LM25180-Q1 [TI]

具有 65V、1.5A 集成式 MOSFET 的汽车类 42V 输入电压非光电反激式转换器;
LM25180-Q1
型号: LM25180-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 65V、1.5A 集成式 MOSFET 的汽车类 42V 输入电压非光电反激式转换器

光电 转换器
文件: 总46页 (文件大小:2809K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
具有 65V1.5A 集成 MOSFET LM25180-Q1 42VIN PSR 反激式直流/直  
流转换器  
1 特性  
3 说明  
1
符合面向汽车 应用的  
LM25180-Q1 是一款初级侧稳压 (PSR) 反激式转换  
器,在 4.5V 42V 的宽输入电压范围内具有高效  
率。隔离输出电压采样自初级侧反激式电压,因此,无  
需使用光耦合器、电压基准或变压器的第三绕组进行输  
出电压稳压。凭借高度的集成性,可实现简单可靠的高  
密度设计,其中只有一个组件穿过隔离层。通过采用边  
界导电模式 (BCM) 开关,可实现紧凑的磁解决方案以  
及优于 ±1.5% 的负载和线路调节性能。集成的 65V 功  
MOSFET 能够提供高达 7W 的输出功率并提高应对  
线路瞬变的余量。  
器件温度等级 1-40℃ 至 125℃ 的环境温度范  
专为可靠耐用的应用 设计  
4.5V 42 V  
稳定可靠的解决方案,只有一个组件穿过隔离层  
±1.5% 的总输出稳压精度  
可选 VOUT 温度补偿  
6ms 内部或可编程软启动  
输入 UVLO 和热关断保护  
断续模式过流故障保护  
LM25180-Q1 转换器简化了隔离式直流/直流电源的实  
施,且可通过可选 功能 优化目标终端设备的性能。该  
器件通过一个电阻器来设置输出电压,同时使用可选的  
电阻器通过抵消反激式二极管的压降热系数来提高输出  
电压精度。其他 功能 包括内部固定或外部可编程软启  
动、可实现更高效率的可选偏置电源连接、用于可调节  
线路 UVLO 的精密使能输入(带迟滞功能)、间断模  
式过载保护和带自动恢复功能的热关断保护。  
具有 –40°C +150°C 的结温范围  
通过集成技术减小解决方案尺寸,降低成本  
集成 65V0.4Ω 功率 MOSFET  
无需光耦合器或变压器辅助绕组即可进行 VOUT  
稳压  
EMI 运行,符合 CISPR 25 标准  
高效率 PSR 反激运行  
重负载情况下,可在边界导电模式 (BCM) 下实  
现准谐振开关  
LM25180-Q1 符合汽车 AEC-Q100 1 级标准,并且采  
用引脚间距为 0.8mm 且具有可湿性侧面的 8 引脚  
WSON 封装。  
具有用于提升效率的外部偏置选项  
具有单输出和多输出实施手段  
使用 WEBENCH® 电源设计器创建定制稳压器设计  
器件信息(1)  
器件型号  
封装  
WSON (8)  
封装尺寸(标称值)  
2 应用  
LM25180-Q1  
4.00mm × 4.00mm  
汽车车身电子设备  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
汽车动力传动系统  
隔离式偏置电源轨  
典型应用  
典型效率 (VOUT = 5V)  
90  
DFLY  
VIN = 4.5 V...42 V  
VOUT = 5 V  
T1  
85  
80  
75  
70  
DZ  
COUT  
100 F  
3 : 1  
CIN  
DF  
VIN  
EN/UVLO  
2.2 F  
SW  
RFB  
LM25180-Q1  
158 kW  
GND  
FB  
RSET  
TC  
VIN = 12V  
VIN = 24V  
VIN = 36V  
65  
60  
RSET  
SS/BIAS  
12.1 kW  
0
0.2  
0.4  
0.6 0.8  
Output Current (A)  
1
1.2  
1.4  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSB89  
 
 
 
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes........................................ 15  
8
9
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Applications ................................................ 16  
Power Supply Recommendations...................... 32  
10 Layout................................................................... 33  
10.1 Layout Guidelines ................................................. 33  
10.2 Layout Examples................................................... 34  
11 器件和文档支持 ..................................................... 35  
11.1 器件支持................................................................ 35  
11.2 文档支持 ............................................................... 35  
11.3 接收文档更新通知 ................................................. 36  
11.4 社区资源................................................................ 36  
11.5 ....................................................................... 36  
11.6 静电放电警告......................................................... 36  
11.7 Glossary................................................................ 36  
12 "机械、封装和可订购信..................................... 37  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (November 2018) to Revision A  
Page  
Changed EC table specs for current limit............................................................................................................................... 4  
已添加 note about failsafe current limit................................................................................................................................. 14  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
5 Pin Configuration and Functions  
NGU Package  
8-Pin WSON With Wettable Flanks  
Top View  
8
7
6
5
GND  
SW  
FB  
1
RSET  
TC  
2
3
4
VIN  
EN/UVLO  
SS/BIAS  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
Switch node that is internally connected to the drain of the N-channel power MOSFET. Connect  
to the primary-side switching terminal of the flyback transformer.  
1
SW  
P
I
Primary side feedback pin. Connect a resistor from FB to SW. The ratio of the FB resistor to the  
resistor at the RSET pin sets the output voltage.  
2
3
FB  
Input supply connection. Source for internal bias regulators and input voltage sensing pin.  
Connect directly to the input supply of the converter with short, low impedance paths.  
VIN  
P/I  
Enable input and undervoltage lockout (UVLO) programming pin. If the EN/UVLO voltage is  
below 1.1 V, the converter is in shutdown mode with all functions disabled. If the EN/UVLO  
voltage is greater than 1.1 V and below 1.5 V, the converter is in standby mode with the internal  
regulator operational and no switching. If the EN/UVLO voltage is above 1.5 V, the start-up  
sequence begins.  
4
5
EN/UVLO  
SS/BIAS  
I
I
Soft-start or bias input. Connect a capacitor from SS/BIAS to GND to adjust the output start-up  
time and input inrush current. If SS/BIAS is left open, the internal 6-ms soft-start timer is  
activated. Connect an external supply to SS/BIAS to supply bias to the internal voltage regulator  
and enable internal soft start.  
Temperature compensation pin. Tie a resistor from TC to RSET to compensate for the  
temperature coefficient of the forward voltage drop of the secondary diode, thus improving  
regulation at the secondary-side output.  
6
7
TC  
I
I
Reference resistor tied to GND to set the reference current for FB. Connect a 12.1-kresistor  
from RSET to GND.  
RSET  
8
-
GND  
DAP  
G
G
Analog and power ground. Ground connection of internal control circuits and power MOSFET.  
Die attach pad. Connect to PCB ground plane.  
(1) P = Power, G = Ground, I = Input, O = Output.  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–1.5  
–3  
MAX  
45  
UNIT  
VIN to GND  
EN/UVLO to GND  
TC to GND  
45  
6
Input voltage  
SS/BIAS to GND  
FB to GND  
14  
V
45.3  
0.3  
3
FB to VIN  
RSET to GND  
SW to GND  
70  
Output voltage  
V
SW to GND (20-ns transient)  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–55  
150  
150  
°C  
°C  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002  
HBM ESD Classification Level 2  
±2000  
(1)  
V(ESD)  
Electrostatic discharge  
V
All pins except 1,  
4, 5, and 8  
Charged device model (CDM), per  
AEC Q100-011  
CDM ESD Classification Level C4B  
±500  
±750  
Pins 1, 4, 5, and 8  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise noted)  
MIN  
NOM  
MAX  
42  
UNIT  
V
VIN  
Input voltage after turn on  
SW voltage  
4.5  
VSW  
65  
V
VEN/UVLO  
VSS/BIAS  
TJ  
EN/UVLO voltage  
42  
V
SS/BIAS voltage  
13  
V
Operating junction temperature  
–40  
150  
°C  
6.4 Thermal Information  
LM25180-Q1  
THERMAL METRIC(1)  
NGU (WSON)  
8 PINS  
41.3  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
34.7  
19.1  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJB  
19.2  
RΘJC(bot)  
3.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
 
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
6.5 Electrical Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits aaply over the full –40°C to 150°C junction  
temperature range unless otherwise indicated. VIN = 24 V and VEN/UVLO = 2 V unless otherwise stated.  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISHUTDOWN  
IACTIVE  
IACTIVE-BIAS  
VSD-FALLING  
VIN shutdown current  
VIN active current  
VEN/UVLO = 0 V  
3
260  
25  
µA  
µA  
µA  
V
VEN/UVLO = 2.5 V, VRSET = 1.8 V  
VSS/BIAS = 6 V  
350  
40  
VIN current with BIAS connected  
Shutdown threshold  
VEN/UVLO falling  
0.3  
ENABLE AND INPUT UVLO  
VSD-RISING  
VUV-RISING  
Standby threshold  
Enable threshold  
VEN/UVLO rising  
VEN/UVLO rising  
VEN/UVLO falling  
0.8  
1.5  
1
V
V
1.45  
0.04  
4.2  
1.53  
VUV-HYST  
Enable voltage hysteresis  
Enable current hysteresis  
0.05  
5
V
IUV-HYST  
FEEDBACK  
IRSET  
VEN/UVLO = 1.6 V  
5.5  
µA  
RSET current  
RRSET = 12.1 kΩ  
RRSET = 12.1 kΩ  
IFB = 80 µA  
100  
µA  
V
VRSET  
RSET regulation voltage  
FB to VIN voltage  
FB to VIN voltage  
1.191  
–40  
1.21  
1.224  
40  
VFB-VIN1  
VFB-VIN2  
mV  
mV  
IFB = 120 µA  
SWITCHING FREQUENCY  
FSW-MIN  
FSW-MAX  
tON-MIN  
Minimum switching frequency  
12  
350  
140  
kHz  
kHz  
ns  
Maximum switching frequency  
Minimum switch on-time  
DIODE THERMAL COMPENSATION  
VTC TC voltage  
POWER SWITCHES  
ITC = ±10 µA, TJ = 25°C  
ISW = 100 mA  
1.2  
0.4  
1.27  
V
RDS(on)  
MOSFET on-state resistance  
Ω
SOFT-START AND BIAS  
ISS  
tSS  
SS ext capacitor charging current  
5
6
µA  
ms  
Internal SS time  
VBIAS-UVLO-  
RISE  
BIAS enable voltage  
VSS/BIAS rising  
VSS/BIAS falling  
5.5  
5.75  
1.73  
V
VBIAS-UVLO-  
HYST  
BIAS UVLO hysteresis  
190  
mV  
CURRENT LIMIT  
ISW-PEAK  
Peak current limit threshold  
1.23  
1.5  
A
THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
175  
6
°C  
°C  
TSD-HYS  
版权 © 2018–2019, Texas Instruments Incorporated  
5
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 24 V, VEN/UVLO = 2 V (unless otherwise stated).  
90  
85  
80  
75  
70  
5.2  
5.15  
5.1  
5.05  
5
4.95  
4.9  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
65  
60  
4.85  
4.8  
0
0.2  
0.4  
0.6 0.8  
Output Current (A)  
1
1.2  
1.4  
0
0.2  
0.4  
0.6  
0.8  
1
Output Current (A)  
1.2  
1.4  
1.6  
See 23  
See 23  
See 23  
See 23  
1. Efficiency vs. Load  
2. Output Voltage vs. Load  
SW 20V/DIV  
VDFLY 5V/DIV  
1 ms/DIV  
1 ms/DIV  
See 23  
IOUT = 1 A  
IOUT = 1 A  
4. Flyback Diode Switching Waveform in BCM  
3. Primary-side Switching Waveform in BCM  
18  
15  
12  
9
VIN = 12 V  
VIN = 24 V  
VIN = 42 V  
VOUT 1V/DIV  
VIN 10V/DIV  
IOUT 500mA/DIV  
6
3
0
-50  
2 ms/DIV  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
D001  
5. Startup Characteristic  
6. Shutdown Quiescent Current vs. Temperature  
6
版权 © 2018–2019, Texas Instruments Incorporated  
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
Typical Characteristics (接下页)  
VIN = 24 V, VEN/UVLO = 2 V (unless otherwise stated).  
290  
35  
30  
25  
20  
15  
280  
270  
260  
250  
VIN = 12 V  
VIN = 24 V  
VIN = 42 V  
VIN = 12 V  
VIN = 24 V  
VIN = 42 V  
240  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D002  
D003  
VSS/BIAS = 6 V  
7. Active Quiescent Current vs. Temperature  
8. Active Quiescent Current with BIAS vs. Temperature  
102  
101  
100  
99  
104  
102  
100  
98  
98  
96  
0
6
12  
18 24  
Input Voltage (V)  
30  
36  
42  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
D004  
D005  
9. RSET Current vs. Input Voltage  
10. RSET Current vs. Temperature  
1.8  
1.6  
1.4  
1.2  
1
1.54  
1.52  
1.5  
1.48  
1.46  
1.44  
1.42  
1.4  
VEN/UVLO Rising  
VEN/UVLO Falling  
0.8  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D006  
D007  
11. TC Voltage vs. Temperature  
12. EN/UVLO Threshold Voltages vs. Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
7
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
VIN = 24 V, VEN/UVLO = 2 V (unless otherwise stated).  
5.3  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
5.2  
5.1  
5
4.9  
4.8  
4.7  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D008  
D009  
13. EN/UVLO Hysteresis Current vs. Temperature  
14. MOSFET RDS(on) vs. Temperature  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
160  
155  
150  
145  
140  
135  
130  
BCM  
FFM  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D010  
D011  
15. Switch Peak Current Limits vs. Temperature  
16. Minimum Switch On-Time vs. Temperature  
380  
370  
360  
350  
340  
330  
320  
13  
12.5  
12  
11.5  
11  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D012  
D013  
17. Minimum Switching Frequency vs. Temperature  
18. Maximum Switching Frequency vs. Temperature  
8
版权 © 2018–2019, Texas Instruments Incorporated  
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
7 Detailed Description  
7.1 Overview  
The LM25180-Q1 primary-side regulated (PSR) flyback converter is a high-density, cost-effective solution for  
automotive and industrial systems requiring less than 7 W of isolated DC/DC power. This compact, easy-to-use  
flyback converter with low IQ can be applied over a wide input voltage range from 4.5 V to 42 V, with operation  
down to 3.5 V after startup. Innovative frequency and current amplitude modulation enables high conversion  
efficiency across the entire load and line range. Primary-side regulation of the isolated output voltage using  
sampled values of the primary winding voltage eliminates the need for an opto-coupler or an auxiliary transformer  
winding for feedback. Regulation performance that rivals that of traditional opto-coupler solutions is achieved  
without the associated cost, solution size and reliability concerns. The LM25180-Q1 converter services a wide  
range of applications including automotive on-board chargers and IGBT-based motor drives for HEV/EV systems.  
7.2 Functional Block Diagram  
VOUT  
VIN  
DFLY  
NP : NS  
DZ  
COUT  
5 mA  
LM25180-Q1  
SS/BIAS  
BIAS  
REGULATOR  
CIN  
EN/UVLO  
Standby  
1.5 V  
1.45 V  
VDD  
VIN  
DF  
VDD UVLO  
Shutdown  
VIN  
SAMPLED  
FEEDBACK  
THERMAL  
SHUTDOWN  
1.1 V  
65-V Power  
MOSFET  
FB  
SW  
RSET  
COMP  
VDD  
gm  
VREF  
TRIMMED  
REFERENCE  
RTC  
CONTROL  
LOGIC  
RSET  
FB  
ILIM  
TC  
1.5 A  
TC  
REGULATION  
VDD  
RFB  
SS/BIAS  
GND  
Internal SS  
CSS  
7.3 Feature Description  
7.3.1 Integrated Power MOSFET  
The LM25180-Q1 is a flyback dc/dc converter with integrated 65-V, 1.5-A N-channel power MOSFET. During the  
MOSFET on-time, the transformer primary current increases from zero with slope VIN / LMAG (where LMAG is the  
transformer primary-referred magnetizing inductance) while the output capacitor supplies the load current. When  
the high-side MOSFET is turned off by the control logic, the SW voltage VSW swings up to approximately VIN  
+
(NPS × VOUT), where NPS = NP/NS is the primary-to-secondary turns ratio of the transformer. The magnetizing  
current flows in the secondary side through the flyback diode, charging the output capacitor and supplying  
current to the load. Duty cycle D is defined as tON / tSW, where tON is the MOSFET conduction time and tSW is the  
switching period.  
19 shows a typical schematic of the LM25180-Q1 PSR flyback circuit. Components denoted in red are  
optional depending on the application requirements.  
版权 © 2018–2019, Texas Instruments Incorporated  
9
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
Feature Description (接下页)  
DFLY  
T1  
VIN  
VOUT  
DCLAMP  
COUT  
DOUT  
RUV1  
NP : NS  
DF  
CIN  
VIN  
SW  
EN/UVLO  
RUV2  
RFB  
LM25180  
GND  
FB  
RSET  
TC  
SS/BIAS  
RTC  
RSET  
CSS  
19. LM25180-Q1 Flyback Converter Schematic (Optional Components in Red)  
7.3.2 PSR Flyback Modes of Operation  
The LM25180-Q1 uses a variable-frequency, peak current-mode (VFPCM) control architecture with three  
possible modes of operation as illustrated in 20.  
Frequency  
foldback mode  
(FFM)  
Discontinuous conduction mode (DCM)  
Boundary conduction mode (BCM)  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
20  
40  
60  
80  
100  
% Total Rated Output Power  
20. Three Modes of Operation Illustrated by Variation of Switching Frequency With Load  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
Feature Description (接下页)  
The LM25180-Q1 operates in boundary conduction mode (BCM) at heavy loads. The power MOSFET turns on  
when the current in the secondary winding reaches zero, and the MOSFET turns off when the peak primary  
current reaches the level dictated by the output of the internal error amplifier. As the load is decreased, the  
frequency increases in order to maintain BCM operation. The duty cycle of the flyback converter is given 公式 1,  
where VD is the forward voltage drop of the flyback diode as its current approaches zero.  
V
+ VD N  
(
)
OUT  
PS  
DBCM  
=
V
+ V  
+ VD N  
(
)
IN  
OUT  
PS  
(1)  
The output power in BCM is given by 公式 2, where the applicable switching frequency and peak primary current  
in BCM are specified by 公式 3 and 公式 4, respectively.  
2
LMAG IPRI-PK(BCM)  
POUT(BCM)  
=
FSW(BCM)  
2
(2)  
1
FSW(BCM)  
=
LMAG  
LMAG  
NPS V  
IPRI-PK(BCM)  
+
÷
÷
V
+ VD  
OUT  
(
)
IN  
«
(3)  
(4)  
2V  
(
+ VD I  
OUT  
)
OUT  
IPRI-PK(BCM)  
=
V D  
IN  
As the load decreases, the LM25180-Q1 clamps the maximum switching frequency to 350 kHz, and the  
converter enters discontinuous conduction mode (DCM). The power delivered to the output in DCM is  
proportional to the peak primary current squared as given by 公式 5 and 公式 6. Thus, as the load decreases,  
the peak current reduces to maintain regulation at 350-kHz switching frequency.  
2
LMAG IPRI-PK(DCM)  
POUT(DCM)  
=
FSW(DCM)  
2
(5)  
2IOUT V  
+ VD  
(
)
OUT  
IPRI-PK(DCM)  
=
LMAG FSW(DCM)  
(6)  
(7)  
LMAG IPRI-PK(DCM) FSW(DCM)  
DDCM  
=
V
IN  
At even lighter loads, the primary-side peak current set by the internal error amplifier decreases to a minimum  
level of 0.3 A, or 20% of its 1.5-A peak value, and the MOSFET off-time extends to maintain the output load  
requirement. The system operates in frequency foldback mode (FFM), and the switching frequency decreases as  
the load current is reduced. Other than a fault condition, the lowest frequency of operation of the LM25180-Q1 is  
12 kHz, which sets a minimum load requirement of approximately 0.5% full load.  
7.3.3 Setting the Output Voltage  
To minimize output voltage regulation error, the LM25180-Q1 senses the reflected secondary voltage when the  
secondary current reaches zero. The feedback (FB) resistor, which is connected between SW and FB as shown  
in 19, is determined using 公式 8, where RSET is nominally 12.1 kΩ.  
RSET  
RFB = V  
+ VD N  
(
)
OUT  
PS  
VREF  
(8)  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
 
 
 
 
 
 
 
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.3.1 Diode Thermal Compensation  
The LM25180-Q1 employs a unique thermal compensation circuit that adjusts the feedback setpoint based on  
the thermal coefficient of the flyback diode's forward voltage drop. Even though the output voltage is measured  
when the secondary current is effectively zero, there is still a non-zero forward voltage drop associated with the  
flyback diode. Select the thermal compensation resistor using 公式 9.  
RFB  
3mV èC  
NPS TCDiode  
RTC  
=
(9)  
The temperature coefficient of the diode voltage drop may not be explicitly provided in the diode datasheet, so  
the effective value can be estimated based on the measured output voltage shift over temperature when the TC  
resistor is not installed.  
7.3.4 Control Loop Error Amplifier  
The inputs of the error amplifier include a level-shifted version of the FB voltage and an internal 1.21-V reference  
set by the resistor at RSET. A type-2 internal compensation network stabilizes the converter. In BCM operation  
when the output voltage is in regulation, an on-time interval is initiated when the secondary current reaches zero.  
The power MOSFET is subsequently turned off when an amplified version of the peak primary current exceeds  
the error amplifier output.  
7.3.5 Precision Enable  
The precision EN/UVLO input supports adjustable input undervoltage lockout (UVLO) with hysteresis for  
application specific power-up and power-down requirements. EN/UVLO connects to a comparator with a 1.5-V  
reference voltage and 50-mV hysteresis. An external logic signal can be used to drive the EN/UVLO input to  
toggle the output on and off for system sequencing or protection. The simplest way to enable the LM25180-Q1 is  
to connect EN/UVLO directly to VIN. This allows the LM25180-Q1 to start up when VIN is within its valid operating  
range. However, many applications benefit from using a resistor divider RUV1 and RUV2 as shown in 21 to  
establish a precision UVLO level.  
LM25180  
VCC  
VIN  
5 A  
RUV1  
EN/UVLO  
+
RUV2  
UVLO  
Comparator  
1.5 V  
1.45 V  
21. Programmable Input Voltage UVLO With Hysteresis  
Use 公式 10 and 公式 11 to calculate the input UVLO voltages turn-on and turn-off voltages, respectively, where  
VUV-RISING and VUV-FALLING are the UVLO comparator thresholds and IUV-HYST is the hysteresis current.  
÷
RUV1  
RUV2  
V
= VUV-RISING 1+  
IN(on)  
«
(10)  
÷
RUV1  
RUV2  
V
= VUV-FALLING 1+  
-IUV-HYST RUV2  
IN(off)  
«
(11)  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
Feature Description (接下页)  
The LM25180-Q1 also provides a low-IQ shutdown mode when the EN/UVLO voltage is pulled below a base-  
emitter voltage drop (approximately 0.6 V at room temperature). If the EN/UVLO voltage is below this hard  
shutdown threshold, the internal LDO regulator powers off, and the internal bias-supply rail collapses, shutting  
down the bias currents of the LM25180-Q1. The LM25180-Q1 operates in standby mode when the EN/UVLO  
voltage is between the hard shutdown and precision-enable thresholds.  
7.3.6 Configurable Soft Start  
The LM25180-Q1 has a flexible and easy-to-use soft-start control pin, SS/BIAS. The soft-start feature prevents  
inrush current impacting the LM25180-Q1 and the input supply when power is first applied. This is achieved by  
controlling the voltage at the output of the internal error amplifier. Soft start is achieved by slowly ramping up the  
target regulation voltage when the device is first enabled or powered up. Selectable and adjustable start-up  
timing options include a 6-ms internally-fixed soft start and an externally-programmable soft start.  
The simplest way to use the LM25180-Q1 is to leave SS/BIAS open. The LM25180-Q1 employs an internal soft-  
start control ramp and starts up to the regulated output voltage in 6 ms.  
However, in applications with a large amount of output capacitance, higher VOUT or other special requirements,  
the soft-start time can be extended by connecting an external capacitor CSS from SS/BIAS to GND. A longer soft-  
start time further reduces the supply current needed to charge the output capacitors while sourcing the required  
load current. When the EN/UVLO voltage exceeds the UVLO rising threshold and a delay of 20 µs expires, an  
internal current source ISS of 5 µA charges CSS and generates a ramp to control the primary current amplitude.  
Calculate the soft-start capacitance for a desired soft-start time, tSS, using 公式 12.  
CSS nF = 5 t  
ms  
»
»
ÿ
ÿ
SS  
(12)  
CSS is discharged by an internal FET when switching is disabled by EN/UVLO or thermal shutdown.  
7.3.7 External Bias Supply  
DFLY  
T1  
VIN  
VOUT  
DCLAMP  
COUT  
DOUT  
RUV1  
NP : NS  
DF  
CIN  
VIN  
EN/UVLO  
SW  
RUV2  
RFB  
LM25180  
GND  
FB  
DBIAS1  
RSET  
TC  
SS/BIAS  
DBIAS2  
12 V  
CBIAS  
22 nF  
RSET  
NP : NAUX  
22. External Bias Supply Using Transformer Auxiliary Winding  
The LM25180-Q1 has an external bias supply feature that reduces input quiescent current and increases  
efficiency. When the voltage at SS/BIAS exceeds a rising threshold of 5.5 V, bias power for the internal LDO  
regulator can be derived from an external voltage source or from a transformer auxiliary winding as shown in 图  
22. With a bias supply connected, the LM25180-Q1 then uses its internal soft-start ramp to control the primary  
current during start-up.  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
 
 
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
Feature Description (接下页)  
When using a transformer auxiliary winding for bias power, the total leakage current related to diodes DBIAS1 and  
DBIAS2 in 22 should be less than 1 µA across the full operating temperature range.  
7.3.8 Minimum On-Time and Off-Time  
When the internal power MOSFET is turned off, the leakage inductance of the transformer resonates with the  
SW node parasitic capacitance. The resultant ringing behavior can be excessive with large transformer leakage  
inductance and may corrupt the secondary zero-current detection. In order to prevent such a situation, a  
minimum switch off-time, designated as tOFF-MIN, of maximum 450 ns is set internally to ensure proper  
functionality. This sets a lower limit for the transformer magnetizing inductance as discussed in Detailed Design  
Procedure.  
Furthermore, noise effects as a result of power MOSFET turn-on can impact the internal current sense circuit  
measurement. To mitigate this effect, the LM25180-Q1 provides a blanking time after the MOSFET turns on. This  
blanking time forces a minimum on-time, tON-MIN, of 140 ns.  
7.3.9 Overcurrent Protection  
In case of an overcurrent condition on the isolated output(s), the output voltage drops lower than the regulation  
level since the maximum power delivered is limited by the peak current capability on the primary side. The peak  
primary current is maintained at 1.5 A (plus an amount related to the 100-ns propagation delay of the current limit  
comparator) until the output decreases to the secondary diode voltage drop to impact the reflected signal on the  
primary side. At this point, the LM25180-Q1 assumes the output cannot be recovered and re-calibrates its  
switching frequency to 9 kHz until the overload condition is removed. The LM25180-Q1 responds with similar  
behavior to an output short circuit condition.  
For a given input voltage, 公式 13 gives the maximum output current prior to the engagement of overcurrent  
protection. The typical threshold value for ISW-PEAK from Specifications is 1.5 A.  
ISW-PEAK  
IOUT(max)  
=
«
÷
VOUT + VD  
1
2∂  
+
V
NPS  
IN  
(13)  
A failsafe current limit set at 2.4A, or 1.6 times the nominal peak current limit, provides redundant fault protection  
in case of transformer short circuit or saturation effects. This initiates a 7.5ms hiccup interval after eight  
overcurrent events.  
7.3.10 Thermal Shutdown  
Thermal shutdown is an integrated self-protection to limit junction temperature and prevent damage related to  
overheating. Thermal shutdown turns off the device when the junction temperature exceeds 175°C to prevent  
further power dissipation and temperature rise. Junction temperature decreases after shutdown, and the restarts  
when the junction temperature falls to 169°C.  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
 
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
EN/UVLO facilitates ON and OFF control for the LM25180-Q1. When VEN/UVLO is below approximately 0.6 V, the  
device is in shutdown mode. Both the internal LDO and the switching regulator are off. The quiescent current in  
shutdown mode drops to 3 μA at VIN = 24 V. The LM25180-Q1 also employs internal bias rail undervoltage  
protection. If the internal bias supply voltage is below its UV threshold, the converter remains off.  
7.4.2 Standby Mode  
The internal bias rail LDO regulator has a lower enable threshold than the converter itself. When VEN/UVLO is  
above 0.6 V and below the precision-enable threshold (1.5 V typically), the internal LDO is on and regulating.  
The precision enable circuitry is turned on once the internal VCC is above its UV threshold. The switching action  
and voltage regulation are not enabled until VEN/UVLO rises above the precision enable threshold.  
7.4.3 Active Mode  
The LM25180-Q1 is in active mode when VEN/UVLO is above the precision-enable threshold and the internal bias  
rail is above its UV threshold. The LM25180-Q1 operates in one of three modes depending on the load current  
requirement:  
1. Boundary conduction mode (BCM) at heavy loads.  
2. Discontinuous conduction mode (DCM) at medium loads.  
3. Frequency foldback mode (FFM) at light loads.  
Refer to PSR Flyback Modes of Operation for more detail.  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM25180-Q1 requires only a few external components to convert from a wide range of supply voltages to  
one or more isolated output rails. To expedite and streamline the process of designing of a LM25180-Q1-based  
converter, a comprehensive LM25180-Q1 quick-start calculator is available for download to assist the designer  
with component selection for a given application. WEBENCH® online software is also available to generate  
complete designs, leveraging iterative design procedures and access to comprehensive component databases.  
The following sections discuss the design procedure for both single- and dual-output implementations using  
specific circuit design examples.  
As mentioned previously, the LM25180-Q1 also integrates several optional features to meet system design  
requirements, including precision enable, input UVLO, programmable soft start, output voltage thermal  
compensation, and external bias supply connection. Each application incorporates these features as needed for  
a more comprehensive design.  
The application circuits detailed in Typical Applications show LM25180-Q1 configuration options suitable for  
several application use cases. Refer to the LM5180EVM-S05 and LM5180EVM-DUAL EVM user's guides for  
more detail.  
8.2 Typical Applications  
For step-by-step design procedures, circuit schematics, bill of materials, PCB files, simulation and test results of LM25180-Q1-powered  
implementations, refer to the TI Designs reference design library.  
8.2.1 Design 1: Wide VIN, Low IQ PSR Flyback Converter Rated at 5 V, 1 A  
The schematic diagram of a 5-V, 1-A PSR flyback converter is given in 23.  
DFLY  
VIN = 10 V...36 V  
T1  
VOUT = 5 V  
IOUT = 1 A  
DCLAMP  
24 V  
COUT  
DOUT  
RUV1  
5.6 V  
100 F  
536 kW  
3 : 1  
CIN  
DF  
VIN  
EN/UVLO  
30 mH  
10 F  
SW  
FB  
RUV2  
RFB  
LM25180  
100 kW  
158 kW  
GND  
RSET  
TC  
SS/BIAS  
RTC  
RSET  
CSS  
130 kW  
12.1 kW  
47 nF  
23. Schematic for Design 1 With VIN(nom) = 24 V, VOUT = 5 V, IOUT = 1 A  
8.2.1.1 Design Requirements  
The required input, output, and performance parameters for this application example are shown in 1.  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
1. Design Parameters  
DESIGN PARAMETER  
VALUE  
10 V to 36 V  
9.5 V on, 6.5 V off  
5 V  
Input voltage range  
Input UVLO thresholds  
Output voltage  
Rated load current, VIN = 24 V  
Output voltage regulation  
Output voltage ripple  
1 A  
±1.5%  
< 100 mV  
The target full-load efficiency is 86% based on a nominal input voltage of 24 V and an isolated output voltage of  
5 V. The LM25180-Q1 is chosen to deliver a fixed 5-V output voltage set by resistor RFB connected between the  
SW and FB pins. The input voltage turn-on and turn-off thresholds are established by RUV1 and RUV2. The  
required components are listed in 2.  
2. List of Components for Design 1  
REF DES QTY SPECIFICATION  
VENDOR  
Taiyo Yuden  
Murata  
PART NUMBER  
UMJ325KB7106KMHT  
GRM32EC70J107ME15  
JMK325AC7107MM-P  
C3225X5R0J107M250AC  
885012109004  
Std  
CIN  
1
10 µF, 50 V, X7R, 1210, ceramic, AEC-Q200  
100 µF, 6.3 V, X7S, 1210, ceramic  
Taiyo Yuden  
TDK  
COUT  
1
100 µF, 6.3 V, X5R, 1210, ceramic  
Würth Electronik  
Std  
CSS  
1
1
1
1
1
1
1
1
1
1
47 nF, 16 V, X7R, 0402  
DCLAMP  
DF  
Zener, 24 V, 1 W, PowerDI-123, AEC-Q101  
Switching diode, 75 V, 0.25 A, SOD-323  
Schottky diode, 40 V, 2 A, SOD-123  
Zener, 5.6 V, 5%, SOD-523, AEC-Q101  
158 kΩ, 1%, 0402  
DFLZ24Q-7  
CMDD4448  
FSV340FP  
BZX585-C5V6  
Std  
Diodes Inc.  
Central Semi  
ONsemi  
DFLY  
DOUT  
RFB  
Nexperia  
Std  
RSET  
RTC  
12.1 kΩ, 1%, 0402  
Std  
Std  
130 kΩ, 1%, 0402  
Std  
Std  
RUV1  
RUV2  
536 kΩ, 1%, 0603  
Std  
Std  
100 kΩ, 1%, 0402  
Std  
Std  
Coilcraft  
YA8779-BLD  
750317605  
12387-T151  
750313974  
LM25180QNGURQ1  
30 µH, 2 A, turns ratio 3 : 1, 9.3 × 10.2 mm  
Würth Electronik  
Sumida  
T1  
1
1
30 µH, 2.6 A, turns ratio 3 : 1, 12.5 × 15.5 mm  
40 µH, 2 A, turns ratio 3 : 1, 13.3 × 15.2 mm  
LM25180-Q1 PSR flyback converter, AEC-Q100  
Würth Electronik  
Texas Instruments  
U1  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM25180-Q1 device with WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.1.2.2 Custom Design With Excel Quickstart Tool  
Select components based on the converter specifications using the LM25180-Q1 quick-start calculator.  
8.2.1.2.3 Flyback Transformer – T1  
Choose a turns ratio based on an approximate 60% max duty cycle at minimum input voltage using 公式 14,  
rounding up or down as needed.  
V
DMAX  
0.6  
10V  
IN(min)  
NPS  
=
=
= 3  
1-DMAX VOUT + VD 1- 0.6 5V + 0.3V  
(14)  
Select a magnetizing inductance based on the minimum off-time constraint using 公式 15. Choose a value of 30  
µH with a saturation current of minimum 2 A for this application.  
V
+ VD NPS tOFF-MIN  
)
IPRI-PK(FFM)  
5V + 0.3V 3450ns  
(
(
)
0.3A  
OUT  
LMAG  
í
=
= 23.9H  
(15)  
Note that a higher magnetizing inductance provides a larger operating range for BCM and FFM, but the leakage  
inductance may increase based on a higher number of primary turns, NP. The primary and secondary winding  
RMS currents are given by 公式 16 and 公式 17, respectively.  
D
IPRI-RMS  
=
IPRI-PK  
3
(16)  
2IOUT IPRI-PK NPS  
ISEC-RMS  
=
3
(17)  
Find the maximum output current for a given turns ratio using 公式 18, where the typical value for IPRI-PK(max) is  
the 1.5 A switch current peak threshold. Iterate by increasing the turns ratio if the output current capability is too  
low at minimum input voltage.  
IPRI-PK(max)  
IOUT(max)  
=
»
ÿ
Ÿ
VOUT  
V
+ VD  
1
2
+
NPS  
IN  
(18)  
8.2.1.2.4 Flyback Diode – DFLY  
The flyback diode reverse voltage is given by 公式 19.  
V
36V  
3
IN(max)  
VD-REV  
í
+ VOUT  
=
+ 5V = 17V  
NPS  
(19)  
Select a 40-V, 3-A Schottky diode for this application to account for inevitable diode voltage overshoot and  
ringing related to the resonance of transformer leakage inductance and diode parasitic capacitance. Connect an  
appropriate RC snubber circuit (for example, 100 Ω and 22 pF) across the flyback diode if needed.  
In general, choose a flyback diode with current rating greater than the maximum peak secondary winding current  
of NPS*IPRI-PK(max). As mentioned in Layout, place adequate copper at the cathode of the diode to improve its  
thermal performance and prevent overheating during high ambient temperature or overload conditions. Beware  
of the high leakage current typical of a Schottky diode at elevated operating temperatures.  
8.2.1.2.5 Zener Clamp Circuit – DF, DCLAMP  
Connect a diode-Zener clamping circuit across the primary winding to limit the peak switch-node voltage after  
MOSFET turn-off below the maximum level of 65 V, as given by 公式 20.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
 
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
VDZ(clamp) < VSW(max) - V  
IN(max)  
(20)  
Choosing the zener, DCLAMP, with clamp voltage of approximately 1.5 times the reflected output voltage, as  
specified by 公式 21, provides a balance between the maximum SW voltage excursion and the leakage  
inductance demagnetization time.  
VDZ(clamp) = 1.5NPS V  
+ VD = 1.535V + 0.3V ö 24V  
(
)
(
)
OUT  
(21)  
Select an ultra-fast switching diode or Schottky diode for DF with rated voltage greater than the maximum input  
voltage and with low forward recovery voltage drop.  
8.2.1.2.6 Output Capacitor – COUT  
The output capacitor determines the voltage ripple at the converter output, limits the voltage excursion during a  
load transient, and sets the dominant pole of the converter's small-signal response. For a flyback converter  
specifically, the output capacitor supplies the load current when the main switch is on, and therefore the output  
voltage ripple is a function of load current and duty cycle.  
Select an output capacitance using 公式 22 to limit the ripple voltage amplitude to less than 1% of the output  
voltage at minimum input voltage.  
IOUT(max) LMAG IPRI-PK(max)  
COUT  
í
DVOUT  
V
IN  
(22)  
Substituting the maximum load current at minimum input voltage from 公式 18, transformer inductance, peak  
switch current and peak-to-peak ripple voltage specification gives COUT greater than 72 μF.  
Mindful of the voltage coefficient of ceramic capacitors, select a 100-µF, 6.3-V capacitor in 1210 case size with  
X5R or better dielectric. 公式 23 gives the output capacitor RMS ripple current.  
2NPS IPRI-PK  
ICOUT-RMS = IOUT  
-1  
3 IOUT  
(23)  
8.2.1.2.7 Input Capacitor – CIN  
Select an input capacitance using 公式 24 to limit the ripple voltage amplitude to less than 5% of the input  
voltage when operating at nominal input voltage.  
2
D
IPRI-PK D1-  
÷
2
«
CIN  
í
2FSW ∂ DV  
IN  
(24)  
Substituting the input current at full load, switching frequency, peak primary current and peak-to-peak ripple  
specification gives CIN greater than 2 μF. Mindful of the voltage coefficient of ceramic capacitors, select a 10-µF,  
50-V ceramic input capacitor with X7R dielectric in 1210 case size. 公式 25 gives the input capacitor RMS ripple  
current.  
D IPRI-PK  
4
ICIN-RMS  
=
-1  
2
3 D  
(25)  
8.2.1.2.8 Feedback Resistor – RFB  
Select a feedback resistor, designated RFB, of 158 kΩ based on the secondary winding voltage at the end of the  
flyback conduction interval (the sum of the 5-V output voltage and the Schottky diode forward voltage drop)  
reflected by the transformer turns ratio of 3 : 1. The forward voltage drop of the flyback diode is 0.3 V as its  
current approaches zero.  
V
+ VD N  
5V + 0.3V 3  
(
)
0.1mA  
(
)
OUT  
PS  
RFB  
=
=
= 158 kW  
0.1mA  
(26)  
19  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
8.2.1.2.9 Thermal Compensation Resistor – RTC  
Select a resistor for output voltage thermal compensation, designated RTC, based on 公式 27.  
RFB  
3 mV èC 158 kW 3  
RTC  
=
=
= 130 kW  
NPS TCDiode  
3 1.2  
(27)  
8.2.1.2.10 UVLO Resistors – RUV1, RUV2  
Given VIN(on) and VIN(off) as the input voltage turn-on and turn-off thresholds of 9.5 V and 6.5 V, respectively,  
select the upper and lower UVLO resistors using the following expressions:  
VUV-FALLING  
VUV-RISING  
IUV-HYST  
1.45 V  
1.5 V  
5 A  
V
- V  
IN(off)  
9.5 V ∂  
- 6.5 V  
IN(on)  
RUV1  
=
=
= 536kW  
(28)  
(29)  
VUV-RISING  
1.5 V  
9.5 V -1.5 V  
RUV2 = RUV1  
= 536 kW ∂  
= 100 kW  
V
- VUV-RISING  
IN(on)  
8.2.1.2.11 Soft-Start Capacitor – CSS  
Connect an external soft-start capacitor for a specific soft-start time. In this example, select a soft-start  
capacitance of 47 nF based on 公式 12 to achieve a soft-start time of 9 ms.  
For technical solutions, industry trends, and insights for designing and managing power supplies, please refer to TI's  
Power Management technical articles.  
8.2.1.3 Application Curves  
Unless otherwise stated, application performance curves were taken at TA = 25°C.  
100  
90  
80  
70  
60  
50  
40  
30  
90  
85  
80  
75  
70  
65  
60  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
0.001  
0.01  
0.1  
Output Current (A)  
1
2
0
0.2  
0.4  
0.6 0.8  
Output Current (A)  
1
1.2  
1.4  
25. Efficiency (Log Scale)  
24. Efficiency (Linear Scale)  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
5.2  
5.1  
5
5.2  
5.15  
5.1  
5.05  
5
4.95  
4.9  
4.9  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
4.85  
4.8  
0.001  
4.8  
0
0.01  
0.1  
Output Current (A)  
1
2
0.2  
0.4  
0.6  
0.8  
1
Output Current (A)  
1.2  
1.4  
1.6  
27. Load Regulation (Log Scale)  
26. Load Regulation (Linear Scale)  
EN 1V/DIV  
VOUT 1V/DIV  
VOUT 1V/DIV  
VIN 10V/DIV  
IOUT 500mA/DIV  
IOUT 500mA/DIV  
2 ms/DIV  
2 ms/DIV  
VIN stepped to 24 V  
5-Ω Load  
VIN = 24 V  
5-Ω Load  
28. Start-up Characteristic  
29. Enable ON Characteristic  
SW 20V/DIV  
VDFLY 5V/DIV  
1 ms/DIV  
1 ms/DIV  
VIN = 24 V  
IOUT = 1 A  
VIN = 24 V  
IOUT = 1 A  
31. Flyback Diode Voltage  
30. SW Node Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
Average detector  
Peak detector  
Peak detector  
Average detector  
Start 150 kHz  
Stop 30 MHz  
Start 30 MHz  
Stop 108 MHz  
VIN = 24 V  
IOUT = 0.85 A  
150 kHz to 30 MHz  
LIN = 4.7 µH  
CIN = 10 µF  
VIN = 24 V  
IOUT = 0.85 A  
30 MHz to 108 MHz  
LIN = 4.7 µH  
CIN = 10 µF  
32. CISPR 25 Class 5 Conducted EMI Plot  
33. CISPR 25 Class 5 Conducted EMI Plot  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
8.2.2 Design 2: PSR Flyback Converter With Dual Outputs of 15 V and –7.7 V at 200 mA  
The schematic diagram of a dual-output flyback converter intended for isolated IGBT and SiC MOSFET gate  
drive power supply applications is given in 34.  
DFLY1  
VIN = 9.5 V...36 V  
T1  
VOUT1 = 15 V  
IOUT1 = 0.2 A  
DCLAMP  
DOUT1  
18 V  
COUT1  
RUV1  
24 V  
22 F  
340 kW  
1 : 1 : 0.52  
CIN  
DF  
VIN  
EN/UVLO  
30 mH  
10 F  
SW  
FB  
COUT2  
DOUT2  
8.2 V  
RUV2  
RFB  
47 F  
LM25180  
68.1 kW  
154 kW  
VOUT2 = œ7.7 V  
IOUT2 = œ0.2 A  
GND  
DFLY2  
RSET  
TC  
RTC  
RSET  
12.1 kW  
SS/BIAS  
200 kW  
34. Schematic for Design 2 With VIN(nom) = 24 V, VOUT1 = 15 V, VOUT2 = –7.7 V, IOUT = 200 mA  
8.2.2.1 Design Requirements  
The required input, output, and performance parameters for this application example are shown in 3.  
3. Design Parameters  
DESIGN PARAMETER  
Input voltage range (steady state)  
Output 1 voltage and current  
Output 2 voltage and current  
Input UVLO thresholds  
VALUE  
9.5 V to 36 V  
15 V, 0.2 A  
–7.7 V, –0.2 A  
9 V on, 7 V off  
±2%  
Output voltage regulation  
The target full-load efficiency of this LM25180-Q1 design is 88% based on a nominal input voltage of 24 V and  
isolated output voltages of 15 V and –7.7 V sharing a common return. The selected flyback converter  
components are cited in 4, including multi-winding flyback transformer, input and output capacitors, rectifying  
diodes and flyback converter IC.  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
 
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
4. List of Components for Design 2  
REF DES QTY SPECIFICATION  
VENDOR  
PART NUMBER  
CIN  
1
10 µF, 50 V, X7R, 1210, ceramic, AEC-Q200  
Taiyo Yuden  
TDK  
UMJ325KB7106KMHT  
CGA6P3X7R1E226M  
GCM32EC71E226KE36  
TMK325B7226KMHT  
GCM32EC71H106KA03  
Diodes Inc.  
COUT1  
1
22 µF, 25 V, X7R, 1210, ceramic, AEC-Q200  
Murata  
Taiyo Yuden  
Murata  
COUT2  
DFLY1  
DFLY2  
DCLAMP  
DF  
1
1
1
1
1
1
1
1
1
1
1
1
47 µF, 10 V, X7S, 1210, ceramic, AEC-Q200  
Schottky diode, 100 V, 1 A, PowerDI-123, AEC-Q101  
Schottky diode, 60 V, 1 A, PowerDI-123, AEC-Q101  
Zener, 24 V, 1 W, PowerDI-123, AEC-Q101  
Switching diode, 75 V, 0.3 A, SOD323, AEC-Q101  
Zener, 18 V, 5%, SOD523, AEC-Q101  
Zener, 8.2 V, 2%, SOD523, AEC-Q101  
154 kΩ, 1%, 0402  
DFLS1100Q-7  
DFLS160Q-7  
DFLZ24Q-7  
1N4148WSQ  
BZX585-C18  
BZX585-B8V2  
Std  
Diodes Inc.  
Diodes Inc.  
Diodes Inc.  
DOUT1  
DOUT2  
RFB  
Nexperia  
Nexperia  
Std  
RSET  
RTC  
12.1 kΩ, 1%, 0402  
Std  
Std  
200 kΩ, 1%, 0402  
Std  
Std  
RUV1  
RUV2  
340 kΩ, 1%, 0603  
Std  
Std  
68.1 kΩ, 1%, 0402  
Std  
Std  
Coilcraft  
YA8916-BLD  
750317595  
T1  
1
1
30 µH, 2 A, turns ratio 1 : 1: 0.52, 9 × 10 mm, SMT  
LM25180-Q1 PSR flyback converter, AEC-Q100  
Würth Electronik  
Texas Instruments  
U1  
LM25180QNGURQ1  
8.2.2.2 Detailed Design Procedure  
Using the LM25180-Q1 quick-start calculator, components are selected based on the flyback converter  
specifications.  
8.2.2.2.1 Flyback Transformer – T1  
Set the turns ratio of the transformer secondary windings using 公式 30, where NS1 and NS2 are the number of  
secondary turns for the respective outputs.  
NS2 VOUT2 + VD2  
NS1 VOUT1 + VD1 15 V + 0.3 V  
7.7 V + 0.3 V  
=
=
= 0.52  
(30)  
Choose a primary-secondary turns ratio for the 15-V output based on an approximate 60% max duty cycle at  
minimum input voltage using 公式 31. The transformer turns ratio for both outputs is thus specified as 1 : 1 :  
0.52.  
V
DMAX  
0.6  
9.5V  
IN(min)  
NPS  
=
=
ö 1  
1-DMAX VOUT + VD 1- 0.6 15V + 0.3V  
(31)  
Select a magnetizing inductance based on the minimum off-time constraint using 公式 32. Choose a value of 30  
µH with a saturation current of 2 A for this application.  
V
+ VD NPS tOFF-MIN  
)
IPRI-PK(FFM)  
15V + 0.35V 1450ns  
(
(
)
0.3A  
OUT  
LMAG  
í
=
= 23.0H  
(32)  
8.2.2.2.2 Flyback Diodes – DFLY1 and DFLY2  
The flyback diode reverse voltages for the positive and negative outputs are given respectively by 公式 33 and 公  
25.  
V
36V  
1
IN(max)  
VD1-REV  
í
+ VOUT1  
=
+15V = 51V  
NPS  
(33)  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
V
IN(max)  
VD2-REV  
í
+ VOUT2 = 36V 0.52 + 7.7V = 26.4V  
NPS  
(34)  
Choose 100-V, 1-A and 60-V, 1-A Schottky diodes for the positive and negative outputs, respectively, to allow  
some margin for inevitable voltage overshoot and ringing related to leakage inductance and diode capacitance. If  
needed, use a diode RC snubber circuit, for example 100 Ω and 22 pF, to mitigate such overshoot and ringing.  
8.2.2.2.3 Input Capacitor – CIN  
The input capacitor, CIN, filters the primary-side triangular current waveform. To prevent large ripple voltage, use  
a low-ESR ceramic input capacitor sized according to 公式 24 for the RMS ripple current given by 公式 25. In this  
design example, choose a 10-µF, 50-V ceramic input capacitor with X7R dielectric and 1210 footprint.  
8.2.2.2.4 Feedback Resistor – RFB  
Install a 154-kΩ resistor from SW to FB based on an output voltage setpoint of 15 V (plus a flyback diode voltage  
drop) reflected to the primary by a transformer turns ratio of unity.  
V
+ VD N  
15V + 0.3V 1  
(
)
0.1mA  
(
)
OUT  
PS  
RFB  
=
=
= 154 kW  
0.1mA  
(35)  
8.2.2.2.5 UVLO Resistors – RUV1, RUV2  
Given VIN(on) and VIN(off) as the input voltage turn-on and turn-off thresholds of 9 V and 7 V, respectively, select  
the upper and lower UVLO resistors using 公式 36 and 公式 37.  
VUV-FALLING  
VUV-RISING  
IUV-HYST  
1.45 V  
1.5 V  
5 A  
V
- V  
IN(off)  
9 V ∂  
- 7 V  
IN(on)  
RUV1  
=
=
= 340kW  
= 68 kW  
(36)  
(37)  
VUV-RISING  
1.5 V  
9 V -1.5 V  
RUV2 = RUV1  
= 340 kW ∂  
V
- VUV-RISING  
IN(on)  
8.2.2.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
90  
80  
70  
60  
50  
40  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
30  
1
0
50  
100  
150  
Output Current (mA)  
200  
250  
300  
10  
Output Current (mA)  
100  
300  
35. Efficiency (Linear Scale)  
36. Efficiency (Log Scale)  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
 
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
23.4  
23.2  
23  
24  
23.6  
23.2  
22.8  
22.4  
22  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
22.8  
22.6  
22.4  
22.2  
22  
0
50  
100  
150  
200  
250  
Output Current (mA)  
300  
350  
400  
1
10  
Output Current (mA)  
100  
400  
Total of VOUT1 and VOUT2  
Total of VOUT1 and VOUT2  
37. Load Regulation (Linear Scale)  
38. Load Regulation (Log Scale)  
EN 1V/DIV  
VIN 10V/DIV  
VOUT1 5V/DIV  
VOUT1 5V/DIV  
IOUT1 50mA/DIV  
IOUT1 100mA/DIV  
VOUT2 5V/DIV  
VOUT2 5V/DIV  
2 ms/DIV  
2 ms/DIV  
VIN stepped to 24 V  
75 Ω and 40 Ω Loads  
VIN = 24 V  
75 Ω and 40 Ω Loads  
40. ENABLE ON Characteristic  
39. Start-Up Characteristic  
VDFLY1 20V/DIV  
SW 20V/DIV  
VDFLY2 20V/DIV  
1 ms/DIV  
1 ms/DIV  
VIN = 24 V  
VIN = 24 V  
42. Flyback Diode Voltages, Full Load  
41. SW Node Voltage, Full Load  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
VOUT1 1V/DIV  
VOUT1 1V/DIV  
IOUT1 100mA/DIV  
IOUT1 100mA/DIV  
IOUT2 100mA/DIV  
IOUT2 100mA/DIV  
VOUT2 0.5V/DIV  
VOUT2 0.5V/DIV  
200 ms/DIV  
200 ms/DIV  
VIN = 24 V  
IOUT1 = 200 mA  
VIN = 24 V  
IOUT2 = 200 mA  
43. Output 1 Load Transient, 50 mA to 200 mA  
44. Output 2 Load Transient, 50 mA to 200 mA  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
8.2.3 Design 3: PSR Flyback Converter With Stacked Dual Outputs of 24 V and 5 V  
The schematic diagram of a dual-output flyback converter with high-voltage secondary stacked on the low-  
voltage secondary winding is given in 45. This configuration reduces the number of turns for the high-voltage  
output, resulting in lower secondary-to-secondary leakage inductance for improved output voltage cross  
regulation.  
DFLY1  
VIN = 8.5 V...42 V  
T1  
VOUT1 = 24 V  
IOUT1 = 0.1 A  
DCLAMP  
22 V  
DOUT1  
27 V  
COUT1  
RUV1  
10 F  
147 kW  
1 : 1.5 : 0.4  
CIN  
DF  
VIN  
EN/UVLO  
30 mH  
10 F  
SW  
FB  
DFLY2  
RUV2  
VOUT2 = 5 V  
IOUT2 = 0.3 A  
RFB  
LM25180  
34 kW  
130 kW  
COUT2  
DOUT2  
5.6 V  
GND  
47 F  
RSET  
TC  
SS/BIAS  
RTC  
RSET  
301 kW  
12.1 kW  
45. Schematic for Design 3 With VIN(nom) = 24 V, VOUT1 = 24 V, VOUT2 = 5 V  
8.2.3.1 Design Requirements  
The required input, output, and performance parameters for this application example are shown in 5.  
5. Design Parameters  
DESIGN PARAMETER  
Input voltage range (steady state)  
Output 1 voltage and current  
Output 2 voltage and current  
Input UVLO thresholds  
VALUE  
8.5 V to 42 V  
24 V, 0.1 A  
5 V, 0.3 A  
8 V on, 7 V off  
±2%  
Output voltage regulation  
The target full-load efficiency of this LM25180-Q1 design is 88% based on a nominal input voltage of 24 V and  
isolated output voltages of 24 V and 5 V. The selected flyback converter components are cited in 6, including  
multi-winding flyback transformer, input and output capacitors, rectifying diodes, and converter IC.  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
6. List of Components for Design 3  
REF DES QTY SPECIFICATION  
VENDOR  
Taiyo Yuden  
TDK  
PART NUMBER  
UMJ325KB7106KMHT  
CGA6P3X7S1H106M  
GCM32EC71A476KE02  
Diodes Inc.  
Diodes Inc.  
Diodes Inc.  
Central Semi  
Nexperia  
10 µF, 50 V, X7R, 1210, ceramic, AEC-Q200  
10 µF, 50 V, X7S, 1210, ceramic, AEC-Q200  
47 µF, 10 V, X7R, 1210, ceramic, AEC-Q200  
Switching diode, fast recovery, 200 V, 1 A, SOD-123  
Schottky diode, 40 V, 1 A, SOD-123  
Zener, 22 V, 1 W, PowerDI-123, AEC-Q101  
Switching diode, 75 V, 0.25 A, SOD-323  
Zener, 27 V, 2%, SOD-523, AEC-Q101  
Zener, 5.6 V, 2%, SOD-523, AEC-Q101  
130 kΩ, 1%, 0402  
CIN, COUT1  
2
COUT2  
DFLY1  
DFLY2  
DCLAMP  
DF  
1
1
1
1
1
1
1
1
1
1
1
1
Murata  
DFLU1200  
B140HW  
DFLZ22-7  
CMDD4448  
BZX585-B27  
BZX585-B5V6  
Std  
DOUT1  
DOUT2  
RFB  
Nexperia  
Std  
RSET  
RTC  
12.1 kΩ, 1%, 0402  
Std  
Std  
301 kΩ, 1%, 0402  
Std  
Std  
RUV1  
RUV2  
147 kΩ, 1%, 0603  
Std  
Std  
34 kΩ, 1%, 0402  
Std  
Std  
30 µH, 2 A, turns ratio 1 : 1.5 : 0.4, 9 × 10 mm, SMT  
Coilcraft  
Coilcraft  
Würth Electronik  
Texas Instruments  
YA8864-BLD  
YA8916-BLD  
750317595  
LM25180QNGURQ1  
T1  
1
1
30 µH, 2 A, turns ratio 1 : 1 : 0.55, 9 × 10 mm, SMT  
LM25180-Q1 PSR flyback converter, AEC-Q100  
U1  
8.2.3.2 Detailed Design Procedure  
Components are selected based on the converter specifications using the LM25180-Q1 quick-start calculator.  
The design procedure is similar to that outlined for Designs 1 and 2 previously.  
8.2.3.2.1 Flyback Transformer – T1  
The 24-V output is DC stacked on top of the 5-V output as they share a common return connection. This enables  
lower secondary-to-secondary leakage inductance for better cross regulation and also reduced rectifier diode  
reverse voltage stress. Choose a primary-secondary turns ratio for the effective 19-V secondary based on an  
approximate 60% max duty cycle at minimum input voltage using 公式 38.  
V
DMAX  
0.6  
8.5V  
IN(min)  
NPS  
=
=
= 0.66  
1-DMAX VOUT + VD 1- 0.6 19V + 0.3V  
(38)  
Set the turns ratio of the transformer secondary windings using 公式 39. The transformer turns ratio for both  
outputs is thus specified as 1 : 1.5 : 0.4.  
NS2 VOUT2 + VD2  
NS1 VOUT1 + VD1 19 V + 0.3 V  
5 V + 0.3 V  
=
=
= 0.275  
(39)  
Select a magnetizing inductance based on the minimum off-time constraint using 公式 40. Choose a value of 30  
µH with a saturation current of minimum 2 A for this application.  
V
OUT1 + VD1 NPS1 tOFF-MIN  
19V + 0.35V 0.66450ns  
(
)
IPRI-PK(FFM)  
(
)
0.3A  
LMAG  
í
=
= 19.2H  
(40)  
8.2.3.2.2 Feedback Resistor – RFB  
Install a 130-kΩ resistor from SW to FB based on the secondary winding voltage (the sum of the 5-V output  
voltage and the Schottky diode forward voltage drop) reflected by the relevant transformer turns ratio, which in  
this design is 1 : 0.4 or 2.5 : 1.  
V
+ VD N  
5V + 0.25V 2.5  
(
)
0.1mA  
(
)
OUT  
PS  
RFB  
=
=
= 130 kW  
0.1mA  
(41)  
29  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
8.2.3.2.3 UVLO Resistors – RUV1, RUV2  
Given VIN(on) and VIN(off) as the input voltage turn-on and turn-off thresholds of 8 V and 7 V, respectively, select  
the upper and lower UVLO resistors using the following expressions:  
VUV-FALLING  
VUV-RISING  
IUV-HYST  
1.45 V  
1.5 V  
5 A  
V
- V  
IN(off)  
8 V ∂  
- 7 V  
IN(on)  
RUV1  
=
=
= 147kW  
= 34 kW  
(42)  
(43)  
VUV-RISING  
1.5 V  
8 V -1.5 V  
RUV2 = RUV1  
= 147 kW ∂  
V
- VUV-RISING  
IN(on)  
8.2.3.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN 10V/DIV  
VOUT1 10V/DIV  
IOUT2 100mA/DIV  
VOUT2 5V/DIV  
VIN = 24V  
VIN = 42V  
0
20  
40 60  
Total Output Power (% Full Load)  
80  
100  
2 ms/DIV  
VIN ramped to 24 V  
240-Ω and 20-Ω Loads  
47. Start-Up Characteristic  
46. Efficiency  
EN 2V/DIV  
VOUT1 10V/DIV  
IOUT1 100mA/DIV  
VOUT1 10V/DIV  
IOUT2 100mA/DIV  
VOUT2 5V/DIV  
IOUT2 100mA/DIV  
VOUT2 5V/DIV  
2 ms/DIV  
400 ms/DIV  
VIN = 24 V  
240-Ω and 20-Ω Loads  
48. ENABLE ON Characteristic  
VIN = 24 V  
240-Ω and 20-Ω Loads  
49. Recovery From Short Circuit  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
VDFLY1 50V/DIV  
SW 20V/DIV  
VDFLY2 10V/DIV  
1 ms/DIV  
1 ms/DIV  
VIN = 24 V  
VIN = 24 V  
50. SW Node Voltage, Full Load  
51. Flyback Diode Voltages, Full Load  
IOUT2 50mA/DIV  
IOUT1 20mA/DIV  
IOUT2 100mA/DIV  
IOUT1 50mA/DIV  
VOUT1 200mV/DIV  
VOUT1 200mV/DIV  
VOUT2 100mV/DIV  
VOUT2 100mV/DIV  
400 ms/DIV  
400 ms/DIV  
VIN = 24 V  
IOUT2 = 150 mA  
VIN = 24 V  
IOUT1 = 50 mA  
52. Output 1 Load Transient, 50 mA to 100 mA  
53. Output 2 Load Transient, 100 mA to 200 mA  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The LM25180-Q1 flyback converter is designed to operate from a wide input voltage range from 4.5 V to 42 V.  
The characteristics of the input supply must be compatible with the Specifications. In addition, the input supply  
must be capable of delivering the required input current to the fully-loaded regulator. Estimate the average input  
current with 公式 44.  
VOUT IOUT  
IIN  
=
V ∂ h  
IN  
where  
η is the efficiency  
(44)  
If the converter is connected to an input supply through long wires or PCB traces with a large impedance, special  
care is required to achieve stable performance. The parasitic inductance and resistance of the input cables may  
have an adverse affect on converter operation. The parasitic inductance in combination with the low-ESR  
ceramic input capacitors form an underdamped resonant circuit. This circuit can cause overvoltage transients at  
VIN each time the input supply is cycled ON and OFF. The parasitic resistance causes the input voltage to dip  
during a load transient. If the regulator is operating close to the minimum input voltage, this dip can cause false  
UVLO fault triggering and a system reset. The best way to solve such issues is to reduce the distance from the  
input supply to the regulator and use an aluminum electrolytic input capacitor in parallel with the ceramics. The  
moderate ESR of the electrolytic capacitors helps to damp the input resonant circuit and reduce any voltage  
overshoots. A capacitance in the range of 10 µF to 47 µF is usually sufficient to provide input damping and helps  
to hold the input voltage steady during large load transients. A typical ESR of 0.25 Ω provides enough damping  
for most input circuit configurations.  
An EMI input filter is often used in front of the regulator that, unless carefully designed, can lead to instability as  
well as some of the effects mentioned above. The application report Simple Success with Conducted EMI for  
DC-DC Converters provides helpful suggestions when designing an input filter for any switching regulator.  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
 
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
10 Layout  
The performance of any switching converter depends as much upon PCB layout as it does the component  
selection. The following guidelines are provided to assist with designing a PCB with the best power conversion  
performance, thermal performance, and minimized generation of unwanted EMI. 54 and 55 provide layout  
examples for single-output and dual-output designs, respectively.  
10.1 Layout Guidelines  
PCB layout is a critical for good power supply design. There are several paths that conduct high slew-rate  
currents or voltages that can interact with transformer leakage inductance or parasitic capacitance to generate  
noise and EMI or degrade the power supply's performance.  
1. Bypass the VIN pin to GND with a low-ESR ceramic capacitor, preferably of X7R or X7S dielectric. Place CIN  
as close as possible to the LM25180-Q1 VIN and GND pins. Ground return paths for the input capacitor(s)  
must consist of localized top-side planes that connect to the GND pin and exposed PAD.  
2. Minimize the loop area formed by the input capacitor connections and the VIN and GND pins.  
3. Locate the transformer close to the SW pin. Minimize the area of the SW trace or plane to prevent excessive  
e-field or capacitive coupling.  
4. Minimize the loop area formed by the diode-Zener clamp circuit connections and the primary winding  
terminals of the transformer.  
5. Minimize the loop area formed by the flyback rectifying diode, output capacitor and the secondary winding  
terminals of the transformer.  
6. Connect adequate copper at the cathode of the flyback diode to prevent overheating during overload or high  
ambient temperature conditions.  
7. Tie the GND pin directly to the power pad under the device and to a heat-sinking PCB ground plane.  
8. Use a ground plane in one of the middle layers as a noise shielding and heat dissipation path.  
9. Have a single-point ground connection to the plane. Route the return connections for the reference resistor,  
soft-start, and enable components directly to the GND pin. This prevents any switched or load currents from  
flowing in analog ground traces. If not properly handled, poor grounding results in degraded load regulation  
or erratic output voltage ripple behavior.  
10. Make VIN+, VOUT+ and ground bus connections short and wide. This reduces any voltage drops on the input  
or output paths of the converter and maximizes efficiency.  
11. Minimize trace length to the FB pin. Locate the feedback resistor close to the FB pin.  
12. Locate components RSET, RTC and CSS as close as possible to their respective pins. Route with minimal  
trace lengths.  
13. Place a capacitor between input and output return connections to route common-mode noise currents  
directly back to their source.  
14. Provide adequate heatsinking for the LM25180-Q1 to keep the junction temperature below 150°C. For  
operation at full rated load, the top-side ground plane is an important heat-dissipating area. Use an array of  
heat-sinking vias to connect the exposed PAD to the PCB ground plane. If the PCB has multiple copper  
layers, connect these thermal vias to inner-layer ground planes. The connection to VOUT+ provides  
heatsinking for the flyback diode.  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
10.2 Layout Examples  
54. LM25180-Q1 Single-Output PCB Layout  
55. LM25180-Q1 Dual-Output PCB Layout  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 开发支持  
相关开发支持,请参见以下文档:  
LM25180-Q1 快速入门计算器  
LM25180-Q1 仿真模型  
有关 TI 的参考设计库,请访问 TIDesigns  
有关 TI WEBENCH 设计环境,请访问 WEBENCH® 设计中心  
要查看该产品的相关器件,请参阅 LM5180-Q1  
11.1.3 使用 WEBENCH® 工具定制设计方案  
单击此处以使用带 WEBENCH® 电源设计器的 LM25180-Q1 器件来创建定制设计。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
LM5180EVM-S05 EVM 用户指南》(SNVU592)  
LM5180EVM-DUAL EVM 用户指南》(SNVU609)  
《反激式 SMPS 设计内幕揭秘》(SLUP261)  
《反激式变压器设计在效率和 EMI 方面的注意事项》(SLUP338)  
TI Designs:  
具有集成开关 PSR 反激式控制器的隔离式 IGBT 栅极驱动电源参考设计  
适用于伺服驱动器的紧凑型、高效、24V 输入辅助电源参考设计  
适用于电源隔离型超紧凑模拟输出模块的参考设计  
具有 3 IGBT/SiC 偏置电源解决方案的 HEV/EV 牵引逆变器功率级参考设计  
用于 IGBT/SiC 栅极驱动器且具有功率级的 4.5V 65V 输入、紧凑型偏置电源参考设计  
TI 博客:  
反激式转换器:两个输入比一个输入好  
为您的服务器 PSU 选择辅助电源时的常见挑战  
在节省费用的同时最大程度地提高 PoE PD 效率  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
文档支持 (接下页)  
白皮书:  
《评估适用于成本驱动型严苛应用的宽 VIN、低 EMI 同步降压 电路》(SLYY104)  
《电源的传导 EMI 规格概述》(SLYY136)  
《电源的辐射 EMI 规格概述》(SLYY142)  
AN-2162:轻松解决直流/直流转换器的传导 EMI 问题》(SNVA489)  
《汽车启动仿真器用户指南》(SLVU984)  
《使用新的热指标》(SBVA025)  
《半导体和 IC 封装热指标》(SPRA953)  
11.3 接收文档更新通知  
要接收文档更新通知,请转至 TI.com.cn 上的器件产品文件夹进行设置。单击右上角的通知我 进行注册,即可接收  
产品信息更改每周摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
12 "机械、封装和可订购信息  
以下页面具有机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
PACKAGE OUTLINE  
NGU0008C  
WSON - 0.8 mm max height  
SCALE 3.000  
PLASTIC SMALL OUTLINE - NO LEAD  
4.1  
3.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
0.1 MIN  
(0.05)  
A
-
A
3
0
.
0
0
0
SECTION A-A  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
1.98 0.05  
(0.2) TYP  
4
5
A
A
2X  
SYMM  
9
2.4  
3 0.05  
8
1
6X 0.8  
0.35  
0.25  
8X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
0.5  
0.3  
8X  
0.05  
4224001/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
LM25180-Q1  
www.ti.com.cn  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
EXAMPLE BOARD LAYOUT  
NGU0008C  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.98)  
8X (0.6)  
8X (0.3)  
SYMM  
1
8
SYMM  
9
(3)  
(1.25)  
6X (0.8)  
4
5
(R0.05) TYP  
( 0.2) VIA  
TYP  
(0.74)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4224001/A 11/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
版权 © 2018–2019, Texas Instruments Incorporated  
39  
LM25180-Q1  
ZHCSJ08A NOVEMBER 2018REVISED JULY 2019  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
NGU0008C  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
8X (0.6)  
1
8
8X (0.3)  
(0.755)  
9
SYMM  
(1.31)  
6X (0.8)  
5
4
(R0.05) TYP  
(1.75)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4224001/A 11/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
40  
版权 © 2018–2019, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM25180QNGURQ1  
ACTIVE  
WSON  
NGU  
8
4500 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
-40 to 150  
LM25180  
QNGUQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM25180QNGURQ1  
WSON  
NGU  
8
4500  
330.0  
12.4  
4.3  
4.3  
1.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON NGU  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
LM25180QNGURQ1  
8
4500  
Pack Materials-Page 2  
MECHANICAL DATA  
NGU0008B  
SDC08B (Rev A)  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY