LM15851NKET [TI]

12 位、4.0GSPS、射频采样宽带接收器 | NKE | 68 | -40 to 85;
LM15851NKET
型号: LM15851NKET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12 位、4.0GSPS、射频采样宽带接收器 | NKE | 68 | -40 to 85

射频
文件: 总91页 (文件大小:1978K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
LM15851 超宽带射频采样子系统  
1 特性  
2 应用  
1
出色的噪声和线性性能,最高可达 FIN = 3GHz 以  
无线基础设施  
RF 采样软件定义无线电  
宽带微波回程  
可配置数字下变频器 (DDC)  
抽取因数范围为 4 32(复杂基带输出)  
电缆数据服务接口规范 (DOCSIS)/电缆基础设施  
4x 抽取率和 4000MSPS 条件下,  
可用输出带宽为 800MHz  
3 说明  
32x 抽取率和 4000MSPS 条件下,  
可用输出带宽为 100MHz  
LM15851 器件为宽带采样和数字调谐器件。德州仪器  
(TI) 的千兆次采样模数转换器 (ADC) 技术支持采用射  
频直接对大范围频谱采样。集成 DDC(数字下变频  
器)可进行数字滤波和下变频转换。所选频率块适用于  
JESD204B 串行接口。数据以基带 15 位复数信息形式  
输出,以减轻下游处理压力。根据数字下变频器  
(DDC) 抽取率和链接输出率设置,该数据将通过串行  
接口的 1 5 通道输出。  
低引脚数目 JESD204B 子类 1 接口  
自动优化输出通道计数  
嵌入式低延迟信号范围指示  
低功耗  
主要规格:  
最大采样率:4000MSPS  
最小采样率:1000MSPS  
LM15851 器件采用68 引脚超薄四方扁平无引线  
(VQFN) 封装。该器件的工业环境运行温度范围为  
–40°C TA 85°C。  
DDC 输出字大小:15 位复数(共 30 位)  
三阶互调失真 (IMD3)64dBc13dBFS  
时,FIN = 2140MHz ± 30MHz)  
器件信息(1)  
全功率带宽 (FPBW) (–3dB)3.2GHz))  
电源电压:1.9V 1.2V  
功耗  
器件型号  
LM15851  
封装  
封装尺寸(标称值)  
VQFN (68)  
10.00mm x 10.00mm  
10 倍抽取率 (4000MSPS)2W  
断电模式:< 50mW  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
16 倍抽取率 频谱响应  
ƒS = 4GHzFIN = 1897MHz–1dBFS 时),ƒ(NCO_x) = 1827MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
20  
40  
60  
80  
100  
120  
Frequency (MHz)  
C002  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLAS990  
 
 
 
 
 
 
 
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
目录  
7.6 Register Map........................................................... 48  
Application and Implementation ........................ 73  
8.1 Application Information............................................ 73  
8.2 Typical Application ................................................. 73  
8.3 Initialization Set-Up ................................................. 75  
8.4 Dos and Don'ts........................................................ 75  
Power Supply Recommendations...................... 76  
9.1 Supply Voltage........................................................ 76  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 9  
6.1 Absolute Maximum Ratings ...................................... 9  
6.2 ESD Ratings.............................................................. 9  
6.3 Recommended Operating Conditions..................... 10  
6.4 Thermal Information................................................ 10  
6.5 Electrical Characteristics......................................... 10  
6.6 Timing Requirements.............................................. 14  
6.7 Internal Characteristics ........................................... 16  
6.8 Switching Characteristics........................................ 17  
6.9 Typical Characteristics............................................ 19  
Detailed Description ............................................ 24  
7.1 Overview ................................................................. 24  
7.2 Functional Block Diagram ....................................... 24  
7.3 Feature Description................................................. 25  
7.4 Device Functional Modes........................................ 43  
7.5 Programming........................................................... 46  
8
9
10 Layout................................................................... 77  
10.1 Layout Guidelines ................................................. 77  
10.2 Layout Example .................................................... 77  
10.3 Thermal Management........................................... 80  
11 器件和文档支持 ..................................................... 80  
11.1 器件支持................................................................ 80  
11.2 文档支持................................................................ 81  
11.3 社区资源................................................................ 81  
11.4 ....................................................................... 82  
11.5 静电放电警告......................................................... 82  
11.6 Glossary................................................................ 82  
12 机械、封装和可订购信息....................................... 82  
7
4 修订历史记录  
Changes from Revision D (July 2015) to Revision E  
Page  
Changed reset value of address 0x006 from 0x03 to 0x13 in Memory Map table............................................................... 48  
Changed reset value of address 0x006 from 0x03 to 0x13 in Standard SPI-3.0 Registers table........................................ 51  
Changed 0x03 to 0x13 in reset value and description of bits 7-0 and changed 0000 0011 to 0001 0011 in Chip  
Version Register section....................................................................................................................................................... 52  
Changes from Revision C (September 2014) to Revision D  
Page  
Deleted references to time stamp including pin names (TMST+, TMST–). .......................................................................... 7  
Added additional voltage difference parameters to the Absolute Maximum Ratings table .................................................... 9  
Added junction temperature to the Absolute Maximum Ratings table ................................................................................... 9  
Added common mode voltage parameter to the Recommended Operating Conditions table. Changed CLK to  
SYSREF, and ~SYNC ......................................................................................................................................................... 10  
Deleted the Differential Analog Input Connection image in The Analog Inputs section ...................................................... 25  
Added note about offset adjust in Background Calibration Mode to the Offset Adjust section and I/O offset register  
tables .................................................................................................................................................................................... 29  
Added the Calibration Cycle Timing for Different Calibration Modes and Options table in the Timing Calibration  
Mode section ........................................................................................................................................................................ 44  
Changed 0x004-0x005 to RESERVED in the Standard SPI-3.0 Registers summary table................................................. 51  
Changed the name of bit 0 in the Clock Generator Control 0 Register from DC_LVPECL_TS_EN to  
DC_LVPECL_SYNC_en ...................................................................................................................................................... 56  
Changes from Revision B (February 2014) to Revision C  
Page  
已更改 器件状态,从产品预览改为量产数据 .......................................................................................................................... 1  
2
版权 © 2014–2017, Texas Instruments Incorporated  
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Changes from Original (January 2014) to Revision A  
Page  
已将主要技术规格列表移到特性列表中................................................................................................................................... 1  
已将其他毛刺:-81dBFS 特征项替换为全功率带宽 (FPBW) (–3dB)3.3GHz特征项(主要技术规格特性.................... 1  
已删除 关于处于开发阶段的声明(说明部分)....................................................................................................................... 1  
已添加 目录(说明 (续)部分现列在修订历史记录后) ....................................................................................................... 1  
已添加 器件信息.................................................................................................................................................................. 1  
Moved the pin configuration illustration and pin functions table into a new Pin and Configurations section. Changed  
Symbol column name to NAME column name....................................................................................................................... 7  
已添加 已更改器件和文档支持部分,现包含商标和静电放电注意事项................................................................................. 82  
已添加 已更改机械、封装和可订购产品信息部分 ................................................................................................................. 82  
Copyright © 2014–2017, Texas Instruments Incorporated  
3
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
5 Pin Configuration and Functions  
NKE Package  
68-Pin VQFN With Thermal Pad  
Top View  
RBIAS+  
RBIASœ  
VCMO  
VA19  
1
2
3
4
5
6
7
8
9
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
NCO_1b  
NCO_1a  
VD12  
NCO_0b  
NCO_0a  
VD12  
VNEG  
VA12  
VA19  
DS4+  
VIN+  
DS4œ  
VINœ  
VD12  
VA19 10  
VA12 11  
DS3+  
DS3œ  
VNEG 12  
VA19 13  
VD12  
DS2+  
VA12 14  
DS2œ  
DEVCLK+ 15  
DEVCLKœ 16  
VA12 17  
VD12  
DS1+  
DS1œ  
DNC = Make no external connection  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Pin Functions  
PIN  
NAME  
EQUIVALENT CIRCUIT  
TYPE  
DESCRIPTION  
NO.  
ANALOG  
RBIAS+  
VA19  
1
External Bias Resistor Connections  
External bias resistor terminals. A 3.3 kΩ (±0.1%) resistor should be connected  
between RBIAS+ and RBIAS–. The RBIAS resistor is used as a reference for  
internal circuits which affect the linearity of the converter. The value and precision  
of this resistor should not be compromised. These pins must be isolated from all  
other signals and grounds.  
VBIAS  
I/O  
RBIAS–  
2
GND  
TDIODE–  
TDIODE+  
63  
64  
Tdiode+  
Temperature Diode  
These pins are the positive (anode) and negative (cathode) diode connections for  
die temperature measurements. Leave these pins unconnected if they are not  
used. See the Built-In Temperature Monitor Diode section for more details.  
Passive  
Tdiodeœ  
VA19  
Bandgap Output Voltage  
This pin is capable of sourcing or sinking 100 μA and can drive a load up to 80 pF.  
Leave this pin unconnected if it is not used in the application. See the The  
Reference Voltage section for more details.  
VBG  
68  
O
VCM  
Common Mode Voltage  
The voltage output at this pin must be the common-mode input voltage at the VIN+  
and VIN– pins when DC coupling is used. This pin is capable of sourcing or sinking  
100 μA and can drive a load up to 80 pF. Leave this pin unconnected if it is not  
used in the application.  
VCMO  
VIN+  
3
8
O
GND  
VA19  
VIN+  
To T&H+  
LPEAK  
GND  
Signal Input  
50  
20 kΩ  
The differential full-scale input range is determined by the full-scale voltage adjust  
register. An internal peaking inductor (LPEAK) of 5 nH is included for parasitic  
compensation.  
VCM  
I
VIN–  
9
50 Ω  
VA19  
GND  
LPEAK  
VINœ  
To T&Hœ  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
EQUIVALENT CIRCUIT  
TYPE  
DESCRIPTION  
NAME  
DATA  
DS0  
DS0+  
DS1–  
DS1+  
DS2–  
DS2+  
DS3–  
DS3+  
DS4–  
DS4+  
NO.  
32  
33  
35  
36  
38  
39  
41  
42  
44  
45  
VD12  
VA19  
+
50  
50 ꢀ  
Data  
CML These pins are the high-speed serialized-data outputs with user-configurable  
pre-emphasis. These outputs must always be terminated with a 100-Ω differential  
resistor at the receiver.  
O
œ
GND  
GROUND, RESERVED, DNC  
Do Not Connect  
Do not connect DNC to any circuitry, power, or ground signals.  
DNC  
67  
VA19  
Reserved  
Connect to Ground or Leave Unconnected: This reserved pin is a logic input for  
possible future device versions. It is recommended to connect this pin to ground.  
Floating this pin is also permissible.  
RSV  
66  
Reserved  
RSV2  
61  
Connect to Ground Connect this reserved input pin to ground for proper operation.  
GND  
Ground (GND)  
The exposed pad on the bottom of the package is the ground return for all supplies.  
This pad must be connected with multiple vias to the printed circuit board (PCB)  
ground planes to ensure proper electrical and thermal performance.  
The exposed center pad on the bottom of the package must be thermally and  
electrically connected (soldered) to a ground plane to ensure rated performance.  
Thermal Pad  
LVCMOS  
VA19  
47,  
48  
NCO_0  
50,  
51  
NCO_1  
50  
NCO ConfigSelect  
These three pin pairs allow the host device to select the specific NCO frequency or  
phase accumulator that is active. Each pair must be connected together and driven  
with a common 1.8-V LVCMOS signal. Connect these inputs to GND if they are not  
used in the application.  
I
50 ꢀ  
53,  
54  
NCO_2  
OR_T0  
GND  
VA19  
25  
26  
Over-Range  
O
Over-range detection status for T0 and T1 thresholds. Leave these pins  
unconnected if they are not used in the application.  
OR_T1  
GND  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Pin Functions (continued)  
PIN  
EQUIVALENT CIRCUIT  
TYPE  
DESCRIPTION  
NAME  
NO.  
Serial Interface Clock  
This pin functions as the serial-interface clock input which clocks the serial data in  
and out. The Using the Serial Interface section describes the serial interface in  
more detail.  
SCLK  
SDI  
58  
I
I
VA19  
Serial Data In  
57  
30  
59  
This pin functions as the serial-interface data input. The Using the Serial Interface  
section describes the serial interface in more detail.  
SYNC~  
This pin provides the JESD204B-required synchronizing request input. A logic-low  
applied to this input initiates a lane alignment sequence. The choice of LVCMOS or  
differential SYNC~ is selected through bit 6 of the configuration register 0x202h.  
Connect this input to GND or VA19 if differential SYNC~ input is used.  
SYNC~  
SCS  
I
I
GND  
Serial Chip Select (active low)  
This pin functions as the serial-interface chip select. The Using the Serial Interface  
section describes the serial interface in more detail.  
VA19  
Serial Data Out  
SDO  
56  
O
This pin functions as the serial-interface data output. The Using the Serial Interface  
section describes the serial interface in more detail.  
GND  
DIFFERENTIAL INPUT  
VA19  
DEVCLK+  
DEVCLK–  
SYSREF+  
15  
16  
19  
Device Clock Input  
The differential device clock signal must be AC coupled to these pins. The input  
signal is sampled on the rising edge of CLK.  
I
I
SYSREF  
The differential periodic waveform on these pins synchronizes the device per  
JESD204B. If JESD204B subclass 1 synchronization is not required and these  
inputs are not utilized they may be left unconnected. In that case ensure  
SysRef_Rcvr_En=0 and SysRef_Pr_En=0.  
50  
1 kꢀ  
AGND  
VA19  
SYSREF–  
SYNC~+  
20  
22  
V
(CM_CLK)  
50 ꢀ  
SYNC~  
This differential input provides the JESD204B-required synchronizing request input.  
A differential logic-low applied to these inputs initiates a lane alignment sequence.  
For differential SYNC~ usage, leave unconnected if SYNC_DIFFSEL = 0.  
These inputs may be left unconnected if they are not used for the SYNC~function.  
I
SYNC~-  
23  
AGND  
Copyright © 2014–2017, Texas Instruments Incorporated  
7
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
EQUIVALENT CIRCUIT  
TYPE  
DESCRIPTION  
NAME  
NO.  
POWER  
6
11  
14  
17  
18  
21  
65  
4
Analog 1.2 V power supply pins  
Bypass these pins to ground using one 10-µF capacitor and two 1-µF capacitors for  
bulk decoupling plus one 0.1-µF capacitor per pin for individual decoupling.  
VA12  
7
10  
13  
24  
27  
60  
62  
28  
31  
34  
37  
40  
43  
46  
49  
52  
55  
5
Analog 1.9 V power supply pins  
Bypass these pins to ground using one 10-µF capacitor and two 1-µF capacitors for  
bulk decoupling plus one 0.1-µF capacitor per pin for individual decoupling.  
VA19  
Digital 1.2 V power supply pins  
Bypass these pins to ground using one 10-µF capacitor and two 1-µF capacitors for  
bulk decoupling plus one 0.1-µF capacitor per pin for individual decoupling.  
VD12  
VNEG  
These pins must be decoupled to ground with a 0.1-µF ceramic capacitor near  
each pin. These power input pins must be connected to the VNEG_OUT pin with a  
low resistance path. The connections must be isolated from any noisy digital  
signals and must also be isolated from the analog input and clock input pins.  
VNEG  
I
12  
VNEG_OUT  
The voltage on this output can range from –1V to +1V. This pin must be decoupled  
to ground with a 4.7-µF, low ESL, low ESR multi-layer ceramic chip capacitor and  
connected to the VNEG input pins. This voltage must be isolated from any noisy  
digital signals, clocks, and the analog input.  
VNEG_OUT  
29  
O
8
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
The soldering process must comply with TI's Reflow Temperature Profile specifications. Refer to www.ti.com/packaging.(1)(2)(3)  
MIN  
MAX  
1.4  
UNIT  
1.2-V supply  
VA12, VD12  
VA19  
V
Supply voltage  
Voltage  
1.9-V supply  
2.2  
1.2-V supply difference between VA12 and VD12  
–200  
–0.15  
0
200  
mV  
V(VA19)  
0.15  
+
On any input pin (except VIN+ or VIN–)  
V
On VIN+ or VIN–  
|(VIN+) – (VIN–)|(4)  
2
2
2
2
1
|(DEVCLK+) – (DEVCLK–)|  
|(SYSREF+) – (SYSREF–)|  
|(~SYNC+) – (~SYNC–)|  
Voltage difference  
V
On VIN+, VIN–, with proper input common mode maintained. FIN 3 GHz,  
Z(SOURCE) = 100 Ω, Input_Clamp_EN = 0 or 1  
11.07  
14.95  
20.97  
On VIN+, VIN–, with proper input common mode maintained. FIN = 1 GHz,  
Z(SOURCE) = 100 Ω, Input_Clamp_EN = 1  
RF input power, PI  
Input current  
dBm  
On VIN+, VIN–, with proper input common mode maintained. FIN 100 MHz,  
Z(SOURCE) = 100 Ω, Input_Clamp_EN = 1  
At any pin other than VIN+ or VIN(5)  
–25  
–50  
25  
50  
mA  
VIN+ or VIN–  
mA DC  
Package(5) (sum of absolute value of all currents forced in or out, not including  
power supply current)  
100  
mA  
Junction  
temperature, TJ  
Power applied. Verified by High Temperature Operation Life testing to 1000  
hours.  
–40  
–65  
150  
150  
°C  
°C  
Storage temperature, Tstg  
(1) Reflow temperature profiles are different for lead-free and non-lead-free packages.  
(2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(4) The analog inputs are protected as in the following circuit. Input-voltage magnitudes beyond the Absolute Maximum Ratings may  
damage this device.  
VA19  
To Internal  
Circuitry  
I/O  
GND  
(5) When the input voltage at any pin (other than VIN+ or VIN–) exceeds the power supply limits (that is, less than GND or greater than  
VA19), the current at that pin must be limited to 25 mA. The 100-mA maximum package input current rating limits the number of pins  
that can safely exceed the power supplies. This limit is not placed upon the power pins or thermal pad (GND).  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2014–2017, Texas Instruments Incorporated  
9
 
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
All voltages are measured with respect to GND = 0 V, unless otherwise specified.  
MIN  
1.14  
1.8  
MAX  
1.26  
2
UNIT  
1.2-V supply: VA12, VD12  
VDD  
Supply voltage  
V
1.9-V supply: VA19  
1.9 supply 1.2  
Supply sequence (power-up and power-down)  
V
supply  
VCMI  
Analog input common mode voltage  
V(VCMO) – 0.15  
V(VCMO) + 0.15  
V
V
VIN+, VIN– voltage (maintaining common mode)  
DEVCLK±, SYSREF±, ~SYNC± pin voltage range  
Differential DEVCLK±, SYSREF±, ~SYNC± amplitude  
0
0
V(VA19)  
V(VA19)  
2
V
VID(CLK)  
0.4  
0.64  
–40  
VPP  
V
VCM(CLK) SYSREF±, ~SYNC± Common Mode  
1.1  
TA  
TJ  
Ambient temperature  
Junction temperature  
85  
°C  
°C  
135  
6.4 Thermal Information  
LM15851  
THERMAL METRIC(1)  
NKE (VQFN)  
68 PINS  
19.8  
UNIT  
RθJA  
Thermal resistance, junction-to-ambient  
Thermal resistance, junction-to-case (bottom)  
Characterization parameter, junction-to-board  
°C/W  
°C/W  
°C/W  
RθJCbot  
ψJB  
2.7  
9.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Unless otherwise noted, these specifications apply for V(VA12) = V(VD12) = 1.2 V, V(VA19) = 1.9 V, VIN full scale range at default  
setting (725 mVPP), VIN = –1 dBFS, differential AC-coupled sinewave input clock, ƒ(DEVCLK) = 4 GHz at 0.5 VPP with 50% duty  
cycle, R(RBIAS) = 3.3 k±0.1%, after a foreground (FG) mode calibration with timing calibration enabled. Typical values are at  
TA = 25°C.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC PERFORMANCE CHARACTERISTICS  
Third-order intermodulation  
distortion  
F1 = 2110 MHz at 13 dBFS  
F2 = 2170 MHz at 13 dBFS  
IMD3  
–64  
dBc  
DECIMATE-BY-4 MODE  
TA = 25°C  
59.9  
59.2  
Signal-to-noise ratio,  
integrated across DDC alias  
protected output bandwidth  
Input frequency-dependent  
interleaving spurs included  
TA = TMIN to TMAX  
56.2  
53.3  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
SNR1  
SNR2  
TA = 25°C, calibration = BG  
TA = TMIN to TMAX, calibration = BG  
dBFS  
dBFS  
FIN = 2400 MHz, –1 dBFS, decimate-by-4 mode  
56.4  
60.1  
TA = 25°C(3)  
Signal-to-noise ratio,  
(3)  
TA = TMIN to TMAX  
56.7  
56.7  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
integrated across DDC alias  
protected output bandwidth  
Input frequency-dependent  
interleaving spurs excluded  
(3)  
TA = 25°C, calibration = BG  
60.2  
57  
TA = TMIN to TMAX, calibration = BG(3)  
FIN = 2400 MHz, –1 dBFS, decimate-by-4 mode(3)  
(1) To ensure accuracy, the VA19, VA12, and VD12 pins are required to be well bypassed. Each supply pin must be decoupled with one or  
more bypass capacitors.  
(2) Interleave related fixed frequency spurs at ƒS / 4 and ƒS / 2 are excluded from all SNR, SINAD, ENOB and SFDR specifications. The  
magnitude of these spurs is provided separately.  
(3) Interleave related spurs at ƒS / 2 – FIN, ƒS / 4 + FIN and ƒS / 4 – FIN are excluded from these performance calculations. The magnitude  
of these spurs is provided separately.  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Electrical Characteristics (continued)  
Unless otherwise noted, these specifications apply for V(VA12) = V(VD12) = 1.2 V, V(VA19) = 1.9 V, VIN full scale range at default  
setting (725 mVPP), VIN = –1 dBFS, differential AC-coupled sinewave input clock, ƒ(DEVCLK) = 4 GHz at 0.5 VPP with 50% duty  
cycle, R(RBIAS) = 3.3 k±0.1%, after a foreground (FG) mode calibration with timing calibration enabled. Typical values are at  
TA = 25°C.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
55.9  
53.1  
TYP  
MAX  
UNIT  
TA = 25°C  
59.9  
Signal-to-noise and distortion  
ratio, integrated across DDC  
alias protected output  
bandwidth  
Input frequency-dependent  
interleaving spurs included  
TA = TMIN to TMAX  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
SINAD1  
SINAD2  
ENOB1  
ENOB2  
SFDR1  
SFDR2  
TA = 25°C, calibration = BG  
TA = TMIN to TMAX, calibration = BG  
59.2  
dBFS  
FIN = 2400 MHz, –1 dBFS, decimate-by-4 mode  
56.4  
60.1  
TA = 25°C(3)  
Signal-to-noise and distortion  
ratio, integrated across DDC  
alias protected output  
bandwidth  
(3)  
TA = TMIN to TMAX  
56.3  
56.4  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
(3)  
TA = 25°C, calibration = BG  
60.1  
dBFS  
TA = TMIN to TMAX, calibration = BG(3)  
Interleaving spurs excluded  
FIN = 2400 MHz, –1 dBFS, decimate-by-4 mode(3)  
57  
TA = 25°C  
9.7  
TA = TMIN to TMAX  
9.0  
8.5  
Effective number of bits,  
integrated across DDC alias  
protected output bandwidth  
Interleaving spurs included  
FIN = 600 MHz, –1 dBFS, Decimate-by-4  
mode  
TA = 25°C, calibration = BG  
TA = TMIN to TMAX, calibration = BG  
9.5  
Bits  
FIN = 2400 MHz, –1 dBFS, decimate-by-4 mode  
9.1  
9.7  
TA = 25°C(3)  
(3)  
TA = TMIN to TMAX  
9.0  
9.1  
Effective number of bits,  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
integrated across DDC alias  
protected output bandwidth  
Interleaving spurs excluded  
(3)  
TA = 25°C, calibration = BG  
9.7  
Bits  
TA = TMIN to TMAX, calibration = BG(3)  
FIN = 2400 MHz, –1 dBFS, decimate-by-4 mode(3)  
8.5  
TA = 25°C  
70.1  
TA = TMIN to TMAX  
59.2  
51.8  
Spurious-free dynamic range  
across entire Nyquist  
bandwidth  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
TA = 25°C, calibration = BG  
TA = TMIN to TMAX, calibration = BG  
62.9  
dBFS  
dBFS  
Interleaving spurs included  
FIN = 2400 MHz, –1 dBFS, decimate-by-4 mode  
66.4  
71.6  
TA = 25°C(3)  
(3)  
TA = TMIN to TMAX  
60  
Spurious-free dynamic range  
across entire Nyquist  
bandwidth  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
(3)  
TA = 25°C, calibration = BG  
74.8  
TA = TMIN to TMAX, calibration = BG(3)  
62.9  
Interleaving spurs excluded  
FIN = 2400 MHz, –1 dBFS, Decimate-by-4 mode(3)  
80.4  
–72  
TA = 25°C  
TA = TMIN to TMAX  
–56  
–50.5  
–55  
Interleaving offset spur at ½  
sampling rate(4)  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
ƒS/2  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
TA = 25°C, calibration = BG  
TA = TMIN to TMAX, calibration = BG  
TA = 25°C  
–65  
–68  
–62  
–75  
–70  
–73  
–65  
–78  
–65  
TA = TMIN to TMAX  
Interleaving offset spur at ¼  
sampling rate(4)  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
ƒS/4  
TA = 25°C, calibration = BG  
TA = TMIN to TMAX, calibration = BG  
TA = 25°C  
–47.4  
–62.3  
–51.5  
–58.9  
–52.8  
–60.4  
–52.3  
Interleaving spur at ½  
sampling rate – input  
frequency(4)  
TA = TMIN to TMAX  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
ƒS/2 – FIN  
ƒS/4 + FIN  
ƒS/4 – FIN  
TA = 25°C, calibration = BG  
TA = TMIN to TMAX, calibration = BG  
TA = 25°C  
Interleaving spur at ¼  
sampling rate + input  
frequency(4)  
TA = TMIN to TMAX  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
TA = 25°C, calibration = BG  
TA = TMIN to TMAX, calibration = BG  
TA = 25°C  
Interleaving spur at ¼  
sampling rate – input  
frequency(4)  
TA = TMIN to TMAX  
FIN = 600 MHz, –1 dBFS, Decimate-by-4  
mode  
TA = 25°C, calibration = BG  
TA = TMIN to TMAX, calibration = BG  
(4) Magnitude of reported tones in output spectrum of ADC core. This tone will only be present in the DDC output for specific Decimation  
and NCO settings. Careful frequency planning can be used to intentionally place unwanted tones outside the DDC output spectrum.  
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Unless otherwise noted, these specifications apply for V(VA12) = V(VD12) = 1.2 V, V(VA19) = 1.9 V, VIN full scale range at default  
setting (725 mVPP), VIN = –1 dBFS, differential AC-coupled sinewave input clock, ƒ(DEVCLK) = 4 GHz at 0.5 VPP with 50% duty  
cycle, R(RBIAS) = 3.3 k±0.1%, after a foreground (FG) mode calibration with timing calibration enabled. Typical values are at  
TA = 25°C.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
–59.5  
–60  
UNIT  
TA = 25°C  
–70  
TA = TMIN to TMAX  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
THD  
HD2  
HD3  
Total harmonic distortion(4)  
dBFS  
TA = 25°C, calibration = BG  
TA = TMIN to TMAX, calibration = BG  
TA = 25°C  
–73  
–83  
–78  
–72  
–82  
TA = TMIN to TMAX  
–62  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
Second harmonic distortion(4)  
Third harmonic distortion(4)  
dBFS  
dBFS  
TA = 25°C, calibration = BG  
TA = TMIN to TMAX, calibration = BG  
TA = 25°C  
–62.5  
–59.5  
–62  
TA = TMIN to TMAX  
FIN = 600 MHz, –1 dBFS, decimate-by-4  
mode  
TA = 25°C, calibration = BG  
TA = TMIN to TMAX, calibration = BG  
DECIMATE-BY-8 MODE  
Signal-to-noise ratio,  
63  
61.6  
54.6  
63.3  
FIN = 600 MHz, –1 dBFS, decimate-by-8  
mode  
integrated across DDC output  
bandwidth  
SNR1  
Calibration = BG  
dBFS  
dBFS  
dBFS  
dBFS  
Bits  
Interleaving spurs included  
FIN = 2400 MHz, –1 dBFS, decimate-by-8 mode  
Signal-to-noise ratio,  
integrated across DDC output FIN = 600 MHz, –1 dBFS, decimate-by-8  
bandwidth  
Interleaving spurs excluded  
SNR2  
mode(3)  
Calibration = BG  
Calibration = BG  
63.3  
63  
61.6  
54.6  
63.3  
Signal-to-noise and distortion  
ratio, integrated across DDC  
output bandwidth  
FIN = 600 MHz, –1 dBFS, Decimate-by-8  
mode  
SINAD1  
SINAD2  
ENOB1  
ENOB2  
Interleaving spurs included  
FIN = 2400 MHz, –1 dBFS, decimate-by-8 mode  
Signal-to-noise and distortion  
ratio, integrated across DDC  
output bandwidth  
FIN = 600 MHz, –1 dBFS, decimate-by-8  
mode(3)  
Calibration = BG  
63.3  
Interleaving spurs excluded  
10.2  
10.0  
8.8  
Effective number of bits,  
integrated across DDC output  
bandwidth  
FIN = 600 MHz, –1 dBFS, decimate-by-8  
mode  
Calibration = BG  
Interleaving spurs included  
FIN = 2400 MHz, –1 dBFS, decimate-by-8 mode  
Effective number of bits,  
integrated across DDC output  
bandwidth  
10.2  
FIN = 600 MHz, –1 dBFS, decimate-by-8  
mode(5)  
Bits  
Calibration = BG  
10.2  
Interleaving spurs excluded  
74.9  
68.3  
77.8  
77.8  
–73  
–72  
–70  
–66  
–76  
Spurious-free dynamic range FIN = 600 MHz, –1 dBFS, decimate-by-8  
SFDR1  
SFDR2  
ƒS/2  
dBFS  
dBFS  
dBFS  
dBFS  
Interleaving Spurs Included  
mode  
Calibration = BG  
Calibration = BG  
Calibration = BG  
Calibration = BG  
FIN = 600 MHz, –1 dBFS, decimate-by-8  
mode(5)  
Spurious-free dynamic range  
Interleaving spurs excluded  
Interleaving offset spur at ½  
sampling rate(4)  
FIN = 600 MHz, –1 dBFS, decimate-by-8  
mode  
Interleaving offset spur at ¼  
sampling rate(4)  
FIN = 600 MHz, –1 dBFS, decimate-by-8  
mode  
ƒS/4  
Interleaving spur at ½  
sampling rate – input  
frequency(4)  
FIN = 600 MHz, –1 dBFS, decimate-by-8  
mode  
ƒS/2 – FIN  
ƒS/4 + FIN  
ƒS/4 – FIN  
dBFS  
dBFS  
dBFS  
Calibration = BG  
Calibration = BG  
–67  
–72  
–64  
–74  
–67  
Interleaving spur at ¼  
sampling rate + input  
frequency(4)  
FIN = 600 MHz, –1 dBFS, decimate-by-8  
mode  
Interleaving spur at ¼  
sampling rate – input  
frequency(4)  
FIN = 600 MHz, –1 dBFS, decimate-by-8  
mode  
Calibration = BG  
Calibration = BG  
–70  
–72  
–71  
–80  
–79  
–78  
FIN = 600 MHz, –1 dBFS, decimate-by-8  
mode  
Total harmonic distortion(6)  
Second harmonic distortion(6)  
THD  
HD2  
dBFS  
dBFS  
FIN = 2400 MHz, –1 dBFS, decimate-by-8 mode  
FIN = 600 MHz, –1 dBFS, decimate-by-8  
mode  
Calibration = BG  
FIN = 2400 MHz, –1 dBFS, decimate-by-8 mode  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Electrical Characteristics (continued)  
Unless otherwise noted, these specifications apply for V(VA12) = V(VD12) = 1.2 V, V(VA19) = 1.9 V, VIN full scale range at default  
setting (725 mVPP), VIN = –1 dBFS, differential AC-coupled sinewave input clock, ƒ(DEVCLK) = 4 GHz at 0.5 VPP with 50% duty  
cycle, R(RBIAS) = 3.3 k±0.1%, after a foreground (FG) mode calibration with timing calibration enabled. Typical values are at  
TA = 25°C.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
–74  
–80  
–-77  
MAX  
UNIT  
FIN = 600 MHz, –1 dBFS, decimate-by-8  
mode  
Third harmonic distortion(6)  
HD3  
Calibration = BG  
dBFS  
FIN = 2400 MHz, –1 dBFS, decimate-by-8 mode  
DDC CHARACTERISTICS  
Alias protection(5)  
80  
80  
dB  
% of  
output BW  
Alias protected bandwidth(5)  
Spurious-free dynamic range  
of digital down-converter(5)  
SFDR-DDC  
100  
dB  
dB  
Implementation loss(5)  
0.5  
ANALOG INPUT CHARACTERISTICS  
Minimum FSR setting(6)  
Default FSR setting, TA = TMIN to TMAX  
Maximum FSR setting(6)  
Differential  
500  
725  
950  
0.05  
1.5  
95  
Full-scale analog-differential  
input range  
VID(VIN)  
650  
80  
800  
mVPP  
pF  
pF  
CI(VIN)  
Analog input capacitance(5)  
Differential input resistance  
Full power bandwidth  
Each input pin to ground  
RID(VIN)  
FPBW  
110  
–3 dB — calibration = BG  
–3 dB — calibration = FG  
DC to 2 GHz  
2.8  
3.2  
1.2  
3.8  
1.5  
4.5  
GHz  
2 GHz to 4 GHz  
Gain flatness  
dB  
DC to 2 GHz — calibration = BG  
2 GHz to 4 GHz — calibration = BG  
ANALOG OUTPUT CHARACTERISTICS (VCMO, VBG)  
I(VCMO) = ±100 µA, TA = 25°C  
I(VCMO) = ±100 µA, TA = TMIN to TMAX  
1.225  
-21  
Common-mode output  
voltage  
V(VCMO)  
V
1.185  
1.265  
Common-mode output-  
voltage temperature  
coefficient  
TCVO(VCMO)  
TA = TMIN to TMAX  
ppm/°C  
Maximum VCMO output load  
capacitance  
C(LOAD_VCMO)  
80  
pF  
V
I(BG) = ±100 µA, TA = 25°C  
1.248  
0
Bandgap reference output  
voltage  
VO(BG)  
I(BG) = ±100 µA, TA = TMIN to TMAX  
1.195  
1.3  
Bandgap reference voltage  
temperature coefficient  
TA = TMIN to TMAX  
,
TCVref(BG)  
C(LOAD_BG)  
ppm/°C  
pF  
I(BG) = ±100 µA  
Maximum bandgap reference  
output load capacitance  
80  
TEMPERATURE DIODE CHARACTERISTICS  
Offset voltage (approx. 0.77 V) varies with  
process and must be measured for each  
part. Offset measurement should be done  
with PowerDown=1 to minimize device self-  
heating.  
100-µA forward current  
Device active  
–1.6  
–1.6  
mV/°C  
mV/°C  
Temperature diode voltage  
slope  
V(TDIODE)  
100-µA forward current  
Device in power-down  
(5) This parameter is specified by design and is not tested in production.  
(6) This parameter is specified by design, characterization, or both and is not tested in production.  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Unless otherwise noted, these specifications apply for V(VA12) = V(VD12) = 1.2 V, V(VA19) = 1.9 V, VIN full scale range at default  
setting (725 mVPP), VIN = –1 dBFS, differential AC-coupled sinewave input clock, ƒ(DEVCLK) = 4 GHz at 0.5 VPP with 50% duty  
cycle, R(RBIAS) = 3.3 k±0.1%, after a foreground (FG) mode calibration with timing calibration enabled. Typical values are at  
TA = 25°C.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CLOCK INPUT CHARACTERISTICS (DEVCLK±, SYSREF±, SYNC~)  
Sine wave clock, TA = TMIN to TMAX  
0.4  
0.4  
0.6  
0.6  
±1  
2
2
VPP  
VPP  
µA  
pF  
pF  
Ω
VID(CLK)  
II(CLK)  
Differential clock input level  
Input current  
Square wave clock, TA = TMIN to TMAX  
VI = 0 or VI = VA  
Differential  
0.02  
1
CI(CLK)  
Input capacitance(5)  
Each input to ground  
TA = 25°C  
95  
RID(CLK)  
Differential input resistance  
TA = TMIN to TMAX  
80  
110  
Ω
CML OUTPUT CHARACTERISTICS (DS0–DS7±)  
Assumes ideal 100-Ω load  
Measured differentially  
VOD  
Differential output voltage  
280  
305  
330 mV peak  
Default pre-emphasis setting  
VO(ofs)  
IOS  
Output offset voltage  
0.6  
±6  
V
mA  
Ω
Output+ and output– shorted together  
Output+ or output– shorted to 0 V  
Output short-circuit current  
Differential output impedance  
12  
ZOD  
100  
LVCMOS INPUT CHARACTERISTICS (SDI, SCLK, SCS, SYNC~)  
(6)  
VIH  
VIL  
CI  
Logic high input voltage  
Logic low input voltage  
Input capacitance(5)(7)  
See  
See  
0.83  
1.65  
V
(6)  
0.4  
V
Each input to ground  
1
pF  
LVCMOS OUTPUT CHARACTERISTICS (SDO, OR_T0, OR_T1)  
VOH  
VOL  
CMOS H level output  
CMOS L level output  
IOH = –400 µA(6)  
IOH = 400 µA(6)  
1.9  
V
V
0.01  
0.15  
POWER SUPPLY CHARACTERISTICS  
I(VA19)  
I(VA12)  
I(VD12)  
Analog 1.9-V supply current  
Analog 1.2-V supply current  
Digital 1.2-V supply current  
PD = 0, calibration = BG, decimate by 8, DDR = 0, P54 = 1  
PD = 0, calibration = BG, decimate by 8, DDR = 0, P54 = 1  
PD = 0, calibration = BG, decimate by 8, DDR = 0, P54 = 1  
PD = 0, calibration = BG, decimate by 8, DDR = 0, P54 = 1  
PD = 1  
560  
377  
607  
428  
826  
2.66  
mA  
mA  
mA  
W
541  
2.17  
< 50  
PC  
Power consumption  
mW  
(7) The digital control pin capacitances are die capacitances only and is in addition to package and bond-wire capacitance of approximately  
0.4 pF.  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
DEVICE (SAMPLING) CLOCK  
ƒ(DEVCLK) Input DEVCLK frequency  
Sampling rate is equal to clock input  
Input CLK transition to sampling instant  
1
4
GHz  
ns  
td(A)  
t(AJ)  
Sampling (aperture) delay  
Aperture jitter  
0.64  
0.1  
ps RMS  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Timing Requirements (continued)  
MIN  
NOM  
292  
284  
384  
368  
392  
368  
386  
386  
608  
560  
608  
560  
568  
568  
1044  
948  
1044  
MAX  
UNIT  
Decimation = 4, DDR = 1, P54 = 0  
Decimation = 4, DDR = 1, P54 = 1  
Decimation = 8, DDR = 0, P54 = 0  
Decimation = 8, DDR = 0, P54 = 1  
Decimation = 8, DDR = 1, P54 = 0  
Decimation = 8, DDR = 1, P54 = 1  
Decimation = 10, DDR = 0, P54 = 0  
Decimation = 10, DDR = 1, P54 = 0  
Decimation = 16, DDR = 0, P54 = 0  
Decimation = 16, DDR = 0, P54 = 1  
Decimation = 16, DDR = 1, P54 = 0  
Decimation = 16, DDR = 1, P54 = 1  
Decimation = 20, DDR = 0, P54 = 0  
Decimation = 20, DDR = 1, P54 = 0  
Decimation = 32, DDR = 0, P54 = 0  
Decimation = 32, DDR = 0, P54 = 1  
Decimation = 32, DDR = 1, P54 = 0  
t(LAT_DDC) ADC core and DDC latency(1)  
t(DEVCLK)  
JESD204B INTERFACE LINK TIMING CHARACTERISTICS (REFER TO Figure 1)  
SYSREF to LMFC delay  
Functional delay between SYSREF  
td(LMFC)  
All decimation modes  
40  
t(DEVCLK)  
assertion latched and LMFC frame  
boundary(1)  
Decimation = 4, DDR = 1, P54 = 0  
Decimation = 4, DDR = 1, P54 = 1  
Decimation = 8, DDR = 0, P54 = 0  
Decimation = 8, DDR = 0, P54 = 1  
Decimation = 8, DDR = 1, P54 = 0  
Decimation = 8, DDR = 1, P54 = 1  
Decimation = 10, DDR = 0, P54 = 0  
Decimation = 10, DDR = 1, P54 = 0  
52.7  
43.9  
60.7  
51.5  
52.7  
43.9  
60.7  
52.7  
60.7  
51.5  
52.7  
43.9  
60.7  
52.7  
60.7  
51.5  
52.7  
LMFC to frame boundary delay - decimation  
modes  
td(TX)  
Functional delay from LMFC frame boundary Decimation = 16, DDR = 0, P54 = 0  
to beginning of next multi-frame in  
Decimation = 16, DDR = 0, P54 = 1  
transmitted data(2)  
t(DEVCLK)  
Decimation = 16, DDR = 1, P54 = 0  
Decimation = 16, DDR = 1, P54 = 1  
Decimation = 20, DDR = 0, P54 = 0  
Decimation = 20, DDR = 1, P54 = 0  
Decimation = 32, DDR = 0, P54 = 0  
Decimation = 32, DDR = 0, P54 = 1  
Decimation = 32, DDR = 1, P54 = 0  
tsu(SYNC~- SYNC~ to LMFC setup time(3)  
40  
–8  
Required SYNC~ setup time relative to the internal LMFC boundary.  
F)  
t(DEVCLK)  
th(SYNC~- SYNC~ to LMFC hold time(3)  
Required SYNC~ hold time relative to the internal LMFC boundary.  
F)  
SYNC~ assertion time  
Required SYNC~ assertion time before deassertion to initiate a link resynchronization.  
Frame clock  
cycles  
t(SYNC~)  
4
40  
4
td(LMFC)  
t(ILA)  
Delay from SYSREF sampled high by DEVCLK to internal LMFC boundary  
Duration of initial lane alignment sequence  
t(DEVCLK)  
Multi-frame  
clock cycles  
(1) Unless otherwise specified, delays quoted are exact un-rounded functional delays (assuming zero propagation delay).  
(2) The values given are functional delays only. Additional propagation delay of 0 to 3 clock cycles will be present.  
(3) This parameter must be met to achieve deterministic alignment of the data frame and NCO phase to other similar devices. If this  
parameter is not met the device will still function correctly but will not be aligned to other devices.  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
UNIT  
Timing Requirements (continued)  
MIN  
NOM  
MAX  
SYSREF  
tsu(SYS)  
th(SYS)  
Setup time SYSREF relative to DEVCLK rising edge(4)  
Hold time SYSREF relative to DEVCLK rising edge(4)  
40  
40  
ps  
ps  
t(PH_SYS) SYSREF assertion duration after rising edge event.  
t(PL_SYS) SYSREF deassertion duration after falling edge event.  
8
8
t(DEVCLK)  
t(DEVCLK)  
K × F ×  
10  
DDR = 0, P54 = 0  
K × F ×  
8
DDR = 0, P54 = 1  
DDR = 1, P54 = 0  
DDR = 1, P54 = 1  
t(SYS)  
Period SYSREF±  
t(DEVCLK)  
K × F ×  
5
K × F ×  
4
SERIAL INTERFACE (REFER TO Figure 2)  
ƒ(SCK)  
t(PH)  
t(PL)  
tsu  
Serial clock frequency(5)  
20  
MHz  
ns  
Serial clock high time  
20  
20  
10  
10  
10  
10  
10  
Serial clock low time  
ns  
Serial-data to serial-clock rising setup time(5)  
Serial-data to serial clock rising hold time(5)  
SCS-to-serial clock rising setup time  
SCS-to-serial clock falling hold time  
Inter-access gap  
ns  
th  
ns  
t(CSS)  
t(CSH)  
t(IAG)  
ns  
ns  
ns  
(4) This parameter is specified by design, characterization, or both and is not tested in production.  
(5) This parameter is specified by design and is not tested in production.  
6.7 Internal Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
DEVICE (SAMPLING) CLOCK  
td(A)  
t(AJ)  
Sampling (aperture) delay  
Aperture jitter  
Input CLK transition to sampling instant  
0.64  
0.1  
ns  
ps RMS  
CALIBRATION TIMING CHARACTERISTICS (REFER TO THE CALIBRATION SECTION)  
227 ×  
106  
Calibration = FG, T_AUTO=1  
t(CAL)  
Calibration cycle time  
t(DEVCLK)  
102 ×  
106  
Calibration = FG, T_AUTO=0  
JESD204B INTERFACE LINK TIMING CHARACTERISTICS (REFER TO Figure 1)  
SYSREF to LMFC delay  
td(LMFC)  
Functional delay between SYSREF assertion  
All decimation modes  
40  
t(DEVCLK)  
latched and LMFC frame boundary(1)  
(1) Unless otherwise specified, delays quoted are exact un-rounded functional delays (assuming zero propagation delay).  
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Internal Characteristics (continued)  
PARAMETER  
TEST CONDITIONS  
Decimation = 4, DDR = 1, P54 = 0  
Decimation = 4, DDR = 1, P54 = 1  
Decimation = 8, DDR = 0, P54 = 0  
Decimation = 8, DDR = 0, P54 = 1  
Decimation = 8, DDR = 1, P54 = 0  
Decimation = 8, DDR = 1, P54 = 1  
Decimation = 10, DDR = 0, P54 = 0  
Decimation = 10, DDR = 1, P54 = 0  
Decimation = 16, DDR = 0, P54 = 0  
Decimation = 16, DDR = 0, P54 = 1  
Decimation = 16, DDR = 1, P54 = 0  
Decimation = 16, DDR = 1, P54 = 1  
Decimation = 20, DDR = 0, P54 = 0  
Decimation = 20, DDR = 1, P54 = 0  
Decimation = 32, DDR = 0, P54 = 0  
Decimation = 32, DDR = 0, P54 = 1  
Decimation = 32, DDR = 1, P54 = 0  
MIN  
NOM  
52.7  
43.9  
60.7  
51.5  
52.7  
43.9  
60.7  
52.7  
60.7  
51.5  
52.7  
43.9  
60.7  
52.7  
60.7  
51.5  
52.7  
40  
MAX  
UNIT  
LMFC to frame boundary delay - decimation  
modes  
Functional delay from LMFC frame boundary  
to beginning of next multi-frame in transmitted  
data(2)  
td(TX)  
t(DEVCLK)  
td(LMFC)  
t(ILA)  
Delay from SYSREF sampled high by DEVCLK to internal LMFC boundary  
Duration of initial lane alignment sequence  
t(DEVCLK)  
Multi-frame  
clock cycles  
4
(2) The values given are functional delays only. Additional propagation delay of 0 to 3 clock cycles will be present.  
6.8 Switching Characteristics  
Unless otherwise noted, these specifications apply for V(VA12) = V(VD12) = 1.2 V, V(VA19) = 1.9 V, VIN FSR (AC coupled) =  
Default setting, differential AC-coupled sinewave input clock, ƒ(DEVCLK) = 4 GHz at 0.5 VPP with 50% duty cycle, R(RBIAS) = 3.3  
k±0.1%, after a foreground mode calibration with timing calibration enabled. Typical values are at TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SERIAL DATA OUTPUTS  
Serialized output bit rate  
Serialized output bit rate  
1
10  
DDR = 0, P54 = 0  
ƒS  
1.25 ×  
ƒS  
DDR = 0, P54 = 1  
DDR = 1, P54 = 0  
DDR = 1, P54 = 1  
Gbps  
2 × ƒS  
2.5 ×  
ƒS  
tTLH  
tTHL  
UI  
LH transition time — differential  
HL transition time — differential  
Unit interval  
10% to 90%, 8 Gbps  
10% to 90%, 8 Gbps  
8 Gbps serial rate  
8 Gbps serial rate  
8 Gbps serial rate  
35  
35  
ps  
ps  
ps  
ps  
ps  
125  
11.3  
1.4  
DDJ  
RJ  
Data dependent jitter  
Random Jitter  
SERIAL INTERFACE  
t(OZD)  
t(ODZ)  
t(OD)  
SDO tri-state to driven  
5
5
ns  
ns  
ns  
SDO driven to tri-state  
SDO output delay  
See Figure 2  
2.5  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
SYSREF assertion  
latched  
SYNC~ assertion  
latched  
SYNC~ de-assertion  
latched  
t
(SYNC~)  
tsu(SYNC~-F)  
th(-SYNC~-F)  
SYNC~  
t
(ILA)  
ILA  
d(TX)  
XXX  
XXX  
K28.5  
K28.5  
ILA  
Valid Data  
Serial Data  
t
t
h(SYS)  
t
t
d(TX)  
t
su(SYS)  
DEVCLK  
SYSREF  
(PL-SYS)  
t
(PH-SYS)  
Tx Frame Clk  
t
Tx LMFC Boundary  
d(LMFC)  
Code Group  
Synchronization  
Initial Frame and Lane  
Synchronization  
Data  
Transmission  
Frame Clock  
Alignment  
Figure 1. JESD204 Synchronization  
st  
th  
th  
24 clock  
1
clock  
16 clock  
SCLK  
SCS  
t
(CSS)  
t
t
(PL)  
t
t
(CSS)  
(PH)  
(CSH)  
t
(CSH)  
t
(IAG)  
t
+ t  
(PL)  
= t = 1 / ƒ  
(P)  
(PH)  
(SCK)  
t
su  
t
t
su  
t
h
h
SDI  
D7  
D1  
D1  
D0  
Write Command  
D0  
COMMAND FIELD  
Hi-Z  
t
(OD)  
Hi-Z  
SDO  
D7  
t
t
(OZD)  
(ODZ)  
Read Command  
Figure 2. Serial Interface Timing  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
6.9 Typical Characteristics  
Unless otherwise noted, these specifications apply for V(VA12) = V(VD12) = 1.2 V, V(VA19) = 1.9 V, VIN FSR (AC coupled) =  
Default setting, differential AC-coupled sinewave input clock, ƒ(DEVCLK) = 4 GHz at 0.5 VPP with 50% duty cycle, R(RBIAS) = 3.3  
k±0.1%, after a Foreground mode calibration with Timing Calibration enabled. TA = 25°C. VI = –1 dBFS.  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
SNR (dBFS)  
SINAD (dBFS)  
SFDR (dBFS)  
SNR (dBFS)  
SINAD (dBFS)  
SFDR (dBFS)  
4
8
12  
16  
20  
24  
28  
32  
4
8
12  
16  
20  
24  
28  
32  
Decimation Factor  
Decimation Factor  
D019  
D024  
FIN = 608 MHz  
FIN = 2483 MHz  
Figure 3. SNR, SINAD, SFDR vs Decimation Setting  
Figure 4. SNR, SINAD, SFDR vs Decimation Setting  
105  
90  
75  
60  
45  
90  
85  
80  
75  
70  
65  
60  
55  
SNR (dBFS)  
SINAD (dBFS)  
SFDR (dBFS)  
SNR (dBFS)  
SINAD (dBFS)  
SFDR (dBFS)  
-10  
-5  
0
5
10  
-50  
-25  
0
25  
50  
75  
100  
All Supply Voltage Variation from Nominal (%)  
Ambient Temperature (°C)  
D043  
D033  
Decimate by 16 mode  
FIN = 608 MHz  
Decimate by 16 mode  
FIN = 608 MHz  
Figure 5. SNR, SINAD, SFDR vs Supply  
Figure 6. SNR, SINAD, SFDR vs Temperature  
11  
10  
9
11  
10  
9
8
8
4
8
12  
16  
20  
24  
28  
32  
4
8
12  
16  
20  
24  
28  
32  
Decimation Factor  
Decimation Factor  
D021  
D026  
FIN = 608 MHz  
Figure 7. ENOB vs Decimation Setting  
FIN = 2483 MHz  
Figure 8. ENOB vs Decimation Setting  
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise noted, these specifications apply for V(VA12) = V(VD12) = 1.2 V, V(VA19) = 1.9 V, VIN FSR (AC coupled) =  
Default setting, differential AC-coupled sinewave input clock, ƒ(DEVCLK) = 4 GHz at 0.5 VPP with 50% duty cycle, R(RBIAS) = 3.3  
k±0.1%, after a Foreground mode calibration with Timing Calibration enabled. TA = 25°C. VI = –1 dBFS.  
11  
10.5  
10  
11  
10.5  
10  
9.5  
9.5  
9
9
-10  
-5  
0
5
10  
-50  
-25  
0
25  
50  
75  
100  
All Supply Variation from Nominal (%)  
Temperature (°C)  
D044  
D034  
Decimate by 16 mode  
FIN = 608 MHz  
Decimate by 16 mode  
FIN = 608 MHz  
Figure 9. ENOB vs Supply  
Figure 10. ENOB vs Temperature  
2
1.9  
1.8  
1.7  
1.6  
1.9  
1.8  
1.7  
1.6  
4
8
12  
16  
20  
24  
28  
32  
-50  
-25  
0
25  
50  
75  
100  
Decimation Factor  
Ambient Temperature (°C)  
D022  
D035  
FIN = 608 MHz  
Decimate by 16 mode  
FIN = 608 MHz  
Figure 11. Power Consumption vs Decimation Setting  
Figure 12. Power Consumption vs Temperature  
2
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
VA19  
VA12  
VD12  
1.9  
1.8  
1.7  
1.6  
1.5  
-10  
-5  
0
5
10  
4
8
12  
16  
20  
24  
28  
32  
All Supply Voltage Variation from Nominal (%)  
Decimation Factor  
D045  
D023  
Decimate by 16 mode  
FIN = 608 MHz  
FIN = 608 MHz  
Figure 13. Power Consumption vs Supply  
Figure 14. Supply Current vs Decimation Setting  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Typical Characteristics (continued)  
Unless otherwise noted, these specifications apply for V(VA12) = V(VD12) = 1.2 V, V(VA19) = 1.9 V, VIN FSR (AC coupled) =  
Default setting, differential AC-coupled sinewave input clock, ƒ(DEVCLK) = 4 GHz at 0.5 VPP with 50% duty cycle, R(RBIAS) = 3.3  
k±0.1%, after a Foreground mode calibration with Timing Calibration enabled. TA = 25°C. VI = –1 dBFS.  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
VA19  
VA12  
VD12  
VA19  
VA12  
VD12  
-10  
-5  
0
5
10  
-50  
-25  
0
25  
50  
75  
100  
All Supply Voltage Variation from Nominal (%)  
Ambient Temperature (°C)  
D046  
D036  
Decimate by 16 mode  
FIN = 608 MHz  
Decimate by 16 mode  
FIN = 608 MHz  
Figure 15. Supply Current vs Supply Voltage  
Figure 16. Supply Current vs Temperature  
6
3
6
3
Corrected for Setup Losses  
Raw Insertion Loss  
Curve Fit  
Corrected for Setup Losses  
Raw Insertion Loss  
Curve Fit  
0
0
-3  
-3  
-6  
-6  
-9  
-9  
-12  
-15  
-12  
-15  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Input Frequency (MHz)  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Input Frequency (MHz)  
D037  
D038  
Foreground calibration mode  
Background calibration mode  
Figure 17. Insertion Loss vs Input Frequency  
Figure 18. Insertion Loss vs Input Frequency  
30  
0.0025  
0
Filter Response  
-80dB  
0
-30  
-0.0025  
-0.005  
-0.0075  
-0.01  
-60  
-90  
-120  
-150  
-180  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.025  
0.05  
0.075  
0.1  
0.125  
Normalized to Filter Input Sample Rate  
Normalized to Filter Input Sample Rate  
D055  
D056  
Figure 19. Decimate by 4 - Stopband Response  
Figure 20. Decimate by 4 - Passband Response  
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise noted, these specifications apply for V(VA12) = V(VD12) = 1.2 V, V(VA19) = 1.9 V, VIN FSR (AC coupled) =  
Default setting, differential AC-coupled sinewave input clock, ƒ(DEVCLK) = 4 GHz at 0.5 VPP with 50% duty cycle, R(RBIAS) = 3.3  
k±0.1%, after a Foreground mode calibration with Timing Calibration enabled. TA = 25°C. VI = –1 dBFS.  
30  
0.0025  
Filter Response  
-80dB  
0
0
-30  
-0.0025  
-0.005  
-0.0075  
-0.01  
-60  
-90  
-120  
-150  
-180  
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
Normalized to Filter Input Sample Rate  
Normalized to Filter Input Sample Rate  
D057  
D058  
Figure 21. Decimate by 8 - Stopband Response  
Figure 22. Decimate by 8 - Passband Response  
30  
0
0.0025  
0
Filter Response  
-80dB  
-30  
-0.0025  
-0.005  
-0.0075  
-0.01  
-60  
-90  
-120  
-150  
-180  
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.01  
0.02  
0.03  
0.04  
0.05  
Normalized to Filter Input Sample Rate  
Normalized to Filter Input Sample Rate  
D059  
D060  
Figure 23. Decimate by 10 - Stopband Response  
Figure 24. Decimate by 10 - Passband Response  
30  
0
0.0025  
0
Filter Response  
-80dB  
-30  
-0.0025  
-0.005  
-0.0075  
-0.01  
-60  
-90  
-120  
-150  
-180  
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.006  
0.012  
0.018  
0.024  
0.03  
Normalized to Filter Input Sample Rate  
Normalized to Filter Input Sample Rate  
D061  
D062  
Figure 25. Decimate by 16 - Stopband Response  
Figure 26. Decimate by 16 - Passband Response  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Typical Characteristics (continued)  
Unless otherwise noted, these specifications apply for V(VA12) = V(VD12) = 1.2 V, V(VA19) = 1.9 V, VIN FSR (AC coupled) =  
Default setting, differential AC-coupled sinewave input clock, ƒ(DEVCLK) = 4 GHz at 0.5 VPP with 50% duty cycle, R(RBIAS) = 3.3  
k±0.1%, after a Foreground mode calibration with Timing Calibration enabled. TA = 25°C. VI = –1 dBFS.  
30  
0.0025  
Filter Response  
-80dB  
0
0
-30  
-0.0025  
-0.005  
-0.0075  
-0.01  
-60  
-90  
-120  
-150  
-180  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.005  
0.01  
0.015  
0.02  
0.025  
Normalized to Filter Input Sample Rate  
Normalized to Filter Input Sample Rate  
D063  
D064  
Figure 27. Decimate by 20 - Stopband Response  
Figure 28. Decimate by 20 - Passband Response  
30  
0
0.0025  
0
Filter Response  
-30  
-0.0025  
-0.005  
-0.0075  
-0.01  
-60  
-90  
-120  
-150  
-180  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.003  
0.006  
0.009  
0.012  
0.015  
Normalized to Filter Input Sample Rate  
Normalized to Filter Input Sample Rate  
D065  
D066  
Figure 29. Decimate by 32 - Stopband Response  
Figure 30. Decimate by 32 - Passband Response  
Copyright © 2014–2017, Texas Instruments Incorporated  
23  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LM15851 device is an ultra-wideband sampling and digital tuning subsystem. The device combines a very-  
wideband and high sampling-rate ADC front-end with a configurable digital-down conversion block. This  
combination provides the necessary features to facilitate the development of flexible software-defined radio  
products for a wide range of communications applications.  
The LM15851 device is based on an ultra high-speed ADC core. The core uses an interleaved calibrated folding  
and interpolating architecture that results in very high sampling rate, very good dynamic performance, and  
relatively low-power consumption. This ADC core is followed by a configurable DDC block which is implemented  
on a small geometry CMOS. The DDC block provides a range of decimation settings that allow the product to  
work in ultra-wideband, wideband, and more-narrow-band receive systems. The output data from the DDC block  
is transmitted through a JESD204B-compatible multi-lane serial-output system. This system minimizes the  
number of data pairs required to convey the output data to the downstream processing circuitry.  
7.2 Functional Block Diagram  
NCO_2  
NCO_2  
Buffer  
VIN+  
ADC  
VINœ  
NCO_1  
NCO_1  
VCM  
REF  
DDC  
VCMO  
NCO_0  
NCO_0  
VBG  
RBIAS+  
RBIASœ  
DS4+  
DS4œ  
DEVCLK+  
DS3+  
DS3œ  
DEVCLKœ  
Clock  
Sync  
VCM CLK  
DS2+  
SYSREF+  
DS2œ  
SYSREFœ  
DS1+  
DS1œ  
SYNC~+  
SYNC~œ  
SYNC~  
DS0+  
DS0œ  
OR_T0  
OR_T1  
Overrange  
Detection  
TDIODE+  
TDIODEœ  
SCS  
SCLK  
SDI  
Configuration  
Registers  
SPI  
Interface  
SDO  
24  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Functional Block Diagram (continued)  
Configurable 32-bit NCO  
and Mixer  
Configurable  
Decimation Filters  
15 bit I  
Filter  
Filter  
Complex Baseband  
Output  
12 bit  
15 bit Q  
90°  
Oscillator  
Figure 31. DDC Details Block Diagram  
7.3 Feature Description  
7.3.1 Signal Acquisition  
The analog input is sampled on the rising edge of CLK and the digital equivalent of that data is available in the  
serialized datastream t(LAT) or t(LAT_DDC) input clock cycles later.  
The LM15851 device converts as long as the input clock signal is present. The fully-differential comparator  
design and the innovative design of the sample-and-hold amplifier, together with calibration, enables very good  
performance at input frequencies beyond 3 GHz. The LM15851 data is output on a high-speed serial JESD204B  
interface.  
7.3.2 The Analog Inputs  
A differential input signal must be used to drive the LM15851 device. Operation with a single-ended signal is not  
recommended as performance suffers. The input signals can be either be AC coupled or DC coupled. The  
analog inputs are internally connected to the VCMO bias voltage. When DC-coupled input signals are used, the  
common mode voltage of the applied signal must meet the device Input common mode requirements. See VCMI  
in the Recommended Operating Conditions table.  
The full-scale input range for each converter can be adjusted through the serial interface. See the Full Scale  
Range Adjust section.  
The buffered analog inputs simplify the task of driving these inputs and the RC pole that is generally used at  
sampling ADC inputs is not required. If an amplifier circuit before the ADC is desired, use care when selecting an  
amplifier with adequate noise and distortion performance and adequate gain at the frequencies used for the  
application. If gain is not required, a balun (balanced-to-unbalanced transformer) is generally used to provide  
single ended (SE) to differential conversion.  
The input impedance of VIN± consists of two 50-resistors in series between the inputs and a capacitance from  
each of these inputs to ground. A resistance of approximately 20 kexists from the center point of the 50-Ω  
resistors to the on-chip VCMO providing self-biasing for AC-coupled applications.  
Performance is good in both DC-coupled mode and AC coupled mode, provided the common-mode voltage at  
the analog input is within specifications.  
Copyright © 2014–2017, Texas Instruments Incorporated  
25  
 
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.2.1 Input Clamp  
The LM15851 maximum DC input voltage is limited to the range 0 to 2 V to prevent damage to the device. To  
help maintain these limits, an active input clamping circuit is incorporated which sources or sinks input currents  
up to ±50 mA. The clamping circuit is enabled by default and is controlled via the Input_Clamp_EN bit (register  
0x034, bit 5). The protection provided by this circuit is limited as follows:  
Shunt current-clamping is only effective for non-zero source impedances.  
At frequencies above 3 GHz the clamping is ineffective because of the finite turn-on and turn-off time of the  
switch.  
With these limitations in mind, analysis has been done to determine the allowable input signal levels as a  
function of input frequency when the Input Clamp is enabled, assuming the source impedance matches the input  
impedance of the device (100-Ω differential). This information is incorporated in the Absolute Maximum Ratings  
table.  
7.3.2.2 AC Coupled Input Usage  
The easiest way to accomplish SE-to-differential conversion for AC-coupled signals is with an appropriate balun.  
C
(couple)  
VIN+  
50-  
Source  
R(VIN)  
VINœ  
1:2 Balun  
C
(couple)  
Figure 32. Single-Ended-to-Differential Signal Conversion With a Balun  
Figure 32 shows a generic depiction of a SE-to-differential signal conversion using a balun. The circuitry specific  
to the balun depends on the type of balun selected and the overall board layout. TI recommends that the system  
designer contact the manufacturer of the selected balun to aid in designing the best performing single-ended to  
differential conversion circuit using that particular balun.  
When selecting a balun, understanding the input architecture of the ADC is important. Specific balun parameters  
must be considered. The balun must match the impedance of the analog source to the on-chip 100-differential  
input termination of the LM15851 device. The range of this input termination resistor is described in the Electrical  
Characteristics table as the specification RID.  
Also, as a result of the ADC architecture, the phase and amplitude balance are important. The lowest possible  
phase and amplitude imbalance is desired when selecting a balun. The phase imbalance must be no more than  
±2.5° and the amplitude imbalance must be limited to less than 1 dB at the desired input frequency range.  
Finally, when selecting a balun, the voltage standing-wave ratio (VSWR), bandwidth, and insertion loss of the  
balun must also be considered. The VSWR aids in determining the overall transmission line termination  
capability of the balun when interfacing to the ADC input. The insertion loss must be considered so that the  
signal at the balun output is within the specified input range of the ADC as described in the Electrical  
Characteristics table as the specification VID.  
Table 1 lists the recommended baluns for specific signal frequency ranges.  
Table 1. Balun Recommendations  
MINIMUM  
MAXIMUM  
IMPEDANCE RATIO  
PART NUMBER  
MANUFACTURER  
FREQUENCY (MHz) FREQUENCY (MHz)  
4.5  
400  
30  
3000  
3000  
1800  
4000  
1:1  
1:2  
1:2  
1:2  
TC1-1-13MA+  
B0430J50100AHF  
ADTL2-18+  
Mini-Circuits  
Anaren  
Mini-Circuits  
Mini-Circuits  
10  
TCM2-43X+  
26  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.3.2.3 DC Coupled Input Usage  
When a DC-coupled signal source is used, the common mode voltage of the applied signal must be within a  
specified range (VCMI). To achieve this range, the common mode of the driver should be based on the VCMO  
output provided for this purpose.  
Full-scale distortion performance degrades as the input common-mode voltage deviates from VCMO. Therefore,  
maintaining the input common-mode voltage within the VCMI range is important.  
Table 2 lists the recommended amplifiers for DC-coupled usage or if AC-coupling with gain is required.  
Table 2. Amplifier Recommendations  
–3-dB BANDWIDTH (MHz)  
MIN GAIN (dB)  
MAX GAIN (dB)  
GAIN TYPE  
Fixed  
PART NUMBER  
LMH3401  
7000  
2800  
2400  
900  
16  
0
16  
17  
Resistor set  
LMH6554  
6
26  
Digital programmable  
Digital programmable  
LMH6881  
–1.16  
38.8  
LMH6518  
7.3.2.4 Handling Single-Ended Input Signals  
The LM15851 device has no provision to adequately process single-ended input signals. The best way to handle  
single-ended signals is to convert these signals to balanced differential signals before presenting the signals to  
the ADC.  
7.3.3 Clocking  
The LM15851 device has a differential clock input, DEVCLK+ and DEVCLK–, that must be driven with an AC-  
coupled differential clock-signal. The clock inputs are internally terminated and biased. The input clock signal  
must be capacitively coupled to the clock pins as shown in Figure 33.  
C
(couple)  
CLK+  
C
(couple)  
CLKœ  
Figure 33. Differential Sample-Clock Connection  
The differential sample-clock line pair must have a characteristic impedance of 100 and must be terminated at  
the clock source of that 100-characteristic impedance. The input clock line must be as short and direct as  
possible. The LM15851 clock input is internally terminated with an untrimmed 100-resistance.  
Insufficient input clock levels results in poor dynamic performance. Excessively-high input-clock levels can cause  
a change in the analog-input offset voltage. To avoid these issues, maintain the input clock level within the range  
specified in the Electrical Characteristics table.  
The low times and high times of the input clock signal can affect the performance of any ADC. The LM15851  
device features a duty-cycle clock-correction circuit which maintains performance over temperature. The ADC  
meets the performance specification when the input clock high times and low times are maintained as specified  
in the Electrical Characteristics table.  
High-speed high-performance ADCs such as the LM15851 device require a very-stable input clock-signal with  
minimum phase noise or jitter. ADC jitter requirements are defined by the ADC resolution or ENOB (effective  
number of bits), maximum ADC input frequency, and the input signal amplitude relative to the ADC input full-  
scale range. Use Equation 1 to calculate the maximum jitter (the sum of the jitter from all sources) allowed to  
prevent a jitter-induced reduction in SNR.  
Copyright © 2014–2017, Texas Instruments Incorporated  
27  
 
 
 
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
VFSR  
1
RMStot(J)  
=
ì
2(n+1) ì p ì F  
V
I(PP)  
(
)
IN  
where  
RMStot(J) is the RMS total of all jitter sources in seconds  
VI(PP) is the peak-to-peak analog input signal  
VFSR is the full-scale range of the ADC  
n is the ADC resolution in bits  
FIN is the maximum input frequency, in Hertz, at the ADC analog input  
(1)  
Note that the maximum jitter previously described is the root sum square (RSS) of the jitter from all sources,  
including that from the clock source, the jitter added by noise coupling at board level and that added internally by  
the ADC clock circuitry, in addition to any jitter added to the input signal. Because the effective jitter added by the  
ADC is beyond user control, the best option is to minimize the jitter from the clock source, the sum of the  
externally-added input clock jitter and the jitter added by any circuitry to the analog signal.  
Input clock amplitudes above those specified in the Recommended Operating Conditions table can result in  
increased input-offset voltage. Increased input-offset voltage causes the converter to produce an output code  
other than the expected 2048 when both input pins are at the same potential.  
7.3.4 Over-Range Function  
To ensure that system-gain management has the quickest-possible response time, a low-latency configurable  
over-range function is included. The over-range function works by monitoring the raw 12-bit samples exiting the  
ADC module. The upper 8 bits of the magnitude of the ADC data are checked against two programmable  
thresholds, OVR_T0 and OVR_T1. The following table lists how a raw ADC value is converted to an absolute  
value for a comparison of the thresholds.  
ADC SAMPLE  
(OFFSET BINARY)  
ADC SAMPLE  
(2's COMPLEMENT)  
UPPER 8 BITS USED FOR  
COMPARISON  
ABSOLUTE VALUE  
1111 1111 1111 (4095)  
1111 1111 0000 (4080)  
1000 0000 0000 (2048)  
0000 0001 0000 (16)  
0000 0000 0000 (0)  
0111 1111 1111 (+2047)  
0111 1111 0000 (+2032)  
0000 0000 0000 (0)  
111 1111 1111 (2047)  
111 1111 0000 (2032)  
000 0000 0000 (0)  
1111 1111 (255)  
1111 1110 (254)  
0000 0000 (0)  
1000 0001 0000 (-2032)  
1000 0000 0000 (-2048)  
111 1111 0000 (2032)  
111 1111 1111 (2047)  
1111 1110 (254)  
1111 1111 (255)  
If the upper 8 bits of the absolute value equal or exceed the OVR_T0 or OVR_T1 threshold during the monitoring  
period, then the over-range bit associated with the threshold is set to 1, otherwise the over-range bit is 0. The  
resulting over-range bits are embedded into the complex output data samples and output on OR_T0 and OR_T1.  
Table 3 lists the outputs, related data samples, threshold settings and the monitoring period equation.  
Table 3. Threshold and Monitor Period for Embedded OR Bits  
EMBEDDED OVER-RANGE  
OUTPUTS  
MONITORING PERIOD  
(ADC SAMPLES)  
ASSOCIATED THRESHOLD  
ASSOCIATED SAMPLES  
OR_T0  
OR_T1  
OVR_T0  
OVR_T1  
In-Phase (I) samples  
2OVR_N(1)  
Quadrature (Q) samples  
(1) OVR_N is the monitoring period register setting.  
28  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Table 4. Over-Range Monitoring Period  
OVR_N  
MONITORING PERIOD  
0
1
2
3
4
5
6
7
1
2
4
8
16  
32  
64  
128  
Typically, the OVR_T0 threshold can be set near the full-scale value (228 for example). When the threshold is  
triggered, a typical system can turn down the system gain to avoid clipping. The OVR_T1 threshold can be set  
much lower. For example, the OVR_T1 threshold can be set to 64 (12 dBFS). If the input signal is strong, the  
OVR_T1 threshold is tripped occasionally. If the input is quite weak, the threshold is never tripped. The  
downstream logic device monitors the OVR_T1 bit. If OVR_T1 stays low for an extended period of time, then the  
system gain can be increased until the threshold is occasionally tripped (meaning the peak level of the signal is  
above 12 dBFS).  
The OR_T0 threshold is embedded as the LSB along with the upper 15 bits of every complex I sample. The  
OR_T1 threshold is embedded as the LSB along with the upper 15 bits of every complex Q sample.  
7.3.5 ADC Core Features  
7.3.5.1 The Reference Voltage  
The reference voltage for the LM15851 device is derived from an internal bandgap reference. A buffered version  
of the reference voltage is available at the VBG pin for user convenience. This output has an output-current  
capability of ±100 μA. The VBG output must be buffered if more current is required. No provision exists for the  
use of an external reference voltage, but the full-scale input voltage can be adjusted through the full-scale-range  
register settings.  
7.3.5.2 Common-Mode Voltage Generation  
The internal reference voltage is used to generate a stable common-mode voltage reference for the analog  
Inputs and the DEVCLK and SYSREF differential-clock inputs.  
7.3.5.3 Bias Current Generation  
An external bias resistor, in combination with the on-chip voltage reference is used to provide an accurate and  
stable source of bias currents for internal circuitry. Using an external accurate resistor minimizes variation in  
device power consumption and performance.  
7.3.5.4 Full Scale Range Adjust  
The ADC input full-scale range can be adjusted through the GAIN_FS register setting (registers 0x022 and  
0x023). The adjustment range is approximately 500 mVPP to 950 mVPP. The full-scale range adjustment is useful  
for matching the input-signal amplitude to the ADC full scale, or to match the full-scale range of multiple ADCs  
when developing a multi-converter system.  
7.3.5.5 Offset Adjust  
The ADC-input offset voltage can be adjusted through the OFFSET_FS register setting (registers 0x025 and  
0x026). The adjustment range is approximately 28 mV to –28 mV differential.  
NOTE  
Offset adjust has no effect when background calibration mode is enabled.  
Copyright © 2014–2017, Texas Instruments Incorporated  
29  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.3.5.6 Power-Down  
The power-down bit (PD) allows the LM15851 device to be entirely powered down. The serial data output drivers  
are disabled when PD is high. When the device returns to normal operation, the JESD204 link must be re-  
established, and the ADC pipeline and decimation filters contain meaningless information and must be flushed.  
7.3.5.7 Built-In Temperature Monitor Diode  
A built-in thermal monitoring diode junction is made available on the TDIODE+ and TDIODE– pins. This diode  
facilitates temperature monitoring and characterization of the device in higher ambient temperature  
environments. While the on-chip diode is not highly characterized, the diode can be used effectively by  
performing a baseline measurement at a known ambient or board temperature with the device in power-down  
(PD) mode. Recommended monitoring ICs include the LM95233 device and similar remote-diode temperature  
monitoring products from Texas Instruments.  
7.3.6 Digital Down Converter (DDC)  
The digitized data is the input to the digital down-converter block. This block provides frequency conversion and  
decimation filtering to allow a specific range of frequencies to be selected and output in the digital data stream.  
7.3.6.1 NCO/Mixer  
The DDC contains a complex numerically-controlled oscillator and a complex mixer. The oscillator generates a  
complex exponential sequence shown in Equation 2.  
x[n] = ejωn  
(2)  
The frequency (ω) is specified by the a 32-bit register setting. The complex exponential sequence is multiplied by  
the real input from the ADC to mix the desired carrier down to 0 Hz.  
7.3.6.2 NCO Settings  
7.3.6.2.1 NCO Frequency Phase Selection  
Within the DDC, eight different frequency and phase settings are always available for use. Each of the eight  
settings uses a different phase accumulator within the NCO. Because all eight phase accumulators are  
continuously running independently, rapid switching between different NCO frequencies is possible allowing rapid  
tuning of different signals.  
The specific frequency-phase pair in use is selected through either the NCO_x input pins, or the NCO_SEL  
configuration bits (register 0x20D, bits 2:0). The CFG_MODE bit (register 0x20C, bit 0) is used to choose  
whether the input pins or selection bits are used. When the CFG_MODE bit is set to 0, the NCO_x input pins  
select the active NCO frequency and phase setting. When the CFG_MODE bit is set to 1, the NCO_SEL register  
settings select the active NCO frequency and phase setting.  
The frequency for each phase accumulator is programmed independently through the NCO_FREQn (and  
optionally NCO_RDIV) settings. The phase offset for each accumulator is programmed independently through  
the NCO_PHASEn register settings.  
7.3.6.2.2 NCO_0, NCO_1, and NCO_2 (NCO_x)  
When the CFG_MODE bit is set to 0, the state of these three inputs determines the active NCO frequency and  
phase accumulator settings.  
7.3.6.2.3 NCO_SEL Bits (2:0)  
When the CFG_MODE bit is set to 1, the state of these register bits determines the active NCO frequency and  
phase accumulator settings.  
30  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.3.6.2.4 NCO Frequency Setting (Eight Total)  
7.3.6.2.4.1 Basic NCO Frequency-Setting Mode  
In basic NCO frequency-setting mode, the NCO frequency setting is set by the 32-bit register value,  
NCO_FREQn (n = preset 0 trough 7, see the NCO Frequency (Preset x) Register section).  
(n = 0 – 7) ƒ(NCO) = NCO_FREQn × 2–32 × ƒ(DEVCLK)  
(3)  
NOTE  
Changing the register setting after the JESD204B interface is running results in non-  
deterministic NCO phase. If deterministic phase is required, the JESD204B link must be  
re-initialized after changing the register setting. See the Multiple ADC Synchronization  
section.  
7.3.6.2.4.2 Rational NCO Frequency Setting Mode  
In basic NCO frequency mode, the frequency step size is very small and many frequencies can be synthesized,  
but sometimes an application requires very specific frequencies that fall between two frequency steps. For  
example with ƒS equal to 2457.6 MHz and a desired ƒ(NCO) equal to 5.02 MHz the value for NCO_FREQ is  
8773085.867. Truncating the fractional portion results in an ƒ(NCO) equal to 5.0199995 MHz, which is not the  
desired frequency.  
To produce the desired frequency, the NCO_RDIV parameter is used to force the phase accumulator to arrive at  
specific frequencies without error. First, select a frequency step size (ƒ(STEP)) that is appropriate for the NCO  
frequency steps required. The typical value of ƒ(STEP) is 10 kHz. Next, program the NCO_RDIV value according  
to Equation 4.  
ƒ(DEVCLK)  
ƒ(STEP)  
128  
«
÷
÷
NCO_RDIV =  
(4)  
The result of Equation 4 must be an integer value. If the value is not an integer, adjust either of the parameters  
until the result in an integer value.  
For example, select a value of 1920 for NCO_RDIV.  
NOTE  
NCO_RDIV values larger than 8192 can degrade the NCO SFDR performance and are  
not recommended.  
Now use Equation 5 to calculate the NCO_FREQ register value.  
225 ì N  
NCO _RDIV  
NCO _FREQ = round ì  
÷
÷
«
(5)  
Alternatively, the following equations can be used:  
ƒ(NCO)  
N =  
ƒ(STEP)  
(6)  
(7)  
225 ì N  
NCO _RDIV  
NCO _FREQ = round ì  
÷
÷
«
Copyright © 2014–2017, Texas Instruments Incorporated  
31  
 
 
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Table 5. Common NCO_RDIV Values (For 10-kHz Frequency Steps)  
ƒ(DEVCLK) (MHz)  
3686.4  
NCO_RDIV  
2880  
3072  
2400  
2949.12  
2457.6  
2304  
1920  
1966.08  
1474.56  
1228.8  
1536  
1152  
960  
7.3.6.2.5 NCO Phase-Offset Setting (Eight Total)  
The NCO phase-offset setting is set by the 16-bit register value NCO_PHASEn (n = preset 0 trough 7, see the  
NCO Phase (Preset x) Register section). The value is left-justified into a 32-bit field and then added to the phase  
accumulator.  
Use Equation 8 to calculate the phase offset in radians.  
NCO_PHASEn × 2–16 × 2 × π  
(8)  
NOTE  
Changing the register setting after the JESD204B interface is running results in non-  
deterministic NCO phase. If deterministic phase is required, the JESD204B link must be  
re-initialized after changing the register setting. See Multiple ADC Synchronization.  
7.3.6.2.6 Programmable DDC Delay  
The DDC Filter elements incorporate a programmable sample delay. The delay can be programmed from 0 to  
(decimation setting – 0.5) ADC sample periods. The delay step-size is 0.5 ADC sample periods. The delay  
settings are programmed through the DDC_DLYn parameter.  
Table 6. Programmable DDC Delay Range  
D (Decimation Setting)  
Min Delay (t(DEVCLK)  
)
Max Delay (t(DEVCLK))  
4
0
0
0
0
0
0
3.5  
7.5  
8
10  
16  
20  
32  
9.5  
15.5  
19.5  
31.5  
32  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.3.6.3 Decimation Filters  
The decimation filters are arranged to provide a programmable overall decimation of 4, 8, 10, 16, 20, or 32. The  
input and output of each filter is complex. The output data consists of 15-bit complex baseband information.  
Table 7 lists the effective output sample rates.  
Table 7. Output Sample Rates  
COMPLEX SAMPLE OUTPUT RATE AND RESULTING BANDWIDTH  
(OUTPUT SAMPLE = 15-BIT I + 15-BIT Q + 2-BIT OR)  
ƒ(DEVCLK)  
ƒ(DEVCLK) = 4000 MHz  
DECIMATION  
SETTING  
ALIAS  
PROTECTED  
BANDWIDTH  
(MHz)  
ALIAS  
PROTECTED  
BANDWIDTH  
(MHz)  
RAW OUTPUT  
BANDWIDTH  
(MHz)  
RAW OUTPUT  
BANDWIDTH  
(MHz)  
OUTPUT RATE  
(MSPS)  
OUTPUT RATE  
(MSPS)  
4
ƒ(DEVCLK) / 4  
ƒ(DEVCLK) / 8  
ƒ(DEVCLK) / 10  
ƒ(DEVCLK) / 16  
ƒ(DEVCLK) / 20  
ƒ(DEVCLK) / 32  
ƒ(DEVCLK) / 4  
ƒ(DEVCLK)N / 8  
ƒ(DEVCLK) / 10  
ƒ(DEVCLK) / 16  
ƒ(DEVCLK) / 20  
ƒ(DEVCLK) / 32  
0.8 × ƒ(DEVCLK) / 4  
0.8 × ƒ(DEVCLK) / 8  
0.8 × ƒ(DEVCLK) / 10  
0.8 × ƒ(DEVCLK) / 16  
0.8 × ƒ(DEVCLK) / 20  
0.8 × ƒ(DEVCLK) / 32  
1000  
500  
400  
250  
200  
125  
1000  
500  
400  
250  
200  
125  
800  
400  
320  
200  
160  
100  
8
10  
16  
20  
32  
For maximum efficiency a group of high speed filter blocks are implemented with specific blocks used for each  
decimation setting. The first table below describes the combination of filter blocks used for each decimation  
setting. The next table lists the coefficient details and decimation factor of each filter block.  
Table 8. Decimation Mode Filter Usage  
Decimation Setting  
Filter Blocks Used  
CS19, CS55  
4
8
CS11, CS15, CS55  
CS11, CS139  
10  
16  
20  
32  
CS7, CS11, CS15, CS55  
CS7, CS11, CS139  
CS7, CS7, CS11, CS15, CS55  
Copyright © 2014–2017, Texas Instruments Incorporated  
33  
 
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Table 9. Filter Coefficient Details  
Filter Coefficient Set (Decimation Factor of Filter)  
CS7 (2)  
CS11 (2)  
CS15 (2)  
CS19 (2)  
CS55 (2)  
CS139 (5)  
–5  
–65  
0
–65  
0
109  
0
109  
0
–327  
0
–327  
0
22  
0
22  
0
–37  
–37  
0
–5  
–9  
0
–9  
577  
1024  
577  
–837  
0
–837  
0
2231  
0
2231  
0
–174  
0
–174  
0
118  
118  
0
–9  
–9  
0
–291  
0
–5  
–5  
4824  
8192  
4824  
–8881  
0
–8881  
0
744  
0
744  
0
–291  
0
0
0
20  
20  
39742  
65536  
39742  
–2429  
0
–2429  
0
612  
0
612  
0
33  
33  
33  
33  
10029  
16384  
10029  
–1159  
0
–1159  
0
21  
21  
0
0
2031  
0
2031  
0
–54  
–88  
–89  
–56  
0
–54  
–88  
–89  
–56  
0
–3356  
0
–3356  
0
5308  
0
5308  
0
119  
196  
199  
125  
0
119  
196  
199  
125  
0
–8140  
0
–8140  
0
12284  
0
12284  
0
–18628  
0
–18628  
0
–234  
–385  
–393  
–248  
0
–234  
–385  
–393  
–248  
0
29455  
0
29455  
0
–53191  
0
–53191  
0
422  
696  
711  
450  
0
422  
696  
711  
450  
0
166059  
262144  
166059  
–711  
–711  
–1176  
–1206  
–766  
0
–1176  
–1206  
–766  
0
1139  
1893  
1949  
1244  
0
1139  
1893  
1949  
1244  
0
–1760  
–2940  
–3044  
–1955  
0
–1760  
–2940  
–3044  
–1955  
0
2656  
4472  
4671  
3026  
0
2656  
4472  
4671  
3026  
0
–3993  
–6802  
–7196  
–4730  
0
–3993  
–6802  
–7196  
–4730  
0
34  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Table 9. Filter Coefficient Details (continued)  
Filter Coefficient Set (Decimation Factor of Filter)  
CS7 (2)  
CS11 (2)  
CS15 (2) CS19 (2)  
CS55 (2)  
CS139 (5)  
6159  
6159  
10707  
11593  
7825  
10707  
11593  
7825  
0
0
–10423  
–18932  
–21629  
–15618  
0
–10423  
–18932  
–21629  
–15618  
0
24448  
52645  
78958  
97758  
104858  
24448  
52645  
78958  
97758  
7.3.6.4 DDC Output Data  
The DDC output data consist of 15-bit complex data plus the two over-range threshold-detection control bits. The  
following table lists the data format:  
16-BIT OUTPUT WORD  
CHANNEL 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
I
DDC Output In-Phase (I) 15 bit  
OR_T0  
OR_T1  
Q
DDC Output Quadrature (Q) 15 bit  
7.3.6.5 Decimation Settings  
7.3.6.5.1 Decimation Factor  
The decimation setting is adjustable over the following settings:  
Decimate-by-4  
Decimate-by-8  
Decimate-by-10  
Decimate-by-16  
Decimate-by-20  
Decimate-by-32  
NOTE  
Because the output format is complex I+Q, the effective output bandwidth is approximately  
two-times the value for a real output with the same decimation factor.  
7.3.6.5.2 DDC Gain Boost  
The DDC gain boost (register 0x200, bit 4) provides additional gain through the DDC block. With a setting of 1  
the final filter has 6.02-dB gain. With a setting of 0, the final filter has a 0-dB gain. This setting is recommended  
when the NCO is set near DC.  
7.3.7 Data Outputs  
The data outputs (DSx±) are very high-speed differential outputs and conform to the JESD204B JEDEC  
standard. A CML (current-mode logic)-type output driver is used for each output pair. Output pre-emphasis is  
adjustable to compensate for longer PCB-trace lengths.  
Copyright © 2014–2017, Texas Instruments Incorporated  
35  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.3.7.1 The Digital Outputs  
The LM15851 output data is transmitted on up to five high-speed serial-data lanes. The output data from the  
DDC is formatted to the five lanes, 8b10b encoded, and serialized. Up to four different serial output rates are  
possible depending on the decimation mode setting: 1x, 1.25x, 2x, and 2.5x. In 1x mode, the output serializers  
run at the same bit rate as the frequency of the applied DEVCLK. In 1.25x mode, the output serializers run at a  
bit rate that is 1.25-times that of the applied DEVCLK, and so on. For example, for a 1.6-GHz input DEVCLK, the  
output rates are 1.6 Gbps in 1x mode, 2 Gbps in 1.25x mode, 3.2 Gbps in 2x mode and 4 Gbps in 2.5x mode.  
7.3.7.2 JESD204B Interface Features and Settings  
7.3.7.2.1 Scrambler Enable  
Scrambling randomizes the 8b10b encoded data, spreading the frequency content of the data interface. This  
reduces the peak EMI energy at any given frequency reducing the possibility of feedback to the device inputs  
impacting performance. The scrambler is disabled by default and is enabled via SCR (register 0x201, bit 7).  
7.3.7.2.2 Frames Per Multi-Frame (K-1)  
The frames per multi-frame (K) setting can be adjusted within constraints that are dependant on the selected  
decimation (D) and serial rate (DDR) settings. The K-minus-1 (KM1) register setting (register 0x201, bits 6:2)  
must be one less than the desired K setting.  
7.3.7.2.3 DDR  
The serial rate can be either 1ƒ(CLK) (DDR = 0) or 2ƒ(CLK) (DDR = 1).  
7.3.7.2.4 JESD Enable  
The JESD interface must be disabled (JESD_EN is set to 0) while any of the other JESD parameters are  
changed. While JESD_EN is set 0 the block is held in reset and the serializers are powered down. The clocks for  
this section are also gated off to further save power. When the parameters have been set as desired the JESD  
block can be enabled (JESD_EN is set to 1).  
7.3.7.2.5 JESD Test Modes  
Several different JESD204B test modes are available to assist in link verification and debugging. The list of  
modes follows.  
NOTE  
PRBS test signals are output directly, without 8b10b encoding.  
Normal operation  
PRBS7 test mode  
PRBS15 test mode  
PRBS23 test mode  
Ramp test mode  
Short or long transport-layer test mode  
D21.5 test mode  
K28.5 test mode  
Repeated ILA test mode  
Modified RPAT test mode  
Serial-outputs differential 0 test mode  
Serial-outputs differential 1 test mode  
36  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.3.7.2.6 Configurable Pre-Emphasis  
The high-speed serial-output drivers incorporate a configurable pre-emphasis feature. This feature allows the  
output drive waveform to be optimized for different PCB materials and signal transmission distances. The pre-  
emphasis setting is adjusted through the serializer pre-emphasis setting in register 0x040, bits 3 to 0. The default  
setting is 4d. Higher values will increase the pre-emphasis to compensate for more lossy PCB materials. This  
adjustment is best used in conjunction with an eye-diagram analysis capability in the receiver. The pre-emphasis  
setting should be adjusted to optimize the eye-opening for the hardware configuration and line rates needed.  
7.3.7.2.7 Serial Output-Data Formatting  
Output data is generated by the DDC then formatted according to the selected decimation and output rate  
settings. When less than the maximum of five lanes are active, lanes are disabled beginning with the highest  
numerical lanes. For example when only two lanes are active, lanes 0 and 1 are active, while all higher lanes are  
inactive.  
Table 10. Parameter Definitions  
USER  
CONFIGURED  
OR DERIVED  
STANDARD  
JESD204B LINK  
PARAMETER  
PARAMETER  
DESCRIPTION  
D
Decimation factor, determined by DMODE register  
Serial line rate: 1 = DDR rate (2x), 0 = SDR rate (1x)  
Enable 5/4 PLL to increase line rate by 1.25x.  
0 = no PLL (1x), 1 = enable PLL (1.25x)  
Number of frames per multiframe  
User  
User  
User  
No  
No  
No  
DDR  
P54  
K
N
User  
Yes  
Yes  
Yes  
Bits per sample (before adding control bits and tails bits)  
Control bits per sample  
Derived  
Derived  
CS  
Bits per sample (after adding control bits and tail bits). Must be a multiple of  
4.  
N’  
Derived  
Yes  
L
F
Number of serial lanes  
Derived  
Derived  
Derived  
Derived  
Derived  
Yes  
Yes  
Yes  
Yes  
Yes  
Number of octets (bytes) per frame (per lane)  
Number of (logical) converters  
M
S
Number of samples per converter per frame  
Number of control words per frame  
CF  
1=High density mode (samples may be broken across lanes), 0 = normal  
mode (samples may not be broken across lanes)  
HD  
KS  
Derived  
Derived  
Yes  
No  
Legal adjustment step for K, to ensure that the multi-frame clock is a sub-  
harmonic of other internal clocks  
Table 11. Serial Link Parameters(1)  
USER SPECIFIED PARAMETERS  
DECIMATION  
DERIVED PARAMETERS  
OTHER INFORMATION  
LEGAL K  
RANGE  
BIT RATE / ADC  
CLOCK(2)  
DDR  
P54  
N
CS  
N’  
L
F
M
S
KS  
FACTOR (D)  
4
4
1
1
0
0
1
1
0
1
0
0
1
0
1
0
1
0
1
0
0
0
1
0
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
1
1
1
1
1
1
1
1
1
1
1
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
5
4
5
4
3
2
4
2
3
2
2
4
2
2
2
2
2
2
2
2
2
2
2
2
5
2
5
2
5
1
2
1
5
1
5
4
2
2
1
2
2
4
8
1
1
1
8-32  
10-32  
6-32  
2x  
2.5x  
1x  
8
4
8
2
9-32  
1.25x  
2x  
8
8
4-32  
8
2
10-32  
12-32  
16-32  
3-32  
2.5x  
1x  
10  
10  
16  
16  
16  
2
2
2x  
8
1x  
2
9-32  
1.25x  
2x  
16  
2-32  
(1) In all modes: HD = 0 and CF = 0  
(2) x = times (for example, 2x = 2-times)  
Copyright © 2014–2017, Texas Instruments Incorporated  
37  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Table 11. Serial Link Parameters() (continued)  
USER SPECIFIED PARAMETERS  
DECIMATION  
DERIVED PARAMETERS  
OTHER INFORMATION  
LEGAL K  
RANGE  
BIT RATE / ADC  
CLOCK(2)  
DDR  
P54  
N
CS  
N’  
L
F
M
S
KS  
FACTOR (D)  
16  
20  
20  
32  
32  
32  
1
0
1
0
0
1
1
0
0
0
1
0
15  
15  
15  
15  
15  
15  
1
1
1
1
1
1
16  
16  
16  
16  
16  
16  
1
2
1
2
1
1
4
2
2
2
2
2
2
2
1
1
1
5
1
5
1
4
4
1
1
1
5-32  
12-32  
8-32  
2-32  
5-32  
1-32  
2.5x  
1x  
4
2x  
16  
4
1x  
1.25x  
2x  
32  
Output data is formatted in a specific optimized fashion for each decimation and DDR setting combination. The  
following tables list the specific mapping formats. In all mappings the T or tail bits are 0 (zero).  
Table 12. Decimate-by-4, DDR = 1, P54 = 0, LMF = 5,2,4  
TIME  
CHAR NUMBER  
Lane 0  
0
1
2
3
I0  
I2  
I1  
Lane 1  
I3  
Lane 2  
I4  
Q0  
Q2  
Q4  
Lane 3  
Q1  
Q3  
Lane 4  
Frame n  
Table 13. Decimate-by-4, DDR = 1, P54 = 1, LMF = 4,2,2  
TIME →  
CHAR NUMBER  
Lane 0  
0
1
2
3
4
5
I0  
I1  
I2  
I3  
I4  
I5  
Lane 1  
Lane 2  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Lane 3  
Frame  
n
Frame  
n + 1  
Frame  
n + 2  
Table 14. Decimate-by-8, DDR = 0, P54 = 0, LMF = 5,2,4  
TIME →  
CHAR NUMBER  
Lane 0  
0
1
2
3
I0  
I2  
I1  
Lane 1  
I3  
Lane 2  
I4  
Q0  
Q2  
Q4  
Lane 3  
Q1  
Q3  
Lane 4  
Frame n  
38  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Table 15. Decimate-by-8, DDR = 0, P54 = 1, LMF = 4,2,2  
TIME →  
CHAR NUMBER  
Lane 0  
0
1
2
3
4
5
I0  
I1  
I2  
I3  
I4  
I5  
Lane 1  
Lane 2  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Lane 3  
Frame  
n
Frame  
n + 1  
Frame  
n + 2  
Table 16. Decimate-by-8, DDR = 1, P54 = 0, LMF = 3,2,8  
TIME →  
CHAR NUMBER  
Lane 0  
0
1
2
3
4
5
6
7
I0  
I4  
I1  
I2  
Q1  
T
I3  
Lane 1  
Q0  
Q4  
Q2  
T
Lane 2  
Q3  
Frame n  
Table 17. Decimate-by-8, DDR = 1, P54=1, LMF = 2,2,2  
TIME →  
CHAR NUMBER  
Lane 0  
0
1
2
3
4
5
I0  
I1  
I2  
Lane 1  
Q0  
Q1  
Q2  
Frame  
n
Frame  
n + 1  
Frame  
n + 2  
Table 18. Decimate-by-10, DDR = 0, P54 = 0, LMF = 4,2,2  
TIME →  
CHAR NUMBER  
Lane 0  
0
1
2
3
4
5
6
7
I0  
I1  
I2  
I3  
I4  
I5  
I6  
Lane 1  
I7  
Lane 2  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Lane 3  
Frame  
n
Frame  
n + 1  
Frame  
n + 2  
Frame  
n + 3  
Table 19. Decimate-by-10, DDR = 1, P54 = 0, LMF = 2,2,2  
TIME →  
CHAR NUMBER  
Lane 0  
0
1
2
3
4
5
6
7
I0  
I1  
I2  
I3  
Lane 1  
Q0  
Q1  
Q2  
Q3  
Frame  
n
Frame  
n + 1  
Frame  
n + 2  
Frame  
n+3  
Copyright © 2014–2017, Texas Instruments Incorporated  
39  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Table 20. Decimate-by-16, DDR = 0, P54 = 0, LMF = 3,2,8  
TIME →  
CHAR NUMBER  
Lane 0  
0
1
2
3
4
5
6
7
I0  
I4  
I1  
I2  
Q1  
T
I3  
Lane 1  
Q0  
Q4  
Q2  
T
Lane 2  
Q3  
Frame n  
Table 21. Decimate-by-16, DDR = 0, P54 = 1, LMF = 2,2,2  
TIME →  
CHAR NUMBER  
Lane 0  
0
1
2
3
4
5
I0  
I1  
I2  
Lane 1  
Q0  
Q1  
Q2  
Frame  
n
Frame  
n + 1  
Frame  
n + 2  
Table 22. Decimate-by-16, DDR = 1, P54 = 0, LMF = 2,2,16  
TIME →  
CHAR  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
NUMBER  
Lane 0  
Lane 1  
I0  
I1  
I2  
T
I3  
T
I4  
T
Q0  
T
Q1  
T
Q2  
Q3  
Q4  
T
Frame n  
Table 23. Decimate-by-16, DDR = 1, P54 = 1, LMF = 1,2,4  
TIME →  
CHAR NUMBER  
0
1
2
3
4
5
6
7
8
9
10  
11  
Lane 0  
I0  
Q0  
I1  
Q1  
I2  
Q2  
Frame n  
Frame n + 1  
Frame n + 2  
Table 24. Decimate-by-20, DDR = 0, P54 = 0, LMF = 2,2,2  
TIME →  
CHAR NUMBER  
Lane 0  
0
1
2
3
4
5
6
7
I0  
I1  
I2  
I3  
Lane 1  
Q0  
Q1  
Q2  
Q3  
Frame  
n
Frame  
n + 1  
Frame  
n + 2  
Frame  
n + 3  
Table 25. Decimate-by-20, DDR = 1, P54 = 0, LMF = 1,2,2  
TIME →  
CHAR NUMBER  
0
1
2
3
4
5
6
7
Lane 0  
I0  
Q0  
I1  
Q1  
Frame n  
Frame n + 1  
40  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Table 26. Decimate-by-32, DDR = 0, P54 = 0, LMF = 2,2,16  
TIME →  
CHAR  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
NUMBER  
Lane 0  
Lane 1  
I0  
I1  
I2  
T
I3  
T
I4  
T
Q0  
T
Q1  
T
Q2  
T
Q3  
Q4  
Frame n  
Table 27. Decimate-by-32, DDR = 0, P54 = 1, LMF = 1,2,4  
TIME →  
CHAR NUMBER  
0
1
2
3
4
5
6
7
8
9
10  
11  
Lane 0  
I0  
Q0  
I1  
Q1  
I2  
Q2  
Frame n  
Frame n + 1  
Frame n + 2  
Table 28. Decimate-by-32, DDR = 1, P54 = 0, LMF = 1,2,32  
TIME  
CHAR  
NUMBE  
R
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
Lane 0  
I0  
I1  
I2  
I3  
I4  
Q0  
Q1  
Q2  
Q3  
Frame n  
Q4  
T
T
T
T
T
T
The formatted data is 8b10b encoded and output on the serial lanes. The 8b10b encoding provides a number of  
specific benefits, including:  
Standard encoding format. Therefore the IP is readily available in off-the-shelf FPGAs and ASIC building  
blocks.  
Inherent DC balance allows AC coupling of lanes with small on-chip capacitors  
Inherent error checking  
7.3.7.2.8 JESD204B Synchronization Features  
The JESD204B standard defines methods for synchronization and deterministic latency in a multi-converter  
system. This device is a JESD204B Subclass 1 device and conforms to the various aspects of link operation as  
described in section 5.3.3 of the JESD204B standard. The specific signals used to achieve link operation are  
described briefly in the following sections.  
7.3.7.2.9 SYSREF  
The SYSREF is a periodic signal which is sampled by the device clock, and is used to align the boundary of the  
local multi-frame clock inside the data converter. SYSREF  
is required to be a sub-harmonic of the LMFC internal timing. To meet this requirement, the timing of SYSREF is  
dependent on the device clock frequency and the LMFC frequency as determined by the selected DDC  
decimation and frames per multi-frame settings. This clock is typically in the range of 10 MHz to 300 MHz. See  
the Multiple ADC Synchronization section for more details on SYSREF timing requirements.  
7.3.7.2.10 SYNC~  
SYNC~ is asserted by the receiver to initiate a synchronization event.  
Single ended and differential SYNC~ inputs are provided. The SYNC_DIFFSEL bit (register 0x202, bit 6) is used  
to select which input is used. . To assert SYNC~, a logic low is applied. To deassert SYNC~ a logic high is  
applied.  
7.3.7.2.11 Code-Group Synchronization  
Code-group synchronization is achieved using the following process:  
The receiver issues a synchronization request through the SYNC~ input  
The transmitter issues a stream of K28.5 symbols  
Copyright © 2014–2017, Texas Instruments Incorporated  
41  
 
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
The receiver synchronizes and waits for correct reception of at least 4 consecutive K symbols  
The receiver deactivates the synchronization request  
Upon detecting that the receiver has deactivated the SYNC~ pin, the transmitter continues emitting K symbols  
until the next LMFC boundary (or optionally a later LMFC boundary)  
On the first frame following the selected LMFC boundary the transmitters emit an initial lane-alignment  
sequence  
The initial-lane alignment sequence transmitted by the ADC device is defined in additional detail in JESD204B  
section 5.3.3.5.  
7.3.7.2.12 Multiple ADC Synchronization  
The second function for the SYSREF input is to facilitate the precise synchronization of multiple ADCs in a  
system.  
One key challenge is to ensure that this synchronization works is to ensure that the SYSREF inputs are  
repeatedly captured by the input CLK. Two key elements must occur for the SYSREF inputs to be captured.  
First, the SYSREF input must be created so that it is synchronous to the input DEVCLK, be an integer sub-  
harmonic of the multi-frame (K × t(FRAME)) and a repeatable and fixed-phase offset. When this constraint is  
achieved, repeatedly capturing SYSREF is easier. To further ease this task, the SYSREF signal is routed  
through a user-adjustable delay which eases the timing requirements with respect to the input DEVCLK signal.  
The SYSREF delay RDEL is adjusted through bits 3 through 0 in register 0x032.  
As long as the SYSREF signal has a fixed timing relationship to DEVCLK, the internal delay can be used to  
maximize the setup and hold times between the internally delayed SYSREF and the internal DEVCLK signal.  
These timing relationships are listed in the Timing Requirements table. To find the proper delay setting, the  
RDEL value is adjusted from minimum to maximum while applying SYSREF and monitoring the SysRefDet and  
Dirty Capture detect bits. The SysRefDet bit is set whenever a rising edge of SYSREF is detected. The Dirty  
Capture bit is set whenever the setup or hold time between DEVCLK and the delayed SYSREF is insufficient.  
The SysRefDetClr bit is used to clear the SysRefDet bit. The Clear Dirty Capture bit is used to clear that bit.  
This procedure should be followed to determine the range of delay settings where a clean SYSREF capture is  
achieved. The delay value at the center of the clean capture range must be loaded as the final RDEL setting.  
Table 29 lists a summary of the control bits that are used and the monitor bits that are read.  
Table 29. SYSREF Capture Control and Status  
BIT NAME  
RDEL  
REGISTER ADDRESS  
REGISTER BIT  
FUNCTION  
Adjust relative delay between DEVCLK and SYSREF  
0x032  
0x031  
0x031  
0x030  
0x030  
3:0  
7
SysRefDet  
Detect if a SYSREF rising edge has been captured (not self clearing)  
Detect if SYSREF rising edge capture failed setup/hold (not self clearing)  
Clear SYSREF detection bit  
Dirty Capture  
SysRefDetClr  
Clear Dirty Capture  
6
5
4
Clear Dirty Capture detection bit  
Enable SYSREF receiver. See the CLKGEN_0 descriptions in the Clock Generator Control 0 Register section  
for more information.  
SysRef_Rcvr_En  
SysRef_Pr_En  
0x030  
0x030  
7
6
Enable SYSREF processing. See the CLKGEN_0 descriptions in the Clock Generator Control 0 Register  
section for more information.  
One final aspect of multi-device synchronization relates to phase alignment of the NCO phase accumulators  
when DDC modes are enabled. The NCO phase accumulators are reset during the ILA phase of link startup  
which means that for multiple ADCs to have NCO phase alignment, all links must be enabled in the same LMFC  
period. Enabling all links in the same LMFC period requires synchronizing the SYNC~ de-assertion across all  
data receivers in the system, so that all of the SYNC~ signals are released during the same LMFC period. Using  
large K values and resulting longer LMFC periods will ease this task, at the expense of potentially higher latency  
in the receiving device.  
42  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.4 Device Functional Modes  
7.4.1 DDC Modes  
In the DDC modes (decimation > 1) complex (I,Q) data is output at a lower sample rate as determined by the  
decimation factor (4, 8, 10, 16, 20, and 32).  
7.4.2 Calibration  
Calibration adjusts the ADC core to optimize the following device parameters:  
ADC core linearity  
ADC core-to-core offset matching  
ADC core-to-core full-scale range matching  
ADC core 4-way interleave timing  
All calibration processes occur internally. Calibration does not require any external signals to be present and  
works properly as long as the device is maintained within the values listed in the Recommended Operating  
Conditions table.  
7.4.2.1 Foreground Calibration Mode  
In foreground mode the calibration process interrupts normal ADC operation and no output data is available  
during this time (the output code is forced to a static value). The calibration process should be repeated if the  
device temperature changes by more than 20ºC to ensure rated performance is maintained. Foreground  
calibration is initiated by setting the CAL_SFT bit (register 0x050, bit 3) which is self clearing. The foreground  
calibration process finishes within t(CAL) number of DEVCLK cycles. The process occurs somewhat longer when  
the timing calibration mode is enabled.  
NOTE  
Initiating a foreground calibration asynchronously resets the calibration control logic and  
may glitch internal device clocks. Therefore after setting the CAL_SFT bit clearing and  
then setting JESD_EN is necessary. If resetting the JESD204B link is undesirable for  
system reasons, background calibration mode may be preferred.  
7.4.2.2 Background Calibration Mode  
In background mode an additional ADC core is powered-up for a total of 5 ADC cores. At any given time, one  
core is off-line and not used for data conversion. This core is calibrated in the background and then placed on-  
line simultaneous with another core going off-line for calibration. This process operates continuously without  
interrupting data flow in the application and ensures that all cores are optimized in performance regardless of any  
changes of temperature. The background calibration cycle rate is fixed and is not adjustable by the user.  
Because of the additional circuitry active in background calibration mode, a slight degradation in performance  
occurs in comparison to foreground calibration mode at a fixed temperature. As a result of this degradation, using  
foreground calibration mode is recommended if the expected change in operating temperature is <30°C. Using  
background calibration mode is recommended if the expected change in operating temperature is >30°C. The  
exact difference in performance is dependent on the DEVCLK (sampling clock) frequency, and the analog input  
signal frequency and amplitude. For this reason, device and system performance should be evaluated using both  
calibration modes before finalizing the choice of calibration mode.  
To enable the background calibration feature, set the CAL_BCK bit (register 0x057, bit 0) and the CAL_CONT bit  
(register 0x057, bit 1). The value written to the register 0x057 to enable background calibration is therefore  
0x013h. After writing this value to register 0x057, set the CAL_SFT bit in register 0x050 to perform the one-time  
foreground calibration to begin the process.  
NOTE  
The ADC offset-adjust feature has no effect when background calibration mode is  
enabled.  
Copyright © 2014–2017, Texas Instruments Incorporated  
43  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
7.4.3 Timing Calibration Mode  
The timing calibration process optimizes the matching of sample timing for the 4 internally interleaved converters.  
This process minimize the presence of any timing related interleaving spurs in the captured spectrum. The timing  
calibration feature is disabled by default, but using this feature is highly recommended. To enable timing  
calibration, set the T_AUTO bit (register 0x066, bit 0). When this bit is set, the timing calibration performs each  
time the CAL_SFT bit is set.  
Table 30. Calibration Cycle Timing for Different Calibration Modes and Options  
INITIAL ONE-TIME  
CALIBRATION  
CAL_SFT 0 1  
BACKGROUND  
CALIBRATION CYCLE(1)  
(ALL CORES)  
CAL_CONT, CAL_BCK  
T_AUTO  
LOW_SIG_EN  
(tDEVCLK  
)
(tDEVCLK  
)
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
102 E+6  
64 E+6  
N/A  
N/A  
227 E+6  
N/A  
189 E+6  
N/A  
127.5 E+6  
80 E+6  
816 E+6  
512 E+6  
816 E+6  
512 E+6  
283.75 E+6  
236.25 E+6  
(1) N/A = not applicable  
7.4.4 Test-Pattern Modes  
A number of device test modes are available. These modes insert known patterns of information into the device  
data path for assistance with system debug, development, or characterization.  
7.4.4.1 Serializer Test-Mode Details  
Test modes are enabled by setting the appropriate configuration of the JESD204B_TEST setting (Register  
0x202, Bits 3:0). Each test mode is described in detail in the following sections. Regardless of the test mode, the  
serializer outputs are powered up based on the configuration decimation and DDR settings. The test modes  
should only be enabled while the JESD204B link is disabled.  
JESD204B  
Transport Layer  
JESD204B  
Link Layer  
8b10b  
Encoder  
JESD204B  
TX  
ADC  
DDC  
Scrambler  
Active Lanes and Serial Rates  
Set by D, DDR, and P54 Parameters  
ADC  
Test Pattern Enable  
Long or Short Transport  
Octet Ramp  
Test Mode Enable  
Repeated ILA  
Modified RPAT  
Test Mode Enable  
PRBSn  
D21.5  
K28.5  
Serial Outputs High/Low  
Test Mode Enable  
Figure 34. Test-Mode Insertion Points  
7.4.4.2 PRBS Test Modes  
The PRBS test modes bypass the 8B10B encoder. These test modes produce pseudo-random bit streams that  
comply with the ITU-T O.150 specification. These bit streams are used with lab test equipment that can self-  
synchronize to the bit pattern and therefore the initial phase of the pattern is not defined.  
The sequences are defined by a recursive equation. For example, the PRBS7 sequence is defined as shown in  
Equation 9.  
y[n] = y[n – 6]y[n – 7]  
where  
Bit n is the XOR of bit [n – 6] and bit [n – 7] which are previously transmitted bits  
(9)  
44  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Table 31. PBRS Mode Equations  
PRBS TEST MODE  
PRBS7  
SEQUENCE  
SEQUENCE LENGTH (bits)  
y[n] = y[n – 6]y[n – 7]  
y[n] = y[n – 14]y[n – 15]  
y[n] = y[n – 18]y[n – 23]  
127  
PRBS15  
32767  
8388607  
PRBS23  
The initial phase of the pattern is unique for each lane.  
7.4.4.3 Ramp Test Mode  
In the ramp test mode, the JESD204B link layer operates normally, but the transport layer is disabled and the  
input from the formatter is ignored. After the ILA sequence, each lane transmits an identical octet stream that  
increments from 0x00 to 0xFF and repeats.  
7.4.4.4 Short and Long-Transport Test Mode  
The long-transport test mode is available in all DDC modes (decimation > 1). Patterns are generated in  
accordance with the JESD204B standard and are different for each output format.  
Table 32 lists one example of the long transport test pattern:  
Table 32. Long Transport Test Pattern - Decimate-by-4, DDR = 1, P54 = 1, K=10  
TIME  
CHAR  
NO.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Lane 0  
Lane 1  
Lane 2  
Lane 3  
0x0003  
0x0002  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x0003  
0x0002  
0x0004  
0x0004  
0x0005  
0x0002  
0x0004  
0x8000  
0x8001  
0x8000  
0x8000  
0x8000  
0x8001  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x0002  
0x0004  
0x0004  
Frame  
n
Frame  
n + 1  
Frame  
n + 2  
Frame  
n + 3  
Frame  
n + 4  
Frame  
n + 5  
Frame  
n + 6  
Frame  
n + 7  
Frame  
n + 8  
Frame  
n + 9  
Frame  
n + 10  
If multiple devices are all programmed to the transport layer test mode (while JESD_EN = 0), then JESD_EN is  
set to 1, and then SYSREF is used to align the LMFC of the devices, the patterns will be aligned to the SYSREF  
event (within the skew budget of JESD204B). For more details see JESD204B, section 5.1.6.3.  
7.4.4.5 D21.5 Test Mode  
In this test mode, the controller transmits a continuous stream of D21.5 characters (alternating 0s and 1s).  
7.4.4.6 K28.5 Test Mode  
In this test mode, the controller transmits a continuous stream of K28.5 characters.  
7.4.4.7 Repeated ILA Test Mode  
In this test mode, the JESD204B link layer operates normally with one exception: when the ILA sequence  
completes, the sequence repeats indefinitely. Whenever the receiver issues a synchronization request, the  
transmitter will initiate code group synchronization. Upon completion of code group synchronization, the  
transmitter will repeatedly transmit the ILA sequence. If there is no active code group synchronization request at  
the moment the transmitter enters the test mode, the transmitter will behave as if it received one.  
7.4.4.8 Modified RPAT Test Mode  
A 12-octet repeating pattern is defined in INCITS TR-35-2004. The purpose of this pattern is to generate white  
spectral content for JESD204B compliance and jitter testing. Table 33 lists the pattern before and after 8b10b  
encoding.  
Copyright © 2014–2017, Texas Instruments Incorporated  
45  
 
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Table 33. Modified RPAT Pattern Values  
20b OUTPUT OF 8b10b ENCODER  
OCTET NUMBER  
Dx.y NOTATION  
8-BIT INPUT TO 8b10b ENCODER  
(2 CHARACTERS)  
0
1
D30.5  
D23.6  
D3.1  
0xBE  
0xD7  
0x23  
0x47  
0x6B  
0x8F  
0xB3  
0x14  
0x5E  
0xFB  
0x35  
0x59  
0x86BA6  
2
0xC6475  
0xD0E8D  
0xCA8B4  
0x7949E  
0xAA665  
3
D7.2  
4
D11.3  
D15.4  
D19.5  
D20.0  
D30.2  
D27.7  
D21.1  
D25.2  
5
6
7
8
9
10  
11  
7.5 Programming  
7.5.1 Using the Serial Interface  
The serial interface is accessed using the following four pins: serial clock (SCLK), serial-data in (SDI), serial-data  
out (SDO), and serial-interface chip-select (SCS). Registers access is enabled through the SCS pin.  
SCS  
SCLK  
SDI  
This signal must be asserted low to access a register through the serial interface. Setup and hold  
times with respect to the SCLK must be observed.  
Serial data input is accepted at the rising edge of this signal. SCLK has no minimum frequency  
requirement.  
Each register access requires a specific 24-bit pattern at this input. This pattern consists of a read-  
and-write (R/W) bit, register address, and register value. The data is shifted in MSB first. Setup and  
hold times with respect to the SCLK must be observed (see Figure 2).  
SDO  
The SDO signal provides the output data requested by a read command. This output is high  
impedance during write bus cycles and during the read bit and register address portion of read bus  
cycles.  
Each register access consists of 24 bits, as shown in Figure 2. The first bit is high for a read and low for a write.  
The next 15 bits are the address of the register that is to be written to. During write operations, the last 8 bits are  
the data written to the addressed register. During read operations, the last 8 bits on SDI are ignored, and, during  
this time, the SDO outputs the data from the addressed register. The serial protocol details are illustrated in  
Figure 35.  
Single Register Access  
SCS  
1
8
16  
17  
24  
SCLK  
SDI  
Command Field  
Data Field  
R/W A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
Data Field  
Hi Z  
Hi Z  
SDO  
D7 D6 D5 D4 D3 D2 D1 D0  
(read mode)  
Figure 35. Serial Interface Protocol - Single Read / Write  
46  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Programming (continued)  
7.5.1.1 Streaming Mode  
The serial interface supports streaming reads and writes. In this mode, the initial 24 bits of the transaction  
specifics the access type, register address, and data value as normal. Additional clock cycles of write or read  
data are immediately transferred, as long as the SCS input is maintained in the asserted (logic low) state. The  
register address auto increments (default) or decrements for each subsequent 8 bit transfer of the streaming  
transaction. The ADDR_ASC bit (register 000h, bits 5 and 2) controls whether the address value ascends  
(increments) or descends (decrements). Streaming mode can be disabled by setting the ADDR_STATIC bit  
(register 010h, bit 0). The streaming mode transaction details are shown in Figure 36.  
Multiple Register Access  
SCS  
8
1
24 25  
32  
17  
16  
SCLK  
SDI  
Command Field  
R/W A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
Data Field (write mode)  
Data Field (write mode)  
D7 D6 D5 D4 D3 D2 D1 D0  
Data Field  
Data Field  
SDO  
(read mode)  
Hi Z  
Hi Z  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 36. Serial Interface Protocol - Streaming Read / Write  
See the Register Map section for detailed information regarding the registers.  
NOTE  
The serial interface must not be accessed during calibration of the ADC. Accessing the  
serial interface during this time impairs the performance of the device until the device is  
calibrated correctly. Writing or reading the serial registers also reduces dynamic  
performance of the ADC for the duration of the register access time.  
Copyright © 2014–2017, Texas Instruments Incorporated  
47  
 
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.6 Register Map  
Several groups of registers provide control and configuration options for this device. Each following register  
description also shows the power-on reset (POR) state of each control bit.  
NOTE  
All multi-byte registers are arranged in little-endian format (the least-significant byte is  
stored at the lowest address) unless explicitly stated otherwise.  
Memory Map  
Address  
Reset  
Type  
Standard SPI-3.0 (0x000 to 0x00F)  
Register  
0x000  
0x001  
0x3C  
0x00  
R/W  
R
Configuration A Register  
Configuration B Register  
Device Configuration Register  
Chip Type Register  
RESERVED  
0x002  
0x00  
R/W  
R
0x003  
0x03  
0x004-0x005  
0x006  
Undefined  
0x13  
R
R
Chip Version Register  
RESERVED  
0x007-0x00B  
0x00C-0x00D  
0x00E-0x00F  
Undefined  
0x0451  
Undefined  
R
R
Vendor Identification Register  
RESERVED  
R
User SPI Configuration (0x010 to 0x01F)  
0x010  
0x00  
R/W  
R
User SPI Configuration Register  
RESERVED  
0x011-0x01F  
Undefined  
General Analog, Bias, Band Gap, and Track and Hold (0x020 to 0x02F)  
0x020  
0x021  
0x9D  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RESERVED  
Power-On Reset Register  
I/O Gain 0 Register  
I/O Gain 1 Register  
RESERVED  
0x022  
0x40  
0x023  
0x00  
0x024  
0x00  
0x025  
0x40  
I/O Offset 0 Register  
I/O Offset 1 Register  
RESERVED  
0x026  
0x00  
0x027  
0x06  
0x028  
0xBA  
0xD4  
0xEA  
Undefined  
RESERVED  
0x029  
RESERVED  
0x02A  
RESERVED  
0x02B-0x02F  
RESERVED  
Clock (0x030 to 0x03F)  
Clock Generator Control 0 Register  
Clock Generator Status Register  
Clock Generator Control 2 Register  
Analog Miscellaneous Register  
Input Clamp Enable Register  
RESERVED  
0x030  
0x031  
0xC0  
0x07  
R/W  
R
0x032  
0x80  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x033  
0xC3  
0x034  
0x2F  
0x035  
0xDF  
0x00  
0x036  
RESERVED  
0x037  
0x45  
RESERVED  
0x038-0x03F  
Undefined  
RESERVED  
Serializer (0x040 to 0x04F)  
Serializer Configuration Register  
RESERVED  
0x040  
0x04  
R/W  
R
0x041-0x04F  
Undefined  
48  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Register Map (continued)  
Memory Map (continued)  
Address  
Reset  
Type  
ADC Calibration (0x050 to 0x1FF)  
R/W Calibration Configuration 0 Register  
Register  
0x050  
0x051  
0x06  
0xF4  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Calibration Configuration 1 Register  
RESERVED  
0x052  
0x00  
0x053  
0x5C  
RESERVED  
0x054  
0x1C  
RESERVED  
0x055  
0x92  
RESERVED  
0x056  
0x20  
RESERVED  
0x057  
0x10  
Calibration Background Control Register  
ADC Pattern and Over-Range Enable Register  
RESERVED  
0x058  
0x00  
0x059  
0x00  
0x05A  
0x05B  
0x05C  
0x05D-0x05E  
0x05F  
0x060  
0x00  
Calibration Vectors Register  
Calibration Status Register  
RESERVED  
Undefined  
0x00  
R/W  
R/W  
R/W  
R
Undefined  
0x00  
RESERVED  
RESERVED  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
0x02  
RESERVED  
0x061  
R
RESERVED  
0x062  
R
RESERVED  
0x063  
R
RESERVED  
0x064  
R
RESERVED  
0x065  
R
RESERVED  
0x066  
R/W  
R/W  
R
Timing Calibration Register  
RESERVED  
0x067  
0x01  
0x068  
Undefined  
Undefined  
0x00  
RESERVED  
0x069  
R
RESERVED  
0x06A  
0x06B  
0x06C-0x1FF  
R/W  
R/W  
R
RESERVED  
0x20  
RESERVED  
Undefined  
RESERVED  
Digital Down Converter and JESD204B (0x200-0x27F)  
0x200  
0x201  
0x10  
0x0F  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Digital Down-Converter (DDC) Control  
JESD204B Control 1  
0x202  
0x00  
JESD204B Control 2  
0x203  
0x00  
JESD204B Device ID (DID)  
JESD204B Control 3  
0x204  
0x00  
0x205  
Undefined  
0xF2  
JESD204B and System Status Register  
Overrange Threshold 0  
0x206  
0x207  
0xAB  
0x00  
Overrange Threshold 1  
0x208  
Overrange Period  
0x209-0x20B  
0x20C  
0x00  
RESERVED  
0x00  
DDC Configuration Preset Mode  
DDC Configuration Preset Select  
Rational NCO Reference Divisor  
0x20D  
0x00  
0x20E-0x20F  
PRESET 0  
0x210-0x213  
0x214-0x215  
0x0000  
0xC0000000  
0x0000  
R/W  
R/W  
NCO Frequency (Preset 0)  
NCO Phase (Preset 0)  
Copyright © 2014–2017, Texas Instruments Incorporated  
49  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Register Map (continued)  
Memory Map (continued)  
Address  
0x216  
Reset  
0xFF  
0x00  
Type  
Register  
R/W  
R/W  
DDC Delay (Preset 0)  
RESERVED  
0x217  
PRESET 1  
0x218-0x21B  
0x21C-0x21D  
0x21E  
0xC0000000  
0x0000  
0xFF  
R/W  
R/W  
R/W  
R/W  
NCO Frequency (Preset 1)  
NCO Phase (Preset 1)  
DDC Delay (Preset 1)  
RESERVED  
0x21F  
0x00  
PRESET 2  
0x220-0x223  
0x224-0x225  
0x226  
0xC0000000  
0x0000  
0xFF  
R/W  
R/W  
R/W  
R/W  
NCO Frequency (Preset 2)  
NCO Phase (Preset 2)  
DDC Delay (Preset 2)  
RESERVED  
0x227  
0x00  
PRESET 3  
0x228-0x22B  
0x22C-0x22D  
0x22E  
0xC0000000  
0x0000  
0xFF  
R/W  
R/W  
R/W  
R/W  
NCO Frequency (Preset 3)  
NCO Phase (Preset 3)  
DDC Delay (Preset 3)  
RESERVED  
0x22F  
0x00  
PRESET 4  
0x230-0x233  
0x234-0x235  
0x236  
0xC0000000  
0x0000  
0xFF  
R/W  
R/W  
R/W  
R/W  
NCO Frequency (Preset 4)  
NCO Phase (Preset 4)  
DDC Delay (Preset 4)  
RESERVED  
0x237  
0x00  
PRESET 5  
0x238-0x23B  
0x23C-0x23D  
0x23E  
0xC0000000  
0x0000  
0xFF  
R/W  
R/W  
R/W  
R/W  
NCO Frequency (Preset 5)  
NCO Phase (Preset 5)  
DDC Delay (Preset 5)  
RESERVED  
0x23F  
0x00  
PRESET 6  
0x240-0x243  
0x244-0x245  
0x246  
0xC0000000  
0x0000  
0xFF  
R/W  
R/W  
R/W  
R/W  
NCO Frequency (Preset 6)  
NCO Phase (Preset 6)  
DDC Delay (Preset 6)  
RESERVED  
0x247  
0x00  
PRESET 7  
0x248-0x24B  
0x24C-0x24D  
0x24E  
0xC0000000  
0x0000  
0xFF  
R/W  
R/W  
R/W  
R/W  
R
NCO Frequency (Preset 7)  
NCO Phase (Preset 7)  
DDC Delay (Preset 7)  
RESERVED  
0x24F-0x251  
0x252-0x27F  
0x00  
Undefined  
RESERVED  
Reserved  
0x0280-0x7FFF  
Undefined  
R
RESERVED  
50  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.6.1 Register Descriptions  
7.6.1.1 Standard SPI-3.0 (0x000 to 0x00F)  
Table 34. Standard SPI-3.0 Registers  
Address  
0x000  
Reset  
0x3C  
Acronym  
Register Name  
Section  
Go  
CFGA  
Configuration A Register  
Configuration B Register  
Device Configuration Register  
Chip Type Register  
RESERVED  
0x001  
0x00  
CFGB  
Go  
0x002  
0x00  
DEVCFG  
Go  
0x003  
0x03  
CHIP_TYPE  
RESERVED  
CHIP_VERSION  
RESERVED  
VENDOR_ID  
RESERVED  
Go  
0x004-0x005  
0x006  
0x0000  
0x13  
Go  
Chip Version Register  
RESERVED  
Go  
0x007-0x00B  
0x00C-0x00D  
0x00E-0x00F  
Undefined  
0x0451  
Undefined  
Vendor Identification Register  
RESERVED  
Go  
7.6.1.1.1 Configuration A Register (address = 0x000) [reset = 0x3C]  
All writes to this register must be a palindrome (for example: bits [3:0] are a mirror image of bits [7:4]). If the data  
is not a palindrome, the entire write is ignored.  
Figure 37. Configuration A Register (CFGA)  
7
6
5
4
3
2
1
0
SWRST  
R/W-0  
RESERVED  
R/W-0  
ADDR_ASC  
R/W-1  
RESERVED  
R/W-1  
RESERVED  
R/W-1  
ADDR_ASC  
R/W-1  
RESERVED  
R/W-0  
SWRST  
R/W-0  
Table 35. CFGA Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SWRST  
R/W  
0
Setting this bit causes all registers to be reset to their default  
state. This bit is self-clearing.  
6
5
RESERVED  
ADDR_ASC  
R/W  
R/W  
0
1
This bit is NOT reset by a soft reset (SWRST)  
0 : descend – decrement address while streaming (address  
wraps from 0x0000 to 0x7FFF)  
1 : ascend – increment address while streaming (address wraps  
from 0x7FFF to 0x0000) (default)  
4
3
2
1
0
RESERVED  
RESERVED  
ADDR_ASC  
RESERVED  
SWRST  
R/W  
R/W  
R/W  
R/W  
R/W  
1
Always returns 1  
Palindrome bits  
bit 3 = bit 4, bit 2 = bit 5, bit 1 = bit 6, bit 0 = bit 7  
1100  
7.6.1.1.2 Configuration B Register (address = 0x001) [reset = 0x00]  
Figure 38. Configuration B Register (CFGB)  
7
6
5
4
3
2
1
0
RESERVED  
R - 0x00h  
Table 36. CFGB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
RESERVED  
R
0000 0000  
Copyright © 2014–2017, Texas Instruments Incorporated  
51  
 
 
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.6.1.1.3 Device Configuration Register (address = 0x002) [reset = 0x00]  
Figure 39. Device Configuration Register (DEVCFG)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-000000  
MODE  
R/W-00  
Table 37. DEVCFG Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
00  
Description  
RESERVED  
MODE  
SPI 3.0 specification has 1 as low power functional mode and 2  
as low power fast resume. This chip does not support these  
modes.  
0: Normal Operation – full power and full performance (default)  
1: Normal Operation – full power and full performance (default)  
2: Power Down – Everything powered down  
3: Power Down – Everything powered down  
7.6.1.1.4 Chip Type Register (address = 0x003) [reset = 0x03]  
Figure 40. Chip Type Register (CHIP_TYPE)  
7
6
5
4
3
2
1
0
RESERVED  
R-0000  
CHIP_TYPE  
R-0011  
Table 38. CHIP_TYPE Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R
Reset  
0000  
0011  
Description  
RESERVED  
CHIP_TYPE  
R
Always returns 0x3, indicating that the part is a high speed ADC.  
7.6.1.1.5 Chip Version Register (address = 0x006) [reset = 0x13]  
Figure 41. Chip Version Register (CHIP_VERSION)  
7
6
5
4
3
2
1
0
CHIP_VERSION  
R-0001 0011  
Table 39. CHIP_VERSION Field Descriptions  
Bit  
Field  
CHIP_VERSION  
Type  
Reset  
Description  
7-0  
R
0001 0011 Chip version, returns 0x13  
52  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.6.1.1.6 Vendor Identification Register (address = 0x00C to 0x00D) [reset = 0x0451]  
Figure 42. Vendor Identification Register (VENDOR_ID)  
15  
14  
13  
12  
11  
10  
9
1
8
0
VENDOR_ID  
R-0x04h  
7
6
5
4
3
2
VENDOR_ID  
R-0x51h  
Table 40. VENDOR_ID Field Descriptions  
Bit  
15-0  
Field  
VENDOR_ID  
Type  
Reset  
Description  
R
0x0451h  
Always returns 0x0451 (TI Vendor ID)  
7.6.1.2 User SPI Configuration (0x010 to 0x01F)  
Table 41. User SPI Configuration Registers  
Address  
0x010  
Reset  
0x00  
Acronym  
USR0  
Register Name  
Section  
User SPI Configuration Register  
RESERVED  
Go  
0x011-0x01F  
Undefined  
RESERVED  
7.6.1.2.1 User SPI Configuration Register (address = 0x010) [reset = 0x00]  
Figure 43. User SPI Configuration Register (USR0)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
ADDR_STATIC  
R/W-0  
Table 42. USR0 Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0000 000  
0
Description  
RESERVED  
ADDR_STATIC  
0 : Use ADDR_ASC bit to define what happens to address  
during streaming (default).  
1 : Address stays static throughout streaming operation. Useful  
for reading/writing calibration vector information at  
CAL_VECTOR register.  
Copyright © 2014–2017, Texas Instruments Incorporated  
53  
 
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.6.1.3 General Analog, Bias, Band Gap, and Track and Hold (0x020 to 0x02F)  
Table 43. General Analog, Bias, Band Gap, and Track and Hold Registers  
Address  
0x020  
Reset  
0x9D  
0x00  
Acronym  
Register Name  
RESERVED  
Section  
RESERVED  
POR  
0x021  
Power-On Reset Register  
I/O Gain 0 Register  
I/O Gain 1 Register  
RESERVED  
Go  
Go  
Go  
0x022  
0x40  
IO_GAIN_0  
IO_GAIN_1  
RESERVED  
IO_OFFSET_0  
IO_OFFSET_1  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0x023  
0x00  
0x024  
0x00  
0x025  
0x40  
I/O Offset 0 Register  
I/O Offset 1 Register  
RESERVED  
Go  
Go  
0x026  
0x00  
0x027  
0x06  
0x028  
0xBA  
0xD4  
0xAA  
Undefined  
RESERVED  
0x029  
RESERVED  
0x02A  
RESERVED  
0x02B-0x02F  
RESERVED  
7.6.1.3.1 Power-On Reset Register (address = 0x021) [reset = 0x00]  
Figure 44. Power-On Reset Register (POR)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
SPI_RES  
R/W-0  
Table 44. POR Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0000 000  
0
Description  
RESERVED  
SPI_RES  
Reset all digital. Emulates a power on reset (not self-clearing).  
Write a 0 and then write a 1 to emulate a reset. Transition from  
0—>1 initiates reset.  
Default: 0  
7.6.1.3.2 I/O Gain 0 Register (address = 0x022) [reset = 0x40]  
Figure 45. I/O Gain 0 Register (IO_GAIN_0)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0  
GAIN_FS[14]  
R/W-1  
GAIN_FS[13]  
R/W-0  
GAIN_FS[12]  
R/W-0  
GAIN_FS[11]  
R/W-0  
GAIN_FS[10]  
R/W-0  
GAIN_FS[9]  
R/W-0  
GAIN_FS[8]  
R/W-0  
Table 45. IO_GAIN_0 Field Descriptions  
Bit  
7
Field  
RESERVED  
GAIN_FS[14:8]  
Type  
R/W  
R/W  
Reset  
Description  
0
6-0  
100 0000 MSB Bits for GAIN_FS[14:0]. (See the IO_GAIN_1 description in  
General Analog, Bias, Band Gap, and Track and Hold (0x020 to  
0x02F))  
54  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.6.1.3.3 IO_GAIN_1 Register (address = 0x023) [reset = 0x00]  
Figure 46. IO_GAIN_1 Register (IO_GAIN_1)  
7
6
5
4
3
2
1
0
GAIN_FS[7]  
R/W-0  
GAIN_FS[6]  
R/W-0  
GAIN_FS[5]  
R/W-0  
GAIN_FS[4]  
R/W-0  
GAIN_FS[3]  
R/W-0  
GAIN_FS[2]  
R/W-0  
GAIN_FS[1]  
R/W-0  
GAIN_FS[0]  
R/W-0  
Table 46. IO_GAIN_1 Field Descriptions  
Bit  
Field  
GAIN_FS[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0000 0000 LSB bits for GAIN_FS[14:0]  
GAIN_FS[14:0] Value  
0x0000 500 mVp-p  
0x4000 725 mVp-p (default)  
0x7FFF 950 mVp-p  
7.6.1.3.4 I/O Offset 0 Register (address = 0x025) [reset = 0x40]  
Figure 47. I/O Offset 0 Register (IO_OFFSET_0)  
7
6
5
4
3
2
1
0
RESERVED  
OFFSET_FS[1 OFFSET_FS[1 OFFSET_FS[1 OFFSET_FS[1 OFFSET_FS[1 OFFSET_FS[9] OFFSET_FS[8]  
4]  
3]  
2]  
1]  
0]  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 47. IO_OFFSET_0 Field Descriptions  
Bit  
7
Field  
RESERVED  
OFFSET_FS[14:8]  
Type  
R/W  
R/W  
Reset  
Description  
0
6-0  
100 0000 MSB Bits for OFFSET_FS[14:0].  
The ADC offset adjust feature has no effect when Background  
Calibration Mode is enabled. (See IO_OFFSET_1 description in  
the General Analog, Bias, Band Gap, and Track and Hold  
(0x020 to 0x02F) section).  
7.6.1.3.5 I/O Offset 1 Register (address = 0x026) [reset = 0x00]  
Figure 48. I/O Offset 1 Register (IO_OFFSET_1)  
7
6
5
4
3
2
1
0
OFFSET_FS[7] OFFSET_FS[6] OFFSET_FS[5] OFFSET_FS[4] OFFSET_FS[3] OFFSET_FS[2] OFFSET_FS[1] OFFSET_FS[0]  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0  
Table 48. IO_OFFSET_1 Field Descriptions  
Bit  
7-0  
Field  
OFFSET_FS[7:0]  
Type  
Reset  
Description  
R/W  
0000 0000 LSB bits for OFFSET_FS[14:0]. OFFSET_FS[14:0] adjusts the  
offset of the entire ADC (all banks are impacted).  
OFFSET_FS[14:0] Value  
0x0000 –28-mV offset  
0x4000 no offset (default)  
0x7FFF 28-mV offset  
The ADC offset adjust feature has no effect when Background  
Calibration Mode is enabled.  
Copyright © 2014–2017, Texas Instruments Incorporated  
55  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.6.1.4 Clock (0x030 to 0x03F)  
Table 49. Clock Registers  
Address  
0x030  
Reset  
0xC0  
Acronym  
Register Name  
Section  
Go  
CLKGEN_0  
CLKGEN_1  
CLKGEN_2  
ANA_MISC  
IN_CL_EN  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Clock Generator Control 0 Register  
Clock Generator Status Register  
Clock Generator Control 2 Register  
Analog Miscellaneous Register  
Clamp Enable Register  
RESERVED  
0x031  
0x07  
Go  
0x032  
0x80  
Go  
0x033  
0xC3  
Go  
0x034  
0x2F  
Go  
0x035  
0xDF  
0x00  
0x036  
RESERVED  
0x037  
0x45  
RESERVED  
0x038-0x03F  
Undefined  
RESERVED  
7.6.1.4.1 Clock Generator Control 0 Register (address = 0x030) [reset = 0xC0]  
Figure 49. Clock Generator Control 0 Register (CLKGEN_0)  
7
6
5
4
3
2
1
0
SysRef_Rcvr_E SysRef_Pr_En  
n
SysRefDetClr  
Clear Dirty  
Capture  
RESERVED  
DC_LVPECL_C DC_LVPECL_S DC_LVPECL_S  
LK_en  
YSREF_en  
YNC_en  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 50. CLKGEN_0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SysRef_Rcvr_En  
R/W  
1
Default: 1  
0 : SYSREF receiver is disabled.  
1 : SYSREF receiver is enabled (default)  
6
SysRef_Pr_En  
R/W  
1
To power down the SYSREF receiver, clear this bit first, then  
clear SysRef_Rcvr_En. To power up the SYSREF receiver, set  
SysRef_Rcvr_En first, then set this bit.  
Default: 1  
0 : SYSREF Processor is disabled.  
1 : SYSREF Processor is enabled (default)  
5
4
SysRefDetClr  
R/W  
R/W  
0
0
Default: 0  
Write a 1 and then a 0 to clear the SysRefDet status bit.  
Clear Dirty Capture  
Default: 0  
Write a 1 and then a 0 to clear the DC status bit.  
3
2
RESERVED  
R/W  
R/W  
0
0
Default: 0  
DC_LVPECL_CLK_en  
Default: 0  
Set this bit if DEVCLK is a DC-coupled LVPECL signal through  
a 50-Ω resistor.  
1
0
DC_LVPECL_SYSREF_en  
DC_LVPECL_SYNC_en  
R/W  
R/W  
0
0
Default: 0  
Set this bit if SYSREF is a DC-coupled LVPECL signal through  
a 50-Ω resistor.  
Default: 0  
Set this bit if SYNC~ is a DC-coupled LVPECL signal through a  
50-Ω resistor.  
56  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.6.1.4.2 Clock Generator Status Register (address = 0x031) [reset = 0x07]  
Figure 50. Clock Generator Status Register (CLKGEN_1)  
7
6
5
4
3
2
1
0
SysRefDet  
R-0  
Dirty Capture  
R-0  
RESERVED  
R-00 0111  
Table 51. CLKGEN_1 Field Descriptions  
Bit  
Field  
SysRefDet  
Type  
Reset  
Description  
7
R
0
When high, indicates that a SYSREF rising edge was detected.  
To clear this bit, write SysRefDetClr to 1 and then back to 0.  
6
Dirty Capture  
R
0
When high, indicates that a SYSREF rising edge occurred very  
close to the device clock edge, and setup or hold is not ensured  
(dirty capture). To clear this bit, write CDC to1 and then back to  
0.  
NOTE: When sweeping the timing on SYSREF, it may jump  
across the clock edge without triggering this bit. The  
REALIGNED status bit must be used to detect this (see the  
JESD_STATUS register description in Digital Down Converter  
and JESD204B (0x200-0x27F))  
5-0  
RESERVED  
R
00 0111  
Reserved register. Always returns 000111b  
7.6.1.4.3 Clock Generator Control 2 Register (address = 0x032) [reset = 0x80]  
Figure 51. Clock Generator Control 2 Register (CLKGEN_2)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-1000  
RDEL  
R/W-0000  
Table 52. CLKGEN_2 Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
1000  
0000  
Description  
RESERVED  
RDEL  
Default: 1000b  
Adjusts the delay of the SYSREF input signal with respect to  
DEVCLK.  
Each step delays SYSREF by 20 ps (nominal)  
Default: 0  
Range: 0 to 15 decimal  
Copyright © 2014–2017, Texas Instruments Incorporated  
57  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.6.1.4.4 Analog Miscellaneous Register (address = 0x033) [reset = 0xC3]  
Figure 52. Analog Miscellaneous Register (ANA_MISC)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-1100 0  
SYNC_DIFF_PD  
R/W-0  
RESERVED  
R/W-11  
Table 53. ANA_MISC Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
1100 0  
0
Description  
7-3  
2
RESERVED  
SYNC_DIFF_PD  
Set this bit to power down the differential SYNC~± inputs for the  
JESD204B interface.  
The receiver must be powered up to support the differential  
SYNC~.  
Default: 0b  
1-0  
RESERVED  
R/W  
11  
Default: 11b  
7.6.1.4.5 Input Clamp Enable Register (address = 0x034) [reset = 0x2F]  
Figure 53. Input Clamp Enable Register (IN_CL_EN)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-00  
INPUT_CLAMP_EN  
R/W-1  
RESERVED  
R/W-0 1111  
Table 54. IN_CL_EN Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
00  
Description  
7-6  
5
RESERVED  
Default: 00b  
INPUT_CLAMP_EN  
1
Set this bit to enable the analog input active clamping circuit.  
Enabled by default.  
Default: 1b  
4-0  
RESERVED  
R/W  
0 1111  
Default: 01111b  
58  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.6.1.5 Serializer (0x040 to 0x04F)  
Table 55. Serializer Registers  
Address  
0x040  
Reset  
0x04  
Acronym  
Register Name  
Section  
SER_CFG  
RESERVED  
Serializer Configuration Register  
RESERVED  
Go  
0x041-0x04F  
Undefined  
7.6.1.5.1 Serializer Configuration Register (address = 0x040) [reset = 0x04]  
Figure 54. Serializer configuration Register (SER_CFG)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
SERIALIZER PRE-EMPHASIS  
R/W-0100  
Table 56. SER_CFG Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0000  
0100  
Description  
RESERVED  
SERIALIZER PRE-EMPHASIS  
Control bits for the pre-emphasis strength of the serializer output  
driver. Pre-emphasis is required to compensate the low pass  
behavior of the PCB trace.  
Default: 4d  
Copyright © 2014–2017, Texas Instruments Incorporated  
59  
 
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.6.1.6 ADC Calibration (0x050 to 0x1FF)  
Table 57. ADC Calibration Registers  
Address  
0x050  
0x051  
0x052  
0x053  
0x054  
0x055  
0x056  
0x057  
0x058  
Reset  
0x06  
0xF4  
0x00  
0x5C  
0x1C  
0x92  
0x20  
0x10  
0x00  
Acronym  
Register Name  
Section  
Go  
CAL_CFG0  
CAL_CFG1  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CAL_BACK  
ADC_PAT_OVR_EN  
Calibration Configuration 0 Register  
Calibration Configuration 1 Register  
RESERVED  
Go  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Calibration Background Control Register  
Go  
Go  
ADC Pattern and Over-Range Enable  
Register  
0x059  
0x05A  
0x00  
0x00  
RESERVED  
CAL_VECTOR  
CAL_STAT  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
T_CAL  
RESERVED  
Calibration Vectors Register  
Calibration Status Register  
RESERVED  
Go  
Go  
0x05B  
Undefined  
0x00  
0x05C  
0x05D-0x05E  
0x05F  
Undefined  
0x00  
RESERVED  
RESERVED  
0x060  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
0x02  
RESERVED  
0x061  
RESERVED  
0x062  
RESERVED  
0x063  
RESERVED  
0x064  
RESERVED  
0x065  
RESERVED  
0x066  
Timing Calibration Register  
RESERVED  
Go  
0x067  
0x01  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0x068  
Undefined  
Undefined  
0x00  
RESERVED  
0x069  
RESERVED  
0x06A  
RESERVED  
0x06B  
0x20  
RESERVED  
0x06C-0x1FF  
Undefined  
RESERVED  
60  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.6.1.6.1 Calibration Configuration 0 Register (address = 0x050) [reset = 0x06]  
Figure 55. Calibration Configuration 0 Register (CAL_CFG0)  
7
6
5
4
CALIBRATION_READ_WRITE_EN  
R/W-0  
3
2
1
0
RESERVED  
CAL_SFT  
R/W-0  
RESERVED  
R/W-110  
R/W-00  
R/W-0  
Table 58. CAL_CFG0 Field Descriptions  
Bit  
Field  
Type  
Reset  
000  
0
Description  
7-5  
4
RESERVED  
R/W  
CALIBRATION_READ_WRITE_EN R/W  
Enables the scan register to read or write calibration vectors at  
register 0x05A.  
Default: 0  
3
CAL_SFT(1)  
R/W  
0
Software calibration bit. Set bit to initiate foreground calibration.  
This bit is self-clearing.  
This bit resets the calibration state machine. Most calibration  
SPI registers are not synchronized to the calibration clock.  
Changing them may corrupt the calibration state machine.  
Always set CAL_SFT AFTER making any changes to the  
calibration registers.  
2-0  
RESERVED  
R/W  
110  
Default: 110  
(1) IMPORTANT NOTE: Setting CAL_SFT can glitch internal state machines. The JESD_EN bit must be cleared and then set after setting  
CAL_SFT.  
7.6.1.6.2 Calibration Configuration 1 Register (address = 0x051) [reset = 0xF4]  
Figure 56. Calibration Configuration 1 Register (CAL_CFG1)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-1  
LOW_SIG_EN  
R/W-111  
RESERVED  
R/W-0100  
Table 59. CAL_CFG1 Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
1
Description  
6-4  
LOW_SIG_EN  
111  
Controls signal range optimization for calibration processes.  
111: Calibration is optimized for lower amplitude input signals (<  
–10dBFS).  
000: Calibration is optimized for large (-1dBFS) input  
signals.  
Default: 111 but recommend 000 for large input signals.  
3-0  
RESERVED  
R/W  
0100  
Copyright © 2014–2017, Texas Instruments Incorporated  
61  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.6.1.6.3 Calibration Background Control Register (address = 0x057) [reset = 0x10]  
Figure 57. Calibration Background Control Register (CAL_BACK)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0001 00  
CAL_CONT  
R/W-0  
CAL_BCK  
R/W-0  
Table 60. CAL_BACK Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0001 00  
0
Description  
RESERVED  
CAL_CONT  
Set to 0001 00b  
CAL_CONT is the only calibration register bit that can be  
modified while background calibration is ongoing. This bit must  
be set to 0 before modifying any of the other bits.  
0 : Pause or stop background calibration sequence.  
1 : Start background calibration sequence.  
0
CAL_BCK  
R/W  
0
Background calibration mode enabled. When pausing  
background calibration leave this bit set, only change  
CAL_CONT to 0.  
If CAL_BCK is set to 0 after background calibration has been  
operation the calibration processes may stop in an incomplete  
condition. Set CAL_SFT to perform a foreground calibration  
7.6.1.6.4 ADC Pattern and Over-Range Enable Register (address = 0x058) [reset = 0x00]  
Figure 58. ADC Pattern and Over-Range Enable Register (ADC_PAT_OVR_EN)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 0  
ADC_PAT_EN  
R/W-0  
OR_EN  
R/W-0  
RESERVED  
R/W-0  
Table 61. ADC_PAT_OVR_EN Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
RESERVED  
0000 0  
Set to 00000b  
ADC_PAT_EN  
OR_EN  
0
0
0
Enable ADC test pattern  
Enable over-range output  
Set to 0  
1
0
RESERVED  
7.6.1.6.5 Calibration Vectors Register (address = 0x05A) [reset = 0x00]  
Figure 59. Calibration Vectors Register (CAL_VECTOR)  
7
6
5
4
3
2
1
0
CAL_DATA  
R/W-0000 0000  
Table 62. CAL_VECTOR Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CAL_DATA  
R/W  
0000 0000 Repeated reads of this register outputs all the calibration register  
values for analysis if the CALIBRATION_READ_WRITE_EN bit  
is set.  
Repeated writes of this register inputs all the calibration register  
values for configuration if the CAL_RD_EN bit is set.  
62  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.6.1.6.6 Calibration Status Register (address = 0x05B) [reset = undefined]  
Figure 60. Calibration Status Register (CAL_STAT)  
7
6
5
4
RESERVED  
R-0000 10  
3
2
1
CAL_CONT_OFF  
R-X  
0
FIRST_CAL_DONE  
R-X  
Table 63. CAL_STAT Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
RESERVED  
R
0000  
10XX  
1
CAL_CONT_OFF  
R
R
X
After clearing CAL_CONT, calibration does not stop  
immediately. Use this register to confirm it has stopped before  
changing calibration settings.  
0: Indicates calibration is running (foreground or background)  
1: Indicates that calibration is finished or stopped because  
CAL_CONT = 0  
0
FIRST_CAL_DONE  
X
Indicates first calibration sequence has been done and ADC is  
operational.  
7.6.1.6.7 Timing Calibration Register (address = 0x066) [reset = 0x02]  
Figure 61. Timing Calibration Register (T_CAL)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 001  
T_AUTO  
R/W-0  
Table 64. CAL_STAT Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
T_AUTO  
0000 001 Set to 0000001b  
0
Set to enable automatic timing optimization. Timing calibration  
will occur once CAL_SFT is set.  
Copyright © 2014–2017, Texas Instruments Incorporated  
63  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.6.1.7 Digital Down Converter and JESD204B (0x200-0x27F)  
Table 65. Digital Down Converter and JESD204B Registers  
Address  
0x200  
Reset  
0x10  
Acronym  
DDC_CTRL1  
Register Name  
Digital Down-Converter (DDC) Control  
Section  
Go  
0x201  
0x0F  
JESD_CTRL1  
JESD_CTRL2  
JESD_DID  
JESD204B Control 1  
JESD204B Control 2  
JESD204B Device ID (DID)  
JESD204B Control 3  
JESD204B and System Status Register  
Overrange Threshold 0  
Overrange Threshold 1  
Overrange Period  
Go  
0x202  
0x00  
Go  
0x203  
0x00  
Go  
0x204  
0x00  
JESD_CTRL3  
JESD_STATUS  
OVR_T0  
Go  
0x205  
Undefined  
0xF2  
Go  
0x206  
Go  
0x207  
0xAB  
OVR_T1  
Go  
0x208  
0x00  
OVR_N  
Go  
0x209-0x20B  
0x20C  
0x00  
RESERVED  
NCO_MODE  
NCO_SEL  
RESERVED  
0x00  
DDC Configuration Preset Mode  
DDC Configuration Preset Select  
Rational NCO Reference Divisor  
NCO Frequency (Preset 0)  
NCO Phase (Preset 0)  
DDC Delay (Preset 0)  
RESERVED  
Go  
Go  
Go  
Go  
Go  
Go  
0x20D  
0x00  
0x20E-0x20F  
0x210-0x213  
0x214-0x215  
0x216  
0x0000  
0xC0000000  
0x0000  
0xFF  
NCO_RDIV  
NCO_FREQ0  
NCO_PHASE0  
DDC_DLY0  
RESERVED  
NCO_FREQ1  
NCO_PHASE1  
DDC_DLY1  
RESERVED  
NCO_FREQ2  
NCO_PHASE2  
DDC_DLY2  
RESERVED  
NCO_FREQ3  
NCO_PHASE3  
DDC_DLY3  
RESERVED  
NCO_FREQ4  
NCO_PHASE4  
DDC_DLY4  
RESERVED  
NCO_FREQ5  
NCO_PHASE5  
DDC_DLY5  
RESERVED  
NCO_FREQ6  
NCO_PHASE6  
DDC_DLY6  
RESERVED  
NCO_FREQ7  
NCO_PHASE7  
DDC_DLY7  
RESERVED  
RESERVED  
0x217  
0x00  
0x218-0x21B  
0x21C-0x21D  
0x21E  
0xC0000000  
0x0000  
0xFF  
NCO Frequency (Preset 1)  
NCO Phase (Preset 1)  
DDC Delay (Preset 1)  
RESERVED  
Go  
Go  
Go  
0x21F  
0x00  
0x220-0x223  
0x224-0x225  
0x226  
0xC0000000  
0x0000  
0xFF  
NCO Frequency (Preset 2)  
NCO Phase (Preset 2)  
DDC Delay (Preset 2)  
RESERVED  
Go  
Go  
Go  
0x227  
0x00  
0x228-0x22B  
0x22C-0x22D  
0x22E  
0xC0000000  
0x0000  
0xFF  
NCO Frequency (Preset 3)  
NCO Phase (Preset 3)  
DDC Delay (Preset 3)  
RESERVED  
Go  
Go  
Go  
0x22F  
0x00  
0x230-0x233  
0x234-0x235  
0x236  
0xC0000000  
0x0000  
0xFF  
NCO Frequency (Preset 4)  
NCO Phase (Preset 4)  
DDC Delay (Preset 4)  
RESERVED  
Go  
Go  
Go  
0x237  
0x00  
0x238-0x23B  
0x23C-0x23D  
0x23E  
0xC0000000  
0x0000  
0xFF  
NCO Frequency (Preset 5)  
NCO Phase (Preset 5)  
DDC Delay (Preset 5)  
RESERVED  
Go  
Go  
Go  
0x23F  
0x00  
0x240-0x243  
0x244-0x245  
0x246  
0xC0000000  
0x0000  
0xFF  
NCO Frequency (Preset 6)  
NCO Phase (Preset 6)  
DDC Delay (Preset 6)  
RESERVED  
Go  
Go  
Go  
0x247  
0x00  
0x248-0x24B  
0x24C-0x24D  
0x24E  
0xC0000000  
0x0000  
0xFF  
NCO Frequency (Preset 7)  
NCO Phase (Preset 7)  
DDC Delay (Preset 7)  
RESERVED  
Go  
Go  
Go  
0x24F-0x251  
0x252-0x27F  
0x00  
Undefined  
RESERVED  
64  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.6.1.7.1 Digital Down-Converter (DDC) Control Register (address = 0x200) [reset = 0x10]  
Figure 62. Digital Down-Converter (DDC) Control Register (DDC_CTRL1)  
7
6
5
4
3
2
1
0
RESERVED  
DDC GAIN  
BOOST  
DMODE  
R/W-000  
R/W-1  
R/W-0000  
Table 66. DDC_CTRL1 Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
000  
1
Description  
RESERVED  
DDC GAIN BOOST  
0 : Final filter has 0-dB gain (recommended when NCO is set  
near DC).  
1 : Final filter has 6.02-dB gain (default)  
3-0  
DMODE(1)  
R/W  
0000  
0 : decimate-by-4 (default)  
1 : Reserved  
2 : decimate-by-4  
3 : decimate-by-8  
4 : decimate-by-10  
5 : decimate-by-16  
6 : decimate-by-20  
7 : decimate-by-32  
8..15 : RESERVED  
(1) The DMODE setting must only be changed when JESD_EN is 0.  
7.6.1.7.2 JESD204B Control 1 Register (address = 0x201) [reset = 0x0F]  
Figure 63. JESD204B Control 1 Register (JESD_CTRL1)  
7
6
5
4
3
2
1
0
SCR  
R/W-0  
K_Minus_1  
R/W-000 11  
DDR  
R/W-1  
JESD_EN  
R/W-1  
Table 67. JESD_CTRL1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SCR  
R/W  
0
0 : Scrambler disabled (default)  
1 : Scrambler enabled  
6-2  
K_Minus_1  
R/W  
000 11  
K is the number of frames per multiframe, and K – 1 is  
programmed here.  
Default: K = 4, K_Minus_1 = 3.  
Depending on the decimation (D) and serial rate (DDR), there  
are constraints on the legal values of K.  
1
0
DDR  
R/W  
R/W  
1
1
0 : SDR serial rate (ƒ(BIT) = ƒS)  
1 : DDR serial rate (ƒ(BIT) = 2ƒS) (default)  
JESD_EN(1)  
0 : Block disabled  
1 : Normal operation (default)  
(1) Before altering any parameters in the JESD_CTRL1 register, you must set JESD_EN to 0. When JESD_EN is 0, the block is held in  
reset and the serializers are powered down. The clocks are gated off to save power.  
Copyright © 2014–2017, Texas Instruments Incorporated  
65  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.6.1.7.3 JESD204B Control 2 Register (address = 0x202) [reset = 0x00]  
Figure 64. JESD204B Control 2 Register (JESD_CTRL2)  
7
6
5
4
3
2
1
0
P54  
SYNC_DIFFSEL  
R/W-0  
RESERVED  
R/W-00  
JESD204B_TEST  
R/W-0000  
R/W-0  
Table 68. JESD_CTRL2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
P54  
R/W  
0
0 : Disable 5/4 PLL. Serial bit rate is 1x or 2x based on DDR  
parameter.  
1 : Enable 5/4 PLL. Serial bit rate is 1.25x or 2.5x based on  
DDR parameter.  
6
SYNC_DIFFSEL  
R/W  
0
0 : Use SYNC_SE_N input for SYNC_N function  
1 : Use SYNC_DIFF_N input for SYNC_N function  
5-4  
3-0  
RESERVED  
JESD204B_TEST(1)  
R/W  
R/W  
00  
Set to 00b  
0000  
See  
0 : Test mode disabled. Normal operation (default)  
1 : PRBS7 test mode  
2 : PRBS15 test mode  
3 : PRBS23 test mode  
4 : Ramp test mode  
5 : Short and long transport layer test mode  
6 : D21.5 test mode  
7 : K28.5 test mode  
8 : Repeated ILA test mode  
9 : Modified RPAT test mode  
10: Serial outputs held low  
11: Serial outputs held high  
12 through 15 : RESERVED  
(1) The JESD_CTRL2 register must only be changed when JESD_EN is 0.  
7.6.1.7.4 JESD204B Device ID (DID) Register (address = 0x203) [reset = 0x00]  
Figure 65. JESD204B Device ID (DID) Register (JESD_DID)  
7
6
5
4
3
2
1
0
JESD_DID  
R/W-0000 0000  
Table 69. JESD_DID Field Descriptions  
Bit  
Field  
JESD_DID(1)  
Type  
Reset  
Description  
7-0  
R/W  
0000 0000 Specifies the DID value that is transmitted during the second  
multiframe of the JESD204B ILA.  
(1) The DID setting must only be changed when JESD_EN is 0.  
66  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.6.1.7.5 JESD204B Control 3 Register (address = 0x204) [reset = 0x00]  
Figure 66. JESD204B Control 3 Register (JESD_CTRL3)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
FCHAR  
R/W-00  
Table 70. JESD_CTRL3 Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
00  
Description  
RESERVED  
FCHAR(1)  
Specify which comma character is used to denote end-of-frame.  
This character is transmitted opportunistically according to  
JESD204B Section 5.3.3.4.  
When using a JESD204B receiver, always use FCHAR=0.  
When using a general purpose 8-b or 10-b receiver, the K28.7  
character can cause issues. When K28.7 is combined with  
certain data characters, a false, misaligned comma character  
can result, and some receivers realign to the false comma. To  
avoid this, program FCHAR to 1 or 2.  
0 : Use K28.7 (default) (JESD204B compliant)  
1 : Use K28.1 (not JESD204B compliant)  
2 : Use K28.5 (not JESD204B compliant)  
3 : Reserved  
(1) The JESD_CTRL3 register must only be changed when JESD_EN is 0.  
7.6.1.7.6 JESD204B and System Status Register (address = 0x205) [reset = Undefined]  
See the JESD204B Synchronization Features section for more details.  
Figure 67. JESD204B and System Status Register (JESD_STATUS)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0  
LINK_UP  
R/W-0  
SYNC_STATUS  
R/W-X  
REALIGNED  
R/W-X  
ALIGNED  
R/W-0  
PLL_LOCKED  
R/W-0  
RESERVED  
R/W-00  
Table 71. JESD_STATUS Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
Description  
0
0
Always returns 0  
6
LINK_UP  
When set, indicates that the JESD204B link is in the DATA_ENC  
state.  
5
SYNC_STATUS  
R/W  
X
Returns the state of the JESD204B SYNC~ signal (SYNC_SE_N  
or SYNC_DIFF_N).  
0 : SYNC~ asserted  
1 : SYNC~ deasserted  
4
3
REALIGNED  
ALIGNED  
R/W  
R/W  
X
0
When high, indicates that the div8 clock, frame clock, or  
multiframe clock phase was realigned by SYSREF.  
Writing a 1 to this bit clears it.  
When high, indicates that the multiframe clock phase has been  
established by SYSREF. The first SYSREF event after enabling  
the JESD204B encoder will set this bit.  
Writing a 1 to this bit clears it.  
2
PLL_LOCKED  
RESERVED  
R/W  
R/W  
0
0
When high, indicates that the PLL is locked.  
Always returns 0  
1-0  
Copyright © 2014–2017, Texas Instruments Incorporated  
67  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.6.1.7.7 Overrange Threshold 0 Register (address = 0x206) [reset = 0xF2]  
Figure 68. Overrange Threshold 0 Register (OVR_T0)  
7
6
5
4
3
2
1
0
OVR_T0  
R/W-1111 0010  
Table 72. OVR_T0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OVR_T0  
R/W  
1111 0010 Over-range threshold 0. This parameter defines the absolute  
sample level that causes control bit 0 to be set. Control bit 0 is  
attached to the DDC I output samples. The detection level in  
dBFS (peak) is  
20log10(OVR_T0 / 256)  
Default: 0xF2 = 242 –0.5 dBFS  
7.6.1.7.8 Overrange Threshold 1 Register (address = 0x207) [reset = 0xAB]  
Figure 69. Overrange Threshold 1 Register (OVR_T1)  
7
6
5
4
3
2
1
0
OVR_T1  
R/W-1010 1011  
Table 73. OVR_T1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OVR_T1  
R/W  
1010 1011 Overrange threshold 1. This parameter defines the absolute  
sample level that causes control bit 1 to be set. Control bit 1 is  
attached to the DDC Q output samples. The detection level in  
dBFS (peak) is  
20log10(OVR_T1 / 256)  
Default: 0xAB = 171 –3.5 dBFS  
7.6.1.7.9 Overrange Period Register (address = 0x208) [reset = 0x00]  
Figure 70. Overrange Period Register (OVR_N)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 0  
OVR_N  
R/W-000  
Table 74. OVR_N Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R/W  
Reset  
0000 0  
000  
Description  
RESERVED  
OVR_N(1)  
This bit adjusts the monitoring period for the OVR[1:0] output  
bits. The period is scaled by 2OVR_N. Incrementing this field  
doubles the monitoring period.  
(1) Changing the OVR_N setting while JESD_EN=1 may cause the phase of the monitoring period to change.  
68  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.6.1.7.10 DDC Configuration Preset Mode Register (address = 0x20C) [reset = 0x00]  
Figure 71. DDC Configuration Preset Mode Register (NCO_MODE)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
CFG_MODE  
R/W-0  
Table 75. NCO_MODE Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0000 000  
0
Description  
RESERVED  
CFG_MODE  
The NCO frequency and phase are set by the NCO_FREQx and  
NCO_PHASEx registers, where x is the configuration preset (0  
through 7). The DDC delay setting is defined by the DDC_DLYx  
register.  
0 : Use NCO_[2:0] input pins to select the active DDC and NCO  
configuration preset.  
1 : Use the NCO_SEL register to select the active DDC and  
NCO configuration preset.  
7.6.1.7.11 DDC Configuration Preset Select Register (address = 0x20D) [reset = 0x00]  
Figure 72. DDC Configuration Preset Select Register (NCO_SEL)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 0  
NCO_SEL  
R/W-000  
Table 76. NCO_SEL Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R/W  
Reset  
0000 0  
000  
Description  
RESERVED  
NCO_SEL  
When NCO_MODE = 1, this register is used to select the active  
configuration preset.  
Copyright © 2014–2017, Texas Instruments Incorporated  
69  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.6.1.7.12 Rational NCO Reference Divisor Register (address = 0x20E to 0x20F) [reset = 0x0000]  
Figure 73. Rational NCO Reference Divisor Register (NCO_RDIV)  
15  
14  
13  
12  
11  
10  
9
8
0
NCO_RDIV  
R/W-0x00h  
7
6
5
4
3
2
1
NCO_RDIV  
R/W-0x00h  
Table 77. NCO_RDIV Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
NCO_RDIV  
R/W  
0x0000h  
Sometimes the 32-bit NCO frequency word does not provide the  
desired frequency step size and can only approximate the  
desired frequency. This results in a frequency error. Use this  
register to eliminate the frequency error. Use this equation to  
compute the proper value to program:  
NCO_RDIV = ƒS / ƒ(STEP) / 128  
where  
ƒS is the ADC sample rate  
ƒ(STEP) is the desired NCO frequency step size  
(10)  
For example, if ƒS= 3072 MHz, and ƒ(STEP) = 10 KHz then:  
NCO_RDIV = 3072 MHz / 10 KHz / 128 = 2400  
Any combination of ƒS and ƒ(STEP) that results in a fractional  
(11)  
value for NCO_RDIV is not supported. Values of NCO_RDIV  
larger than 8192 can degrade the NCO’s SFDR performance  
and are not recommended. This register is used for all  
configuration presets.  
70  
Copyright © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
7.6.1.7.13 NCO Frequency (Preset x) Register (address = see Table 65) [reset = see Table 65]  
Figure 74. NCO Frequency (Preset x) Register (NCO_FREQ_x)  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
NCO_FREQ_x  
R/W-0xC0h  
NCO_FREQ_x  
R/W-0x00h  
NCO_FREQ_x  
R/W-0x00h  
1
0
NCO_FREQ_x  
R/W-0x00h  
Table 78. NCO_FREQ_x Field Descriptions  
Bit  
31-0  
Field  
NCO_FREQ_x  
Type  
Reset  
Description  
R/W  
0xC00000 Changing this register after the JESD204B interface is running  
00h  
results in non-deterministic NCO phase. If deterministic phase is  
required, the JESD204B interface must be re-initialized after  
changing this register.  
The NCO frequency (ƒ(NCO)) is:  
ƒ(NCO) = NCO_FREQ_x × 2–32 × ƒS  
where  
ƒS is the sampling frequency of the ADC  
NCO_FREQ_x is the integer value of this  
register  
(12)  
(13)  
This register can be interpreted as signed or unsigned.  
Use this equation to determine the value to program:  
NCO_FREQ_x = 232 × ƒ(NCO) / ƒS  
If the equation does not result in an integer value, you must  
choose an alternate frequency step (ƒ(STEP) ) and program the  
NCO_RDIV register. Then use one of the following equations to  
compute NCO_FREQ_x:  
NCO_FREQ_x = round(232 × ƒ(NCO) / ƒS)  
(14)  
NCO_FREQ_x = round(225 × ƒ(NCO) / ƒ(STEP)  
NCO_RDIV)  
/
(15)  
Copyright © 2014–2017, Texas Instruments Incorporated  
71  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.6.1.7.14 NCO Phase (Preset x) Register (address = see Table 65) [reset = see Table 65]  
Figure 75. NCO Phase (Preset) Register (NCO_PHASE_x)  
15  
14  
13  
12  
11  
10  
9
1
8
0
NCO_PHASE_x  
R/W-0x00h  
7
6
5
4
3
2
NCO_PHASE_x  
R/W-0x00h  
Table 79. NCO_PHASE_x Field Descriptions  
Bit  
15-0  
Field  
NCO_PHASE_x  
Type  
Reset  
Description  
R/W  
0x0000h  
This value is MSB-justified into a 32bit field and then added to  
the phase accumulator. The phase (in radians) is  
NCO_PHASE_x × 2–16 × 2π  
(16)  
This register can be interpreted as signed or unsigned.  
7.6.1.7.15 DDC Delay (Preset x) Register (address = see Table 65) [reset = see Table 65]  
Figure 76. DDC Delay (Preset) Register (DDC_DLY_x)  
7
6
5
4
3
2
1
0
DDC_DLY_x  
R/W-0xFFh  
Table 80. DDC_DLY_x Field Descriptions  
Bit  
Field  
DDC_DLY_x  
Type  
Reset  
Description  
7-0  
R/W  
0xFFh  
DDC delay for configuration preset 0  
This register provides fine adjustments to the DDC group delay.  
The step size is one half of an ADC sample period (t(DEVCLK)  
2). This is equivalent to Equation 17.  
/
tO / (2 × D)  
where  
tO is the DDC output sample period  
D is the decimation factor  
(17)  
The legal range for this register is 0 to 2D-1. Illegal values result  
in undefined behavior.  
Example: When D = 8, the legal register range is 0 to 15. The  
step size is tO / 16 and the maximum delay is 15 × tO / 16.  
Programming this register to 0xFF (the default value) powers  
down and bypasses the fractional delay filter which reduces the  
DDC latency by 34 ADC sample periods (as compared to the 0  
setting).  
72  
版权 © 2014–2017, Texas Instruments Incorporated  
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM15851 device is a wideband sampling and digital tuning device. The ADC input captures input signals  
from DC to greater than 3 GHz. The DDC performs digital-down conversion and programmable decimation  
filtering, and outputs complex (15 bit I and 15 bit Q) data. The resulting output data is output on the JESD204B  
data interface for capture by the downstream capture or processing device. Most frequency-domain applications  
benefit from DDC capability to select the desired frequency band and provide only the necessary bandwidth of  
output data, minimizing the required number of data signals.  
8.2 Typical Application  
8.2.1 RF Sampling Receiver  
An RF Sampling Receiver is used to directly sample a signal in the RF frequency range and provide the data for  
the captured signal to downstream processing. The wide input bandwidth, high sampling rate, and DDC features  
of the LM15851 make it ideally suited for this application.  
SPI  
Master  
Over-Range Logic  
FPGA  
4.7 nF  
1:2 Balun  
BPF  
L Lanes  
ADC  
Limiter  
Diode  
JESD204B  
Receiver  
Data Processing  
and Storage  
SYNC~  
4.7 nF  
SYSREF  
and FPGA  
CLKs  
JESD204B  
Clock Generator  
77. Simplified Schematic  
版权 © 2014–2017, Texas Instruments Incorporated  
73  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in 81.  
81. Design Parameters  
DESIGN PARAMETERS  
Signal center frequency  
EXAMPLE VALUES  
2500 MHz  
100 MHz  
–7 dBm  
Signal bandwidth  
Signal nominal amplitude  
Signal maximum amplitude  
6 dBm  
Minimum SINAD (in bandwidth of interest)  
Minimum SFDR (in bandwidth of interest)  
48 dBc  
60 dBc  
8.2.1.2 Detailed Design Procedure  
Use the following steps to design the RF receiver:  
Use the signal-center frequency and signal bandwidth to select an appropriate sampling rate (DEVCLK  
frequency) and decimate factor (x / 4 to x / 32).  
Select the sampling rate so that the band of interest is completely within a Nyquist zone.  
Select the sampling rate so that the band of interest is away from any harmonics or interleaving tones.  
Use a frequency planning tool, such as the ADC harmonic calculator (see the 开发支持 section).  
Select the decimation factor that provides the highest factor possible with an adequate alias-protected output  
bandwidth to capture the frequency bandwidth of interest.  
Select other system components to provide the needed signal frequency range and DEVCLK rate.  
See Table 1 for recommended balun components.  
Select bandpass filters and limiter components based on the requirement to attenuate unwanted signals  
outside the band of interest (blockers) and to prevent large signals from damaging the ADC inputs. See the  
Absolute Maximum Ratings table.  
The LMK048xx JESD204B clocking devices can provide the DEVCLK clock and other system clocks for ƒ(DEVCLK)  
< 3101 MHz.  
For DEVCLK frequencies up to 4 GHz the consider using the LMX2581 and TRF3765 devices as the DEVCLK  
source. Use the LMK048xx device to provide the JESD204B clocks. For additional device information, see the 相  
关文档 section.  
8.2.1.3 Application Curves  
The following curve shows an RF signal at 2497.97 MHz captured at a sample rate of 4000 MSPS. 78 shows  
the spectrum for the output data in decimate-by-32 mode with ƒ(NCO) equal to 2500 MHz. 78 shows the ability  
to provide only the spectrum of interest in the decimated output data.  
74  
版权 © 2014–2017, Texas Instruments Incorporated  
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
0
-20  
-40  
-60  
-80  
-100  
-120  
-62.5 -50 -37.5 -25 -12.5  
0
12.5 25 37.5 50 62.5  
Frequency (MHz)  
D001  
ƒS = 4000 MSPS  
FIN = 2497.97 MHz at –7 dBFS  
ƒ(NCO) = 2500 MHz  
78. Spectrum — Decimate-by-32  
8.3 Initialization Set-Up  
8.3.1 JESD204B Startup Sequence  
The JESD204B interface requires a specific startup and alignment sequence. The general order of that sequence  
is listed in the following steps.  
1. Power up or reset the LM15851 device.  
2. Program JESD_EN = 0 to shut down the link and enable configuration changes.  
3. Program DECIMATE, SCRAM_EN, KM1 and DDR to the desired settings.  
4. Configure the device calibration settings as desired, and initiate a calibration (set CAL_SFT = 1).  
5. Program JESD_EN = 1 to enable the link.  
6. Apply at least one SYSREF rising edge to establish the LMFC phase.  
7. Assert SYNC~ from the data receiver to initiate link communications.  
8. After the JESD204B receiver has established code group synchronization, SYNC~ is de-asserted and the  
ILA process begins.  
9. Immediately following the end of the ILA sequence normal data output begins.  
If deterministic latency is not required this step can be omitted.  
8.4 Dos and Don'ts  
8.4.1 Common Application Pitfalls  
Driving the inputs (analog or digital) beyond the power supply rails. For device reliability, an input must not  
go more than 150 mV below the ground pins or 150 mV above the supply pins. Exceeding these limits even on a  
transient basis can cause faulty, or erratic, operation and can impair device reliability. High-speed digital circuits  
exhibiting undershoot that goes more than a volt below ground is common. To control overshoot, the impedance  
of high-speed lines must be controlled and these lines must be terminated in the characteristic impedance.  
Care must be taken not to overdrive the inputs of the LM15851 device. Such practice can lead to conversion  
inaccuracies and even to device damage.  
Incorrect analog input common-mode voltage in the DC-coupled mode. As described in the The Analog  
Inputs and DC Coupled Input Usage sections, the input common-mode voltage (VCMI) must remain the specified  
range as referenced to the VCMO pin, which has a variability with temperature that must also be tracked.  
Distortion performance is degraded if the input common mode voltage is outside the specified VCMI range.  
版权 © 2014–2017, Texas Instruments Incorporated  
75  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Dos and Don'ts (接下页)  
Using an inadequate amplifier to drive the analog input. Use care when choosing a high frequency amplifier  
to drive the LM15851 device because many high-speed amplifiers have higher distortion than the LM15851  
device which results in overall system performance degradation.  
Driving the clock input with an excessively high level signal. The ADC input clock level must not exceed the  
level described in the Recommended Operating Conditions table because the input offset can change if these  
levels are exceeded.  
Inadequate input clock levels. As described in the Using the Serial Interface section, insufficient input clock  
levels can result in poor performance. Excessive input-clock levels can result in the introduction of an input  
offset.  
Using a clock source with excessive jitter, using an excessively long input clock signal trace, or having  
other signals coupled to the input clock signal trace. These pitfalls cause the sampling interval to vary which  
causes excessive output noise and a reduction in SNR performance.  
Failure to provide adequate heat removal. As described in the Thermal Management section, providing  
adequate heat removal is important to ensure device reliability. Adequate heat removal is primarily provided by  
properly connecting the thermal pad to the circuit board ground planes. Multiple vias should be arranged in a grid  
pattern in the area of the thermal pad. These vias will connect the topside pad to the internal ground planes and  
to a copper pour area on the opposite side of the printed circuit board.  
9 Power Supply Recommendations  
Data-converter-based systems draw sufficient transient current to corrupt their own power supplies if not  
adequately bypassed. A 10-µF capacitor must be placed within one inch (2.5 cm) of the device power pins for  
each supply voltage. A 0.1-µF capacitor must be placed as close as possible to each supply pin, preferably  
within 0.5 cm. Leadless chip capacitors are preferred due to their low-lead inductance.  
As is the case with all high-speed converters, the LM15851 device must be assumed to have little power-supply  
noise-rejection. Any power supply used for digital circuitry in a system where a large amount of digital power is  
consumed must not be used to supply power to the LM15851 device. If not a dedicated supply, the ADC supplies  
must be the same supply used for other analog circuitry.  
9.1 Supply Voltage  
The LM15851 device is specified to operate with nominal supply voltages of 1.9 V (VA19) and 1.2 V (VA12,  
VD12). For detailed information regarding the operating voltage minimums and maximums see the  
Recommended Operating Conditions table.  
During power-up the voltage on all 1.9-V supplies must always be equal to or greater than the voltage on the 1.2-  
V supplies. Similarly, during power-down, the voltage on the 1.2-V supplies must always be lower than or equal  
to that of the 1.9-V supplies. In general, supplying all 1.9-V buses from a single regulator, and all 1.2-V buses  
from a single regulator is the easiest method to ensure that the 1.9-V supplies are greater than the 1.2-V  
supplies. If the 1.2-V buses are generated from separate regulators, they must rise and fall together (within 200  
mV).  
The voltage on a pin, including a transient basis, must not have a voltage that is in excess of the supply voltage  
or below ground by more than 150 mV. A pin voltage that is higher than the supply or that is below ground can  
be a problem during startup and shutdown of power. Ensure that the supplies to circuits driving any of the input  
pins, analog or digital, do not rise faster than the voltage at the LM15851 power pins.  
The values in the Absolute Maximum Ratings table must be strictly observed including during power up and  
power down. A power supply that produces a voltage spike at power turnon, turnoff, or both can destroy the  
LM15851 device. Many linear regulators produce output spiking at power on unless there is a minimum load  
provided. Active devices draw very little current until the supply voltages reach a few hundred millivolts. The  
result can be a turn-on spike that destroys the LM15851 device, unless a minimum load is provided for the  
supply. A 100-resistor at the regulator output provides a minimum output current during power up to ensure  
that no turn-on spiking occurs. Whether a linear or switching regulator is used, TI recommends using a soft-start  
circuit to prevent overshoot of the supply.  
76  
版权 © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
10 Layout  
10.1 Layout Guidelines  
Proper grounding and proper routing of all signals is essential to ensure accurate conversion. Each ground layer  
should be a single unified ground plane, rather than splitting the ground planes into analog and digital areas.  
Because digital switching transients are composed largely of high frequency components, the skin effect dictates  
that the total ground-plane copper weight has little effect upon the logic-generated noise. Total surface area is  
more important than the total ground-plane volume. Coupling between the typically-noisy digital circuitry and the  
sensitive analog circuitry can lead to poor performance that can be impossible to isolate and remedy. The  
solution is to keep the analog circuitry well separated from the digital circuitry.  
High-power digital components must not be located on or near any linear component or power-supply trace or  
plane that services analog or mixed-signal components because the resulting common return current path could  
cause fluctuation in the analog input ground return of the ADC which causes excessive noise in the conversion  
result.  
In general, assume that analog and digital lines must cross each other at 90° to avoid digital noise into the  
analog path. In high frequency systems, however, avoid crossing analog and digital lines altogether. The input  
clock lines must be isolated from all other lines, both analog and digital. The generally-accepted 90° crossing  
must be avoided because even a same amount of coupling causes problems at high frequencies. Best  
performance at high frequencies is obtained with a straight signal path.  
Coupling onto or between the clock and input signal paths must be avoided using any isolation techniques  
available including distance isolation, orientation planning to prevent field coupling of components like inductors  
and transformers, and providing well coupled reference planes. Via stitching around the clock signal path and the  
input analog signal path provides a quiet ground reference for the critical signal paths and reduces noise  
coupling onto these paths. Sensitive signal traces must not cross other signal traces or power routing on  
adjacent PCB layers, rather a ground plane must separate the traces. If necessary, the traces should cross at  
90° angles to minimize crosstalk.  
Isolation of the analog input is important because of the low-level drive required of the LM15851 device. Quality  
analog input signal and clock signal path layout is required for full dynamic performance. Symmetry of the  
differential signal paths and discrete components in the path is mandatory and symmetrical shunt-oriented  
components should have a common grounding via. The high frequency requirements of the input and clock  
signal paths necessitate using differential routing with controlled impedances and minimizing signal path stubs  
(including vias) when possible.  
Layout of the high-speed serial-data lines is of particular importance. These traces must be routed as tightly  
coupled 100-differential pairs, with minimal vias. When vias must be used, care must be taken to implement  
control-impedance vias (that is, 50-) with adjacent ground vias for image current control.  
10.2 Layout Example  
The following examples show layout-example plots (top and bottom layers only). 81 shows a typical stackup  
for a 10 layer board.  
版权 © 2014–2017, Texas Instruments Incorporated  
77  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Layout Example (接下页)  
Single ended VIN  
path via balun  
selected if  
capacitors  
installed here.  
Large bulk  
decoupling  
capacitor  
Power supply decoupling  
capacitors very close to  
power pins.  
near device.  
Balun transformer for SE  
to differential conversion.  
1
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
RBIAS+  
RBIASœ  
VCMO  
VA19  
VNEG  
VA1
VA19  
VIN+  
VINœ  
VA19  
VA12  
VNEG  
VA19  
VA12  
DEVCLK+  
DEVCLKœ  
DS6+/NCO_1  
DS6œCO_1  
VD12  
DS5+/NCO_0  
DS5œ/NCO_0  
VD12  
DS4+  
DS4œ  
VD12  
DS3+  
DS3œ  
VD12  
DS2+  
DS2œ  
VD12  
DS1+  
DS1œ  
Straight analog  
input path with  
minimal adjacent  
circuitry.  
2
3
Power supply  
decoupling  
capacitors near  
VIN and  
DEVCLK are  
located on  
opposite side of  
board to  
4
5
6
7
8
9
10  
11  
12  
13  
14  
minimize noise  
coupling.  
15  
16  
17  
VA12  
AC coupling capacitors on  
serial output pairs.  
DEVCLK path B  
selected if  
Straight DEVCLK  
capacitors  
installed here.  
path with minimal  
adjacent circuitry.  
GND reference  
vias near where  
high speed  
signals transition  
to inner layer.  
79. LM15851 Layout Example 1 — Top Side  
Additional decoupling  
capacitors near device.  
RBIAS resistor  
near to RBIAS+  
and RBIAS-  
pins.  
1
51  
RBIAS+  
DS6+/NCO_1  
2
50  
RBIASœ  
DS6œ/NCO_1  
3
49  
VCMO  
VD12  
4
48  
VA19  
DS5+/NCO_0  
5
47  
EG  
VA12  
A19  
DS5œ/NCO_0  
VD12  
DS4+  
Decoupling  
capacitors  
6
46  
7
45  
Optional differential VIN  
path selected if  
capacitors or resistors  
power pins near  
VIN and  
DEVCLK on this  
8
44  
VIN+  
DS4œ  
VD12  
DS3+  
DS3œ  
9
VINœ  
43  
10  
42  
VA19  
VA12  
VNEG  
11  
41  
installed here.  
side of board.  
12  
40  
VD12  
13  
39  
VA19  
DS2+  
14  
38  
VA12  
DS2œ  
15  
37  
DEVCLK+  
VD12  
16  
36  
DEVLKœ  
DS1+  
17  
35  
VA12  
DS1œ  
DEVCLK path A  
selected if  
capacitors  
installed here.  
Larger bulk  
decoupling capacitors  
on this side of board,  
near device.  
80. LM15851 Layout Example 2 — Bottom Side  
78  
版权 © 2014–2017, Texas Instruments Incorporated  
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
Layout Example (接下页)  
L1 œ SIG  
L2 œ GND  
L3 œ SIG  
L4 œ GND  
L5 œ PWR  
L6 œ SIG  
L7 œ GND  
L8 œ SIG  
L9 œ GND  
L10 œ SIG  
0.0040''  
0.0067''  
0.0060''  
0.0041''  
0.0060''  
0.0067''  
0.0040''  
0.0073''  
0.0040''  
0.0578''  
1/2 oz. Copper on L1, L3, L6, L8, L10  
1 oz. Copper on L2, L4, L5, L7, L9  
100 Differential Signaling on SIG Layers  
Low loss dielectric adjacent very high speed trace layers  
Finished thickness 0.0620" including plating and solder mask  
81. LM15851 Typical Stackup — 10 Layer Board  
版权 © 2014–2017, Texas Instruments Incorporated  
79  
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
10.3 Thermal Management  
The LM15851 device is capable of impressive speeds and performance at low power levels for speed. However,  
the power consumption is still high enough to require attention to thermal management. The VQFN package has  
a primary-heat transfer path through the center pad on the bottom of the package. The thermal resistance of this  
path is provided as RθJCbot  
.
For reliability reasons, the die temperature must be kept to a maximum of 135°C which is the ambient  
temperature (TA) plus the ADC power consumption multiplied by the net junction-to-ambient thermal resistance  
(RθJA). Maintaining this temperature is not a problem if the ambient temperature is kept to a maximum of 85°C as  
specified in the Recommended Operating Conditions table and the center ground pad on the bottom of the  
package is thermally connected to a large-enough copper area of the PC board.  
The package of the LM15851 device has a center pad that provides the primary heat-removal path as well as  
excellent electrical grounding to the PCB. Recommended land pattern and solder paste examples are provided in  
the 机械、封装和可订购信息 section. The center-pad vias shown must be connected to internal ground planes to  
remove the maximum amount of heat from the package, as well as to ensure best product parametric  
performance.  
If needed to further reduce junction temperature, TI recommends to build a simple heat sink into the PCB which  
occurs by including a copper area of about 1 to 2 cm2 on the opposite side of the PCB. This copper area can be  
plated or solder-coated to prevent corrosion, but should not have a conformal coating which would provide  
thermal insulation. Thermal vias will be used to connect these top and bottom copper areas and internal ground  
planes. These thermal vias act as heat pipes to carry the thermal energy from the device side of the board to the  
opposite side of the board where the heat can be more effectively dissipated.  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.1.2 开发支持  
如需 ADC 谐波计算器,请访问 http://www.ti.com/tool/adc-harmonic-calc。  
11.1.3 器件命名规则  
孔径(采样)延迟 是在时钟输入的采样边沿测得的延迟量,经过此段延迟后将在器件内部对输入引脚的信号进行  
采样。  
孔径抖动 (t(AJ))是采样与采样之间的孔径延迟变化。孔径抖动以输入噪声的形式出现。  
时钟占空比 是时钟波形为逻辑高电平的时间与一个时钟周期总时长的比率。  
全功率带宽 (FPBW)是一个频率测量值,在此频率下,重构的输出基频会降至满量程输入的低频值以下 3dB。  
交错毛刺  
ADC 多组交叉架构中的非理想条件产生的频域 (FFT) 效应。  
各组间的偏移误差在 ƒS/4 ƒS/2 时会产生固定毛刺。增益和时序误差在 ƒS / 4 ± FIN 以及 ƒS / 2 ±  
FIN 时会产生输入信号相关毛刺。  
互调失真 (IMD)是由于两个正弦频率同时被施加到 ADC 输入上所产生的额外频谱分量。IMD 定义为二阶和三阶互  
调产品功率与某原始频率下的功率之比。IMD 通常以 dBFS 为单位。  
最低有效位 (LSB)是所有位中具有最小值或最低权重的位。此值根据公式 18 进行计算。  
VFS(dif) / 2n  
其中  
VFS(dif) VI 的差分满量程幅值,如 FSR 输入所设(引脚 14)  
80  
版权 © 2014–2017, Texas Instruments Incorporated  
 
LM15851  
www.ti.com.cn  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
器件支持 (接下页)  
n ADC 分辨率(以位为单位),LM15851 器件对应的 n = 12  
(18)  
电流模式逻辑 (CML) 差分输出电压 (VOD)是正负输出电压间差值的绝对值。所有输出均相对于接地端测量。  
VD+  
VD-  
VOD  
VD+  
VOS  
VD-  
GND  
VOD = | VD+ - VD- |  
82. CML 输出信号电平  
CML 输出偏移电压 (VO(ofs))D+ D– 引脚间输出电压的平均值。公式 19 VOS 示例。  
[(VD+) + ( VD–)] / 2  
(19)  
最高有效位 (MSB)是具有最大值或最高权重的位。MSB 的值为满量程的一半。  
超量程恢复时间 是转换器差分输入电压从 ±1.2V 变为 0V 后恢复并以额定精度进行转换所需的时间。  
其它毛刺  
是所有高次谐波(四次及以上)、交错毛刺和所有其它固定毛刺或输入相关毛刺的总和。  
数据延迟(延迟) 是开始转换到串行器输出相关数据期间的输入时钟周期数。  
无杂散动态范围 (SFDR)是输出端输入信号与杂散信号峰值的均方根 (RMS) 值间的差值(以 dB 为单位),其中杂  
散信号是出现在输出频谱但未出现在输入频谱的所有信号,直流信号除外。  
总谐波失真 (THD)是输出端前九个谐波总值与输出端基频值之比的 RMS 值(以 dB 为单位)。总谐波失真 (THD)  
根据公式 20 计算。  
2
2
f10  
A
+ . . . + A  
f2  
THD = 20 x log  
2
A
f1  
其中  
A(f1) 是基频(输出)的 RMS 功率  
A(f2) A(f10) 是输出频谱中前九个谐波频率的 RMS 功率  
(20)  
二次谐波失真 (2nd Harm)是输出端检测到的输入频率 RMS 功率与输出端二次谐波功率之间的差值(以 dB 为单  
位)。  
三次谐波失真 (3rd Harm)是输出端检测到的输入频率 RMS 功率与输出端三次谐波功率之间的差值(以 dB 为单  
位)。  
误字率  
是出错率,定义为单位时间内可能出错的字数除以该时间内检查的字数。误字率 10–18 指大约每四年  
会有一个转换出现统计误差。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
LMH3401 7GHz 超宽带固定增益全差分放大器SBOS695  
LMK0482x 具有双环 PLL 的超低噪声 JESD204B 兼容时钟抖动消除器SNAS605  
LMX2581 具有集成压控振荡器 (VCO) 的宽带频率合成器SNAS601  
TRF3765 具有集成 VCO 的整数 N/分数 N 锁相环 (PLL)SLWS230  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
版权 © 2014–2017, Texas Instruments Incorporated  
81  
 
 
LM15851  
ZHCSCX2E JANUARY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
社区资源 (接下页)  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
82  
版权 © 2014–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM15851NKE  
LM15851NKER  
LM15851NKET  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
NKE  
NKE  
NKE  
68  
68  
68  
168  
RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
LM15851  
2000 RoHS & Green  
250 RoHS & Green  
SN  
SN  
LM15851  
LM15851  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM15851NKER  
LM15851NKET  
VQFN  
VQFN  
NKE  
NKE  
68  
68  
2000  
250  
330.0  
178.0  
24.4  
24.4  
10.3  
10.3  
10.3  
10.3  
1.1  
1.1  
16.0  
16.0  
24.0  
24.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM15851NKER  
LM15851NKET  
VQFN  
VQFN  
NKE  
NKE  
68  
68  
2000  
250  
367.0  
213.0  
367.0  
191.0  
45.0  
55.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
LM15851NKE  
NKE  
VQFNP  
68  
168  
8 X 21  
150  
322.6 135.9 7620 14.65  
11  
11.95  
Pack Materials-Page 3  
PACKAGE OUTLINE  
NKE0068A  
VQFN - 0.9 mm max height  
SCALE 1.700  
PLASTIC QUAD FLATPACK - NO LEAD  
10.1  
9.9  
A
B
PIN 1 ID  
10.1  
9.9  
0.9 MAX  
C
SEATING PLANE  
0.1 C  
0.05  
0.00  
(0.2)  
7.7 0.1  
4X (45 X0.42)  
18  
34  
17  
35  
SYMM  
4X  
8
1
51  
0.3  
68X  
64X 0.5  
0.2  
52  
68  
0.1  
C A  
C
B
0.7  
0.5  
SYMM  
PIN 1 ID  
(OPTIONAL)  
68X  
0.05  
4214820/A 12/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NKE0068A  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
7.7)  
SYMM  
(1.19) TYP  
52  
68X (0.8)  
68X (0.25)  
68  
1
51  
(1.19)  
TYP  
64X (0.5)  
SYMM  
(9.6)  
(
0.2) TYP  
VIA  
17  
35  
34  
18  
(9.6)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214820/A 12/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NKE0068A  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(9.6)  
(1.19) TYP  
68X (0.8)  
68X (0.25)  
36X  
68  
52  
(
0.99)  
1
51  
(1.19)  
TYP  
64X (0.5)  
SYMM  
(9.6)  
METAL  
TYP  
35  
17  
18  
34  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
60% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
4214820/A 12/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM1589

2.7A, 1.2V L.D.O. VOLTAGE REGULATOR
HTC

LM1589R

2.7A, 1.2V L.D.O. VOLTAGE REGULATOR
HTC

LM1589T

2.7A, 1.2V L.D.O. VOLTAGE REGULATOR
HTC

LM158A

Low Power Dual Operational Amplifiers
STMICROELECTR

LM158A

DUAL OPERATIONAL AMPLIFIERS
TI

LM158A MDE

Space-grade, dual, 32-V, 700-kHz operational amplifier | Y | 0 | -55 to 125
TI

LM158A MDR

Space-grade, dual, 32-V, 700-kHz operational amplifier | Y | 0 | -55 to 125
TI

LM158AD

DUAL OPERATIONAL AMPLIFIERS
TI

LM158ADT

OP-AMP|DUAL|BIPOLAR|SOP|8PIN|PLASTIC
ETC

LM158AFK

DUAL OPERATIONAL AMPLIFIERS
TI

LM158AFKB

DUAL OPERATIONAL AMPLIFIERS
TI

LM158AFKB

DUAL OP-AMP, 4000uV OFFSET-MAX, 0.7MHz BAND WIDTH, CQCC20, HERMETIC SEALED, CERAMIC, LCC-20
ROCHESTER