JFE150DBVT [TI]

超低噪声、低栅极电流、音频、N 沟道 JFET | DBV | 5 | -40 to 125;
JFE150DBVT
型号: JFE150DBVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

超低噪声、低栅极电流、音频、N 沟道 JFET | DBV | 5 | -40 to 125

栅 栅极
文件: 总30页 (文件大小:2091K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
JFE150  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
JFE150 超低噪音、低栅极电流、音频、N JFET  
设置并为 50μA 20mA 的电流提供出色的噪声性  
能。当偏置电流5mA 该器件会产0.8nV/Hz  
的输入参考噪声从而以极高的输入阻抗 (> 1TΩ) 提  
供超低噪声性能。JFE150 还具有连接到独立钳位节点  
的集成二极管无需添加高泄漏、非线性外部二极管即  
可提供保护。  
1 特性  
• 超低噪声:  
– 电压噪声:  
1kHz 0.8nV/HzIDS = 5mA  
1kHz 0.9nV/HzIDS = 2mA  
– 电流噪声1 kHz 1.8fA/Hz  
• 低栅极电流10 pA最大值)  
• 低输入电容VDS = 5V 24pF  
• 高栅漏电压和栅源击穿电压-40 V  
• 高跨导68mS  
JFE150 可承受 40V 的高漏源电压以及低至 –40V  
的栅源电压和栅漏电压。该器件额定工作温度范围为  
40°C + 125°C并采用 5 引脚 SOT-23 SC70  
封装。  
封装信息  
封装(1)  
• 封装SC70 SOT-23  
封装尺寸标称值)  
2.90mm × 1.60mm  
2.00mm × 1.25mm  
器件型号  
JFE150  
2 应用  
DBVSOT-235)  
DCKSC705)  
麦克风输入  
水听器和船用设备  
DJ 控制器、混频器和其DJ 设备  
专业音频混合器或控制平面  
吉他放大器和其他乐器放大器  
状态监控传感器  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
器件概要  
参数  
栅源击穿电压  
漏源击穿电压  
输入电容  
VGSS  
VDSS  
CISS  
TJ  
-40 V  
±40V  
24pF  
3 说明  
JFE150 是使用德州仪器 (TI) 的现代高性能模拟双极工  
艺构建的 Burr-Brown分立式 JFETJFE150 具有以  
前较旧的分立式 JFET 技术所不具备的性能。JFE150  
提供出色的噪声功率效率和灵活性静态电流可由用户  
40°C +125°C  
结温  
IDSS  
35mA  
漏源饱和电流  
D
VCH  
G
VCL  
S
功能方框图  
超低输入电压噪声  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLPS732  
 
 
 
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
Table of Contents  
8.3 Feature Description.....................................................9  
8.4 Device Functional Modes..........................................10  
9 Application and Implementation.................................. 11  
9.1 Application Information..............................................11  
9.2 Typical Application.................................................... 14  
9.3 Power Supply Recommendations.............................17  
9.4 Layout....................................................................... 17  
10 Device and Documentation Support..........................18  
10.1 Device Support....................................................... 18  
10.2 Documentation Support.......................................... 19  
10.3 接收文档更新通知................................................... 19  
10.4 支持资源..................................................................19  
10.5 Trademarks.............................................................19  
10.6 静电放电警告.......................................................... 19  
10.7 术语表..................................................................... 19  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................6  
7 Parameter Measurement Information............................8  
7.1 AC Measurement Configurations................................8  
8 Detailed Description........................................................9  
8.1 Overview.....................................................................9  
8.2 Functional Block Diagram...........................................9  
Information.................................................................... 19  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (November 2021) to Revision B (April 2023)  
Page  
DBV 封装SOT-235从预发布更改为量产数据正在供货并添加了相关内容.................................... 1  
• 将器件概表中的参数说明从“栅源电压”更改为“栅源击穿电压”并从“漏源电压”更改为“漏源击穿电  
压”以便与电气特性 保持一致........................................................................................................................1  
• 将器件概表中的“漏源饱和电流”值36mA 更改35mA以便与电气特保持一致.............................1  
Changed VCH and VCL pin type and description in Pin Functions to reflect optional nature of diode clamps....  
............................................................................................................................................................................3  
Changed Figure 6-2, Drain-to-Source Current vs Drain-to-Source Voltage, to show correct VGS values.......... 6  
Changed Figure 8-1, VDS vs IDS, to show correct VGS values and improve image resolution..........................10  
Added JFE150EVM user's guide and JFE150 Ultra-Low-Noise Pre-Amp application note to Related  
Documentation .................................................................................................................................................19  
Changes from Revision * (June 2021) to Revision A (November 2021)  
Page  
Changed VGS minimum from 1.1 V to 1.3 V (100 µA), 0.9 V to 1.1 V (2 mA) ..................................... 5  
Changed Figure 6-3, Drain-to-Source Current vs Drain-to-Source Voltage, to show correct VGS values.......... 6  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS732  
2
Submit Document Feedback  
Product Folder Links: JFE150  
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
5 Pin Configuration and Functions  
VCH  
VCL  
G
1
2
3
5
D
S
4
Not to scale  
5-1. DBV, 5-Pin SOT-23 and DCK, 5-Pin SC70 Packages (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
D
NO.  
5
Output  
Input  
Output  
Drain  
Gate  
G
3
S
4
Source  
VCH  
VCL  
1
Positive diode clamp voltage. Float this pin if clamp diodes are not used.  
Negative diode clamp voltage. Float this pin if clamp diodes are not used.  
2
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: JFE150  
English Data Sheet: SLPS732  
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
40  
40  
MAX  
UNIT  
VDS  
Drain-to-source voltage  
40  
0.9  
40  
V
V
V
VGS, VGD  
VVCH  
Gate-to-source, gate-to-drain voltage  
Voltage between VCH to D, G, or S  
Voltage between VCL to D, G, or S  
VVCL  
40  
DC  
20  
200  
50  
IVCL, IVCH  
Clamp diode current  
mA  
50-ms pulse(2)  
IDS  
Drain-to-source current  
Gate-to-source, gate-to-drain current  
Ambient temperature  
mA  
mA  
°C  
50  
20  
55  
55  
55  
IGS, IGD  
TA  
20  
150  
150  
175  
TJ  
Junction temperature  
°C  
Tstg  
Storage temperature  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Maximum diode current pulse specified for 50 ms at 1% duty cycle.  
6.2 ESD Ratings  
VALUE  
±2500  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.02  
0
NOM  
MAX  
IDSS  
UNIT  
IDS  
VGS  
TA  
Drain-to-source current  
Gate-to-source voltage  
Specified temperature  
mA  
V
1.2  
125  
°C  
40  
6.4 Thermal Information  
JFE150  
THERMAL METRIC(1)  
DCK (SC70)  
DBV (SOT-23)  
UNIT  
5 PINS  
197.1  
93.7  
5 PINS  
183.8  
83.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
44.8  
51.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
16.7  
24.9  
ψJT  
44.6  
51.4  
ψJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS732  
4
Submit Document Feedback  
Product Folder Links: JFE150  
 
 
 
 
 
 
 
 
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
6.5 Electrical Characteristics  
at TA = 25°C, IDS = 2 mA, and VDS = 10 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
NOISE  
f = 10 Hz  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
IDS = 100 µA  
IDS = 2 mA  
IDS = 5 mA  
3
2
IDS = 100 µA , VDS = 5 V  
IDS = 2 mA, VDS = 5 V  
IDS = 5 mA, VDS = 5 V  
1.6  
0.9  
1.8  
0.8  
0.19  
0.09  
0.13  
1.8  
en  
Input-referred voltage noise density  
nV/Hz  
f = 0.1 Hz to 10 Hz,  
VDS = 5 V  
Input-referred voltage noise  
Input current noise  
µVPP  
ei  
f = 1 kHz, VDS = 5 V  
fA/Hz  
INPUT CURRENT  
0.2  
0.2  
±10  
VDS = 2 V, VGS = 0.7 V, VVCH = 5 V, VVCL = 5 V  
IG  
Input gate current  
pA  
±2000  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
VDS = 0 V, VGS = 30 V  
±10000  
INPUT VOLTAGE  
VGSS  
VGSC  
Gate-to-source breakdown voltage  
VDS = 0 V, |IG| < 100 µA  
VDS = 10 V, IDS = 0.1 µA  
IDS = 100 µA  
V
V
40  
0.9  
Gate-to-source cutoff voltage  
1.5  
1.3  
1.1  
1.2  
0.7  
0.5  
VGS  
Gate-to-source voltage  
V
IDS = 2 mA  
INPUT IMPEDANCE  
RIN  
Gate input resistance  
1
30  
24  
7
VGS = 5 V to 0 V, VDS = 0 V  
VDS = 0 V  
TΩ  
CISS  
Input capacitance  
VDS = 5 V  
pF  
CRSS  
Reverse transfer capacitance  
VDS = 0 V  
OUTPUT  
24  
22  
35  
46  
57  
IDSS  
gm  
Drain-to-source saturation current  
Transconductance  
VDS = 10 V, VGS = 0 V  
mA  
mS  
TA = 40°C to +125°C  
IDS = 100 µA  
3
18  
68  
IDS = 2 mA  
GFS  
Full conduction transconductance  
Drain-to-source breakdown voltage  
Output capacitance  
VDS = 10 V, VGS = 0 V  
|IDS| < 100 µA, VGS = 2 V  
VDS = 5 V  
55  
40  
80  
mS  
V
VDSS  
COSS  
8
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: JFE150  
English Data Sheet: SLPS732  
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
6.6 Typical Characteristics  
at TA = 25°C, IDS = 2 mA, common-source configuration, and VDS = 5 V (unless otherwise noted)  
45  
VGS = 0 V  
VGS = 0.1 V  
VGS = 0.2 V  
VGS = 0.3 V  
VGS = 0.4 V  
40  
35  
30  
25  
20  
15  
10  
5
0
5
10  
15  
20  
25  
30  
35  
40  
Drain-to-Source Voltage (V)  
6-1. Drain-to-Source Current vs Gate-to-Source Voltage  
6-2. Drain-to-Source Current vs Drain-to-Source Voltage  
6-3. Drain-to-Source Current vs Drain-to-Source Voltage  
6-4. Common Source Transconductance vs Drain-to-Source  
Current  
6-6. Gate Current vs Gate-to-Source Voltage  
6-5. Gate Current vs Drain-to-Source Voltage  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: JFE150  
English Data Sheet: SLPS732  
 
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
6.6 Typical Characteristics (continued)  
at TA = 25°C, IDS = 2 mA, common-source configuration, and VDS = 5 V (unless otherwise noted)  
VDS = 5 V  
6-7. Gate-to-Source Voltage vs Temperature  
6-8. IDSS vs Drain-to-Source Voltage  
f = 1 kHz  
6-9. Input-Referred Noise Density vs Frequency  
6-10. Noise Density Contributors vs Input Gate Resistance  
f = 1 kHz  
6-11. Input-Referred Noise Spectral Density  
vs DraintoSource Current  
6-12. Input, Output, and Reverse Transfer Capacitance vs  
Drain-to-Source Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: JFE150  
English Data Sheet: SLPS732  
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
7 Parameter Measurement Information  
7.1 AC Measurement Configurations  
The circuit configuration used for noise measurements is seen in 7-1. The nominal IDS current is configured in  
the schematic by calibrating V. After IDS is fixed, the VDS voltage is set by calibrating V+. For input-referred  
noise data, the gain of the circuit is calibrated from VIN to VOUT and used for the input-referred gain calculation.  
V+  
100  
10 kꢀ  
RD  
10 kꢀ  
49.9 ꢀ  
œ
VOUT  
+
JFE150  
OPA210  
1 F  
RG  
0 ꢀ  
100 kꢀ  
+
VIN  
RS  
œ
3 mF  
10 k  
Vœ  
7-1. AC Measurement Reference Schematic  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: JFE150  
English Data Sheet: SLPS732  
 
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
8 Detailed Description  
8.1 Overview  
The JFE150 is an ultra-low noise JFET designed to create low-noise gain stages for very high output impedance  
sensors or microphones. Advanced processing technology gives the JFE150 extremely low-noise performance,  
a high gm/CISS ratio, and ultra-low gate-current performance. Input protection diodes are integrated to clamp  
high-voltage spurious input signals without the need for additional input diodes that can add leakage current or  
distortion-creating non-linear capacitance. The JFE150 provides a next-generation device to implement low-  
noise amplifiers for piezoelectric sensors, transducers, large-area condenser microphones, and hydrophones in  
small-package options.  
8.2 Functional Block Diagram  
D
VCH  
G
VCL  
S
8.3 Feature Description  
8.3.1 Ultra-Low Noise  
Junction-gate field-effect transistors (JFETs) are commonly used as an input stage in high-input-impedance, low-  
noise designs in audio, SONAR, vibration analysis, and other technologies. The JFE150 is a new generation  
JFET device that offers very low noise performance at the lowest possible current consumption in high-input-  
impedance amplifier designs. The JFE150 is manufactured on a high-performance analog process technology,  
giving tighter process parameter control than a standard JFET.  
Designs that feature operational amplifiers (op amps) as the primary gain stage are common, but these designs  
are not able to achieve the lowest possible noise as a result of the inherent challenges and tradeoffs required  
from a full operational amplifier design. Noise in JFET designs can be evaluated in two separate regions: low-  
frequency flicker noise and wideband thermal noise. Flicker, or 1/f noise, is extremely important for systems that  
require signal gain at frequencies less that 100 Hz. The JFE150 achieves extremely low 1/f noise in this range.  
Thermal noise is noise in the region greater than 1 kHz and depends on the gain, or gm, of the circuit. The gm is  
a function of the drain-to-source bias current; therefore, thermal noise is also a function of drain-to-source bias  
current. 6-9 shows both 1/f and thermal noise with multiple bias conditions measured using the circuit shown  
in 7-1.  
Noise is typically modeled as a voltage source (voltage noise) and current source (current noise) on the input.  
The 1/f and thermal noise can be represented as voltage noise. Current noise is dominated by current flow into  
the gate, and is called shot noise. The JFE150 features extremely low gate current, and therefore, extremely low  
current noise. 6-10 shows how source impedance on the input is the dominant noise source. In nearly all  
cases, noise created as a result of current noise is negligible.  
8.3.2 Low Gate Current  
The JFE150 features a maximum gate current of 10 pA at room temperature, making the device an excellent  
choice for maximizing the gain and dynamic range from extremely high impedance sensors. Additionally, any  
noise contributions as a result of gate current are minimized because of the negligible shot noise at low current  
levels. As with all JFET devices, when the drain-to-source voltage increases, the gate current also increases.  
Keep the drain-to-source voltage to less than 5 V for the lowest gate input current operation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: JFE150  
English Data Sheet: SLPS732  
 
 
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
8.3.3 Input Protection  
The JFE150 features input protection diodes that are used for surge clamping and ESD events. The diodes are  
rated to withstand high current surges for short times, steering current from the gate (G) pin to the VCH and VCL  
pins. The diodes also feature very low leakage, removing the need for external protection devices that can have  
high leakage currents or nonlinear capacitance that degrade the distortion performance.  
8.4 Device Functional Modes  
The JFE150 functionality is identical to standard N-channel depletion JFET devices. The gate-to-source (VGS  
voltage, drain-to-source voltage (VDS) and drain-to-source current (IDS) determine the region of operation.  
)
For VGS < VGSC: JFE150 conduction channel is closed; IDS is only determined by junction leakage current.  
For VGS > VGSC: Two modes of operation can exist depending on VDS. When VDS is less than the linear  
(saturation) region threshold (see 8-1), the device operates in the linear region, meaning that the device  
behaves as a resistor connected from drain-to-source with minimal variation from any changes in VGS. When  
VDS is greater than the linear (saturation) region threshold, IDS has a strong dependance on VGS, where the  
relationship is described by the parameter gm.  
8-1. VDS vs IDS  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS732  
10  
Submit Document Feedback  
Product Folder Links: JFE150  
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
9.1.1 Input Protection Diodes  
The JFE150 features diodes that are used to help clamp voltage surges that can occur on the input sensor to the  
gate. The diodes are connected between the gate and two separate pins, VCL and VCH. The clamping  
mechanism works by steering current from the gate into the VCL or VCH nodes when the voltage at the gate is  
less than VCL or greater than VCH. 9-1 shows an example of a microphone input circuit where a dc blocking  
capacitor operates with a large dc voltage. When the microphone input is dropped or shorted, the dc blocking  
capacitor discharges into the VCL or VCH nodes, thus helping eliminate large signal transient voltages on the  
gate. There are also clamping diodes from the drain and source to VCL and VCH, respectively. The clamping  
diodes can withstand high surge currents up to 200 mA for 50 ms; however, limit dc current to less than 20 mA.  
48 V  
VCH  
D
6.8 kΩ  
CDC  
10 F  
RG  
G
JFE150  
iG  
RB  
VCL  
S
RL  
9-1. JFE150 Clamping Diode Example  
9-1 shows an example of configuring the diode clamp to protect the JFET against overvoltage in a phantom-  
powered microphone circuit. Phantom power typically delivers 48 V through a 6.8-kΩ pullup resistor to a  
microphone or dynamic load. If the microphone is disconnected, dc blocking capacitor CDC can be biased up to  
48 V. If the input to the capacitor is then shorted to ground (shown by the switch in 9-1), the gate voltage can  
exceed the absolute maximum rating for VGS. In this case, the blocking diode is used, along with current limiting  
resistors RG and RL, to clamp the gate voltage to a safe level. Be aware that the thermal noise of RG couples  
directly into the gate input; therefore, make sure to minimize the resistance of RG.  
The clamping diodes are not required for operation. The VGS voltage can withstand 40 V, so clamping is not  
required if the VGS voltage is kept greater than this limit. If the diodes are not needed, leave the VCL and VCH  
nodes floating.  
Most previous-generation JFET devices featured only three pins (gate, source, and drain). For these devices,  
the gate pin is in the same physical location as the VCL pin on the JFE150. To test the JFE150 in a three-pin  
socket, short pin 2 of the JFE150 (VCL) to pin 3 (G). When the devices are connected with pin 2 shorted to pin 3,  
the diode from VCL is shorted out and cannot provide any clamping protection. The input capacitance (CISS) also  
increases by 1 pF; see 6-12.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: JFE150  
English Data Sheet: SLPS732  
 
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
9.1.2 Capacitive Transducer Input Stage  
Piezoelectric transducers are used for many different applications that require low-noise, high-gain performance.  
These transducers exhibit high output impedance (> 10 MΩ), and therefore require very high impedance loading  
for subsequent input stages. The JFE150 has ultra-low input gate current (maximum IG = ±10 pA) and low input  
capacitance (CISS = 24 pF), which makes the device an excellent choice for transducers with an effective  
capacitance of greater than 240 pF. For smaller, lower-capacitance transducers, the CISS can impact the gain of  
the front end by attenuating the input signal, thereby reducing the noise performance.  
9.1.3 Common-Source Amplifier  
The common-source amplifier is a commonly used open-loop gain stage for JFET amplifiers. 9-2 shows the  
basic circuit.  
V+  
RD  
VOUT  
JFE150  
RG  
+
VIN  
RS  
œ
9-2. Common-Source Amplifier  
方程1 shows the equation for gain of the circuit in 9-2.  
V
gm*R  
D
1 + gm*R  
OUT  
=  
(1)  
V
IN  
S
Generally, higher gain results in improved noise performance. Gain increases as the bias current is increased as  
a result of increasing gm (see 6-4). As a result, the input-referred noise decreases as bias current is  
increased (see 6-9). Any JFET design must make a tradeoff between current consumption and noise  
performance. The JFE150, however, delivers significantly lower noise performance than most operational  
amplifiers at the same current consumption. The bias current (IDS) is set by the value of the source resistor, RS,  
and the threshold voltage, VT, of the JFE150. 9-3 is a graph showing nominal IDS vs RS.  
9-3. Drain-to-Source Current vs RS, VDS = 5 V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS732  
12  
Submit Document Feedback  
Product Folder Links: JFE150  
 
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
The bias current varies according to the resistor and threshold voltage tolerances. Additionally, thermal noise  
associated with RS couples directly into the gain of the circuit, degrading the overall noise performance. To  
improve the circuit in 9-4, use a current-source biasing scheme. Current-source biasing removes the JFET  
threshold variation from the biasing scheme, and allows for lower-value filtering capacitance (CS) for equivalent  
filtering due to the high output impedance of current sources.  
V+  
RD  
VOUT  
JFE150  
RG  
+
CS  
VIN  
œ
IBIAS  
Vœ  
9-4. Common-Source Amplifier With Current-Source Biasing  
9.1.4 Composite Amplifiers  
The JFE150 can be configured to provide a low-noise, high-input impedance front-end stage for a typical op  
amp. Open-loop transistor gain stages shown previously suffer from wide gain variations that are dependent on  
the forward transcondutance of the JFE150. When precision gain is required, the composite amplifier (JFET  
front-end + operational amplifier) achieves excellent results by allowing for a fixed gain determined by external  
resistors, and improving the noise and bandwidth of the operational amplifier. The JFE150 gain stage provides a  
boost to the open-loop performance of the system, extending the bandwidth beyond what the operational  
amplifier alone can provide, and gives a high-input impedance, ultra-low noise input stage to interface with high  
source impedance microphones.  
9-5 shows a generic schematic representation of a current-feedback composite amplifier. The component  
requirements and tradeoffs are listed in 9-1.  
CF  
VDD  
RD  
CD  
œ
OPA  
JFE150  
VOUT  
VBIASO  
+
CB  
RG  
+
RB  
VIN  
RS2  
œ
RS  
CS  
9-5. Low Noise, High Input Impedance Composite Amplifier  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: JFE150  
English Data Sheet: SLPS732  
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
9-1. Composite Amplifier Component List and Function  
COMPONENT  
DESCRIPTION  
RELATED EQUATION  
DC blocking capacitor for input source. Use a dc blocking capacitor if  
the dc voltage of the input source is not the same as the gate bias  
voltage.  
1
f
=
(2)  
CB  
–3dBDC  
2* π*R  
R
*C  
B1 B2 B1  
Bias resistor. Use biasing resistors to set the dc voltage at the gate.  
High-value resistors can be used without an impact to noise if the  
source impedance and bypass capacitor have sufficiently low  
impedance.  
RB  
See 方程2  
Gate resistor. Can be used to help limit current flow into gate in  
overvoltage cases.  
RG  
RD  
RS  
CD  
Drain resistor. Sets gain of JFET stage in common source biasing,  
along with gm and RS.  
Source resistor. Used to set bias of JFET; see 9-3. Resistor  
thermal noise directly impacts noise performance.  
DC blocking capacitor. Blocks nominal drain voltage so the amplifier  
operates at a midsupply bias point.  
Feedback capacitor. Along with RF, this capacitor sets the 3dB  
high-pass cutoff frequency when the amplifier gain-bandwidth product  
(GBW) is sufficiently high enough to support the 3dB frequency. If  
the GBW is not high enough, then the GBW sets the 3-dB  
frequency.  
1
f
=
(3)  
CF  
–3dBHP  
2*π*R *C  
F
F
Feedback resistor. Along with CF, this resistor sets the 3dB high-  
pass cutoff frequency when the amplifier gain-bandwidth product  
(GBW) is sufficiently high enough to support the 3dB frequency. If  
the GBW is not high enough, then the GBW sets the 3-dB  
frequency.  
RF  
See 方程3  
V
R
F2  
Current feedback gain-setting resistor 1. Along with RS2, sets gain  
closed-loop.  
OUT  
RF2  
RS2  
CS  
=
(4)  
(5)  
V
R
IN  
S2  
Current feedback gain-setting resistor 2. Along with RS2, sets gain  
closed-loop. Resistor thermal noise directly impacts noise  
performance.  
See 方程4  
1
Current feedback ac-coupling capacitor. This capacitor, along with R2,  
sets the low-pass 3-dB frequency.  
f
=
–3dBLP  
2*π*R *C  
S2  
S
9.2 Typical Application  
The JFE150 can be configured to provide a low-noise, high-input-impedance front-end stage for a typical op  
amp. Single-transistor gain stages shown previously suffer from wide gain variations dependent on the forward  
transcondutance of the JFE150. When precision gain is required, the composite amplifier (JFET front-end +  
operational amplifier) achieves excellent results.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS732  
14  
Submit Document Feedback  
Product Folder Links: JFE150  
 
 
 
 
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
CF  
10 pF  
12 V  
RD  
10 k  
CD  
10 F  
œ
JFE150  
VOUT  
CB  
10 F  
6 V  
RG  
10  
+
OPA202  
+
RB  
1 Mꢁ  
RS2  
10 ꢁ  
VIN  
œ
RS  
300 ꢁ  
CS  
470 F  
9-6. Low-Noise, High-Input-Impedance Composite Amplifier  
9.2.1 Design Requirements  
PARAMETER  
DESIGN GOAL  
Gain  
60 dB  
Frequency response  
Noise  
60 Hz to 20 kHz  
< 1.5 nV/Hz  
< 100 pA  
Input current  
Output swing  
±5 V  
9.2.2 Detailed Design Procedure  
This design provides 60 dB of gain with extremely high input impedance at a very low frequency response. The  
order of design priorities are as follows:  
The JFE150 bias current is set by selecting the desired bias current and noise tradeoff (see 6-11). The  
input-referred noise is dominated by the JFE150 bias current and gain. To set the bias current point, adjust  
the source resistance according to 9-3.  
After the bias current is selected, set the JFET stage gain as high as possible without pushing the device into  
the linear region of operation. This is achieved by using the largest drain resistor (RD) possible while  
maintaining a minimum of 2 V across the drain to source nodes. Be aware that the amplifier forces the drain  
node to match the noninverting amplifier input in normal closed-loop operation. Both ac and dc voltages must  
be considered, but generally, only the dc operating point on the drain is considered because the ac voltage  
swing is minimal.  
Set the closed gain according to RF2 and RS2, as seen in 方程4. Thermal noise from RS2 directly couples  
into the circuit; therefore, small values for this resistor are required.  
CS is required to block dc voltages from altering the bias point set by source resistor RS. CS also forms the  
low-frequency response as described in 方程5.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: JFE150  
English Data Sheet: SLPS732  
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
9.2.3 Application Curves  
9-7. Voltage Gain  
9-8. Input-Referred Noise Density  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS732  
16  
Submit Document Feedback  
Product Folder Links: JFE150  
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
9.3 Power Supply Recommendations  
The JFE150 is a JFET transistor with clamping diodes. There are no specific power-supply connections;  
however, take care not to exceed any absolute maximum voltages on any of the pins if system supply voltages  
greater than or equal to 40 V are used.  
9.4 Layout  
9.4.1 Layout Guidelines  
For best operational performance of the device, use good printed-circuit board (PCB) layout practices, including:  
Reduce parasitic coupling by running the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as  
opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Keep high impedance input signals away from noisy traces.  
Make sure supply voltages are adequately filtered.  
Minimize distance between source-connected and drain-connected components to the JFE150.  
Consider a driven, low-impedance guard ring around the critical gate traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
Clean the PCB following board assembly for best performance.  
Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, bake the PCB assembly to remove moisture  
introduced into the device packaging during the cleaning process. A low temperature, post-cleaning bake at  
85°C for 30 minutes is sufficient for most circumstances.  
9.4.2 Layout Example  
VDD  
RD  
VDD  
VSS  
VCH  
VCL  
G
D
S
VSS  
RS  
VIN  
CS  
9-9. JFE150 Layout Example, Common Source Configuration  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: JFE150  
English Data Sheet: SLPS732  
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 Development Support  
10.1.1.1 PSpice® for TI  
PSpice® for TI 是可帮助评估模拟电路性能的设计和仿真环境。在进行布局和制造之前创建子系统设计和原型解决  
方案可降低开发成本并缩短上市时间。  
10.1.1.2 TINA-TI™ 仿真软件免费下载)  
TINA-TI仿真软件是一款简单易用、功能强大且基于 SPICE 引擎的电路仿真程序。TINA-TI 仿真软件是 TINA™  
软件的一款免费全功能版本除了一系列无源和有源模型外此版本软件还预先载入了一个宏模型库。TINA-TI 仿  
真软件提供所有传统SPICE 直流、瞬态和频域分析以及其他设计功能。  
TINA-TI 仿真软件提供全面的后处理能力便于用户以多种方式获得结果用户可从设计工具和仿真网页免费下  
。虚拟仪器提供选择输入波形和探测电路节点、电压以及波形的能力从而构建一个动态的快速启动工具。  
备注  
必须安装 TINA 软件或者 TINA-TI 软件后才能使用这些文件。请从 TINA-TI™ 软件文件夹中下载免费的  
TINA-TI 仿真软件。  
10.1.1.3 TI 参考设计  
TI 参考设计是TI 的精密模拟应用专家创建的模拟解决方案。TI 参考设计提供了许多实用电路的工作原理、组件  
选择、仿真、完整印刷电路板 (PCB) 电路原理图和布局布线、物料清单以及性能测量结果。TI 参考设计可在线获  
网址https://www.ti.com/reference-designs。  
10.1.1.4 滤波器设计工具  
滤波器设计工具是一款简单、功能强大且便于使用的有源滤波器设计程序。利用滤波设计器用户可使用精选 TI  
运算放大器TI 供应商合作伙伴提供的无源器件来打造理想滤波器设计方案。  
设计工具和仿真网页以基于网络的工具形式提供滤波设计工具。用户通过该工具可在短时间内完成多级有源滤波  
器解决方案的设计、优化和仿真。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS732  
18  
Submit Document Feedback  
Product Folder Links: JFE150  
 
 
JFE150  
www.ti.com.cn  
ZHCSLR8B JUNE 2021 REVISED APRIL 2023  
10.2 Documentation Support  
10.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, JFE150 Ultra-Low-Noise Pre-Amp application note  
Texas Instruments, JFE150 Evaluation Module user's guide  
Texas Instruments, OPAx202 Precision, Low-Noise, Heavy Capacitive Drive, 36-V Operational Amplifiers  
data sheet  
Texas Instruments, OPAx210 2.2-nV/Hz Precision, Low-Power, 36-V Operational Amplifiers data sheet  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
Burr-Brown, TINA-TI, and TI E2Eare trademarks of Texas Instruments.  
TINAis a trademark of DesignSoft, Inc.  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
10.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: JFE150  
English Data Sheet: SLPS732  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
JFE150DBVR  
JFE150DBVT  
JFE150DCKR  
JFE150DCKT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
5
5
5
5
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2GLW  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
SN  
2GLW  
1IF  
SC70  
SN  
1IF  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-May-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
JFE150DBVR  
JFE150DBVT  
JFE150DCKR  
JFE150DCKT  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
5
5
5
5
3000  
250  
180.0  
180.0  
178.0  
178.0  
8.4  
8.4  
9.0  
9.0  
3.2  
3.2  
2.4  
2.4  
3.2  
3.2  
2.5  
2.5  
1.4  
1.4  
1.2  
1.2  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
3000  
250  
SC70  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
JFE150DBVR  
JFE150DBVT  
JFE150DCKR  
JFE150DCKT  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
5
5
5
5
3000  
250  
210.0  
210.0  
180.0  
180.0  
185.0  
185.0  
180.0  
180.0  
35.0  
35.0  
18.0  
18.0  
3000  
250  
SC70  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

JFE150DCKR

超低噪声、低栅极电流、音频、N 沟道 JFET | DCK | 5 | -40 to 125
TI

JFE150DCKT

超低噪声、低栅极电流、音频、N 沟道 JFET | DCK | 5 | -40 to 125
TI

JFE2140

双路、超低噪声、低栅极电流、音频、N 沟道 JFET
TI

JFE2140DR

双路、超低噪声、低栅极电流、音频、N 沟道 JFET | D | 8 | -40 to 125
TI

JFG

Axial Met Polyester & Polypropylene Film Capacitor
JBCAPACITORS

JFH

Non-Inductive, Epoxy Dip Coated, Polyester Film Capacitor
JBCAPACITORS

JFJ

Box Type Met Polyester Film Capacitor, Stacked
JBCAPACITORS

JFK

Polypropylene Film Capacitor
JBCAPACITORS

JFK-010

AC-DC Regulated Power Supply Module, 2 Output, 11W, 98 X 46 MM, 27 MM HEIGHT
TDK

JFK-60-B

Plug-in Signal Conditioners M-UNIT
MSYSTEM

JFK-60-B/1

Plug-in Signal Conditioners M-UNIT
MSYSTEM

JFK-60-B/10

Plug-in Signal Conditioners M-UNIT
MSYSTEM