LF398MX/NOPB [TI]

单片采样保持电路(10µs 采集,7mV 失调电压) | D | 14 | 0 to 70;
LF398MX/NOPB
型号: LF398MX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单片采样保持电路(10µs 采集,7mV 失调电压) | D | 14 | 0 to 70

放大器 光电二极管 采样保持电路
文件: 总38页 (文件大小:3397K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
LFx98x 单片采样保持电路  
1 特性  
3 说明  
1
通过 ±5V ±18V 的电源工作  
采集时间少于 10μs  
LFx98x 器件是采用 BI-FET 技术的单片采样保持电  
路,利用快速采集信号和低下降率获得超高的直流精  
度。作为单位增益跟随器,直流增益精度为 0.002%  
(典型值),采集时间低至 6μs (0.01)。采用双极输  
入级以实现低偏移电压和宽带宽。输入偏移调整是通过  
单个引脚完成的,不会降低输入偏移漂移。宽带宽允许  
LFx98x 包含在 1MHz 运算放大器的反馈环路内,  
而不会出现稳定性问题。输入阻抗为 1010Ω,允许使用  
高源阻抗,而不会降低精度。  
逻辑输入与 TTLPMOSCMOS 兼容  
Ch = 0.01µF 时保持步进为 0.5mV(典型值)  
低输入偏移  
增益精度为 0.002%  
在保持模式下,输出噪声较低  
在保持模式期间,输入特点不变  
在采样或保持模式中,电源抑制比高  
宽带宽  
P 通道结型 FET 与输出放大器中的双极器件相结合,  
通过 1μF 保持电容器提供低至 5mV/min 的下降率。  
JFET 的噪声显著低于先前设计中使用的 MOS 器件,  
并且不会出现高温不稳定性。总体设计可确保在保持模  
式下没有输入到输出的馈通,即使输入信号等于电源电  
压。  
符合太空要求,符合 JM38510  
2 应用  
具有可变复位电平的斜坡发生器  
具有可编程复位电平的积分器  
同步相关器  
LFx98x 上的逻辑输入与低输入电流完全不同,允许直  
接连接到 TTLPMOS CMOS。差分阈值为  
1.4VLFx98x ±5V ±18V 的电源供电。  
双通道开关  
直流和交流归零  
阶梯生成器  
A 版本可提供更严格的电气规格。  
器件信息(1)  
器件编号  
LF298LF398-N  
LFx98x  
封装  
SOIC (14)  
封装尺寸(标称值)  
8.65mm × 3.91mm  
9.08mm × 9.08mm  
9.81mm × 6.35mm  
TO-99 (8)  
PDIP (8)  
LF398-N  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
典型连接  
采集时间  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNOSBI3  
 
 
 
 
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
9.1 Application Information............................................ 15  
9.2 Typical Applications ................................................ 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Recommended Operating Conditions....................... 4  
6.3 Thermal Information.................................................. 4  
6.4 Electrical Characteristics, LF198-N and LF298 ........ 5  
6.5 Electrical Characteristics, LF198A-N ........................ 6  
6.6 Electrical Characteristics, LF398-N........................... 7  
6.7 Electrical Characteristics, LF398A-N (OBSOLETE) . 8  
6.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 12  
7.1 TTL and CMOS 3 V VLOGIC (Hi State) 7 V ....... 12  
7.2 CMOS 7 V VLOGIC (Hi State) 15 V.................... 12  
7.3 Operational Amplifier Drive ..................................... 13  
Detailed Description ............................................ 14  
9
10 Power Supply Recommendations ..................... 26  
11 Layout................................................................... 27  
11.1 Layout Guidelines ................................................. 27  
11.2 Layout Example .................................................... 27  
12 器件和文档支持 ..................................................... 28  
12.1 器件支持................................................................ 28  
12.2 相关链接................................................................ 28  
12.3 社区资源................................................................ 28  
12.4 ....................................................................... 28  
12.5 静电放电警告......................................................... 28  
12.6 术语表 ................................................................... 28  
13 机械、封装和可订购信息....................................... 28  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (October 2015) to Revision C  
Page  
更新了器件信息引脚功能............................................................................................................................................ 1  
Separated Electrical Characteristics into four tables: LF198-N and LF298; LF198A-N; LF398-N; and LF398A-N  
(OBSOLETE).......................................................................................................................................................................... 5  
Changes from Revision A (July 2000) to Revision B  
Page  
已添加 ESD 额定值表、热性能信息表、特性 说明部分、器件功能模式应用和实施部分、电源建议部分、布局部  
分、器件和文档支持部分以及机械、封装和可订购信息部分 .................................................................................................. 1  
2
Copyright © 2000–2018, Texas Instruments Incorporated  
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
www.ti.com.cn  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
5 Pin Configuration and Functions  
P Package  
8-Pin PDIP  
Top View  
D Package  
14-Pin SOIC  
Top View  
LMC Package  
8-Pin TO-99  
Top View  
A military RETS electrical test specification is available on request. The LF198-N may also be procured to Standard  
Military Drawing #5962-8760801GA or to MIL-STD-38510 part ID JM38510/12501SGA.  
Pin Functions  
PIN  
LF298, LF398-N  
LFx98x  
LF398-N  
TYPE(1)  
DESCRIPTION  
NAME  
SOIC-14  
TO-99  
PDIP-8  
V+  
12  
1
2
1
2
P
A
A
P
O
A
I
Positive supply  
OFFSET ADJUST  
14  
DC offset compensation pin  
Analog Input  
INPUT  
V–  
1
3
3
3
4
4
Negative supply  
OUTPUT  
7
5
5
Output  
Ch  
8
6
6
Hold capacitor  
LOGIC REFERENCE  
10  
11  
7
7
Reference for LOGIC input  
Logic input for Sample and Hold modes  
No connect  
LOGIC  
NC  
8
8
I
2, 4, 5, 6, 9, 13  
NA  
(1) P = Power, G = Ground, I = Input, O = Output, A = Analog  
Copyright © 2000–2018, Texas Instruments Incorporated  
3
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
±18  
500  
125  
85  
UNIT  
V
Supply voltage  
(3)  
Power dissipation  
(Package limitation, see  
LF198-N, LF198A-N  
LF298  
)
mW  
°C  
°C  
°C  
V
–55  
–25  
0
Operating ambient temperature  
LF398-N, LF398A-N  
70  
Input voltage  
±18  
30  
(4)  
Logic-to-logic reference differential voltage (see  
Output short circuit duration  
)
7
V
Indefinite  
Hold capacitor short circuit duration  
10  
sec  
°C  
°C  
°C  
°C  
°C  
H package (soldering, 10 sec.)  
N package (soldering, 10 sec.)  
M package: vapor phase (60 sec.)  
Infrared (15 sec.)  
260  
260  
215  
220  
150  
Lead temperature  
Storage temperature, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.  
(3) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, RθJA, and the ambient temperature,  
TA. The maximum allowable power dissipation at any temperature is PD = (TJMAX TA) / RθJA, or the number given in the Absolute  
Maximum Ratings, whichever is lower. The maximum junction temperature, TJMAX, for the LF198-N and LF198A-N is 150°C; for the  
LF298, 115°C; and for the LF398-N and LF398A-N, 100°C.  
(4) Although the differential voltage may not exceed the limits given, the common-mode voltage on the logic pins may be equal to the  
supply voltages without causing damage to the circuit. For proper logic operation, however, one of the logic pins must always be at least  
2 V below the positive supply and 3 V above the negative supply.  
6.2 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Supply voltage  
±15  
V
LF198-N, LF198A-N  
Ambient temperature LF298  
LF398-N, LF398A-N  
–55  
–25  
0
125  
85  
TJ  
°C  
70  
6.3 Thermal Information  
LF398-N  
P (PDIP)  
8 PINS  
48.9  
LF298, LF398-N  
LFx98x  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
80.6  
LMC (TO-99)  
UNIT  
8 PINS  
85(2)  
20  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
37.3  
38.1  
26.2  
35.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
14.3  
5.8  
ψJB  
26.0  
35.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) Board mount in 400 LF/min air flow.  
4
Copyright © 2000–2018, Texas Instruments Incorporated  
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
www.ti.com.cn  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
6.4 Electrical Characteristics, LF198-N and LF298  
The following specifications apply for –VS + 3.5 V VIN +VS – 3.5 V, +VS = +15 V, –VS = –15 V, TA = TJ = 25°C, Ch = 0.01  
µF, RL = 10 kΩ, LOGIC REFERENCE = 0 V, LOGIC HIGH = 2.5 V, LOGIC LOW = 0 V unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TJ = 25°C  
1
3
5
mV  
mV  
nA  
Input offset voltage(1)  
Full temperature range  
TJ = 25°C  
5
25  
75  
Input bias current(1)  
Input impedance  
Full temperature range  
TJ = 25°C  
nA  
10  
GΩ  
TJ = 25°C, RL = 10 k  
Full temperature range  
TJ = 25°C, Ch = 0.01 µF  
TJ = 25°C, “HOLD” mode  
Full temperature range  
TJ = 25°C, Ch = 0.01 µF, VOUT = 0  
TJ 25°C  
0.002%  
0.005%  
0.02%  
Gain error  
Feedthrough attenuation ratio at 1 kHz  
Output impedance  
86  
96  
dB  
Ω
0.5  
2
4
Ω
HOLD step(2)  
Supply current(1)  
0.5  
4.5  
2
2
mV  
mA  
µA  
pA  
µs  
µs  
mA  
dB  
V
5.5  
10  
100  
Logic and logic reference input current  
Leakage current into hold capacitor(1)  
TJ = 25°C  
TJ = 25°C, hold mode(3)  
ΔVOUT = 10 V, Ch = 1000 pF  
CH = 0.01 µF  
30  
4
Acquisition time to 0.1%  
20  
5
Hold capacitor charging current  
Supply voltage rejection ratio  
Differential logic threshold  
VIN – VOUT = 2 V  
VOUT = 0  
80  
110  
1.4  
TJ = 25°C  
0.8  
2.4  
(1) These parameters ensured over a supply voltage range of ±5 to ±18 V, and an input range of –VS + 3.5 V VIN +VS – 3.5 V.  
(2) Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. 1 pF, for instance, will create an  
additional 0.5-mV step with a 5-V logic swing and a 0.01-µF hold capacitor. Magnitude of the hold step is inversely proportional to hold  
capacitor value.  
(3) Leakage current is measured at a junction temperature of 25°C. The effects of junction temperature rise due to power dissipation or  
elevated ambient can be calculated by doubling the 25°C value for each 11°C increase in chip temperature. Leakage is guaranteed over  
full input signal range.  
Copyright © 2000–2018, Texas Instruments Incorporated  
5
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
6.5 Electrical Characteristics, LF198A-N  
The following specifications apply for –VS + 3.5 V VIN +VS – 3.5 V, +VS = +15 V, –VS = –15 V, TA = TJ = 25°C, Ch = 0.01  
µF, RL = 10 kΩ, LOGIC REFERENCE = 0 V, LOGIC HIGH = 2.5 V, LOGIC LOW = 0 V unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TJ = 25°C  
1
1
2
mV  
mV  
nA  
Input offset voltage(1)  
Full temperature range  
TJ = 25°C  
5
25  
75  
Input bias current(1)  
Input impedance  
Full temperature range  
TJ = 25°C  
nA  
10  
GΩ  
TJ = 25°C, RL = 10 k  
Full temperature range  
TJ = 25°C, Ch = 0.01 µF  
TJ = 25°C, “HOLD” mode  
Full temperature range  
TJ = 25°C, Ch = 0.01 µF, VOUT = 0  
TJ 25°C  
0.002%  
0.005%  
0.01%  
Gain error  
Feedthrough attenuation ratio at 1 kHz  
Output impedance  
86  
96  
dB  
Ω
0.5  
1
4
Ω
HOLD step(2)  
Supply current(1)  
0.5  
4.5  
2
1
mV  
mA  
µA  
pA  
µs  
µs  
mA  
dB  
V
5.5  
10  
100  
6
Logic and logic reference input current  
Leakage current into hold capacitor(1)  
TJ = 25°C  
TJ = 25°C, hold mode(3)  
ΔVOUT = 10 V, Ch = 1000 pF  
CH = 0.01 µF  
30  
4
Acquisition time to 0.1%  
20  
5
25  
Hold capacitor charging current  
Supply voltage rejection ratio  
Differential logic threshold  
VIN – VOUT = 2 V  
VOUT = 0  
90  
110  
1.4  
TJ = 25°C  
0.8  
2.4  
(1) These parameters ensured over a supply voltage range of ±5 to ±18 V, and an input range of –VS + 3.5 V VIN +VS – 3.5 V.  
(2) Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. 1 pF, for instance, will create an  
additional 0.5-mV step with a 5-V logic swing and a 0.01-µF hold capacitor. Magnitude of the hold step is inversely proportional to hold  
capacitor value.  
(3) Leakage current is measured at a junction temperature of 25°C. The effects of junction temperature rise due to power dissipation or  
elevated ambient can be calculated by doubling the 25°C value for each 11°C increase in chip temperature. Leakage is guaranteed over  
full input signal range.  
6
Copyright © 2000–2018, Texas Instruments Incorporated  
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
www.ti.com.cn  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
6.6 Electrical Characteristics, LF398-N  
The following specifications apply for –VS + 3.5 V VIN +VS – 3.5 V, +VS = +15 V, –VS = –15 V, TA = TJ = 25°C, Ch = 0.01  
µF, RL = 10 kΩ, LOGIC REFERENCE = 0 V, LOGIC HIGH = 2.5 V, LOGIC LOW = 0 V unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TJ = 25°C  
2
7
10  
mV  
mV  
nA  
Input offset voltage(1)  
Full temperature range  
TJ = 25°C  
10  
50  
Input bias current(1)  
Input impedance  
Full temperature range  
TJ = 25°C  
100  
nA  
10  
GΩ  
TJ = 25°C, RL = 10 k  
Full temperature range  
TJ = 25°C, Ch = 0.01 µF  
TJ = 25°C, “HOLD” mode  
Full temperature range  
TJ = 25°C, Ch = 0.01 µF, VOUT = 0  
TJ 25°C  
0.004%  
0.01%  
0.02%  
Gain error  
Feedthrough attenuation ratio at 1 kHz  
Output impedance  
80  
90  
dB  
Ω
0.5  
4
6
Ω
HOLD step(2)  
Supply current(1)  
1
4.5  
2
2.5  
6.5  
10  
mV  
mA  
µA  
pA  
µs  
µs  
mA  
dB  
V
Logic and logic reference input current  
Leakage current into hold capacitor(1)  
TJ = 25°C  
TJ = 25°C, hold mode(3)  
ΔVOUT = 10 V, Ch = 1000 pF  
CH = 0.01 µF  
30  
4
200  
Acquisition time to 0.1%  
20  
5
Hold capacitor charging current  
Supply voltage rejection ratio  
Differential logic threshold  
VIN – VOUT = 2 V  
VOUT = 0  
80  
110  
1.4  
TJ = 25°C  
0.8  
2.4  
(1) These parameters ensured over a supply voltage range of ±5 to ±18 V, and an input range of –VS + 3.5 V VIN +VS – 3.5 V.  
(2) Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. 1 pF, for instance, will create an  
additional 0.5-mV step with a 5-V logic swing and a 0.01-µF hold capacitor. Magnitude of the hold step is inversely proportional to hold  
capacitor value.  
(3) Leakage current is measured at a junction temperature of 25°C. The effects of junction temperature rise due to power dissipation or  
elevated ambient can be calculated by doubling the 25°C value for each 11°C increase in chip temperature. Leakage is guaranteed over  
full input signal range.  
Copyright © 2000–2018, Texas Instruments Incorporated  
7
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
6.7 Electrical Characteristics, LF398A-N (OBSOLETE)  
The following specifications apply for –VS + 3.5 V VIN +VS – 3.5 V, +VS = +15 V, –VS = –15 V, TA = TJ = 25°C, Ch = 0.01  
µF, RL = 10 kΩ, LOGIC REFERENCE = 0 V, LOGIC HIGH = 2.5 V, LOGIC LOW = 0 V unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TJ = 25°C  
2
2
3
mV  
mV  
nA  
Input offset voltage(1)  
Full temperature range  
TJ = 25°C  
10  
25  
50  
Input bias current(1)  
Input impedance  
Full temperature range  
TJ = 25°C  
nA  
10  
GΩ  
TJ = 25°C, RL = 10 k  
Full temperature range  
TJ = 25°C, Ch = 0.01 µF  
TJ = 25°C, “HOLD” mode  
Full temperature range  
TJ = 25°C, Ch = 0.01 µF, VOUT = 0  
TJ 25°C  
0.004%  
0.005%  
0.01%  
Gain error  
Feedthrough attenuation ratio at 1 kHz  
Output impedance  
86  
90  
dB  
Ω
0.5  
1
6
Ω
HOLD step(2)  
Supply current(1)  
1
4.5  
2
1
mV  
mA  
µA  
pA  
µs  
µs  
mA  
dB  
V
6.5  
10  
100  
6
Logic and logic reference input current  
Leakage current into hold capacitor(1)  
TJ = 25°C  
TJ = 25°C, hold mode(3)  
ΔVOUT = 10 V, Ch = 1000 pF  
CH = 0.01 µF  
30  
4
Acquisition time to 0.1%  
20  
5
25  
Hold capacitor charging current  
Supply voltage rejection ratio  
Differential logic threshold  
VIN – VOUT = 2 V  
VOUT = 0  
90  
110  
1.4  
TJ = 25°C  
0.8  
2.4  
(1) These parameters ensured over a supply voltage range of ±5 to ±18 V, and an input range of –VS + 3.5 V VIN +VS – 3.5 V.  
(2) Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. 1 pF, for instance, will create an  
additional 0.5-mV step with a 5-V logic swing and a 0.01-µF hold capacitor. Magnitude of the hold step is inversely proportional to hold  
capacitor value.  
(3) Leakage current is measured at a junction temperature of 25°C. The effects of junction temperature rise due to power dissipation or  
elevated ambient can be calculated by doubling the 25°C value for each 11°C increase in chip temperature. Leakage is guaranteed over  
full input signal range.  
8
Copyright © 2000–2018, Texas Instruments Incorporated  
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
www.ti.com.cn  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
6.8 Typical Characteristics  
Figure 1. Aperture Time  
Figure 2. Dielectric Absorption Error in Hold Capacitor  
Figure 3. Dynamic Sampling Error  
Figure 4. Output Droop Rate  
Figure 5. Hold Step  
Figure 6. Hold Settling Time  
Copyright © 2000–2018, Texas Instruments Incorporated  
9
 
 
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
Figure 7. Leakage Current into Hold Capacitor  
Figure 8. Phase and Gain (Input to Output, Small Signal)  
Figure 10. Power Supply Rejection  
Figure 9. Gain Error  
Figure 11. Output Short Circuit Current  
Figure 12. Output Noise  
10  
Copyright © 2000–2018, Texas Instruments Incorporated  
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
www.ti.com.cn  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
Typical Characteristics (continued)  
Figure 14. Feedthrough Rejection Ratio (Hold Mode)  
Figure 13. Input Bias Current  
Figure 15. Hold Step vs Input Voltage  
Figure 16. Output Transient at Start of Sample Mode  
Figure 17. Output Transient at Start of Hold Mode  
Copyright © 2000–2018, Texas Instruments Incorporated  
11  
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 TTL and CMOS 3 V VLOGIC (Hi State) 7 V  
Threshold = 1.4 V  
Figure 18. Sample When Logic High With TTL and CMOS Biasing  
Threshold = 1.4 V  
Select for 2.8 V at pin 8  
Figure 19. Sample When Logic Low With TTL and CMOS Biasing  
7.2 CMOS 7 V VLOGIC (Hi State) 15 V  
Threshold = 0.6 (V+) + 1.4 V  
Figure 20. Sample When Logic High With CMOS Biasing  
12  
Copyright © 2000–2018, Texas Instruments Incorporated  
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
www.ti.com.cn  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
CMOS 7 V VLOGIC (Hi State) 15 V (continued)  
Threshold = 0.6 (V+) –1.4V  
Figure 21. Sample When Logic Low With CMOS Biasing  
7.3 Operational Amplifier Drive  
Threshold +4 V  
Figure 22. Sample When Logic High With Operational Amplifier Biasing  
Threshold = 4 V  
Figure 23. Sample When Logic Low With Operational Amplifier Biasing  
Copyright © 2000–2018, Texas Instruments Incorporated  
13  
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LFx98x devices are monolithic sample-and-hold circuits that utilize BI-FET technology to obtain ultrahigh DC  
accuracy with fast acquisition of signal and low droop rate. Operating as a unity-gain follower, DC gain accuracy  
is 0.002% typical and acquisition time is as low as 6 µs to 0.01%. A bipolar input stage is used to achieve low  
offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin, and does not degrade  
input offset drift. The wide bandwidth allows the LF198-N to be included inside the feedback loop of  
1-MHz operational amplifier without having stability problems. Input impedance of 1010 Ω allows high-source  
impedances to be used without degrading accuracy.  
8.2 Functional Block Diagram  
8.3 Feature Description  
The LFx98x OUTPUT tracks the INPUT signal by charging and discharging the hold capacitor. The OUTPUT can  
be held at any given time by pulling the LOGIC input low relative to the LOGIC REFERENCE voltage and  
resume sampling when LOGIC returns high. Additionally, the OFFSET pin can be used to zero the offset voltage  
present at the INPUT.  
8.4 Device Functional Modes  
The LFx98x devices have a sample mode and hold mode controlled by the LOGIC voltage relative to the LOGIC  
REFERENCE voltage. The device is in sample mode when the LOGIC input is pulled high relative to the LOGIC  
REFERENCE voltage and in hold mode when the LOGIC input is pulled low relative to the LOGIC REFERENCE.  
In sample mode, the output is tracking the input signal by charging and discharging the hold capacitor. Smaller  
values of hold capacitance will allow the output to track faster signals. In hold mode the input signal is  
disconnected from the signal path and the output retains the value on the hold capacitor. Larger values of  
capacitance will have a smaller droop rate as shown in Figure 4.  
14  
Copyright © 2000–2018, Texas Instruments Incorporated  
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
www.ti.com.cn  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Hold Capacitor  
Hold step, acquisition time, and droop rate are the major trade-offs in the selection of a hold capacitor value. Size  
and cost may also become important for larger values. Use of the curves included with this data sheet should be  
helpful in selecting a reasonable value of capacitance. Keep in mind that for fast repetition rates or tracking fast  
signals, the capacitor drive currents may cause a significant temperature rise in the LF198-N.  
A significant source of error in an accurate sample and hold circuit is dielectric absorption in the hold capacitor. A  
mylar cap, for instance, may sag back up to 0.2% after a quick change in voltage. A long sample time is required  
before the circuit can be put back into the hold mode with this type of capacitor. Dielectrics with very low  
hysteresis are polystyrene, polypropylene, and Teflon. Other types such as mica and polycarbonate are not  
nearly as good. The advantage of polypropylene over polystyrene is that it extends the maximum ambient  
temperature from 85°C to 100°C. Most ceramic capacitors are unusable with > 1% hysteresis. Ceramic NPO or  
COG capacitors are now available for 125°C operation and also have low dielectric absorption. For more exact  
data, see Figure 2. The hysteresis numbers on the curve are final values, taken after full relaxation. The  
hysteresis error can be significantly reduced if the output of the LF198-N is digitized quickly after the hold mode  
is initiated. The hysteresis relaxation time constant in polypropylene, for instance, is 10 to 50 ms. If A-to-D  
conversion can be made within 1 ms, hysteresis error will be reduced by a factor of ten.  
9.1.2 DC and AC Zeroing  
DC zeroing is accomplished by connecting the offset adjust pin to the wiper of a 1-kΩ potentiometer, which has  
one end tied to V+ and the other end tied through a resistor to ground. The resistor should be selected to give  
approximately 0.6 mA through the 1-kΩ potentiometer.  
AC zeroing (hold step zeroing) can be obtained by adding an inverter with the adjustment pot tied input to output.  
A 10-pF capacitor from the wiper to the hold capacitor will give ±4-mV hold step adjustment with a 0.01-µF hold  
capacitor and 5-V logic supply. For larger logic swings, a smaller capacitor (< 10 pF) may be used.  
9.1.3 Logic Rise Time  
For proper operation, logic signals into the LF198-N must have a minimum dV/dt of 1.0 V/µs. Slower signals will  
cause excessive hold step. If a R/C network is used in front of the logic input for signal delay, calculate the slope  
of the waveform at the threshold point to ensure that it is at least 1.0 V/µs.  
9.1.4 Sampling Dynamic Signals  
Sample error to moving input signals probably causes more confusion among sample-and-hold users than any  
other parameter. The primary reason for this is that many users make the assumption that the sample and hold  
amplifier is truly locked on to the input signal while in the sample mode. In actuality, there are finite phase delays  
through the circuit creating an input-output differential for fast moving signals. In addition, although the output  
may have settled, the hold capacitor has an additional lag due to the 300-Ω series resistor on the chip. This  
means that at the moment the hold command arrives, the hold capacitor voltage may be somewhat different than  
the actual analog input. The effect of these delays is opposite to the effect created by delays in the logic which  
switches the circuit from sample to hold. For example, consider an analog input of 20 Vp–p at 10 kHz. Maximum  
dV/dt is 0.6 V/µs. With no analog phase delay and 100-ns logic delay, one could expect up to (0.1 µs) (0.6V/µs)  
= 60 mVerror if the hold signal arrived near maximum dV/dt of the input. A positive-going input would give a  
Copyright © 2000–2018, Texas Instruments Incorporated  
15  
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
Application Information (continued)  
60-mV error. Now assume a 1-MHz (3-dB) bandwidth for the overall analog loop. This generates a phase delay  
of 160 ns. If the hold capacitor sees this exact delay, then error due to analog delay will be (0.16 µs) (0.6 V/µs) =  
–96 mV. Total output error is 60 mV (digital) –96 mV (analog) for a total of –36 mV. To add to the confusion,  
analog delay is proportioned to hold capacitor value while digital delay remains constant. A family of curves  
(dynamic sampling error) is included to help estimate errors.  
Figure 1 has been included for sampling conditions where the input is steady during the sampling period, but  
may experience a sudden change nearly coincident with the hold command. This curve is based on a 1-mV error  
fed into the output.  
Figure 6 indicates the time required for the output to settle to 1 mV after the hold command.  
9.1.5 Digital Feedthrough  
Fast rise time logic signals can cause hold errors by feeding externally into the analog input at the same time the  
amplifier is put into the hold mode. To minimize this problem, board layout should keep logic lines as far as  
possible from the analog input and the Ch pin. Grounded guarding traces may also be used around the input line,  
especially if it is driven from a high impedance source. Reducing high amplitude logic signals to 2.5 V will also  
help.  
Use 10-pin layout. Guard around CH is tied to output.  
Figure 24. Guarding Technique  
16  
Copyright © 2000–2018, Texas Instruments Incorporated  
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
www.ti.com.cn  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
9.2 Typical Applications  
9.2.1 X1000 Sample and Hold  
The circuit configuration in Figure 25 shows how to incorporate an amplification factor of 1000 into the sample  
and hold stage. This may be particularly useful if the input signal has a very low amplitude. Equation 1 provides  
the appropriate value of capacitance for the COMP 2 pin capacitance of the LM108.  
*For lower gains, the LM108 must be frequency compensated  
Figure 25. X1000 Sample and Hold  
100  
Use »  
pF from comp 2 to ground  
AV  
(1)  
9.2.1.1 Design Requirements  
Assume an unbuffered analog to digital converter with 1-Vpp dynamic range is used in a system which needs to  
sample an input signal with only 1-mVpp amplitude. Using the LF198-N and LM108 connect the input signal so  
that the maximum dynamic range is used by the 1-Vpp data converter.  
9.2.1.2 Detailed Design Procedure  
Connect the LFx98x and LM108 as shown in Figure 25. To maximize the dynamic range of 1 Vpp a gain factor of  
1000x is needed. Set R3 to 1 MΩ and R4 to 1 kΩ to give a noninverting gain of 1001. The calculated value of C1  
is 0.1 pF according to Equation 1, which is negligibly small and may be left off of the design.  
Copyright © 2000–2018, Texas Instruments Incorporated  
17  
 
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Applications (continued)  
9.2.1.3 Application Curves  
The feedthrough rejection ratio of the LF198-N is extremely good and provides good isolation for a wide variety  
of hold capacitors as Figure 26 shows. Additionally, the output transient settles almost completely after 0.8 µs  
and would be ready to sample as shown in Figure 27.  
Figure 26. Feedthrough Rejection Ratio (Hold Mode)  
Figure 27. Output Transient at Start of Hold Mode  
9.2.2 Sample and Difference Circuit  
The LFx98x may be used as a sample and difference circuit as shown in Figure 28 where the output follows the  
input in hold mode.  
VOUT = VB + VIN (HOLD MODE)  
Figure 28. Sample and Difference Circuit  
18  
Copyright © 2000–2018, Texas Instruments Incorporated  
 
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
www.ti.com.cn  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
Typical Applications (continued)  
9.2.3 Ramp Generator With Variable Reset Level  
The circuit configuration shown in Figure 29 generates a ramp signal with variable reset level. The rise or fall  
time may be computed by Equation 2.  
Figure 29. Ramp Generator With Variable Reset Level  
DV  
1.2V  
=
DT (R2) (Ch )  
(2)  
9.2.4 Integrator With Programmable Reset Level  
The LFx98x may be used with LM308 to create an integrator circuit with programmable reset level as shown in  
Figure 30. The integrated output voltage in hold mode is computed with Equation 3.  
Figure 30. Integrator With Programmable Reset Level  
t
é
ê
ë
ù
1
VOUT (Hold Mode) =  
V
dt + V  
R ù  
é
ú
IN  
ë
û
ò0  
(R1) (Ch )  
û
(3)  
19  
Copyright © 2000–2018, Texas Instruments Incorporated  
 
 
 
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Applications (continued)  
9.2.5 Output Holds at Average of Sampled Input  
The LFx98x can be used to identify the average value of the input signal and hold the corresponding voltage on  
the output. Connect Rh and Ch as shown in Figure 31. The corresponding values may be calculated with  
Equation 4.  
Figure 31. Output Holds at Average of Sampled Input  
1
Select (Rh ) (Ch ) ?  
2pfIN (Min)  
(4)  
9.2.6 Increased Slew Current  
The slew current can be increased by connecting opposing diodes from the OUTPUT to the HOLD CAPACITOR  
pins as shown in Figure 32.  
Figure 32. Increased Slew Current  
20  
Copyright © 2000–2018, Texas Instruments Incorporated  
 
 
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
www.ti.com.cn  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
Typical Applications (continued)  
9.2.7 Reset Stabilized Amplifier  
The LFx98x may be used with LH0042H to create a reset stabilized amplifier with a gain of 1000 as shown in  
Figure 33.  
VOS 20 µV (No trim)  
ZIN 1 MΩ  
Figure 33. Reset Stabilized Amplifier  
DVOS  
Dt  
» 30mV / sec  
» 0.1mV/ºC  
(5)  
(6)  
DVOS  
DT  
Copyright © 2000–2018, Texas Instruments Incorporated  
21  
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Applications (continued)  
9.2.8 Fast Acquisition, Low Droop Sample and Hold  
Two LFx98x devices may be used along with LM3905 TIMER to create a fast acquisition, low droop sample and  
hold circuit as shown in Figure 34.  
Figure 34. Fast Acquisition, Low Droop Sample and Hold  
22  
Copyright © 2000–2018, Texas Instruments Incorporated  
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
www.ti.com.cn  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
Typical Applications (continued)  
9.2.9 Synchronous Correlator for Recovering Signals Below Noise Level  
The LFx98x may be used with two LM122H TIMER devices to create a synchronous correlator for recovering  
signals below noise level as shown in Figure 35.  
Figure 35. Synchronous Correlator for Recovering Signals Below Noise Level  
9.2.10 2-Channel Switch  
The HOLD CAPACITOR pin could be alternatively used as a second input to create a 2-channel switch shown  
Figure 36  
Figure 36. 2-Channel Switch  
In the configuration of Figure 36, input signal A and input signal B have the characteristics listed in Table 1.  
Copyright © 2000–2018, Texas Instruments Incorporated  
23  
 
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Applications (continued)  
Table 1. 2-Channel Switch Characteristics  
A
B
Gain  
1 ± 0.02%  
1010  
Ω
1 ± 0.2%  
47 kΩ  
ZIN  
BW  
1 MHz  
–90 dB  
6 mV  
400 kHz  
–90 dB  
75 mV  
Crosstalk @ 1 kHz  
Offset  
9.2.11 DC and AC Zeroing  
The LFLFx98x features an OFFSET ADJUST pin which can be connected to a potentiometer to zero the DC  
offset. Additionally, an inverter may be connected with an AC-coupled potentiometer to the HOLD CAPACITOR  
pin to create a DC- and AC-zeroing circuit as shown in Figure 37.  
Figure 37. DC and AC Zeroing  
24  
Copyright © 2000–2018, Texas Instruments Incorporated  
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
www.ti.com.cn  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
9.2.12 Staircase Generator  
The LFx98x can be connected as shown in Figure 38 to create a staircase generator.  
*Select for step height: 50 kΩ 1-V Step.  
Figure 38. Staircase Generator  
9.2.13 Differential Hold  
Two LFx98x devices may be connected as shown in Figure 39 to create a differential hold circuit.  
Figure 39. Differential Hold  
Copyright © 2000–2018, Texas Instruments Incorporated  
25  
 
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
9.2.14 Capacitor Hysteresis Compensation  
The LFx98x devices may be used for capacitor hysteresis compensation as shown in Figure 40.  
*Select for time constant C1 = τ/100 kΩ  
**Adjust for amplitude  
Figure 40. Capacitor Hysteresis Compensation  
10 Power Supply Recommendations  
The LFx98x devices are rated for a typical supply voltage of ±15 V. To achieve noise immunity as appropriate to  
the application, it is important to use good printed-circuit-board layout practices for power supply rails and planes,  
as well as using bypass capacitors connected between the power supply pins and ground. All bypass capacitors  
must be rated to handle the supply voltage and be decoupled to ground. TI recommends to decouple each  
supply with two capacitors; a small value ceramic capacitor (approximately 0.1 μF) placed close to the supply pin  
in addition to a large value Tantalum or Ceramic (10 μF). The large capacitor can be shared by more than one  
device if necessary. The small ceramic capacitor maintains low supply impedance at higher frequencies while the  
large capacitor will act as the charge bucket for fast load current spikes at the op amp output. The combination of  
these capacitors will provide supply decoupling and will help maintain stable operation for most loading  
conditions.  
26  
Copyright © 2000–2018, Texas Instruments Incorporated  
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
www.ti.com.cn  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
11 Layout  
11.1 Layout Guidelines  
Take care to minimize the loop area formed by the bypass capacitor connection between supply pins and  
ground. A ground plane underneath the device is recommended; any bypass components to ground should have  
a nearby via to the ground plane. The optimum bypass capacitor placement is closest to the corresponding  
supply pin. Use of thicker traces from the bypass capacitors to the corresponding supply pins will lower the  
power supply inductance and provide a more stable power supply. The feedback components should be placed  
as close to the device as possible to minimize stray parasitics.  
11.2 Layout Example  
Figure 41 shows an example schematic and layout for the LFx98x 8-pin PDIP package.  
LFx98M  
U1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OFFSET  
ADJUST  
INPUT  
INPUT  
OFF ADJ  
V+  
NC  
NC  
V+  
C3  
0.1 µF  
C4  
10 µF  
œ
Vœ  
V
C1  
10 µF  
C2  
0.1 µF  
NC  
LOGIC  
LOGIC  
LOGIC  
REFERENCE  
NC  
LOG REF  
NC  
NC  
CH  
8
OUTPUT  
OUTPUT  
Ch  
CH  
Figure 41. Schematic Example  
Figure 42. Layout Example  
版权 © 2000–2018, Texas Instruments Incorporated  
27  
 
LF198-N, LF298, LF398-N  
LF198A-N, LF398A-N  
ZHCSIW2C JULY 2000REVISED OCTOBER 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件命名规则  
保持步进:当从采样模式切换到具有稳定(直流)模拟输入电压的保持模式时,采样和保持输出的电压步进。  
逻辑摆幅为 5V。  
采集时间:以 10V 的输出步长获取新的模拟输入电压所需的时间。采集时间不仅仅是输出达到稳定所需的时  
间,还包括所有内部节点达到稳定所需的时间,从而在切换到保持模式时,输出为适当的值。  
增益误差:在采样模式下,输出电压摆幅与输入电压摆幅的比值(以百分比差值表示)。  
保持趋稳时间:在保持逻辑命令之后,输出稳定到最终值 1mV 范围内所需的时间。  
动态采样误差:由于在给定保持命令时改变了模拟输入,而在保持输出中引入的误差。误差以给定保持电容器  
值(以 mV 为单位)和输入转换率表示。即使采样时间较长,也会出现此误差项。  
孔径时间:保持命令和输入模拟转换之间所需的延迟,以便转换不影响保持的输出。  
12.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
2. 相关链接  
器件  
LF198-N  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
LF298  
LF398-N  
LF198A-N  
LF398A-N(已淘汰)  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
28  
版权 © 2000–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LF198AH/NOPB  
ACTIVE  
TO-99  
LMC  
8
500  
RoHS & Green  
Call TI  
Level-1-NA-UNLIM  
-55 to 125  
( LF198AH, LF198AH  
)
Samples  
LF198H  
LF198H/NOPB  
LF298M  
ACTIVE  
ACTIVE  
NRND  
TO-99  
TO-99  
SOIC  
LMC  
LMC  
D
8
8
500  
500  
55  
RoHS & Green  
RoHS & Green  
Call TI  
Call TI  
Call TI  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
Level-1-235C-UNLIM  
-55 to 125  
-55 to 125  
-25 to 85  
( LF198H, LF198H)  
( LF198H, LF198H)  
LF298M  
Samples  
Samples  
14  
Non-RoHS  
& Green  
LF298M/NOPB  
LF298MX  
ACTIVE  
NRND  
SOIC  
SOIC  
D
D
14  
14  
55  
RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-235C-UNLIM  
-25 to 85  
-25 to 85  
LF298M  
LF298M  
Samples  
2500  
Non-RoHS  
& Green  
Call TI  
LF298MX/NOPB  
LF398AN/NOPB  
ACTIVE  
ACTIVE  
SOIC  
PDIP  
D
P
14  
8
2500 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-NA-UNLIM  
-25 to 85  
0 to 70  
LF298M  
Samples  
Samples  
40  
RoHS & Green  
NIPDAU  
LF  
398AN  
LF398H  
LF398H/NOPB  
LF398M  
ACTIVE  
ACTIVE  
NRND  
TO-99  
TO-99  
SOIC  
LMC  
LMC  
D
8
8
500  
500  
55  
RoHS & Green  
RoHS & Green  
Call TI  
Call TI  
Call TI  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
Level-1-235C-UNLIM  
0 to 70  
0 to 70  
0 to 70  
LF398H  
Samples  
Samples  
( LF398H, LF398H)  
LF398M  
14  
Non-RoHS  
& Green  
LF398M/NOPB  
LF398MX/NOPB  
LF398N/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
PDIP  
D
D
P
14  
14  
8
55  
RoHS & Green  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-NA-UNLIM  
0 to 70  
0 to 70  
0 to 70  
LF398M  
LF398M  
Samples  
Samples  
Samples  
2500 RoHS & Green  
40 RoHS & Green  
NIPDAU  
LF  
398N  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Apr-2023  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LF298MX  
SOIC  
SOIC  
SOIC  
D
D
D
14  
14  
14  
2500  
2500  
2500  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
6.5  
6.5  
6.5  
9.35  
9.35  
9.35  
2.3  
2.3  
2.3  
8.0  
8.0  
8.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
LF298MX/NOPB  
LF398MX/NOPB  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LF298MX  
SOIC  
SOIC  
SOIC  
D
D
D
14  
14  
14  
2500  
2500  
2500  
367.0  
356.0  
367.0  
367.0  
356.0  
367.0  
35.0  
35.0  
35.0  
LF298MX/NOPB  
LF398MX/NOPB  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LF298M  
LF298M  
D
D
D
D
P
D
D
D
D
P
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
14  
14  
14  
14  
8
55  
55  
55  
55  
40  
55  
55  
55  
55  
40  
495  
495  
495  
495  
502  
495  
495  
495  
495  
502  
8
8
4064  
4064  
4064  
4064  
11938  
4064  
4064  
4064  
4064  
11938  
3.05  
3.05  
3.05  
3.05  
4.32  
3.05  
3.05  
3.05  
3.05  
4.32  
LF298M/NOPB  
LF298M/NOPB  
LF398AN/NOPB  
LF398M  
8
8
14  
8
14  
14  
14  
14  
8
LF398M  
8
LF398M/NOPB  
LF398M/NOPB  
LF398N/NOPB  
8
8
14  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY