  
-20  
-24  
-28  
-32  
-36  
-40  
-44  
-48  
NF (db)  
IB P1db (dBm)  
14.7  
14.4  
14.1  
13.8  
13.5  
24 26 28 30 32 34 36 38 40 42 44 46 48  
RX Gain (dB)  
Figure 5-1. Noise Figure, In-band P1dB vs Receiver Gain  
5.8 Thermal Resistance Characteristics for FCBGA Package [ABL0161](1)  
THERMAL METRICS(2)  
°C/W(3) (4)  
4.92  
RΘJC  
RΘJB  
RΘJA  
RΘJMA  
PsiJT  
PsiJB  
Junction-to-case  
Junction-to-board  
6.57  
Junction-to-free air  
Junction-to-moving air  
Junction-to-package top  
Junction-to-board  
22.3  
N/A(1)  
4.92  
6.4  
(1) N/A = not applicable  
(2) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(3) °C/W = degrees Celsius per watt.  
(4) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
A junction temperature of 105ºC is assumed.  
5.9 Timing and Switching Characteristics  
5.9.1 Power Supply Sequencing and Reset Timing  
The IWR1443 device expects all external voltage rails to be stable before reset is deasserted. Figure 5-2  
describes the device wake-up sequence.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
SOP  
Setup  
Time  
SOP  
Hold time to  
nRESET  
DC power  
Stable before  
nRESET  
MSS  
BOOT  
START  
nRESET  
ASSERT  
tPGDEL  
DC  
Power  
notOK  
DC  
Power  
OK  
QSPI  
READ  
release  
VDDIN,  
VIN_SRAM  
VNWA  
VIOIN_18  
VIN18_CLK  
VIOIN_18DIFF  
VIN18_BB  
VIN_13RF1  
VIN_13RF2  
VIOIN  
SOP[2.1.0]  
nRESET  
Warm reset  
delay for crystal  
or ext osc  
WARMRESET  
OUTPUT  
VBGAP  
OUTPUT  
CLKP, CLKM  
Using Crystal  
MCUCLK  
OUTPUT (1)  
QSPI_CS  
OUTPUT  
7ms (XTAL Mode)  
500 µs (REFCLK Mode)  
(1) MCU_CLK_OUT in autonomous mode, where IWR1443 application is booted from the serial flash, MCU_CLK_OUT is not enabled  
by default by the device bootloader.  
Figure 5-2. Device Wake-up Sequence  
5.9.2 Synchronized Frame Triggering  
The IWR1443 device supports a hardware based mechanism to trigger radar frames. An external host can  
pulse the SYNC_IN signal to start radar frames. The typical time difference between the rising edge of the  
external pulse and the frame transmission on air (Tlag) is about 160 ns. There is also an additional  
programmable delay that the user can set to control the frame start time.  
26  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
Tactive_frame  
SYNC_IN  
(Hardware  
Trigger)  
Radar  
Frames  
Tpulse  
Tlag  
Frame-2  
Frame-1  
Figure 5-3. Sync In Hardware Trigger  
Table 5-5. Frame Trigger Timing  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
Tactive_frame  
Tpulse  
Active frame duration  
User defined  
25  
ns  
< Tactive_frame  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
5.9.3 Input Clocks and Oscillators  
5.9.3.1 Clock Specifications  
An external crystal is connected to the device pins. Figure 5-4 shows the crystal implementation.  
Cf1  
XTALP  
Cp  
40 and 50 MHz  
XTALM  
Cf2  
Figure 5-4. Crystal Implementation  
NOTE  
The load capacitors, Cf1 and Cf2 in Figure 5-4, should be chosen such that Equation 1 is  
satisfied. CL in the equation is the load specified by the crystal manufacturer. All discrete  
components used to implement the oscillator circuit should be placed as close as possible to  
the associated oscillator CLKP and CLKM pins.Note that Cf1 and Cf2 include the parasitic  
capacitances due to PCB routing.  
C f2  
CL = C f1  
´
+CP  
C
f1 +C f2  
Table 5-6 lists the electrical characteristics of the clock crystal.  
Table 5-6. Crystal Electrical Characteristics (Oscillator Mode)  
(1)  
NAME  
DESCRIPTION  
Parallel resonance crystal frequency  
MIN  
TYP  
40  
MAX  
UNIT  
MHz  
pF  
fP  
CL  
Crystal load capacitance  
Crystal ESR  
5
8
12  
50  
ESR  
Ω
Temperature range Expected temperature range of operation  
–40  
–50  
105  
ºC  
Frequency  
tolerance  
Crystal frequency tolerance(1)(2)(3)  
50  
ppm  
µW  
Drive level  
50  
200  
(1) The crystal manufacturer's specification must satisfy this requirement.  
(2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.  
(3) Crystal tolerance affects radar sensor accuracy.  
28  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
 
 
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
In the case where an external clock is used as the clock resource, the signal is fed to the CLKP pin only;  
CLKM is grounded. The phase noise requirement is very important when a 40-MHz clock is fed externally.  
Table 5-7 lists the electrical characteristics of the external clock signal.  
Table 5-7. External Clock Mode Specifications  
SPECIFICATION  
PARAMETER  
Frequency  
UNIT  
MIN  
TYP  
MAX  
40  
MHz  
mV (pp)  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
%
AC-Amplitude  
700  
1200  
–132  
–143  
–152  
–153  
65  
Phase Noise at 1 kHz  
Phase Noise at 10 kHz  
Phase Noise at 100 kHz  
Phase Noise at 1 MHz  
Duty Cycle  
Input Clock:  
External AC-coupled sine wave or DC-  
coupled square wave  
Phase Noise referred to 40 MHz  
35  
Freq Tolerance  
–50  
50  
ppm  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
5.9.4 Multibuffered / Standard Serial Peripheral Interface (MibSPI)  
5.9.4.1 Peripheral Description  
The MibSPI/SPI is a high-speed synchronous serial input/output port that allows a serial bit stream of  
programmed length (2 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate.  
The MibSPI/SPI is normally used for communication between the microcontroller and external peripherals  
or another microcontroller.  
Standard and MibSPI modules have the following features:  
16-bit shift register  
Receive buffer register  
8-bit baud clock generator  
SPICLK can be internally-generated (master mode) or received from an external clock source  
(slave mode)  
Each word transferred can have a unique format.  
SPI I/Os not used in the communication can be used as digital input/output signals  
5.9.4.2 MibSPI Transmit and Receive RAM Organization  
The Multibuffer RAM is comprised of 256 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a  
16-bit transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer  
RAM can be partitioned into multiple transfer group with variable number of buffers each.  
Table 5-9 to assume the operating conditions stated in Table 5-8.  
Table 5-8. SPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
2
15  
pF  
30  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
Table 5-9. SPI Master Mode Switching Parameters (CLOCK PHASE = 0, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(1)(2)(3)  
NO.  
PARAMETER  
MIN  
25  
TYP  
MAX  
256tc(VCLK)  
UNIT  
1
tc(SPC)M  
Cycle time, SPICLK(4)  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 3  
0.5tc(SPC)M – 3  
0.5tc(SPC)M – 10.5  
0.5tc(SPC)M – 10.5  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
2(4)  
3(4)  
4(4)  
5(4)  
ns  
ns  
ns  
ns  
tw(SPCL)M  
Pulse duration, SPICLK low (clock polarity = 1)  
tw(SPCL)M  
Pulse duration, SPICLK low (clock polarity = 0)  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 1)  
td(SPCH-SIMO)M  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
Delay time, SPISIMO valid before SPICLK low, (clock polarity = 0)  
Delay time, SPISIMO valid before SPICLK high, (clock polarity = 1)  
Valid time, SPISIMO data valid after SPICLK low, (clock polarity = 0)  
Valid time, SPISIMO data valid after SPICLK high, (clock polarity = 1)  
(C2TDELAY+2)*tc(VCLK  
) – 7.5  
(C2TDELAY+2) *  
tc(VCLK) + 7  
CSHOLD = 0  
Setup time CS active until SPICLK high  
(clock polarity = 0)  
(C2TDELAY +3) *  
tc(VCLK) – 7.5  
(C2TDELAY+3) *  
tc(VCLK) + 7  
CSHOLD = 1  
6(5)  
tC2TDELAY  
ns  
ns  
(C2TDELAY+2)*tc(VCLK  
) – 7.5  
(C2TDELAY+2) *  
tc(VCLK) + 7  
CSHOLD = 0  
Setup time CS active until SPICLK low  
(clock polarity = 1)  
(C2TDELAY +3) *  
tc(VCLK) – 7.5  
(C2TDELAY+3) *  
tc(VCLK) + 7  
CSHOLD = 1  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(T2CDELAY + 1) *  
tc(VCLK) + 7.5  
Hold time, SPICLK low until CS inactive (clock polarity = 0)  
Hold time, SPICLK high until CS inactive (clock polarity = 1)  
(T2CDELAY + 1)  
*tc(VCLK) – 7  
7(5)  
tT2CDELAY  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(T2CDELAY + 1) *  
tc(VCLK) + 7.5  
(T2CDELAY + 1)  
*tc(VCLK) – 7  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
tsu(SOMI-SPCL)M  
tsu(SOMI-SPCH)M  
th(SPCL-SOMI)M  
th(SPCH-SOMI)M  
5
5
3
3
8(4)  
ns  
ns  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
9(4)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared (where x= 0 or 1).  
(2) tc(MSS_VCLK) = master subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M (PS +1)tc(MSS_VCLK) 25ns, where PS is the prescale value set in the SPIFMTx.[15:8]  
register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) 25ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
11  
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1  
4
5
Master Out Data Is Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
Figure 5-5. SPI Master Mode External Timing (CLOCK PHASE = 0)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
Figure 5-6. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0)  
32  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
Table 5-10. SPI Master Mode Switching Parameters (CLOCK PHASE = 1, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(1)(2)(3)  
NO.  
PARAMETER  
MIN  
25  
TYP  
MAX  
256tc(VCLK)  
UNIT  
1
tc(SPC)M  
Cycle time, SPICLK(4)  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 3  
0.5tc(SPC)M – 3  
0.5tc(SPC)M – 10.5  
0.5tc(SPC)M – 10.5  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
2(4)  
3(4)  
4(4)  
5(4)  
ns  
ns  
ns  
ns  
tw(SPCL)M  
Pulse duration, SPICLK low (clock polarity = 1)  
tw(SPCL)M  
Pulse duration, SPICLK low (clock polarity = 0)  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 1)  
td(SPCH-SIMO)M  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
Delay time, SPISIMO valid before SPICLK low, (clock polarity = 0)  
Delay time, SPISIMO valid before SPICLK high, (clock polarity = 1)  
Valid time, SPISIMO data valid after SPICLK low, (clock polarity = 0)  
Valid time, SPISIMO data valid after SPICLK high, (clock polarity = 1)  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
CSHOLD = 0  
(C2TDELAY +  
2)*tc(VCLK) – 7  
(C2TDELAY+2) *  
tc(VCLK) + 7.5  
Setup time CS active until SPICLK high  
(clock polarity = 0)  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
CSHOLD = 1  
CSHOLD = 0  
(C2TDELAY +  
2)*tc(VCLK) – 7  
(C2TDELAY+2) *  
tc(VCLK) + 7.5  
6(5)  
tC2TDELAY  
ns  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(C2TDELAY+2) *  
tc(VCLK) + 7.5  
(C2TDELAY+2)*tc(  
VCLK) – 7  
Setup time CS active until SPICLK low  
(clock polarity = 1)  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
CSHOLD = 1  
(C2TDELAY+3)*tc(  
VCLK) – 7  
(C2TDELAY+3) *  
tc(VCLK) + 7.5  
(T2CDELAY + 1)  
*tc(VCLK) – 7.5  
(T2CDELAY + 1)  
*tc(VCLK) + 7  
Hold time, SPICLK low until CS inactive (clock polarity = 0)  
Hold time, SPICLK high until CS inactive (clock polarity = 1)  
7(5)  
8(4)  
9(4)  
tT2CDELAY  
ns  
ns  
ns  
(T2CDELAY + 1)  
*tc(VCLK) – 7.5  
(T2CDELAY + 1)  
*tc(VCLK) + 7  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
tsu(SOMI-SPCL)M  
tsu(SOMI-SPCH)M  
th(SPCL-SOMI)M  
th(SPCH-SOMI)M  
5
5
3
3
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set ( where x = 0 or 1 ).  
(2) tc(MSS_VCLK) = master subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M (PS +1)tc(MSS_VCLK) 25 ns, where PS is the prescale value set in the SPIFMTx.[15:8]  
register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) 25 ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
Master Out Data Is Valid  
Data Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
Figure 5-7. SPI Master Mode External Timing (CLOCK PHASE = 1)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
Figure 5-8. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1)  
34  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
5.9.4.3 SPI Slave Mode I/O Timings  
Table 5-11. SPI Slave Mode Switching Parameters (SPICLK = input, SPISIMO = input,  
and SPISOMI = output)(1)(2)(3)  
NO.  
PARAMETER  
Cycle time, SPICLK(4)  
MIN  
25  
TYP  
MAX  
UNIT  
1
tc(SPC)S  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
10  
2(5)  
3(5)  
ns  
ns  
10  
10  
10  
Delay time, SPISOMI valid after SPICLK high (clock  
polarity = 0)  
td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
10  
10  
4(5)  
ns  
ns  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 0)  
2
2
5(5)  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 1)  
Setup time, SPISIMO before SPICLK low (clock  
polarity = 0; clock phase = 0) OR (clock polarity = 1;  
clock phase = 1)  
tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
th(SPCL-SIMO)S  
th(SPCL-SIMO)S  
3
3
1
1
6(5)  
ns  
ns  
Setup time, SPISIMO before SPICLK high (clock  
polarity = 1; clock phase = 0) OR (clock polarity = 0;  
clock phase = 1)  
Hold time, SPISIMO data valid after SPICLK low  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
7(5)  
Hold time, SPISIMO data valid after SPICLK high  
(clock polarity = 1; clock phase = 0) OR (clock  
polarity = 0; clock phase = 1)  
(1) The MASTER bit (SPIGCRx.0) is cleared ( where x = 0 or 1 ).  
(2) The CLOCK PHASE bit (SPIFMTx.16) is either cleared or set for CLOCK PHASE = 0 or CLOCK PHASE = 1 respectively.  
(3) tc(MSS_VCLK) = master subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(4) When the SPI is in Slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S (PS +1)tc(MSS_VCLK) 25 ns, where  
PS is the prescale value set in the SPIFMTx.[15:8] register bits.For PS values of 0: tc(SPC)S = 2tc(MSS_VCLK) 25 ns.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 5-9. SPI Slave Mode External Timing (CLOCK PHASE = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 5-10. SPI Slave Mode External Timing (CLOCK PHASE = 1)  
36  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
5.9.4.4 Typical Interface Protocol Diagram (Slave Mode)  
1. Host should ensure that there is a delay of two SPI clocks between CS going low and start of SPI  
clock.  
2. Host should ensure that CS is toggled for every 16 bits of transfer through SPI.  
Figure 5-11 shows the SPI communication timing of the typical interface protocol.  
2 SPI clocks  
CS  
CLK  
0x4321  
0x1234  
CRC  
0x5678  
0x8765  
MOSI  
MISO  
IRQ  
0xDCBA  
0xABCD  
CRC  
16 bytes  
Figure 5-11. SPI Communication  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
37  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
5.9.5 LVDS Interface Configuration  
The IWR1443 supports seven differential LVDS IOs/Lanes. The lane configuration supported is four Data  
lanes (LVDS_TXP/M), one Bit Clock lane (LVDS_CLKP/M) and one Frame clock lane  
(LVDS_FRCLKP/M), and one HS_DEBUG LVDS pair. The LVDS interface is used for debugging. The  
LVDS interface supports the following data rates:  
900 Mbps (450 MHz DDR Clock)  
600 Mbps (300 MHz DDR Clock)  
450 Mbps (225 MHz DDR Clock)  
400 Mbps (200 MHz DDR Clock)  
300 Mbps (150 MHz DDR Clock)  
225 Mbps (112.5 MHz DDR Clock)  
150 Mbps (75 MHz DDR Clock)  
Note that the bit clock is in DDR format and hence the numbers of toggles in the clock is equivalent to  
data.  
LVDS_TXP/M  
LVDS_FRCLKP/M  
Data bitwidth  
LVDS_CLKP/M  
Figure 5-12. LVDS Interface Lane Configuration And Relative Timings  
5.9.5.1 LVDS Interface Timings  
Trise  
LVDS_CLK  
Clock Jitter = 6sigma  
LVDS_TXP/M  
LVDS_FRCLKP/M  
1100 ps  
Figure 5-13. Timing Parameters  
38  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
Table 5-12. LVDS Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
max 1 pF lumped capacitive load on  
LVDS lanes  
48%  
52%  
Duty Cycle Requirements  
Output Differential Voltage  
peak-to-peak single-ended with 100 Ω  
resistive load between differential pairs  
250  
450  
mV  
Output Offset Voltage  
Trise and Tfall  
1125  
1275  
mV  
ps  
20%-80%, 900 Mbps  
900 Mbps  
500  
80  
Jitter (pk-pk)  
ps  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
39  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
5.9.6 General-Purpose Input/Output  
Table 5-13 lists the switching characteristics of output timing relative to load capacitance.  
Table 5-13. Switching Characteristics for Output Timing versus Load Capacitance (CL)(1)(2)  
PARAMETER  
TEST CONDITIONS  
CL = 20 pF  
VIOIN = 1.8V  
VIOIN = 3.3V  
UNIT  
2.8  
6.4  
9.4  
2.8  
6.4  
9.4  
3.3  
6.7  
9.6  
3.1  
6.6  
9.6  
3.0  
6.9  
tr  
tf  
tr  
tf  
Max rise time  
CL = 50 pF  
ns  
CL = 75 pF  
10.2  
2.8  
Slew control = 0  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
Max fall time  
Max rise time  
Max fall time  
6.6  
ns  
ns  
ns  
9.8  
3.3  
7.2  
10.5  
3.1  
Slew control = 1  
6.6  
9.6  
(1) Slew control, which is configured by PADxx_CFG_REG, changes behavior of the output driver (faster or slower output slew rate).  
(2) The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.  
40  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
5.9.7 Controller Area Network Interface (DCAN)  
The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication  
protocol that efficiently supports distributed real-time control with robust communication rates of up to 1  
Mbps. The DCAN is ideal for applications operating in noisy and harsh environments that require reliable  
serial communication or multiplexed wiring.  
The DCAN has the following features:  
Supports CAN protocol version 2.0 part A, B  
Bit rates up to 1 Mbps  
Configurable Message objects  
Individual identifier masks for each message object  
Programmable FIFO mode for message objects  
Suspend mode for debug support  
Programmable loop-back modes for self-test operation  
Direct access to Message RAM in test mode  
Supports two interrupt lines - Level 0 and Level 1  
Automatic Message RAM initialization  
Table 5-14. Dynamic Characteristics for the DCANx TX and RX Pins  
PARAMETER  
MIN  
TYP  
MAX  
15  
UNIT  
ns  
td(CAN_tx)  
td(CAN_rx)  
Delay time, transmit shift register to CAN_tx pin(1)  
Delay time, CAN_rx pin to receive shift register(1)  
10  
ns  
(1) These values do not include rise/fall times of the output buffer.  
describes the CSI-2 DPHY electrical specifications.  
5.9.8 Serial Communication Interface (SCI)  
The SCI has the following features:  
Standard universal asynchronous receiver-transmitter (UART) communication  
Standard non-return to zero (NRZ) format  
Double-buffered receive and transmit functions  
Asynchronous or iso-synchronous communication modes with no CLK pin  
Capability to use Direct Memory Access (DMA) for transmit and receive data  
Two external pins: RS232_RX and RS232_TX  
Table 5-15. SCI Timing Requirements  
MIN  
TYP  
921.6  
MAX  
UNIT  
kHz  
f(baud)  
Supported baud rate at 20 pF  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
41  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
5.9.9 Inter-Integrated Circuit Interface (I2C)  
The inter-integrated circuit (I2C) module is a multimaster communication module providing an interface  
between devices compliant with Philips Semiconductor I2C-bus specification version 2.1 and connected by  
an I2C-bus™. This module will support any slave or master I2C compatible device.  
The I2C has the following features:  
Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number  
9398 393 40011)  
Bit/Byte format transfer  
7-bit and 10-bit device addressing modes  
General call  
START byte  
Multi-master transmitter/ slave receiver mode  
Multi-master receiver/ slave transmitter mode  
Combined master transmit/receive and receive/transmit mode  
Transfer rates of 100 kbps up to 400 kbps (Phillips fast-mode rate)  
Free data format  
Two DMA events (transmit and receive)  
DMA event enable/disable capability  
Module enable/disable capability  
The SDA and SCL are optionally configurable as general purpose I/O  
Slew rate control of the outputs  
Open drain control of the outputs  
Programmable pullup/pulldown capability on the inputs  
Supports Ignore NACK mode  
NOTE  
This I2C module does not support:  
High-speed (HS) mode  
C-bus compatibility mode  
The combined format in 10-bit address mode (the I2C sends the slave address second  
byte every time it sends the slave address first byte)  
42  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
Table 5-16. I2C Timing Requirements(1)  
STANDARD MODE  
FAST MODE  
UNIT  
MIN  
MAX  
MIN  
MAX  
tc(SCL)  
Cycle time, SCL  
10  
2.5  
μs  
μs  
Setup time, SCL high before SDA low  
(for a repeated START condition)  
tsu(SCLH-SDAL)  
4.7  
4
0.6  
0.6  
Hold time, SCL low after SDA low  
(for a START and a repeated START condition)  
th(SCLL-SDAL)  
μs  
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
μs  
μs  
μs  
μs  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0
3.45(1)  
0.9  
Pulse duration, SDA high between STOP and START  
conditions  
tw(SDAH)  
4.7  
4
1.3  
μs  
μs  
Setup time, SCL high before SDA high  
(for STOP condition)  
tsu(SCLH-SDAH)  
tw(SP)  
0.6  
0
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
ns  
(2)(3)  
Cb  
400  
400  
pF  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the SCL  
signal.  
(3) Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed.  
SDA  
tw(SDAH)  
tsu(SDA-SCLH)  
tw(SP)  
tw(SCLL)  
tr(SCL)  
tsu(SCLH-SDAH)  
tw(SCLH)  
SCL  
tc(SCL)  
th(SCLL-SDAL)  
tf(SCL)  
th(SCLL-SDAL)  
tsu(SCLH-SDAL)  
th(SDA-SCLL)  
Stop  
Start  
Repeated Start  
Stop  
Figure 5-14. I2C Timing Diagram  
NOTE  
A device must internally provide a hold time of at least 300 ns for the SDA signal  
(referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling  
edge of SCL.  
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW  
period (tw(SCLL)) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a  
Standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH) 250 ns must then be  
met. This will automatically be the case if the device does not stretch the LOW period of  
the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must  
output the next data bit to the SDA line tr max + tsu(SDA-SCLH)  
.
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
5.9.10 Quad Serial Peripheral Interface (QSPI)  
The quad serial peripheral interface (QSPI™) module is a kind of SPI module that allows single, dual, or  
quad read access to external SPI devices. This module has a memory mapped register interface, which  
provides a direct interface for accessing data from external SPI devices and thus simplifying software  
requirements. The QSPI works as a master only. The QSPI in the device is primarily intended for fast  
booting from quad-SPI flash memories.  
The QSPI supports the following features:  
Programmable clock divider  
Six-pin interface  
Programmable length (from 1 to 128 bits) of the words transferred  
Programmable number (from 1 to 4096) of the words transferred  
Support for 3-, 4-, or 6-pin SPI interface  
Optional interrupt generation on word or frame (number of words) completion  
Programmable delay between chip select activation and output data from 0 to 3 QSPI clock cycles  
Table 5-18 and Table 5-19 assume the operating conditions stated in Table 5-17.  
Table 5-17. QSPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
Table 5-18. Timing Requirements for QSPI Input (Read) Timings(1)(2)  
MIN  
7.3  
TYP  
MAX  
UNIT  
ns  
tsu(D-SCLK)  
th(SCLK-D)  
tsu(D-SCLK)  
th(SCLK-D)  
Setup time, d[3:0] valid before falling sclk edge  
Hold time, d[3:0] valid after falling sclk edge  
1.5  
ns  
Setup time, final d[3:0] bit valid before final falling sclk edge  
Hold time, final d[3:0] bit valid after final falling sclk edge  
7.3 – P(3)  
1.5 + P(3)  
ns  
ns  
(1) Clock Mode 0 (clk polarity = 0 ; clk phase = 0 ) is the mode of operation.  
(2) The Device captures data on the falling clock edge in Clock Mode 0, as opposed to the traditional rising clock edge. Although non-  
standard, the falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI devices that  
launch data on the falling edge in Clock Mode 0.  
(3) P = SCLK period in ns.  
44  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
 
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
Table 5-19. QSPI Switching Characteristics  
NO.  
PARAMETER  
Cycle time, sclk  
MIN  
TYP  
MAX  
UNIT  
ns  
Q1  
Q2  
Q3  
tc(SCLK)  
tw(SCLKL)  
tw(SCLKH)  
25  
Pulse duration, sclk low  
Pulse duration, sclk high  
Y*P – 3(1)(2)  
Y*P – 3(1)  
ns  
ns  
–M*P +  
2.5(1)(3)  
Q4  
Q5  
td(CS-SCLK)  
td(SCLK-CS)  
Delay time, sclk falling edge to cs active edge  
Delay time, sclk falling edge to cs inactive edge  
–M*P – 1(1)(3)  
N*P – 1(1)(3)  
ns  
ns  
N*P +  
2.5(1)(3)  
Q6  
Q7  
Q8  
td(SCLK-D1)  
tena(CS-D1LZ)  
tdis(CS-D1Z)  
Delay time, sclk falling edge to d[1] transition  
Enable time, cs active edge to d[1] driven (lo-z)  
Disable time, cs active edge to d[1] tri-stated (hi-z)  
–3.5  
–P – 4(3)  
–P – 4(3)  
7
–P +1(3)  
–P +1(3)  
ns  
ns  
ns  
Delay time, sclk first falling edge to first d[1] transition  
(for PHA = 0 only)  
Q9  
td(SCLK-D1)  
–3.5 – P(3)  
7 – P(3)  
ns  
Q12  
Q13  
tsu(D-SCLK)  
th(SCLK-D)  
Setup time, d[3:0] valid before falling sclk edge  
Hold time, d[3:0] valid after falling sclk edge  
7.3  
1.5  
ns  
ns  
Setup time, final d[3:0] bit valid before final falling sclk  
edge  
Q14  
Q15  
tsu(D-SCLK)  
th(SCLK-D)  
7.3 — P(3)  
1.5 + P(3)  
ns  
ns  
Hold time, final d[3:0] bit valid after final falling sclk  
edge  
(1) The Y parameter is defined as follows: If DCLK_DIV is 0 or ODD then, Y equals 0.5. If DCLK_DIV is EVEN then, Y equals  
(DCLK_DIV/2) / (DCLK_DIV+1). For best performance, it is recommended to use a DCLK_DIV of 0 or ODD to minimize the duty cycle  
distortion. The HSDIVIDER on CLKOUTX2_H13 output of DPLL_PER can be used to achieve the desired clock divider ratio. All  
required details about clock division factor DCLK_DIV can be found in the device-specific Technical Reference Manual.  
(2) P = SCLK period in ns.  
(3) M = QSPI_SPI_DC_REG.DDx + 1, N = 2  
PHA=0  
cs  
Q5  
Q4  
Q1  
Q2  
Q3  
POL=0  
sclk  
Q12  
Q13  
Q12 Q13  
Read Data  
Bit 0  
Q6  
Q7  
Q9  
Command  
Bit n-1  
Command  
Bit n-2  
Read Data  
Bit 1  
d[0]  
Q12 Q13  
Read Data  
Bit 1  
Q12 Q13  
Read Data  
Bit 0  
d[3:1]  
SPRS85v_TIMING_OSPI1_02  
Figure 5-15. QSPI Read (Clock Mode 0)  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
45  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
PHA=0  
cs  
Q5  
Q4  
Q1  
Q2  
Q3  
POL=0  
sclk  
Q8  
Q6  
Q6  
Q7  
Q9  
Q6  
Command  
Bit n-1  
Command  
Bit n-2  
Write Data  
Bit 1  
Write Data  
Bit 0  
d[0]  
d[3:1]  
SPRS85v_TIMING_OSPI1_04  
Figure 5-16. QSPI Write (Clock Mode 0)  
46  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
5.9.11 JTAG Interface  
Table 5-21 and Table 5-22 assume the operating conditions stated in Table 5-20.  
Table 5-20. JTAG Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
2
15  
pF  
Table 5-21. Timing Requirements for IEEE 1149.1 JTAG  
NO.  
MIN  
TYP  
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time TCK  
66.66  
26.67  
26.67  
2.5  
1a  
1b  
tw(TCKH)  
Pulse duration TCK high (40% of tc)  
Pulse duration TCK low(40% of tc)  
Input setup time TDI valid to TCK high  
Input setup time TMS valid to TCK high  
Input hold time TDI valid from TCK high  
Input hold time TMS valid from TCK high  
ns  
tw(TCKL)  
ns  
tsu(TDI-TCK)  
tsu(TMS-TCK)  
th(TCK-TDI)  
th(TCK-TMS)  
ns  
3
4
2.5  
ns  
18  
ns  
18  
ns  
Table 5-22. Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
2
td(TCKL-TDOV)  
Delay time, TCK low to TDO valid  
0
25  
ns  
1
1a  
1b  
TCK  
TDO  
2
3
4
TDI/TMS  
SPRS91v_JTAG_01  
Figure 5-17. JTAG Timing  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
47  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
 
 
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
5.9.12 Camera Serial Interface (CSI)  
The CSI is a MIPI D-PHY compliant interface for connecting this device to a camera receiver module. This  
interface is made of four differential lanes; each lane is configurable for carrying data or clock. The polarity  
of each wire of a lane is also configurable. Table 5-23, Figure 5-18, Figure 5-19, and Figure 5-20 describe  
the clock and data timing of the CSI.  
Table 5-23. CSI Switching Characteristics  
over operating Tj temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
HPTX  
(1 or 2 data lane PHY)  
(4 data lane PHY)  
150  
150  
75  
600  
600  
450  
300  
HSTXDBR  
Data bit rate  
Mbps  
MHz  
(1 or 2 data lane PHY)  
(4 data lane PHY)  
fCLK  
DDR clock frequency  
75  
Common-level variation from 75 to 450 MHz of CSI2 clock  
frequency  
ΔVCMTX(LF)  
tR and tF  
–50  
150  
50 mVpeak  
ns  
20% to 80% rise time and fall time  
0.3  
UI  
LPTX DRIVER  
tRLP and tFLP  
15% to 85% rise time and fall time  
25  
ns  
ns  
105 +  
12*UI  
(1)  
tEOT  
Time from start of THS-TRAIL period to start of LP-11 state  
Slew rate. CLOAD = 0 to 5 pF  
Slew rate. CLOAD = 5 to 20 pF  
Slew rate. CLOAD = 20 to 70 pF  
Load capacitance  
500  
(2)(3)(4)  
δV/δtSR  
200 mV/ns  
100  
(2)  
CLOAD  
0
70  
pF  
DATA-CLOCK Timing Specification  
Nominal Unit Interval (1, 2, or 3 data lane PHY)  
1.11  
1.67  
13.33  
13.33  
UINOM  
ns  
Nominal Unit Interval (4 data lane PHY)  
0.975*U  
Minimum instantaneous Unit Interval (1, 2, or 3 data lane PHY)  
1.033 INOM –  
0.05  
UIINST,MIN  
TSKEW[TX]  
ns  
Minimum instantaneous Unit Interval (4 data lane PHY)  
Data to clock skew measured at transmitter  
1.131  
UIINST,  
MIN  
–0.15  
0.15  
60  
CSI2 TIMING SPECIFICATION  
Time-out for receiver to detect absence of clock transitions and  
TCLK-MISS  
ns  
ns  
disable the clock lane HS-RX.  
Time that the transmitter continues to send HS clock after the  
last associated data lane has transitioned to lp mode. Interval is  
defined as the period from the end of THS-TRAIL to the beginning  
60 ns +  
52*UI  
TCLK-POST  
of TCLK-TRAIL  
.
Time that the HS clock shall be driven by the transmitter before  
any associated data lane beginning the transition from LP to HS  
mode.  
TCLK-PRE  
8
ns  
ns  
ns  
Time that the transmitter drives the clock lane LP-00 line state  
immediately before the HS-0 line state starting the HS  
transmission.  
TCLK-PREPARE  
38  
95  
38  
Time for the clock lane receiver to enable the HS line  
termination, starting from the time point when Dn crosses  
VIL,MAX.  
Time for Dn  
to reach  
VTERM-EN  
TCLK-TERM-EN  
(1) With an additional load capacitance CCM of 0 to 60 pF on the termination center tap at RX side of the lane  
(2) While driving CLOAD. Load capacitance includes 50 pF of transmission line capacitance, and 10 pF each for TX and RX.  
(3) When the output voltage is from 15% to 85% of the fully settled LP signal levels  
(4) Measured as average across any 50 mV segment of the output signal transition  
48  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
Table 5-23. CSI Switching Characteristics (continued)  
over operating Tj temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Time that the transmitter drives the HS-0 state after the last  
payload clock bit of a HS transmission burst.  
TCLK-TRAIL  
60  
ns  
TCLK-PREPARE + time that the transmitter drives the HS-0 state  
before starting the clock.  
TCLK-PREPARE + TCLK-ZERO  
300  
ns  
ns  
Time for the data lane receiver to enable the HS line  
termination, starting from the time point when Dn crosses  
VIL,MAX.  
Time for Dn  
to reach  
VTERM-EN  
35 ns +  
4*UI  
TD-TERM-EN  
105 ns  
+
n*12*UI  
Transmitted time interval from the start of THS-TRAIL or TCLKTRAIL  
to the start of the LP-11 state following a HS burst.  
,
TEOT  
ns  
Time that the transmitter drives the data lane LP-00 line state  
immediately before the HS-0 line state starting the HS  
transmission  
85 +  
6*UI  
THS-PREPARE  
40 + 4*UI  
ns  
ns  
THS-PREPARE + time that the transmitter drives the HS-0 state  
prior to transmitting the Sync sequence.  
145 ns +  
10*UI  
THS-PREPARE + THS-ZERO  
Time interval during which the HS-RX should ignore any  
transitions on the data lane, following a HS burst. The end point  
of the interval is defined as the beginning of the LP-11 state  
following the HS burst.  
55 ns +  
4*UI  
THS-SKIP  
40  
ns  
THS-EXIT  
THS-TRAIL  
TLPX  
Time that the transmitter drives LP-11 following a HS burst.  
100  
ns  
ns  
ns  
max(n*8*UI,  
60 ns +  
Time that the transmitter drives the flipped differential state after  
last payload data bit of a HS transmission burst  
n*4*UI)(5)(6)  
Transmitted length of any low-power state period  
50(7)  
(5) If a > b then max(a, b) = a, otherwise max(a, b) = b.  
(6) Where n = 1 for Forward-direction HS mode and n = 4 for Reverse-direction HS mode  
(7) TLPX is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to  
asymmetrical rise and fall times.  
CSI2_CLK(P/M)  
0.5UI + Tskew  
CSI2_TX(P/M)  
1 UI  
Figure 5-18. Clock and Data Timing in HS Transmission  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
49  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Clock  
Lane  
Data Lane  
Dp/Dn  
TLPX  
THS-ZERO  
THS-SYNC  
Disconnect  
Terminator  
VOH  
THS-PREPARE  
VIH(min)  
VIL(max)  
VOL  
TREOT  
Capture  
TD-TERM-EN  
1st Data Bit  
THS-SKIP  
TEOT  
THS-TRAIL  
LP-11  
LP-11  
LP-01  
LP-00  
THS-SETTLE  
THS-EXIT  
LOW-POWER TO  
HIGH-SPEED  
TRANSITION  
START OF  
HS-ZERO TRANSMISSION  
SEQUENCE  
HIGH-SPEED TO  
HS-TRAIL LOW-POWER  
TRANSITION  
HIGH-SPEED DATA  
TRANSMISSION  
Figure 5-19. High-Speed Data Transmission Burst  
Disconnect  
Terminator  
Clock Lane  
Dp/Dn  
T
CLK-SETTLE  
VIH(min)  
VIL(max)  
T
LPX  
T
T
CLK-PRE  
CLK-ZERO  
T
CLK-PREPARE  
Data Lane  
Dp/Dn  
T
HS-PREPARE  
Disconnect  
Terminator  
T
LPX  
VIH(min)  
VIL(max)  
T
HS-SKIP  
T
HS-SETTLE  
(1) The HS to LP transition of the CLK does not actually take place since the CLK is always ON in HS mode.  
Figure 5-20. Switching the Clock Lane Between Clock Transmission and Low-Power Mode  
50  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
6 Detailed Description  
6.1 Overview  
The IWR1443 device includes the entire Millimeter Wave blocks and analog baseband signal chain for  
three transmitters (two usable at the same instance) and four receivers, as well as a customer-  
programmable MCU with a hardware accelerator for radar signal processing. This device is applicable as  
a radar-on-a-chip in use-cases with modest requirements for memory, processing capacity and application  
code size. These could be cost-sensitive industrial radar sensing applications. Examples are:  
Industrial level sensing  
Industrial automation sensor fusion with radar  
traffic intersection monitoring with radar  
Industrial radar-proximity monitoring.  
In terms of scalability, the IWR1443 device could be paired with a low-end external MCU, to address more  
complex applications that might require additional memory for larger application software footprint and  
faster interfaces. Because the IWR1443 device also provides high speed data interfaces like MIPI-CSI2, it  
is suitable for interfacing with more capable external processing blocks. Here system designers can  
choose the IWR1443 to provide raw ADC data or use the on-chip Hardware Accelerator for partial  
processing viz. first stage Fast Fourier Transform.  
6.2 Functional Block Diagram  
Rx1  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Cortex R4F  
@ 200MHz  
Rx2  
Rx3  
Digital Front-  
end  
(User programmable)  
(Decimation  
filter chain)  
Prog  
RAM  
Data  
RAM (*) ROM  
Boot  
Rx4  
QSPI Flash  
interface  
QSPI  
SPI  
Hardware  
Accelerator  
(**)  
ADC Buffer  
(**)  
External MCU  
interface  
Tx1  
Tx2  
PA  
PA  
PA  
BPM  
BPM  
BPM  
RF/Analog sub-system  
DMA  
SPI / I2C  
DCAN  
PMIC control  
Optional communicatio  
interface  
Master sub-system  
(Customer programmed)  
Ramp  
Generator  
Control UART,  
And Debug UART  
Debug  
UARTs  
Synth  
Tx3  
x4  
(20 GHz)  
Radar Data  
Memory (*)  
(L3)  
Test/  
Debug  
JTAG for debug/  
development  
Temp  
6
RF Control  
BIST  
Mailbox  
GPADC  
High-speed Rx or  
process  
Data for recording or  
External DSP  
LVDS/  
CSI-2  
Osc.  
(*) Total RAM available in Master subsystem is divided into ARM-Data RAM, Tightly Coupled Memory, Radar Data Memory, Patch Memory  
(**) Shared Memory for ADC Buffer and Hardware Accelerator  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
6.3 External Interfaces  
The IWR1443 device provides the following external interfaces:  
Reference Clock – Reference clock available for Host Processor after device wakeup.  
Low speed control information  
Up to two 4-line standard SPI interface  
One I2C interface (Pin multiplexed with one of the SPI ports)  
One Controller Area Network (CAN) Port for Industrial Interfacing  
Data – High-Speed serial port following the MIPI CSI2 format. 4 data and 1 clock lane (all differential).  
Data from different receive channels can be multiplexed on a single data lane in order to optimize  
board routing. This is a unidirectional interface used for data transfer only.  
Reset – Active Low reset for device wakeup from host General Purpose IOs  
Error Signaling – Used for notifying the host in case the Radio Controller detects a fault  
The IWR1443 device comprises of three main blocks – Radar (or the Millimeter Wave) System, Master (or  
the Control) System and Processing System.  
RADAR System  
Radar Processing Inter-connect [128 Bit @ 200MHz]  
RF/Analog/Monitoring  
LVDS/  
ADC  
BUFFERS  
FFT  
ACCELERATOR  
L3  
EDMA  
Mipi-CSI-2  
RAM  
MAILBOX  
(384KB)  
2x16KB  
Master (Control) System Inter-connect [64 Bit @ 200MHz]  
CRC  
ROM  
DMA  
JTAG  
Integrated MCU  
®
Program  
RAM  
®
ARM Cortex R4F  
Data  
RAM  
Peripheral Inter-connect  
SPI  
SPI  
Timer  
UART  
QSPI  
CAN  
I2C  
PWM  
Figure 6-1. System Interconnect  
6.4 Subsystems  
6.4.1 RF and Analog Subsystem  
The RF and analog subsystem includes the RF and analog circuitry – namely, the synthesizer, PA, LNA,  
mixer, IF, and ADC. This subsystem also includes the crystal oscillator and temperature sensors. The  
three transmit channels can be operated up to a maximum of two at a time (simultaneously) for transmit  
beamforming purpose as required; whereas the four receive channels can all be operated simultaneously.  
52  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
6.4.1.1 Clock Subsystem  
The IWR1443 clock subsystem generates 76 to 81 GHz from an input reference of 40-MHz crystal or  
external clock. It has a built-in oscillator circuit followed by a clean-up PLL and a RF synthesizer circuit.  
The output of the RF synthesizer is then processed by an X4 multiplier to create the required frequency in  
the 76 to 81 GHz spectrum. The RF synthesizer output is modulated by the timing engine block to create  
the required waveforms for effective sensor operation.  
The clean-up PLL also provides a reference clock for the host processor after system wakeup.  
The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring  
the quality of the generated clock.  
Figure 6-2 describes the clock subsystem.  
Self Test  
RF SYNTH  
Timing  
SYNC_OUT  
Engine  
Lock Detect  
SoC Clock  
Clean-  
Up PLL  
x4  
MULT  
XO/  
Slicer  
CLK Detect  
40 MHz  
Figure 6-2. Clock Subsystem  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
6.4.1.2 Transmit Subsystem  
The IWR1443 transmit subsystem consists of three parallel transmit chains, each with independent phase  
and amplitude control. A maximum of 2 transmit chains can be operational at the same time. However all  
3 chains can be operated together in a time multiplexed fashion.The device supports binary phase  
modulation for MIMO radar and interference mitigation.  
Each transmit chain can deliver a maximum of 12 dBm at the antenna port on the PCB. The transmit  
chains also support programmable backoff for system optimization.  
Figure 6-3 describes the transmit subsystem.  
Self Test  
Loopback  
Path  
PCB  
GSG  
at 50 W  
DF  
LO  
0 or 180°  
(from Timing  
Engine)  
Figure 6-3. Transmit Subsystem (Per Channel)  
6.4.1.3 Receive Subsystem  
The IWR1443 receive subsystem consists of four parallel channels. A single receive channel consists of  
an LNA, mixer, IF filtering, A2D conversion, and decimation. All four receive channels can be operational  
at the same time an individual power-down option is also available for system optimization.  
Unlike conventional real-only receivers, the IWR1443 device supports a complex baseband architecture,  
which uses quadrature mixer and dual IF and ADC chains to provide complex I and Q outputs for each  
receiver channel. The IWR1443 is targeted for fast chirp systems. The band-pass IF chain has  
configurable lower cutoff frequencies above 175 kHz and can support bandwidths up to 15 MHz.  
Figure 6-4 describes the receive subsystem.  
Self Test  
DAC  
Loopback  
Path  
DSM  
PCB  
I
RSSI  
50 W  
GSG  
LO  
Q
DSM  
DAC  
Figure 6-4. Receive Subsystem (Per Channel)  
54  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
 
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
6.4.1.4 Radio Processor Subsystem  
The Radio Processor subsystem (also referred to as BIST Subsystem in this document) includes the  
digital front-end, the ramp generator and an internal processor for control / configuration of the low-level  
RF/analog and ramp generator registers. The Radar Processor also schedules periodic monitoring tasks.  
User applications, running on  
Master (Control) System, do not have direct access to Radar System; access is based on well-defined API  
messages (over a hardware channel) from the master subsystem.  
NOTE  
This radio processor is programmed by TI and takes care of RF calibration and self-  
test/monitoring functions (BIST). This processor is not available directly for customer  
use/application.  
The digital front-end takes care of filtering and decimating the raw sigma-delta ADC output and provides  
the final ADC data samples at a programmable sampling rate.  
6.4.2 Master (Control) System  
The Master (Control) System includes ARM’s Cortex-R4F processor clocked at 200 MHz, which is user  
programmable. User applications executing on this processor control the overall operation of the device,  
including Radar Control via well-defined API messages, radar signal processing (assisted by the radar  
hardware accelerator) and peripherals for external interface.  
The Master (Control) System plays a big role in enabling autonomous operation of IWR1443 as a radar-  
on-a-chip sensor. The device includes a quad serial peripheral interface (QSPI) which can be used to  
download customer code directly from a serial flash. A (classic) CAN interface is included that can be  
used to communicate directly from the device to a CAN bus. An SPI/I2C interface is available for power  
management IC (PMIC) control when the IWR1443 is used as an autonomous sensor.  
For more complex applications, the device can operate under the control of an external MCU, which can  
communicate with IWR1443 device over an SPI interface. In this case, it is possible to use the IWR14xx  
as a radar sensor, providing raw detected objects to the external MCU. External MCU could reduce the  
application code complexity residing in the device and makes more memory available for radar data cube  
inside the IWR1443. This configuration also eliminates the need for a separate serial flash to be  
connected to the IWR1443.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
The IWR1443 provides for several digital communications outputs; CSI-2 Clk, 4 data formats – can be  
connected to a remote processor for additional processing. Note: CSI-2 data is from the digital front end or  
accelerator. When the MSS is used for preprocessing / or another MCU is used in industrial settings the  
Serial Tx/Rx or CAN bus can provide lower speed communication than CSI-2. The IWR1443 has  
additional serial Tx/Rx for HART protocol for industrial sensors, or Modbus serial protocol. The SPI port  
can also provide additional communications or IO control. Additional industrial IO can be Industrial  
Ethernet or Wifi.  
Note that although four interfaces – one CAN, one I2C and two SPI interfaces – are present in the  
IWR1443 device for external communication and PMIC control, only two of these interfaces are usable at  
any point in time.  
The total memory (RAM) available in the master subsystem is 576 KB. This is partitioned between the  
R4F program RAM, R4F data RAM and radar data memory. The maximum usable size for R4F is 448 KB  
and this is partitioned between the R4F’s tightly coupled interfaces TCMA (320 KB) and TCMB (128 KB).  
Although the complete 448 KB is unified memory and can be used for program or data, typical  
applications use TCMA as program and TCMB as data memory.  
The remaining memory, starting at a minimum of 128 KB, is available to be used as radar data memory  
for storing the ‘radar data cube’. It is possible to increase the radar data memory size in 64 KB  
increments, at the cost of corresponding reduction in R4F program or data RAM size. The maximum size  
of radar data memory possible is 384 KB. A few example configurations supported are listed in Table 6-1.  
Table 6-1. R4F RAM(1)  
R4F PROGRAM  
RAM  
R4F DATA  
RAM  
RADAR DATA  
MEMORY  
OPTION  
1
2
3
4
320KB  
256KB  
256KB  
128KB  
128KB  
128KB  
64KB  
128KB  
192KB  
256KB  
384KB  
64KB  
(1) For IWR1443 ES1.0 and ES2.0, available RAM is 448 KB instead of  
576KB.  
The Master Subsystem Memory Map is shown in the Technical Reference Manual.  
56  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
6.4.3 Host Interface  
The IWR1443 device communicates with the host radar processor over the following main interfaces:  
Reference Clock – Reference clock available for host processor after device wakeup  
Control – 4-port standard SPI (slave) for host control. Control UART or CAN can be used as a control  
interface  
. All radio control commands (and response) flow through this interface.  
Data – High-speed serial port following the MIPI CSI2 format (LVDS format can also be used). Four  
data and one clock lane (all differential). Data from different receive channels can be multiplexed on a  
single data lane to optimize board routing. This is a unidirectional interface used for data transfer only.  
Reset – Active-low reset for device wakeup from host  
Out-of-band interrupt  
Error – Used for notifying the host in case the radio controller detects a fault  
6.5 Accelerators and Coprocessors  
The Processing System in the IWR1443 device is an accelerator for FFT operations. The Radar Hardware  
Accelerator is an IP that enables off-loading the burden of certain frequently used computations in FMCW  
radar signal processing from the main processor. It is well-known that FMCW radar signal processing  
involves the use of FFT and Log-Magnitude computations in order to obtain a radar image across the  
range, velocity and angle dimensions. Some of the frequently used functions in FMCW radar signal  
processing can be done within the Radar Hardware Accelerator, while still retaining the flexibility of  
implementing other proprietary algorithms in the Master System processor.  
Key features of the Radar Processing Accelerator are:  
FFT computation, with programmable FFT sizes (powers of 2) up to 1024-pt complex FFT  
Internal FFT bit-width of 24 bits (each for I and Q) for good SQNR performance, with fully  
programmable butterfly scaling at every radix-2 stage for user flexibility  
Built-in capabilities for simple pre-FFT processing – specifically, programmable windowing, basic  
interference zeroing-out and basic BPM removal  
Magnitude (absolute value) and Log-Magnitude computation capability  
Flexible data flow and data sample arrangement to support efficient multi-dimensional FFT operations  
and transpose accesses as required  
Chaining and Looping mechanism to sequence a set of accelerator operations one-after-another with  
minimal intervention from the main processor  
CFAR-CA detector support (linear and logarithmic)  
Miscellaneous other capabilities of the accelerator  
Stitching two or four 1024-point FFTs to get the equivalent of 2048-point or 4096-point FFT for  
industrial level sensing applications where large FFT sizes are required  
Slow DFT mode, with resolution equivalent to 16K size FFT, for FFT peak interpolation (eg. range  
interpolation) purpose  
Complex Vector Multiplication and Dot product capability for vectors of size up to 512  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
6.6 Other Subsystems  
6.6.1 A2D Data Format Over CSI2 Interface  
The IWR1443 device uses MIPI D-PHY / CSI2-based format to transfer the raw A2D samples to the  
external MCU. This is shown in Figure 6-5.  
Supports four data lanes  
CSI-2 data rate scalable from 150 Mbps to 600  
Mbps per lane  
Virtual channel based  
CRC generation  
Normal Mode  
Frame Period  
Acquisition Period  
Frame  
Ramp/Chirp  
1
2
3
N
Data Ready  
F
L
H
L
L
H
L
L
H
L
L
H
L
F
S
S
S
E
S
S
E
S
S
E
S
S
E
E
Short  
Packet  
Short  
Packet  
Long  
Packet  
Short  
Packet  
ST SP ET  
LPS  
ST SP ET  
.5μs-.8μs  
ST PH  
DATA  
PF ET LPS  
ST SP ET  
LPS  
LPS  
Chirp 1 data  
Data rate/Lane should be such that "Chirp + Interchirp" period  
should be able to accommodate the data transfer  
Copyright © 2017, Texas Instruments Incorporated  
Frame Start – CSi2 VSYNC Start Short Packet  
Line Start – CSI2 HSYNC Start Short Packet  
Line End – CSI2 HSYNC End Short Packet  
Frame End – CSi2 VSYNC End Short Packet  
Figure 6-5. CSI-2 Transmission Format  
58  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
The data payload is constructed with the following three types of information:  
Chirp profile information  
The actual chirp number  
A2D data corresponding to chirps of all four channels  
Interleaved fashion  
Chirp quality data (configurable)  
The payload is then split across the four physical data lanes and transmitted to the receiving D-PHY. The  
data packet packing format is shown in Figure 6-6  
First  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CH Chirp  
Profile  
Channel  
Number  
NU  
NU  
NU  
NU  
Chirp Num  
5
1
11  
CH Chirp  
Profile  
Channel  
Number  
Chirp Num  
5
1
11  
CH Chirp  
Profile  
Channel  
Number  
Chirp Num  
5
1
11  
CH Chirp  
Profile  
Channel  
Number  
Chirp Num  
11  
Channel 0 Sample 0 i  
Channel 1 Sample 0 i  
Channel 2 Sample 0 i  
Channel 3 Sample 0 i  
Channel 0 Sample 1 i  
Channel 1 Sample 1 i  
Channel 2 Sample 1 i  
Channel 3 Sample 1 i  
CQ Data [11:0]  
Channel 0 Sample 0 q  
11  
Channel 1 Sample 0 q  
11  
Channel 2 Sample 0 q  
11  
Channel 3 Sample 0 q  
11  
Channel 0 Sample 1 q  
11  
Channel 1 Sample 1 q  
11  
Channel 2 Sample 1 q  
11  
Channel 3 Sample 1 q  
Continues till the  
last sample. Max 1023  
11  
CQ Data [23:12]  
11  
CQ Data [35:24]  
CQ Data [47:36]  
11  
CQ Data [59:48]  
NU  
CQ Data [63:60]  
Last  
Figure 6-6. Data Packet Packing Format for 12-Bit Complex Configuration  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
6.6.2 ADC Channels (Service) for User Application  
The IWR1443 device includes provision for an ADC service for user application, where the  
GPADC engine present inside the device can be used to measure up to six external voltages. The  
GPADC1, GPADC2, GPADC3, GPADC4, GPADC5, and GPADC6 pins are used for this purpose.  
ADC itself is controlled by TI firmware running inside the BIST subsystem and access to it for  
customer’s external voltage monitoring purpose is via ‘monitoring API’ calls routed to the BIST  
subsystem. This API could be linked with the user application running on the Master R4.  
BIST subsystem firmware will internally schedule these measurements along with other RF and Analog  
monitoring operations. The API allows configuring the settling time (number of ADC samples to skip)  
and number of consecutive samples to take. At the end of a frame, the minimum, maximum and  
average of the readings will be reported for each of the monitored voltages.  
GPADC Specifications:  
625 Ksps SAR ADC  
0 to 1.8V input range  
10-bit resolution  
For 5 out of the 6 inputs, an optional internal buffer (0.4-1.3V input range) is available. Without the  
buffer, the ADC has a switched capacitor input load modeled with 5pF of sampling capacitance and  
12pF parasitic capacitance (ADC channel mapped to C14, the internal buffer is not available).  
5
ANALOG TEST 1-4,  
GPADC  
ANAMUX  
5
VSENSE  
Figure 6-7. ADC Path  
Table 6-2. GP-ADC Parameter  
PARAMETER  
TYP  
1.8  
UNIT  
V
ADC supply  
ADC unbuffered input voltage range  
ADC buffered input voltage range(1)  
ADC resolution  
0 – 1.8  
0.4 – 1.3  
10  
V
V
bits  
LSB  
LSB  
LSB  
LSB  
Ksps  
ns  
ADC offset error  
±5  
ADC gain error  
±5  
ADC DNL  
–1/+2.5  
±2.5  
625  
ADC INL  
ADC sample rate(2)  
ADC sampling time(2)  
ADC internal cap  
400  
10  
pF  
ADC buffer input capacitance  
2
pF  
(1) Outside of given range, the buffer output will become nonlinear.  
(2) ADC itself is controlled by TI firmware running inside the BIST subsystem. For more details please refer to the API calls.  
60 Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
Table 6-2. GP-ADC Parameter (continued)  
PARAMETER  
TYP  
UNIT  
ADC input leakage current  
3
uA  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
6.7 Identification  
The JTAG identification code is described in the IWR1443 Errata.  
The JTAG interface provides the XDS emulator and boundary scan connectivity to the IWR1443.  
Table 6-3. JTAG Interface  
Signal  
SoC Pin  
Name  
Type  
Function  
Free Running clock when used with emulators viz.  
Spectrum Digital’s XDS200 or TI’s XDS110  
TCK  
M13  
Test Clock  
Input  
TMS  
TDI  
L13  
H13  
J13  
Test Mode Select  
Test Data Input  
Test Data Output  
Input  
Directs the next state of the JTAG state machine  
Scan Data Input to the device  
Input  
TDO  
Output  
Scan Data Output of the device  
6.8 Boot Modes  
As soon as device reset is de-asserted, the R4F processor of the Master (Control) system starts executing  
its bootloader from an on-chip ROM memory.  
The bootloader of the Master system operates in two basic modes and these are specified on the user  
hardware (Printed Circuit Board) by configuring what are termed as “Sense on Power” (SOP) pins. These  
pins on the device boundary are scanned by the bootloader firmware and choice of mode for bootloader  
operation is made.  
Table 6-4 enumerates the relevant SOP combinations and how these map to bootloader operation.  
Table 6-4. SOP Combinations  
SOP2 (P13)  
SOP1 (P11)  
SOP0 (J13)  
BOOTLOADER MODE AND OPERATION  
Functional Mode  
0
0
1
Device Bootloader loads user application from QSPI Serial Flash to  
internal RAM and switches the control to it  
Flashing Mode  
1
0
0
1
1
1
Device Bootloader spins in loop to allow flashing of user application  
(or device firmware patch – Supplied by TI) to the serial flash  
Debug Mode  
Bootloader is bypassed and R4F processor is halted. This allows  
user to connect emulator at a known point  
62  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
6.8.1 Flashing Mode  
In Flashing Mode, the Master System’s bootloader enables the UART driver and expects a data stream  
comprising of User Application (Binary Image) and Device Firmware (referred to as Device Firmware  
Patch or Service Pack) from an external flashing utility. Figure 6-8 shows the flashing utility executing on a  
PC platform, but the protocol can be accomplished on an embedded platform as well.  
Serial  
FLASH  
User Application  
And device firmware  
Flashing  
ROM  
UART  
FLASHING  
UTILITY  
Program  
RAM  
Integrated MCU  
ARM Cortex-R4F  
Radar  
Section  
RAM  
Data  
RAM  
Figure 6-8. Figure 5. Bootloader Flashing Mode  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
 
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
6.8.2 Functional Mode  
In Functional Mode, the Master System’s bootloader looks for a valid image in the serial flash memory,  
interfaced over the QSPI port. If a valid image is found, the bootloader transfers the same to Master  
System’s memory subsystem. The image format contains the MSS application code and the radar  
subsystem patch code.  
If a valid image (or the QSPI Serial Flash is not found), the bootloader initializes the SPI port and awaits  
for the image transfer. This operation comes handy for configurations where the IWR1443 is interfaced to  
an external processor which has its own nonvolatile storage hence can store the user application and the  
IWR1443 device’s firmware image.  
User Application is Loaded  
Serial  
From FLASH to R4F RAM and  
Flash  
Device Patch to Radar Section  
ROM  
UART  
Data  
RAM  
Integrated MCU  
ARM Cortex-R4F  
Radar  
Section  
RAM  
Histogram  
RAM  
External  
Processor  
SPI  
User Application is Loaded  
From FLASH to R4F RAM and  
Device Patch to Radar Section  
Figure 6-9. Bootloader’s Functional Mode  
64  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
7 Applications, Implementation, and Layout  
NOTE  
Information in the following Applications section is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI's customers are responsible for  
determining suitability of components for their purposes. Customers should validate and test  
their design implementation to confirm system functionality.  
7.1 Application Information  
Application information can be found on IWR Application web page.  
7.2 Reference Schematic  
The reference schematic and power supply information can be found in the IWR1443 EVM  
Documentation.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
65  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
7.3 Layout  
7.3.1 Layout Guidelines  
General layout guidelines can be found in the IWR1443 EVM Documentation, IWR1443BOOST Layout  
and Design Files, and IWR1443BOOST Schematics, Assembly Files, and BOM.  
7.3.2 Layout Example  
The IWR1443 EVM, RF layout can be found in the IWR1443BOOST Layout and Design Files and  
IWR1443BOOST Schematics, Assembly Files, and BOM.  
7.3.3 Stackup Details  
Layout Stackup details can be found in the IWR1443BOOST Layout and Design Files and  
IWR1443BOOST Schematics, Assembly Files, and BOM.  
There are specific RF guidelines for the RF Tx and Rx. There are additional layout guidelines for other  
sections in the IWR1443 Checklist for Schematic Review, Layout Review, Bringup/Wakeup.  
66  
Applications, Implementation, and Layout  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
8 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the  
device, generate code, and develop solutions follow.  
8.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix)  
(for example, IWR1443). Texas Instruments recommends two of three possible prefix designators for its  
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development  
from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
Experimental device that is not necessarily representative of the final device's electrical  
specifications and may not use production assembly flow.  
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet  
final electrical specifications.  
null  
Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal  
qualification testing.  
TMDS  
Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality  
and reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system  
because their expected end-use failure rate still is undefined. Only qualified production devices are to be  
used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, ABL0161), the temperature range (for example, blank is the default  
commercial temperature range). Figure 8-1 provides a legend for reading the complete device name for  
any IWR1443 device.  
For orderable part numbers of IWR1443 devices in the ABL0161 package types, see the Package Option  
Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the IWR1443 Device  
Errata.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Device and Documentation Support  
67  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
IWR  
4
43  
_F_  
__  
Q
G
ABL  
__  
A
1
Prefix  
IWR = Industrial  
Generation  
Tray or Tape & Reel  
R = Tape & Reel  
Blank = Tray  
1 = 77 GHz Band  
Variant  
Increasing digital performance, generation based. Gen 1:  
Package  
ABL = BGA  
Security  
G = General  
2 = FE  
4 = FE + FFT + MCU  
6 = FE + MCU + DSP  
Num RX / TX Channels  
RX = 1, 2, 3, 4  
TX = 1, 2, 3  
S = Secure  
Silicon PG Revision  
blank = Rev 2.0  
F = Rev 3.0  
Temperature (TJ)  
A = -40C to 105C  
Features  
blank = baseline  
Safety Level  
Q = Quality Manage  
Figure 8-1. Device Nomenclature  
8.2 Tools and Software  
Models  
IWR1443 BSDL Model Boundary scan database of testable input and output pins for IEEE 1149.1 of the  
specific device.  
IWR1443 IBIS Model IO buffer information model for the IO buffers of the device. For simulation on a  
circuit board, see IBIS Open Forum.  
I\WR1443 Checklist for Schematic Review, Layout Review, Bringup/Wakeup  
A
set of steps in  
spreadsheet form to select system functions and pinmux options. Specific EVM schematic  
and layout notes to apply to customer engineering. A bringup checklist is suggested for  
customers.  
8.3 Documentation Support  
To receive notification of documentation updates—including silicon errata—go to the product folder for  
your device on ti.com (IWR1443). In the upper right corner, click the "Alert me" button. This registers you  
to receive a weekly digest of product information that has changed (if any). For change details, check the  
revision history of any revised document.  
The current documentation that describes the DSP, related peripherals, and other technical collateral  
follows.  
Errata  
IWR1443 Device Errata Describes known advisories, limitations, and cautions on silicon and provides  
workarounds.  
68  
Device and Documentation Support  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1443  
IWR1443  
www.ti.com.cn  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
8.4 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster  
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,  
explore ideas and help solve problems with fellow engineers.  
TI Embedded Processors Wiki Established to help developers get started with Embedded Processors  
from Texas Instruments and to foster innovation and growth of general knowledge about the  
hardware and software surrounding these devices.  
8.5 商标  
E2E is a trademark of Texas Instruments.  
ARM, Cortex are registered trademarks of ARM Limited.  
All other trademarks are the property of their respective owners.  
8.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.7 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data  
(as defined by the U.S., EU, and other Export Administration Regulations) including software, or any  
controlled product restricted by other applicable national regulations, received from disclosing party under  
nondisclosure obligations (if any), or any direct product of such technology, to any destination to which  
such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior  
authorization from U.S. Department of Commerce and other competent Government authorities to the  
extent required by those laws.  
8.8 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2017–2018, Texas Instruments Incorporated  
Device and Documentation Support  
69  
提交文档反馈意见  
产品主页链接: IWR1443  
IWR1443  
ZHCSHP9C MAY 2017REVISED OCTOBER 2018  
www.ti.com.cn  
9 Mechanical, Packaging, and Orderable Information  
9.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the  
most current data available for the designated devices. This data is subject to change without notice and  
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
CAUTION  
The following package information is subject to change without notice.  
70  
Mechanical, Packaging, and Orderable Information  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: IWR1443  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
IWR1443FQAGABL  
IWR1443FQAGABLR  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 105  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ACTIVE  
FCCSP  
FCCSP  
ABL  
161  
161  
176  
RoHS & Green  
Call TI | SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
IWR1443  
Samples  
Samples  
QG  
964FC  
ACTIVE  
ABL  
1000 RoHS & Green  
Call TI | SNAGCU  
-40 to 105  
IWR1443  
QG  
964FC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jul-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
ABL 161  
10.4 x 10.4, 0.65 mm pitch  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225978/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY