LM26CIM5X-YHA/NOPB [TI]

Accurate, Factory-Preset Thermostat;
LM26CIM5X-YHA/NOPB
型号: LM26CIM5X-YHA/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Accurate, Factory-Preset Thermostat

输出元件 传感器 换能器
文件: 总24页 (文件大小:950K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM26  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
LM26 SOT-23, ±3°C Accurate, Factory-Preset Thermostat  
1 Features  
3 Description  
The LM26 is a precision, single digital-output, low-  
1
Internal Comparator With Pin Programmable 2°C  
or 10°C Hysteresis  
power thermostat comprised of an internal reference,  
DAC, temperature sensor and comparator. Utilizing  
factory programming, it can be manufactured with  
different trip points as well as different digital output  
functionality. The trip point (TOS) can be preset at the  
factory to any temperature in the range of 55°C to  
110°C in 1°C increments. The LM26 has one digital  
output (OS/OS/US/US), one digital input (HYST) and  
one analog output (VTEMP). The digital output stage  
can be preset as either open-drain or push-pull. In  
addition, it can be factory programmed to be active  
HIGH or LOW. The digital output can be factory  
programmed to indicate an over temperature  
shutdown event (OS or OS) or an under temperature  
shutdown event (US or US). When preset as an  
overtemperature shutdown (OS) it will go LOW to  
indicate that the die temperature is over the internally  
preset TOS and go HIGH when the temperature goes  
below (TOS–THYST). Similarly, when preprogrammed  
as an undertemperature shutdown (US) it will go  
HIGH to indicate that the temperature is below TUS  
and go LOW when the temperature is above  
(TUS+THYST). The typical hysteresis, THYST, can be set  
to 2°C or 10°C and is controlled by the state of the  
HYST pin. A VTEMP analog output provides a voltage  
that is proportional to temperature and has a 10.82  
mV/°C output slope.  
No External Components Required  
Open-Drain or Push-Pull Digital Output; Supports  
CMOS Logic Levels  
Internal Temperature Sensor With VTEMP Output  
Pin  
VTEMP Output Allows After-Assembly System  
Testing  
Internal Voltage Reference and DAC for Trip-Point  
Setting  
Currently Available in 5-pin SOT-23 Plastic  
Package  
Excellent Power Supply Noise Rejection  
UL Recognized Component  
Key Specifications  
Power Supply Voltage 2.7 V to 5.5 V  
Power Supply Current  
40 μA (Maximum) 16 μA (Typical)  
Hysteresis Temperature 2°C or 10°C (Typical)  
2 Applications  
Microprocessor Thermal Management  
Appliances  
Available parts are detailed in the Device Comparison  
Table. For other part options, contact a Texas  
Instruments Distributor or Sales Representative for  
information on minimum order qualification. The  
LM26 is currently available in a 5-lead SOT-23  
package.  
Portable Battery Powered Systems  
Fan Control  
Industrial Process Control  
HVAC Systems  
Remote Temperature Sensing  
Electronic System Protection  
Device Information(1)  
PART NUMBER  
LM26  
PACKAGE  
BODY SIZE (NOM)  
SOT-23 (5)  
2.90 mm × 1.60 mm  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
LM26CIM5-TPA Simplified Block Diagram and Connection Diagram  
T
OS  
HYST  
OS  
T
- T  
HYST  
OS  
HYST  
Temp. of  
Leads  
REF  
+
GND  
TEMP  
SENSOR  
-
OS  
V+ = 2.7V  
to 5.5V  
V
TEMP  
LM26TPA  
HYST=GND for 10°C Hysteresis  
HYST = V+ for 2°C Hysteresis  
V
= (-3.479 x 10-6 x (T-30)2) + (-1.082 x 10-2 x (T-30)) + 1.8015V  
TEMP  
The LM26CIM5-TPA has a fixed trip point of 85°C. For other trip point and output function availability, please see the  
Device Comparison Table or contact Texas Instruments.  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
LM26  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
www.ti.com  
Table of Contents  
8.4 Device Functional Modes.......................................... 9  
Application and Implementation ........................ 10  
9.1 Application Information............................................ 10  
9.2 Typical Application .................................................. 10  
9.3 System Examples ................................................... 11  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics .......................................... 5  
7.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
8.1 Overview ................................................................... 7  
8.2 Functional Block Diagrams ....................................... 7  
8.3 Feature Description................................................... 8  
9
10 Power Supply Recommendations ..................... 12  
11 Layout................................................................... 12  
11.1 Layout Guidelines ................................................. 12  
11.2 Layout Example .................................................... 12  
11.3 Thermal Considerations........................................ 13  
11.4 Part Number Template.......................................... 14  
12 Device and Documentation Support ................. 15  
12.1 Community Resources.......................................... 15  
12.2 Trademarks........................................................... 15  
12.3 Electrostatic Discharge Caution............................ 15  
12.4 Glossary................................................................ 15  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 15  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision R (February 2013) to Revision S  
Page  
Added Pin Configuration and Functions section, Handling Rating table, Feature Description section, Device  
Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout  
section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information  
section ................................................................................................................................................................................... 1  
Removed Part Number Template table ................................................................................................................................. 6  
Removed Temperature Trip Point Accuracy table ................................................................................................................ 6  
Changes from Revision Q (September 2011) to Revision R  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 11  
2
Submit Documentation Feedback  
Copyright © 2001–2015, Texas Instruments Incorporated  
Product Folder Links: LM26  
 
LM26  
www.ti.com  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
5 Device Comparison Table  
Order Number  
Top Mark  
Trip Point  
Setting  
Output Function  
Bulk Rail (1000 Units)  
LM26CIM5-BPB  
LM26CIM5-DPB  
LM26CIM5-HHD  
LM26CIM5-NPA  
LM26CIM5-RPA  
LM26CIM5-SHA  
LM26CIM5-SPA  
LM26CIM5-TPA  
LM26CIM5-VHA  
LM26CIM5-VPA  
LM26CIM5-XHA  
LM26CIM5-XPA  
LM26CIM5-YHA  
LM26CIM5-YPA  
LM26CIM5-ZHA  
Tape & Reel (3000 Units)  
LM26CIM5X-BPB  
LM26CIM5X-DPB  
LM26CIM5X-HHD  
LM26CIM5X-NPA  
LM26CIM5X-RPA  
LM26CIM5X-SHA  
LM26CIM5X-SPA  
LM26CIM5X-TPA  
LM26CIM5X-VHA  
LM26CIM5X-VPA  
LM26CIM5X-XHA  
LM26CIM5X-XPA  
LM26CIM5X-YHA  
LM26CIM5X-YPA  
LM26CIM5X-ZHA  
TBPB  
TDPB  
THHD  
TNPA  
TRPA  
TSHA  
TSPA  
TTPA  
TVHA  
TVPA  
TXHA  
TXPA  
TYHA  
TYPA  
TZHA  
-45°C  
-25°C  
0°C  
Active-Low, Open-Drain, US output  
Active-Low, Open-Drain, US output  
Active-High, Push-Pull, US output  
Active-Low, Open-Drain, OS output  
Active-Low, Open-Drain, OS output  
Active-Low, Open-Drain, OS output  
Active-Low, Open-Drain, OS output  
Active-Low, Open-Drain, OS output  
Active-Low, Open-Drain, OS output  
Active-Low, Open-Drain, OS output  
Active-Low, Open-Drain, OS output  
Active-Low, Open-Drain, OS output  
Active-Low, Open-Drain, OS output  
Active-Low, Open-Drain, OS output  
Active-Low, Open-Drain, OS output  
45°C  
65°C  
75°C  
70°C  
85°C  
90°C  
95°C  
100°C  
105°C  
110°C  
115°C  
120°C  
Copyright © 2001–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM26  
LM26  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
www.ti.com  
6 Pin Configuration and Functions  
DBV Package  
5-Pin SOT-23  
(Top View)  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
1
HYST  
Input  
Hysteresis control, digital input; connect to GND for 10°C or V+ for 2°C  
Power  
Ground, connected to the back side of the die through lead frame; connect to  
system ground  
2
GND  
Output  
Analog output voltage proportional to temperature; leave floating or connect to a  
high impedance node.  
3
4
VTEMP  
V+  
Power  
Output  
Supply input; connect to 2.7 V to 5.5 V with a 0.1-μF bypass capacitor.  
Overtemperature Shutdown open-drain active low thermostat digital output;  
OS  
OS  
US  
connect to controller interrupt, system/power supply shutdown; pullup resistor 10  
kΩ  
Output  
Output  
Overtemperature Shutdown push-pull active high thermostat digital output;  
connect to controller interrupt, system/power supply shutdown  
5(1)  
Undertemperature Shutdown open-drain active low thermostat digital output;  
connect to controller interrupt, system/power supply shutdown; pullup resistor 10  
kΩ  
US  
Output  
Undertemperature Shutdown push-pull active high thermostat digital output;  
connect to controller interrupt, system/power supply shutdown  
(1) Pin 5 functionality and trip point setting are programmed during LM26 manufacture.  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
6
UNIT  
V
Input Voltage  
(2)  
Input Current at any pin  
5
mA  
mA  
mW  
(2)  
Package Input Current  
20  
Package Dissipation at TA = 25°C(3)  
500  
215  
220  
150  
Vapor Phase (60 seconds)  
Infrared (15 seconds)  
Soldering  
SOT-23 Package  
°C  
°C  
Information(4)  
Storage Temperature, Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) When the input voltage (VI) at any pin exceeds the power supply (VI < GND or VI > V+), the current at that pin should be limited to 5 mA.  
The 20-mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input  
current of 5 mA to four. Under normal operating conditions the maximum current that pins 2, 4 or 5 can handle is limited to 5 mA each.  
(3) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX (maximum junction temperature),  
θJA (junction to ambient thermal resistance) and TA (ambient temperature). The maximum allowable power dissipation at any  
temperature is PD = (TJMAX–TA) / θJA or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, TJMAX  
= 150°C. For this device the typical thermal resistance (θJA) of the different package types when board mounted follow:  
(4) See the URL http://www.ti.com/packaging for other recommendations and methods of soldering surface mount devices.  
4
Submit Documentation Feedback  
Copyright © 2001–2015, Texas Instruments Incorporated  
Product Folder Links: LM26  
LM26  
www.ti.com  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
7.2 ESD Ratings  
VALUE  
±2500  
±250  
UNIT  
Human body model (HBM)  
Machine Model  
V(ESD)  
Electrostatic discharge(1)  
V
(1) The human body model is a 100-pF capacitor discharge through a 1.5-kΩ resistor into each pin. The machine model is a 200-pF  
capacitor discharged directly into each pin.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
55  
2.7  
MAX  
125  
5.5  
UNIT  
°C  
V
Specified Temperature Range (TMIN TA TMAX  
Positive Supply Voltage (V+)  
Maximum VOUT  
)
5.5  
V
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see  
the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics  
may degrade when the device is not operated under the listed test conditions.  
7.4 Thermal Information  
LM26  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
250  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics  
The following specifications apply for V+ = 2.7 VDC to 5.5 VDC, and VTEMP load current = 0 µA unless otherwise specified. All  
limits apply for TA = TJ = TMIN to TMAX unless otherwise specified.  
PARAMETER  
TEMPERATURE SENSOR  
TEST CONDITIONS  
MIN(1)  
TYP(2) MAX(1)  
UNIT  
Trip Point Accuracy (Includes VREF, DAC,  
Comparator Offset, and Temperature  
Sensitivity errors)  
–55°C TA +110°C  
±3  
±4  
°C  
°C  
TA = +120°C  
HYST = GND  
HYST = V+  
11  
2
°C  
°C  
Trip Point Hysteresis  
VTEMP Output Temperature Sensitivity  
10.82  
±3  
mV/°C  
°C  
VTEMP Temperature Sensitivity Error to  
Equation:  
30°C TA 120°C  
55°C TA  
120°C,  
4.5 V V+ 5.5 V  
±3  
°C  
°C  
VO = (3.479 × 106 × (T 30)2) +  
(1.082 × 102 × (T 30)) + 1.8015 V  
TA = 30°C  
±2.5  
Source 1 μA  
Sink 40 μA  
+2.7 V V+ +5.5 V,  
30°C TA +120°C  
0.070  
0.7  
mV  
mV  
VTEMP Load Regulation  
VTEMP Line Regulation  
Supply Current  
0.2  
mV/V  
µA  
TA = 25°C  
16  
20  
40  
IS  
(1) Limits are guaranteed to TI's AOQL (Average Outgoing Quality Level).  
(2) Typicals are at TJ = TA = 25°C and represent most likely parametric norm.  
Copyright © 2001–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM26  
LM26  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
www.ti.com  
Electrical Characteristics (continued)  
The following specifications apply for V+ = 2.7 VDC to 5.5 VDC, and VTEMP load current = 0 µA unless otherwise specified. All  
limits apply for TA = TJ = TMIN to TMAX unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(2) MAX(1)  
UNIT  
DIGITAL OUTPUT AND INPUT  
(3)  
IOUT(1)  
Logical 1 Output Leakage Current  
TA = 25°C  
V+ = +5.0 V  
0.001  
1
µA  
V
IOUT = +1.2 mA and V+ 2.7 V;  
VOUT(0) Logical 0 Output Voltage  
0.4  
IOUT = +3.2 mA and V+ 4.5 V(4)  
ISOURCE = 500 µA, V+ 2.7 V  
ISOURCE = 800 µA, V+4.5 V  
0.8 × V+  
V+ 1.5  
0.8 × V+  
V
V
V
V
VOUT(1) Logical 1 Push-Pull Output Voltage  
VIH  
VIL  
HYST Input Logical 1 Threshold Voltage  
HYST Input Logical 0 Threshold Voltage  
0.2 × V+  
(3) The 1-µA limit is based on a testing limitation and does not reflect the actual performance of the part. Expect to see a doubling of the  
current for every 15°C increase in temperature. For example, the 1-nA typical current at 25°C would increase to 16 nA at 85°C.  
(4) Take care to include the effects of self heating when setting the maximum output load current. The power dissipation of the LM26 would  
increase by 1.28 mW when IOUT = 3.2 mA and VOUT = 0.4 V. With a thermal resistance of 250°C/W, this power dissipation would cause  
an increase in the die temperature of about 0.32°C due to self heating. Self heating is not included in the trip point accuracy  
specification.  
7.6 Typical Characteristics  
100  
80  
60  
40  
20  
0
0
20  
40  
60  
80 100 120 140  
60  
40  
20  
Temperature (°C)  
C001  
Figure 1. Power Supply Current Temperature Dependence  
6
Submit Documentation Feedback  
Copyright © 2001–2015, Texas Instruments Incorporated  
Product Folder Links: LM26  
LM26  
www.ti.com  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
8 Detailed Description  
8.1 Overview  
The LM26 is a factory preset thermostat (temperature switch) that includes an integrated temperature sensor,  
reference voltage, DAC and comparator. The LM26 can be factory programmed to have a trip point anywhere in  
the range of 55°C to +120°C. The output functionality can also be changed during the manufacturing process,  
as described in the functional block diagrams. Available options include:  
OS: active low, open drain that indicates an over temperature shutdown event (most common)  
US: active low, open-drain that indicates an under temperature shutdown event  
OS: active high, push-pull that indicates an over temperature shutdown event  
US: active high, push-pull that indicates an under temperature shutdown event  
The internal temperature sensor is brought out on the VTEMP pin and can be used to determine the temperature  
that the LM26 is reading by monitoring with an ADC. It has a negative temperature coefficient (NTC) of  
approximately -10mV/°C. This pin also allows after assembly PCB testing (see section After Assembly PCB  
Testing for more details).  
The comparator hysteresis is selectable by the state of the HYST. Two values are available 10°C or 2°C.  
Comparator hysteresis is essential, as it prevents comparator output chattering when the temperature is at the  
comparator threshold set point (REF as shown in the functional block diagrams). Once the comparator trips the  
hysteresis function changes the comparator threshold (REF) level such that the output remains locked in the  
active state. The threshold is changed by either 10°C or 2°C as programmed by the state of the HYST pin.  
8.2 Functional Block Diagrams  
HYST  
OS  
HYST  
REF  
+
-
GND  
TEMP  
TEMP  
SENSOR  
+
V
V
LM26__A  
Figure 2. LM26-_ _A Output Pin Block Diagram  
US  
HYST  
GND  
HYST  
REF  
-
TEMP  
+
SENSOR  
+
V
V
TEMP  
LM26__B  
Figure 3. LM26-_ _B Output Pin Block Diagram  
HYST  
OS  
V+  
HYST  
REF  
-
GND  
TEMP  
+
SENSOR  
+
V
TEMP  
V
LM26__C  
Figure 4. LM26-_ _C Output Pin Block Diagram  
Copyright © 2001–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM26  
LM26  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
www.ti.com  
Functional Block Diagrams (continued)  
HYST  
US  
V+  
HYST  
REF  
-
GND  
TEMP  
+
SENSOR  
+
V
TEMP  
V
LM26__D  
Figure 5. LM26-_ _D Output Pin Block Diagram  
8.3 Feature Description  
8.3.1 Hysteresis  
The HYST pin level sets the comparator hysteresis. Setting the HYST pin to GND selects 10°C hysteresis, while  
setting it to V+ selects 2°C. A series resistor can be used for protection purposes. The input leakage current of  
the pin is less than 10 µA. The value of the resistor will depend on the value of V+ as well as the leakage current.  
For example with V+ = 3.3 V the input threshold level for VIH = 0.8 × 3.3 V = 2.64 V, thus the voltage drop across  
the resistor should be less than 0.66 V. The 10-µA input leakage current requires the resistor value to be less  
than 66 kΩ.  
8.3.2 VTEMP Output  
The VTEMP output provides an output voltage that can be used to determine the temperature reading of the LM26.  
The temperature reading of the LM26 can be calculated using the equation:  
-6  
-2  
VO = ( - 3.47 ´10 ´(T - 30)2 ) + (1.082´10 ´(T - 30)) + 1.8015 V  
(1)  
or  
1.8015 - VTEMP  
T = -1525.04 + 2.4182´106 +  
3.479 ´10-6  
(2)  
The VTEMP output has very weak drive capability (1-µA source, 40-µA sink). So care should be taken when  
attaching circuitry to this pin. Capacitive loading may cause the VTEMP output to oscillate. Simply adding a resistor  
in series as shown in Figure 6 and Figure 7 will prevent oscillations from occurring. To determine the value of the  
resistor follow the guidelines given in Table 1. The same value resistor will work for either placement of the  
resistor. If an additional capacitive load is placed directly on the LM26 output, rather than across CLOAD, it should  
be at least a factor of 10 smaller than CLOAD  
.
Table 1. Resistive Compensation for Capacitive Loading of VTEMP  
CLOAD  
100pF  
1nF  
R (Ω)  
0
8200  
3000  
1000  
430  
10nF  
100nF  
1µF  
8
Submit Documentation Feedback  
Copyright © 2001–2015, Texas Instruments Incorporated  
Product Folder Links: LM26  
 
 
LM26  
www.ti.com  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
Heavy Capacitive  
Load, Cable/Wiring  
Heavy Capacitive  
Load, Cable/Wiring  
OS/OS/US/  
US  
OS/OS/US/  
US  
HYST  
GND  
HYST  
GND  
R
LM26  
LM26  
VTEMP  
V+  
VTEMP  
V+  
CLOAD  
CLOAD  
0.1Pf  
0.1Pf  
R
Figure 6. Resistor Placement for Capacitive-  
Loading Compensation of VTEMP With R in Series  
With Capacitor  
Figure 7. Resistor Placement for Capacitive-  
Loading Compensation of VTEMP With R in Series  
With Signal Path  
8.4 Device Functional Modes  
The LM26 after factory programming has two functional modes one with 2°C Hysteresis and the other with 10°C  
hysteresis as programmed by the level of the HYST pin. Selection of the level will depend on the system noise  
and the temperature transition rate.  
8.4.1 After Assembly PCB Testing  
The LM26's VTEMP output allows after-assembly PCB testing by following a simple test procedure. Simply  
measuring the VTEMP output voltage will verify that the LM26 has been assembled properly and that its  
temperature sensing circuitry is functional. The VTEMP output has very weak drive capability that can be  
overdriven by 1.5mA. Therefore, one can simply force the VTEMP voltage to cause the digital output to change  
state, thereby verifying that the comparator and output circuitry function after assembly. Here is a sample test  
procedure that can be used to test the LM26CIM5-TPA which has an 85°C trip point.  
1. Turn on V+ and measure VTEMP. Then calculate the temperature reading of the LM26 using the equation:  
VO = ( - 3.47 ´10 ´(T - 30)2 ) + (1.082´10 ´(T - 30)) + 1.8015 V  
or  
T = -1525.04 + 2.4182´106 +  
-6  
-2  
(3)  
1.8015 - VTEMP  
3.479 ´10-6  
(4)  
2. Verify that the temperature measured in step one is within (±3°C + error of reference temperature sensor) of  
the ambient/board temperature. The ambient/board temperature (reference temperature) should be  
measured using an extremely accurate calibrated temperature sensor.  
3.  
(a) Observe that OS is high.  
(b) Drive VTEMP to ground.  
(c) Observe that OS is now low.  
(d) Release the VTEMP pin.  
(e) Observe that OS is now high.  
4.  
(a) Observe that OS is high.  
(b) Drive VTEMP voltage down gradually.  
(c) When OS goes low, note the VTEMP voltage.  
(d) VTEMPTrig = VTEMP at OS trigger (HIGH->LOW)  
(e) Calculate Trig using Equation 2.  
5.  
(a) Gradually raise VTEMP until OS goes HIGH. Note VTEMP  
.
(b) Calculate THYST using Equation 2.  
Copyright © 2001–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM26  
LM26  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
www.ti.com  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LM26 thermostat (temperature switch) can be used in applications such as microprocessor thermal  
management, appliances, fan control, industrial process control, power supplies for system protection, fan speed  
adjust or plain temperature monitoring.  
9.2 Typical Application  
12V  
System Fan  
Sanyo Denki  
109R0612T4H12  
HYST  
OS  
V+  
GND  
LM26  
+5V  
10k  
VTEMP  
0.1Pf  
Figure 8. Two-Speed Fan Speed Control  
9.2.1 Design Requirements  
The requirement is to change speed fo a fan to maximum at 45°C with an accuracy of  
Table 2. Design Parameters  
DESIGN PARAMETER  
Min Fan Speed  
EXAMPLE VALUE  
1900 RPM  
3800 RPM  
45°C  
Max Fan Speed  
Temperature Threshold To Switch From Min Speed to Max Speed  
Threshold accuracy  
±3°C  
9.2.2 Detailed Design Procedure  
The design procedure is simple. A fan was selected that has the capability to be controlled by an external NTC  
thermistor. The recommended NTC thermistor adjusts the fan speed to maximum at 40°C. The LM26 meets the  
threshold accuracy requirements for temperature control of the fan speed and allows setting the max speed  
temperature threshold higher as required to 45°C. The resistance of the thermistor for the min fan speed is 6.8  
kΩ. Since thermistors have a negative temperature coefficient (NTC), 10 kΩ was chosen to ensure that the fan is  
at min speed when the LM26 OS is off. When the OS output goes low at 45°C it simulates the low thermistor  
resistance at higher temperatures thus setting fan to max speed.  
10  
Submit Documentation Feedback  
Copyright © 2001–2015, Texas Instruments Incorporated  
Product Folder Links: LM26  
LM26  
www.ti.com  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
9.2.3 Application Curve  
VTEMP Output  
(Temp. of Leads)  
Trip Point  
Trip Point - Hysteresis  
OFF  
OS  
ON  
3800 RPM  
1900 RPM  
Fan  
Speed  
Figure 9. Temperature Effect on Fan Speed  
9.3 System Examples  
5V  
12V  
HYST  
OS  
V+  
1N4001  
GND  
R1  
(100k)  
NDS356P  
LM26  
VTEMP  
Vout  
TOYO  
USTF802512HW  
1N4001  
5V  
HYST  
GND  
OS  
V+  
0.1  
5V Fan  
MC05J3  
LM26  
R1  
(1k)  
VTEMP  
Comair-Rotron  
5V  
0.1  
Figure 10. Fan High-Side Drive  
Figure 11. Fan Low-Side Drive  
5V  
5V  
THERMALLY COUPLED  
+28V  
8:  
HYST  
OS  
V+  
IC2  
LM26  
+
GND  
NDS356P  
HYST  
GND  
OS  
V+  
-
VTEMP  
100k  
-28V  
Heater  
Supply  
IC1  
LM3886  
R1  
(10k)  
LM26  
VTEMP  
1N4001  
5V  
Audio  
Input  
0.1Pf  
20k  
3.3PF  
1k  
47k  
5V Fan  
MC05J3  
Comair-Rotron  
Heater  
5V  
10PF  
0.1  
Figure 12. Audio Power Amplifier Thermal  
Protection  
Figure 13. Simple Thermostat  
Copyright © 2001–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM26  
LM26  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
www.ti.com  
10 Power Supply Recommendations  
The LM26 has excellent power supply noise rejection. Listed below is a variety of signals used to test the LM26  
power supply rejection. False triggering of the output was not observed when these signals where coupled into  
the V+ pin of the LM26.  
square wave 400 kHz, 1 Vp-p  
square wave 2 kHz, 200 mVp-p  
sine wave 100 Hz to 1 MHz, 200 mVp-p  
Testing was done while maintaining the temperature of the LM26 one degree centigrade way from the trip point  
with the output not activated.  
11 Layout  
11.1 Layout Guidelines  
The LM26 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued  
or cemented to a surface. The temperature that the LM26 is sensing will be within about +0.06°C of the surface  
temperature to which the LM26's leads are attached to.  
This presumes that the ambient air temperature is almost the same as the surface temperature; if the air  
temperature were much higher or lower than the surface temperature, the actual temperature measured would  
be at an intermediate temperature between the surface temperature and the air temperature.  
To ensure good thermal conductivity, the backside of the LM26 die is directly attached to the GND pin (pin 2).  
The temperatures of the lands and traces to the other leads of the LM26 will also affect the temperature that is  
being sensed.  
Alternatively, the LM26 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or  
screwed into a threaded hole in a tank. As with any IC, the LM26 and accompanying wiring and circuits must be  
kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold  
temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy  
paints or dips are often used to ensure that moisture cannot corrode the LM26 or its connections.  
11.2 Layout Example  
VIA to ground plane  
VIA to power plane  
R only required  
for open-drain  
R is optional maybe directly  
connected to GND or V+  
OS, OS,  
US, US  
HYST  
GND  
VTEMP  
V+  
0.1 µ F  
Figure 14. LM26 Typical Layout  
12  
Submit Documentation Feedback  
Copyright © 2001–2015, Texas Instruments Incorporated  
Product Folder Links: LM26  
LM26  
www.ti.com  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
11.3 Thermal Considerations  
The junction to ambient thermal resistance (RθJA) is the parameter used to calculate the rise of a part's junction  
temperature due to its power dissipation. For the LM26 the equation used to calculate the rise in the die junction  
temperature is as follows:  
TJ = TA + QJA (V+ - VTEMP )IL _ TEMP + VDOIDO  
)
where  
TA is the ambient temperature, V+ is the power supply voltage  
IQ is the quiescent current, IL_TEMP is the load current on the VTEMP output  
VDO is the voltage on the digital output  
and IDO is the load current on the digital output  
(5)  
Since the LM26's junction temperature is the actual temperature being measured, care should be taken to  
minimize the load current that the LM26 is required to drive.  
Table 3 summarizes the thermal resistance for different conditions and the rise in die temperature of the LM26  
without any loading on VTEMP and a 10-kΩ pullup resistor on an open-drain digital output with a 5.5-V power  
supply.  
Table 3. Thermal resistance (RθJA) and Temperature Rise Due to Self Heating (TJTA)  
SOT-23 5 pin  
no heat sink  
RθJA  
TJTA  
(°C/W)  
(°C)  
Still Air  
250  
0.11  
TBD  
Moving Air  
TBD  
Copyright © 2001–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM26  
 
LM26  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
www.ti.com  
11.4 Part Number Template  
The series of digits labeled xyz in the part number LM26CIM-xyz, describe the set point value and the function of  
the output as follows:  
The place holders xy describe the set point temperature as shown in the following table.  
x (10x)  
y (1x)  
Temperature (°C)  
A
B
C
D
E
F
H
J
-
-
5  
4  
3  
2  
1  
0  
0
-
-
-
-
H
J
K
L
N
P
R
S
T
V
-
1
K
L
2
3
N
P
R
S
T
V
X
Y
Z
4
5
6
7
8
9
10  
11  
12  
-
-
The value of z describes the assignment/function of the output as shown in the following table:  
Open-Drain/ Push-  
Active-Low/High  
OS/US  
Value of z  
Digital Output Function  
Pull  
0
0
1
1
0
0
1
0
1
A
B
C
D
Active-Low, Open-Drain, OS output  
Active-Low, Open-Drain, US output  
Active-High, Push-Pull, OS output  
Active-High, Push-Pull, US output  
0
1
1
For example:  
the part number LM26CIM5-TPA has TOS = 85°C, and programmed as an active-low open-drain  
overtemperature shutdown output.  
the part number LM26CIM5-FPD has TUS = 5°C, and programmed as an active-high, push-pull  
undertemperature shutdown output.  
Active-high open-drain and active-low push-pull options are available, please contact Texas Instruments for more  
information.  
14  
Submit Documentation Feedback  
Copyright © 2001–2015, Texas Instruments Incorporated  
Product Folder Links: LM26  
LM26  
www.ti.com  
SNIS115S MAY 2001REVISED SEPTEMBER 2015  
12 Device and Documentation Support  
12.1 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.2 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.3 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2001–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM26  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Apr-2015  
PACKAGING INFORMATION  
Orderable Device  
LM26CIM5-BPB/NOPB  
LM26CIM5-DPB/NOPB  
LM26CIM5-HHD/NOPB  
LM26CIM5-NPA/NOPB  
LM26CIM5-PHA/NOPB  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
5
5
5
5
5
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
TBPB  
TDPB  
THHD  
TNPA  
TPHA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DBV  
DBV  
DBV  
DBV  
1000  
1000  
1000  
1000  
Green (RoHS  
& no Sb/Br)  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
LM26CIM5-RPA  
NRND  
SOT-23  
SOT-23  
DBV  
DBV  
5
5
1000  
1000  
TBD  
Call TI  
CU SN  
Call TI  
-55 to 125  
-55 to 125  
TRPA  
TRPA  
LM26CIM5-RPA/NOPB  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LM26CIM5-SHA/NOPB  
LM26CIM5-SPA/NOPB  
LM26CIM5-TPA/NOPB  
LM26CIM5-VHA/NOPB  
LM26CIM5-VPA/NOPB  
LM26CIM5-XHA/NOPB  
LM26CIM5-XPA/NOPB  
LM26CIM5-YHA/NOPB  
LM26CIM5-YPA/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
TSHA  
TSPA  
TTPA  
TVHA  
TVPA  
TXHA  
TXPA  
TYHA  
TYPA  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
LM26CIM5-ZHA  
NRND  
SOT-23  
SOT-23  
DBV  
DBV  
5
5
1000  
1000  
TBD  
Call TI  
CU SN  
Call TI  
-55 to 125  
-55 to 125  
TZHA  
TZHA  
LM26CIM5-ZHA/NOPB  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Apr-2015  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
LM26CIM5X-DPB/NOPB  
ACTIVE  
SOT-23  
DBV  
5
3000  
Green (RoHS  
& no Sb/Br)  
CU SN  
Level-1-260C-UNLIM  
-55 to 125  
TDPB  
LM26CIM5X-HHD  
NRND  
SOT-23  
SOT-23  
DBV  
DBV  
5
5
3000  
3000  
TBD  
Call TI  
CU SN  
Call TI  
-55 to 125  
-55 to 125  
THHD  
THHD  
LM26CIM5X-HHD/NOPB  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LM26CIM5X-NPA/NOPB  
LM26CIM5X-PHA/NOPB  
LM26CIM5X-RPA/NOPB  
LM26CIM5X-SHA/NOPB  
LM26CIM5X-SPA/NOPB  
LM26CIM5X-TPA/NOPB  
LM26CIM5X-VHA/NOPB  
LM26CIM5X-VPA/NOPB  
LM26CIM5X-XHA/NOPB  
LM26CIM5X-XPA/NOPB  
LM26CIM5X-YHA/NOPB  
LM26CIM5X-YPA/NOPB  
LM26CIM5X-ZHA/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
TNPA  
TPHA  
TRPA  
TSHA  
TSPA  
TTPA  
TVHA  
TVPA  
TXHA  
TXPA  
TYHA  
TYPA  
TZHA  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Apr-2015  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Apr-2015  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM26CIM5-BPB/NOPB SOT-23  
LM26CIM5-DPB/NOPB SOT-23  
LM26CIM5-HHD/NOPB SOT-23  
LM26CIM5-NPA/NOPB SOT-23  
LM26CIM5-PHA/NOPB SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
LM26CIM5-RPA  
SOT-23  
LM26CIM5-RPA/NOPB SOT-23  
LM26CIM5-SHA/NOPB SOT-23  
LM26CIM5-SPA/NOPB SOT-23  
LM26CIM5-TPA/NOPB SOT-23  
LM26CIM5-VHA/NOPB SOT-23  
LM26CIM5-VPA/NOPB SOT-23  
LM26CIM5-XHA/NOPB SOT-23  
LM26CIM5-XPA/NOPB SOT-23  
LM26CIM5-YHA/NOPB SOT-23  
LM26CIM5-YPA/NOPB SOT-23  
LM26CIM5-ZHA  
SOT-23  
LM26CIM5-ZHA/NOPB SOT-23  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Apr-2015  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM26CIM5X-DPB/NOPB SOT-23  
LM26CIM5X-HHD SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
LM26CIM5X-HHD/NOPB SOT-23  
LM26CIM5X-NPA/NOPB SOT-23  
LM26CIM5X-PHA/NOPB SOT-23  
LM26CIM5X-RPA/NOPB SOT-23  
LM26CIM5X-SHA/NOPB SOT-23  
LM26CIM5X-SPA/NOPB SOT-23  
LM26CIM5X-TPA/NOPB SOT-23  
LM26CIM5X-VHA/NOPB SOT-23  
LM26CIM5X-VPA/NOPB SOT-23  
LM26CIM5X-XHA/NOPB SOT-23  
LM26CIM5X-XPA/NOPB SOT-23  
LM26CIM5X-YHA/NOPB SOT-23  
LM26CIM5X-YPA/NOPB SOT-23  
LM26CIM5X-ZHA/NOPB SOT-23  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-23 DBV  
SPQ  
1000  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
LM26CIM5-BPB/NOPB  
5
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Apr-2015  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM26CIM5-DPB/NOPB  
LM26CIM5-HHD/NOPB  
LM26CIM5-NPA/NOPB  
LM26CIM5-PHA/NOPB  
LM26CIM5-RPA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
LM26CIM5-RPA/NOPB  
LM26CIM5-SHA/NOPB  
LM26CIM5-SPA/NOPB  
LM26CIM5-TPA/NOPB  
LM26CIM5-VHA/NOPB  
LM26CIM5-VPA/NOPB  
LM26CIM5-XHA/NOPB  
LM26CIM5-XPA/NOPB  
LM26CIM5-YHA/NOPB  
LM26CIM5-YPA/NOPB  
LM26CIM5-ZHA  
LM26CIM5-ZHA/NOPB  
LM26CIM5X-DPB/NOPB  
LM26CIM5X-HHD  
LM26CIM5X-HHD/NOPB  
LM26CIM5X-NPA/NOPB  
LM26CIM5X-PHA/NOPB  
LM26CIM5X-RPA/NOPB  
LM26CIM5X-SHA/NOPB  
LM26CIM5X-SPA/NOPB  
LM26CIM5X-TPA/NOPB  
LM26CIM5X-VHA/NOPB  
LM26CIM5X-VPA/NOPB  
LM26CIM5X-XHA/NOPB  
LM26CIM5X-XPA/NOPB  
LM26CIM5X-YHA/NOPB  
LM26CIM5X-YPA/NOPB  
LM26CIM5X-ZHA/NOPB  
Pack Materials-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2015, Texas Instruments Incorporated  

相关型号:

LM26CIM5X-YPA

Accurate, Factory Preset Thermostat
NSC

LM26CIM5X-YPA

SOT-23, ?3?C Accurate, Factory Preset Thermostat 5-SOT-23 -55 to 125
TI

LM26CIM5X-YPA/NOPB

Accurate, Factory-Preset Thermostat
TI

LM26CIM5X-ZHA

Accurate, Factory Preset Thermostat
NSC

LM26CIM5X-ZHA/NOPB

Accurate, Factory-Preset Thermostat
TI

LM26LV

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LV

The LM26LV/LM26LV-Q1 is a low-voltage, precision, dual-output, low-power temperature switch and temperature sensor.
TI

LM26LV-Q1

汽车级、±3°C、1.6V-5.5V、出厂预设跳变点温度开关
TI

LM26LVCISD

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-050

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-050/NOPB

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150
TI

LM26LVCISD-060

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC