LM2735YQMF/NOPB [TI]

LM2735/LM2735-Q1 520kHz/1.6MHz – Space-Efficient Boost and SEPIC DC-DC Regulator; LM2735 / LM2735 -Q1 520kHz / 1.6MHz的â ????节省空间的升压型和SEPIC DC- DC稳压器
LM2735YQMF/NOPB
型号: LM2735YQMF/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LM2735/LM2735-Q1 520kHz/1.6MHz – Space-Efficient Boost and SEPIC DC-DC Regulator
LM2735 / LM2735 -Q1 520kHz / 1.6MHz的â ????节省空间的升压型和SEPIC DC- DC稳压器

稳压器
文件: 总58页 (文件大小:1676K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
LM2735/LM2735-Q1 520kHz/1.6MHz – Space-Efficient Boost and SEPIC DC-DC Regulator  
Check for Samples: LM2735  
1
FEATURES  
DESCRIPTION  
The LM2735 is an easy-to-use, space-efficient 2.1A  
low-side switch regulator ideal for Boost and SEPIC  
DC-DC regulation. It provides all the active functions  
to provide local DC/DC conversion with fast-transient  
response and accurate regulation in the smallest PCB  
area. Switching frequency is internally set to either  
520kHz or 1.6MHz, allowing the use of extremely  
small surface mount inductor and chip capacitors  
while providing efficiencies up to 90%. Current-mode  
control and internal compensation provide ease-of-  
use, minimal component count, and high-  
2
Input Voltage Range 2.7V to 5.5V  
Output Voltage Range 3V to 24V  
2.1A Switch Current over Full Temperature  
Range  
Current-Mode Control  
Logic High Enable Pin  
Ultra Low Standby Current of 80 nA in  
Shutdown  
170 mNMOS Switch  
performance regulation over  
a wide range of  
±2% Feedback Voltage Accuracy  
Ease-of-Use, Small Total Solution Size  
operating conditions. External shutdown features an  
ultra-low standby current of 80 nA ideal for portable  
applications. Tiny SOT-23, WSON, and MSOP-  
Internal Soft-Start  
PowerPAD  
packages  
provide  
space-savings.  
Internal Compensation  
Two Switching Frequencies  
520 kHz (LM2735-Y)  
1.6 MHz (LM2735-X)  
Additional features include internal soft-start, circuitry  
to reduce inrush current, pulse-by-pulse current limit,  
and thermal shutdown.  
Uses Small Surface Mount Inductors and  
Chip Capacitors  
Tiny SOT-23, WSON, and MSOP-PowerPAD  
Packages  
LM2735-Q1 is AEC-Q100 Grade 1 Qualified and  
is Manufactured on an Automotive Grade Flow  
APPLICATIONS  
LCD Display Backlighting For Portable  
Applications  
OLED Panel Power Supply  
USB Powered Devices  
Digital Still and Video Cameras  
White LED Current Source  
Automotive  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2013, Texas Instruments Incorporated  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
Typical Boost Application Circuit  
V
IN  
2.7V-5.5V  
12V  
L
D
1
1
R
2
C
3
R
3
4
5
3
2
1
C
2
R
1
C
1
GND  
Figure 1.  
Figure 2. Efficiency vs Load Current VO = 12V  
Connection Diagrams  
1
SW  
GND  
FB  
5
VIN  
1
2
6
5
PGND  
VIN  
SW  
2
3
4
AGND  
EN  
EN  
3
4
FB  
Figure 3. 5-Pin SOT-23 (Top View)  
See Package Number DBV  
Figure 4. 6-Pin WSON (Top View)  
See Package Number NGG  
NC  
PGND  
VIN  
NC  
1
2
3
4
8
7
6
5
SW  
AGND  
FB  
EN  
Figure 5. 8-Pin MSOP-PowerPAD (Top View)  
See Package Number DGN  
2
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
PIN DESCRIPTIONS - 5-PIN SOT-23  
Pin  
1
Name  
SW  
Function  
Output switch. Connect to the inductor, output diode.  
2
GND  
FB  
Signal and power ground pin. Place the bottom resistor of the feedback network as close as possible to this pin.  
Feedback pin. Connect FB to external resistor divider to set output voltage.  
3
4
EN  
Shutdown control input. Logic high enables operation. Do not allow this pin to float or be greater than VIN + 0.3V.  
Supply voltage for power stage, and input supply voltage.  
5
VIN  
PIN DESCRIPTIONS - 6-PIN WSON  
Pin  
Name  
PGND  
VIN  
Function  
1
2
Power ground pin. Place PGND and output capacitor GND close together.  
Supply voltage for power stage, and input supply voltage.  
3
EN  
Shutdown control input. Logic high enables operation. Do not allow this pin to float or be greater than VIN + 0.3V.  
Feedback pin. Connect FB to external resistor divider to set output voltage.  
Signal ground pin. Place the bottom resistor of the feedback network as close as possible to this pin & pin 4.  
Output switch. Connect to the inductor, output diode.  
4
FB  
5
AGND  
SW  
6
DAP  
GND  
Signal & Power ground. Connect to pin 1 & pin 5 on top layer. Place 4-6 vias from DAP to bottom layer GND plane.  
PIN DESCRIPTIONS - 8-PIN MSOP-PowerPAD  
Pin  
Name  
Function  
1
2
No Connect  
PGND  
VIN  
Power ground pin. Place PGND and output capacitor GND close together.  
Supply voltage for power stage, and input supply voltage.  
Shutdown control input. Logic high enables operation. Do not allow this pin to float or be greater than VIN + 0.3V.  
Feedback pin. Connect FB to external resistor divider to set output voltage.  
Signal ground pin. Place the bottom resistor of the feedback network as close as possible to this pin & pin 5  
Output switch. Connect to the inductor, output diode.  
3
4
EN  
5
FB  
6
AGND  
SW  
7
8
No Connect  
DAP  
GND  
Signal & Power ground. Connect to pin 2 & pin 6 on top layer. Place 4-6 vias from DAP to bottom layer GND plane.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Absolute Maximum Ratings(1)(2)  
VIN  
-0.5V to 7V  
-0.5V to 26.5V  
-0.5V to 3.0V  
-0.5V to 7.0V  
2kV  
SW Voltage  
FB Voltage  
EN Voltage  
ESD Susceptibility(3)  
Junction Temperature(4)  
Storage Temp. Range  
Soldering Information  
150°C  
-65°C to 150°C  
220°C  
Infrared/Convection Reflow (15sec)  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test  
conditions, see Electrical Characteristics.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) The human body model is a 100 pF capacitor discharged through a 1.5 kresistor into each pin.  
(4) Thermal shutdown will occur if the junction temperature exceeds the maximum junction temperature of the device  
Operating Ratings(1)  
VIN  
2.7V to 5.5V  
3V to 24V  
VSW  
(2)  
VEN  
0V to VIN  
Junction Temperature Range  
Power Dissipation  
40°C to +125°C  
400 mW  
(Internal) SOT-23  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test  
conditions, see Electrical Characteristics.  
(2) Do not allow this pin to float or be greater than VIN +0.3V.  
4
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
Electrical Characteristics  
Limits in standard type are for TJ = 25°C only; limits in boldface type apply over the junction temperature range of (TJ = -  
40°C to 125°C). Minimum and Maximum limits are specified through test, design, or statistical correlation. Typical values  
represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. VIN = 5V unless  
otherwise indicated under the Conditions column.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
40°C to TJ +125°C (SOT-23)  
0°C to TJ +125°C (SOT-23)  
40°C to TJ +125°C (WSON)  
0°C to TJ +125°C (WSON)  
1.230 1.255 1.280  
1.236 1.255 1.274  
1.225 1.255 1.285  
1.229 1.255 1.281  
1.220 1.255 1.290  
VFB  
Feedback Voltage  
V
40°C to TJ +125°C  
(MSOP-PowerPAD)  
0°C to TJ +125°C (MSOP-PowerPAD) 1.230 1.255 1.280  
ΔVFB/VIN  
Feedback Voltage Line Regulation  
Feedback Input Bias Current  
VIN = 2.7V to 5.5V  
0.06  
0.1  
1600  
520  
96  
%/V  
µA  
IFB  
1
LM2735-X  
1200  
360  
88  
2000  
680  
kHz  
FSW  
Switching Frequency  
Maximum Duty Cycle  
Minimum Duty Cycle  
Switch On Resistance  
LM2735-Y  
LM2735-X  
DMAX  
%
%
LM2735-Y  
91  
99  
LM2735-X  
5
DMIN  
LM2735-Y  
2
SOT-23 and MSOP-PowerPAD  
WSON  
170  
190  
3
330  
350  
RDS(ON)  
mΩ  
ICL  
SS  
Switch Current Limit  
Soft Start  
2.1  
A
4
ms  
mA  
LM2735-X  
7.0  
3.4  
80  
11  
7
Quiescent Current (switching)  
IQ  
LM2735-Y  
Quiescent Current (shutdown)  
Undervoltage Lockout  
All Options VEN = 0V  
nA  
V
VIN Rising  
2.3  
1.9  
2.65  
0.4  
UVLO  
VIN Falling  
See(1)  
See(1)  
1.7  
1.8  
Shutdown Threshold Voltage  
Enable Threshold Voltage  
Switch Leakage  
VEN_TH  
V
I-SW  
I-EN  
VSW = 24V  
1.0  
100  
80  
µA  
nA  
Enable Pin Current  
Sink/Source  
WSON and MSOP-PowerPAD Package  
SOT-23 Package  
Junction to Ambient  
0 LFPM Air Flow(2)  
θJA  
°C/W  
118  
18  
WSON and MSOP-PowerPAD Package  
SOT-23 Package  
θJC  
Junction to Case(2)  
°C/W  
°C  
60  
TSD  
Thermal Shutdown Temperature(3)  
Thermal Shutdown Hysteresis  
160  
10  
(1) Do not allow this pin to float or be greater than VIN +0.3V.  
(2) Applies for packages soldered directly onto a 3” x 3” PC board with 2oz. copper on 4 layers in still air.  
(3) Thermal shutdown will occur if the junction temperature exceeds the maximum junction temperature of the device  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
Typical Performance Characteristics  
Current Limit vs Temperature  
FB Pin Voltage vs Temperature  
Figure 6.  
Figure 7.  
Oscillator Frequency vs Temperature - "X"  
Oscillator Frequency vs Temperature - "Y"  
Figure 8.  
Figure 9.  
Typical Maximum Output Current vs VIN  
RDSON vs Temperature  
Figure 10.  
Figure 11.  
6
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
Typical Performance Characteristics (continued)  
LM2735X Efficiency vs Load Current, Vo = 20V  
LM2735Y Efficiency vs Load Current, Vo = 20V  
Figure 12.  
Figure 13.  
LM2735X Efficiency vs Load Current, Vo = 12V  
LM2735Y Efficiency vs Load Current, Vo = 12V  
Figure 14.  
Figure 15.  
Output Voltage Load Regulation  
Output Voltage Line Regulation  
Figure 16.  
Figure 17.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
Simplified Internal Block Diagram  
EN  
V
IN  
Thermal  
SHDN  
Control Logic  
-
UVLO = 2.3V  
+
Oscillator  
Corrective - Ramp  
SW  
S
R
Q
1.6MHz  
+
+
+
-
R
FB  
-
+
V
= 1.255V  
NMOS  
REF  
Internal  
Compensation  
I
LIMIT  
I
SENSE-AMP  
Soft-Start  
+
-
GND  
Figure 18. Simplified Block Diagram  
APPLICATION INFORMATION  
THEORY OF OPERATION  
The LM2735 is a constant frequency PWM boost regulator IC that delivers a minimum of 2.1A peak switch  
current. The regulator has a preset switching frequency of either 520 kHz or 1.60 MHz. This high frequency  
allows the LM2735 to operate with small surface mount capacitors and inductors, resulting in a DC/DC converter  
that requires a minimum amount of board space. The LM2735 is internally compensated, so it is simple to use,  
and requires few external components. The LM2735 uses current-mode control to regulate the output voltage.  
The following operating description of the LM2735 will refer to the Simplified Internal Block Diagram (Figure 18)  
the simplified schematic (Figure 19), and its associated waveforms (Figure 20). The LM2735 supplies a regulated  
output voltage by switching the internal NMOS control switch at constant frequency and variable duty cycle. A  
switching cycle begins at the falling edge of the reset pulse generated by the internal oscillator. When this pulse  
goes low, the output control logic turns on the internal NMOS control switch. During this on-time, the SW pin  
voltage (VSW) decreases to approximately GND, and the inductor current (IL) increases with a linear slope. IL is  
measured by the current sense amplifier, which generates an output proportional to the switch current. The  
sensed signal is summed with the regulator’s corrective ramp and compared to the error amplifier’s output, which  
is proportional to the difference between the feedback voltage and VREF. When the PWM comparator output goes  
high, the output switch turns off until the next switching cycle begins. During the switch off-time, inductor current  
discharges through diode D1, which forces the SW pin to swing to the output voltage plus the forward voltage  
(VD) of the diode. The regulator loop adjusts the duty cycle (D) to maintain a constant output voltage .  
8
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
 
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
V
( )  
L t  
-
+
D
1
I
( )  
L t  
L
1
I
( )  
C t  
Q
1
V
IN  
V
Control  
( )  
t
SW  
V
( )  
O t  
C
1
-
-
Figure 19. Simplified Schematic  
V
+ V  
D
O
V
( )  
t
sw  
t
V
IN  
V
( )  
L t  
t
V
-V  
-V  
OUT D  
IN  
I
i
( )  
t
L
L
t
I
( )  
t
DIODE  
t
i
- i  
-
OUT  
(
L
)
I
( )  
t
Capacitor  
t
- i  
OUT  
Dv  
V
( )  
t
OUT  
DT  
T
S
S
Figure 20. Typical Waveforms  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
CURRENT LIMIT  
The LM2735 uses cycle-by-cycle current limiting to protect the internal NMOS switch. It is important to note that  
this current limit will not protect the output from excessive current during an output short circuit. The input supply  
is connected to the output by the series connection of an inductor and a diode. If a short circuit is placed on the  
output, excessive current can damage both the inductor and diode.  
Design Guide  
ENABLE PIN / SHUTDOWN MODE  
The LM2735 has a shutdown mode that is controlled by the Enable pin (EN). When a logic low voltage is applied  
to EN, the part is in shutdown mode and its quiescent current drops to typically 80 nA. Switch leakage adds up to  
another 1 µA from the input supply. The voltage at this pin should never exceed VIN + 0.3V.  
THERMAL SHUTDOWN  
Thermal shutdown limits total power dissipation by turning off the output switch when the IC junction temperature  
exceeds 160°C. After thermal shutdown occurs, the output switch doesn’t turn on until the junction temperature  
drops to approximately 150°C.  
SOFT-START  
This function forces VOUT to increase at a controlled rate during start up. During soft-start, the error amplifier’s  
reference voltage ramps to its nominal value of 1.255V in approximately 4.0ms. This forces the regulator output  
to ramp up in a more linear and controlled fashion, which helps reduce inrush current.  
INDUCTOR SELECTION  
The Duty Cycle (D) can be approximated quickly using the ratio of output voltage (VO) to input voltage (VIN):  
VOUT  
VIN  
1
1
÷
=
=
Å
-
1 D  
D
«
(1)  
10  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
Therefore:  
D =  
SNVS485F JUNE 2007REVISED APRIL 2013  
VOUT - V  
IN  
VOUT  
(2)  
Power losses due to the diode (D1) forward voltage drop, the voltage drop across the internal NMOS switch, the  
voltage drop across the inductor resistance (RDCR) and switching losses must be included to calculate a more  
accurate duty cycle (See Calculating Efficiency, and Junction Temperature for a detailed explanation). A more  
accurate formula for calculating the conversion ratio is:  
VOUT  
VIN  
h
D
=
Å
where  
Where η equals the efficiency of the LM2735 application.  
(3)  
The inductor value determines the input ripple current. Lower inductor values decrease the size of the inductor,  
but increase the input ripple current. An increase in the inductor value will decrease the input ripple current.  
Di  
I
( )  
L t  
L
i
L
V
-V  
OUT  
IN  
V
IN  
L
L
DT  
T
S
t
S
Figure 21. Inductor Current  
2DiL  
DTS  
V
IN  
= ∆  
÷
÷
L
«
V
IN ÷ x DTS  
Âi =  
÷
L
2L  
«
(4)  
A good design practice is to design the inductor to produce 10% to 30% ripple of maximum load. From the  
previous equations, the inductor value is then obtained.  
VIN  
2 x DiL  
x DT  
÷
L =  
S
«
where  
1/TS = FSW = switching frequency  
(5)  
One must also ensure that the minimum current limit (2.1A) is not exceeded, so the peak current in the inductor  
must be calculated. The peak current (ILPK ) in the inductor is calculated by:  
ILpk = IIN + ΔIL  
(6)  
or  
ILpk = IOUT / D' + ΔIL  
(7)  
When selecting an inductor, make sure that it is capable of supporting the peak input current without saturating.  
Inductor saturation will result in a sudden reduction in inductance and prevent the regulator from operating  
correctly. Because of the speed of the internal current limit, the peak current of the inductor need only be  
specified for the required maximum input current. For example, if the designed maximum input current is 1.5A  
and the peak current is 1.75A, then the inductor should be specified with a saturation current limit of >1.75A.  
There is no need to specify the saturation or peak current of the inductor at the 3A typical switch current limit.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
Because of the operating frequency of the LM2735, ferrite based inductors are preferred to minimize core losses.  
This presents little restriction since the variety of ferrite-based inductors is huge. Lastly, inductors with lower  
series resistance (DCR) will provide better operating efficiency. For recommended inductors see Example  
Circuits.  
INPUT CAPACITOR  
An input capacitor is necessary to ensure that VIN does not drop excessively during switching transients. The  
primary specifications of the input capacitor are capacitance, voltage, RMS current rating, and ESL (Equivalent  
Series Inductance). The recommended input capacitance is 10 µF to 44 µF depending on the application. The  
capacitor manufacturer specifically states the input voltage rating. Make sure to check any recommended  
deratings and also verify if there is any significant change in capacitance at the operating input voltage and the  
operating temperature. The ESL of an input capacitor is usually determined by the effective cross sectional area  
of the current path. At the operating frequencies of the LM2735, certain capacitors may have an ESL so large  
that the resulting impedance (2πfL) will be higher than that required to provide stable operation. As a result,  
surface mount capacitors are strongly recommended. Multilayer ceramic capacitors (MLCC) are good choices for  
both input and output capacitors and have very low ESL. For MLCCs it is recommended to use X7R or X5R  
dielectrics. Consult capacitor manufacturer datasheet to see how rated capacitance varies over operating  
conditions.  
OUTPUT CAPACITOR  
The LM2735 operates at frequencies allowing the use of ceramic output capacitors without compromising  
transient response. Ceramic capacitors allow higher inductor ripple without significantly increasing output ripple.  
The output capacitor is selected based upon the desired output ripple and transient response. The initial current  
of a load transient is provided mainly by the output capacitor. The output impedance will therefore determine the  
maximum voltage perturbation. The output ripple of the converter is a function of the capacitor’s reactance and  
its equivalent series resistance (ESR):  
«
VOUT x D  
÷
÷
ÂVOUT ÂI x R  
+
ESR  
=
L
2x FSW x RLoad x COUT  
(8)  
When using MLCCs, the ESR is typically so low that the capacitive ripple may dominate. When this occurs, the  
output ripple will be approximately sinusoidal and 90° phase shifted from the switching action .  
Given the availability and quality of MLCCs and the expected output voltage of designs using the LM2735, there  
is really no need to review any other capacitor technologies. Another benefit of ceramic capacitors is their ability  
to bypass high frequency noise. A certain amount of switching edge noise will couple through parasitic  
capacitances in the inductor to the output. A ceramic capacitor will bypass this noise while a tantalum will not.  
Since the output capacitor is one of the two external components that control the stability of the regulator control  
loop, most applications will require a minimum at 4.7 µF of output capacitance. Like the input capacitor,  
recommended multilayer ceramic capacitors are X7R or X5R. Again, verify actual capacitance at the desired  
operating voltage and temperature.  
SETTING THE OUTPUT VOLTAGE  
The output voltage is set using the following equation where R1 is connected between the FB pin and GND, and  
R2 is connected between VOUT and the FB pin.  
12  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
VO  
C3  
R2  
R1  
VFB  
RLOAD  
Figure 22. Setting Vout  
A good value for R1 is 10k.  
«
÷
VOUT  
VREF  
÷
-1 x  
R2 =  
R1  
(9)  
COMPENSATION  
The LM2735 uses constant frequency peak current mode control. This mode of control allows for a simple  
external compensation scheme that can be optimized for each application. A complicated mathematical analysis  
can be completed to fully explain the LM2735’s internal & external compensation, but for simplicity, a graphical  
approach with simple equations will be used. Below is a Gain & Phase plot of a LM2735 that produces a 12V  
output from a 5V input voltage. The Bode plot shows the total loop Gain & Phase without external compensation.  
80  
60  
40  
20  
0
180  
gm-Pole  
RC-Pole  
90  
Vi = 5V  
Vo = 12V  
Io = 500 mA  
Co = 10 mF  
Lo = 5 mH  
0
-20  
-40  
-60  
-80  
gm-Zero  
-90  
RHP-Zero  
-180  
1M  
10  
100  
1k  
10k  
100k  
FREQUENCY  
Figure 23. LM2735 Without External Compensation  
One can see that the Crossover frequency is fine, but the phase margin at 0dB is very low (22°). A zero can be  
placed just above the crossover frequency so that the phase margin will be bumped up to a minimum of 45°.  
Below is the same application with a zero added at 8 kHz.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
80  
60  
40  
20  
0
180  
90  
gm-Pole  
RC-Pole  
Vi = 5V  
Vo = 12V  
Io = 500 mA  
Co = 10 mF  
Lo = 5 mH  
D = 0.625  
Cf = 220 pF  
Fz-cf = 8 kHz  
gm-zero  
0
RHP-Zero = 107 kHz  
Fp-cf = 77 kHz  
Fp-rc = 660 Hz  
-20  
-40  
-60  
-80  
-90  
-180  
Ext (Cf)  
-Zero  
Ext (Cf)-Pole  
RHP-Zero  
100k 1M  
10  
100  
1k  
10k  
FREQUENCY  
Figure 24. LM2735 With External Compensation  
The simplest method to determine the compensation component value is as follows.  
Set the output voltage with the following equation.  
«
÷
VOUT  
VREF  
÷
-1 x  
R2 =  
R1  
where  
R1 is the bottom resistor and R2 is the resistor tied to the output voltage.  
(10)  
The next step is to calculate the value of C3. The internal compensation has been designed so that when a zero  
is added between 5 kHz & 10 kHz the converter will have good transient response with plenty of phase margin  
for all input & output voltage combinations.  
1
FZERO- CF  
ç
5 kHz 10 kHz  
=
=
2p R xC  
(
)
f
2
(11)  
Lower output voltages will have the zero set closer to 10 kHz, and higher output voltages will usually have the  
zero set closer to 5 kHz. It is always recommended to obtain a Gain/Phase plot for your actual application. One  
could refer to the Typical applications section to obtain examples of working applications and the associated  
component values.  
Pole @ origin due to internal gm amplifier:  
FP-ORIGIN  
(12)  
Pole due to output load and capacitor:  
1
FP-RC  
=
2p(RLoadCOUT  
)
(13)  
This equation only determines the frequency of the pole for perfect current mode control (CMC). I.e, it doesn’t  
take into account the additional internal artificial ramp that is added to the current signal for stability reasons. By  
adding artificial ramp, you begin to move away from CMC to voltage mode control (VMC). The artifact is that the  
pole due to the output load and output capacitor will actually be slightly higher in frequency than calculated. In  
this example it is calculated at 650 Hz, but in reality it is around 1 kHz.  
The zero created with capacitor C3 & resistor R2:  
14  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
VO  
C3  
R2  
R1  
VFB  
RLOAD  
Figure 25. Setting External Pole-Zero  
1
FZERO- CF  
=
2p R xC  
(
)
3
2
(14)  
There is an associated pole with the zero that was created in the above equation.  
1
FPOLE CF  
=
-
2p((R1 R2) x C3)  
(15)  
It is always higher in frequency than the zero.  
A right-half plane zero (RHPZ) is inherent to all boost converters. One must remember that the gain associated  
with a right-half plane zero increases at 20dB per decade, but the phase decreases by 45° per decade. For most  
applications there is little concern with the RHPZ due to the fact that the frequency at which it shows up is well  
beyond crossover, and has little to no effect on loop stability. One must be concerned with this condition for large  
inductor values and high output currents.  
2
'
( )  
2p x L  
D RLoad  
RHPZERO  
=
(16)  
There are miscellaneous poles and zeros associated with parasitics internal to the LM2735, external  
components, and the PCB. They are located well over the crossover frequency, and for simplicity are not  
discussed.  
PCB Layout Considerations  
When planning layout there are a few things to consider when trying to achieve a clean, regulated output. The  
most important consideration when completing a Boost Converter layout is the close coupling of the GND  
connections of the COUT capacitor and the LM2735 PGND pin. The GND ends should be close to one another  
and be connected to the GND plane with at least two through-holes. There should be a continuous ground plane  
on the bottom layer of a two-layer board except under the switching node island. The FB pin is a high impedance  
node and care should be taken to make the FB trace short to avoid noise pickup and inaccurate regulation. The  
feedback resistors should be placed as close as possible to the IC, with the AGND of R1 placed as close as  
possible to the GND (pin 5 for the WSON) of the IC. The VOUT trace to R2 should be routed away from the  
inductor and any other traces that are switching. High AC currents flow through the VIN, SW and VOUT traces, so  
they should be as short and wide as possible. However, making the traces wide increases radiated noise, so the  
designer must make this trade-off. Radiated noise can be decreased by choosing a shielded inductor. The  
remaining components should also be placed as close as possible to the IC. Please see Application Note AN-  
1229 SNVA054 for further considerations and the LM2735 demo board as an example of a four-layer layout.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
Below is an example of a good thermal & electrical PCB design. This is very similar to our LM2735  
demonstration boards that are obtainable via the Texas Instruments website. The demonstration board consists  
of a two layer PCB with a common input and output voltage application. Most of the routing is on the top layer,  
with the bottom layer consisting of a large ground plane. The placement of the external components satisfies the  
electrical considerations, and the thermal performance has been improved by adding thermal vias and a top layer  
“Dog-Bone”.  
CIN  
PCB  
VIN  
PGND  
FB  
EN  
4
3
L1  
AGND  
VIN  
CIN  
5
2
PGND  
1
COUT  
SW  
6
D1  
VO  
Figure 26. Example of Proper PCB Layout  
Thermal Design  
When designing for thermal performance, one must consider many variables:  
Ambient Temperature: The surrounding maximum air temperature is fairly explanatory. As the temperature  
increases, the junction temperature will increase. This may not be linear though. As the surrounding air  
temperature increases, resistances of semiconductors, wires and traces increase. This will decrease the  
efficiency of the application, and more power will be converted into heat, and will increase the silicon junction  
temperatures further.  
Forced Airflow: Forced air can drastically reduce the device junction temperature. Air flow reduces the hot spots  
within a design. Warm airflow is often much better than a lower ambient temperature with no airflow.  
External Components: Choose components that are efficient, and you can reduce the mutual heating between  
devices.  
PCB design with thermal performance in mind:  
The PCB design is a very important step in the thermal design procedure. The LM2735 is available in three  
package options (5 pin SOT-23, 8 pin MSOP-PowerPAD & 6 pin WSON). The options are electrically the same,  
but difference between the packages is size and thermal performance. The WSON and MSOP-PowerPAD have  
thermal Die Attach Pads (DAP) attached to the bottom of the packages, and are therefore capable of dissipating  
more heat than the SOT-23 package. It is important that the customer choose the correct package for the  
application. A detailed thermal design procedure has been included in this data sheet. This procedure will help  
determine which package is correct, and common applications will be analyzed.  
There is one significant thermal PCB layout design consideration that contradicts a proper electrical PCB layout  
design consideration. This contradiction is the placement of external components that dissipate heat. The  
greatest external heat contributor is the external Schottky diode. It would be nice if you were able to separate by  
distance the LM2735 from the Schottky diode, and thereby reducing the mutual heating effect. This will however  
create electrical performance issues. It is important to keep the LM2735, the output capacitor, and Schottky  
diode physically close to each other (see Figure 26). The electrical design considerations outweigh the thermal  
considerations. Other factors that influence thermal performance are thermal vias, copper weight, and number of  
board layers.  
16  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
 
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
Definitions  
Heat energy is transferred from regions of high temperature to regions of low temperature via three basic  
mechanisms: radiation, conduction and convection.  
Radiation Electromagnetic transfer of heat between masses at different temperatures.  
Conduction Transfer of heat through a solid medium.  
Convection Transfer of heat through the medium of a fluid; typically air.  
Conduction & Convection will be the dominant heat transfer mechanism in most applications.  
RθJC Thermal impedance from silicon junction to device case temperature.  
RθJA Thermal impedance from silicon junction to ambient air temperature.  
CθJC Thermal Delay from silicon junction to device case temperature.  
CθCA Thermal Delay from device case to ambient air temperature.  
R
θJA & RθJC These two symbols represent thermal impedances, and most data sheets contain associated values  
for these two symbols. The units of measurement are °C/Watt.  
R
θJAis the sum of smaller thermal impedances (see Figure 27). The capacitors represent delays that are present  
from the time that power and its associated heat is increased or decreased from steady state in one medium until  
the time that the heat increase or decrease reaches steady state on the another medium.  
R
qC -A  
C
qC -A  
T
T
A
C
R
qJ-CASE  
C
qJ-CASE  
T
J
Internal- P  
DISS  
Figure 27. Simplified Thermal Impedance Model  
The datasheet values for these symbols are given so that one might compare the thermal performance of one  
package against another. In order to achieve a comparison between packages, all other variables must be held  
constant in the comparison (PCB size, copper weight, thermal vias, power dissipation, VIN, VOUT, Load Current  
etc). This does shed light on the package performance, but it would be a mistake to use these values to calculate  
the actual junction temperature in your application.  
T - TA  
J
RqJA  
=
PDissipation  
(17)  
We will talk more about calculating the variables of this equation later, and how to eventually calculate a proper  
junction temperature with relative certainty. For now we need to define the process of calculating the junction  
temperature and clarify some common misconceptions.  
RθJA [Variables]:  
Input Voltage, Output Voltage, Output Current, RDSon.  
Ambient temperature & air flow.  
Internal & External components power dissipation.  
Package thermal limitations.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM2735  
 
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
PCB variables (copper weight, thermal via’s, layers component placement).  
It would be wrong to assume that the top case temperature is the proper temperature when calculating RθJC  
value. The RθJC value represents the thermal impedance of all six sides of a package, not just the top side. This  
document will refer to a thermal impedance called RψJC. RψJC represents a thermal impedance associated with  
just the top case temperature. This will allow one to calculate the junction temperature with a thermal sensor  
connected to the top case.  
LM2735 Thermal Models  
Heat is dissipated from the LM2735 and other devices. The external loss elements include the Schottky diode,  
inductor, and loads. All loss elements will mutually increase the heat on the PCB, and therefore increase each  
other’s temperatures.  
L
1
I
D
( )  
L t  
1
V
( )  
t
OUT  
Q
1
V
IN  
C
1
Figure 28. Thermal Schematic  
18  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
R
qCASE-AMB  
T
CASE  
C
qCASE-AMB  
R
qJ-CASE  
C
qJ-CASE  
INTERNAL  
SMALL  
LARGE  
P
DISS  
P
DISS-TOP  
T
AMBIENT  
P
DISS-PCB  
T
JUNCTION  
C
qJ-PCB  
R
qJ-PCB  
DEVICE  
EXTERNAL  
P
DISS  
R
qPCB-AMB  
T
PCB  
C
qPCB-AMB  
PCB  
Figure 29. Associated Thermal Model  
Calculating Efficiency, and Junction Temperature  
The complete LM2735 DC/DC converter efficiency (η) can be calculated in the following manner.  
POUT  
h =  
PIN  
or  
POUT  
h =  
POUT + PLOSS  
(18)  
Power loss (PLOSS) is the sum of two types of losses in the converter, switching and conduction. Conduction  
losses usually dominate at higher output loads, where as switching losses remain relatively fixed and dominate at  
lower output loads.  
Losses in the LM2735 Device: PLOSS = PCOND + PSW + PQ  
Conversion ratio of the Boost Converter with conduction loss elements inserted:  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
÷
Å
÷
÷
VOUT  
D x VD  
1
÷
÷
1
Å
D
1-  
=
V
RDCR + D x R  
V
(
)
IN  
DSON  
IN  
«
«
÷
÷
1+  
Å2  
R OUT  
D
(19)  
(20)  
(21)  
One can see that if the loss elements are reduced to zero, the conversion ratio simplifies to:  
VOUT  
1
Å
D
=
V
IN  
And we know:  
h
Å
D
VOUT  
=
V
IN  
Therefore:  
Å
D x VD  
÷
1-  
V
VOUT  
÷
÷
IN  
Å
h =  
=
D
V
RDCR + D x R  
(
)
IN  
DSON  
«
÷
÷
1+  
Å2  
ROUT  
D
(22)  
Calculations for determining the most significant power losses are discussed below. Other losses totaling less  
than 2% are not discussed.  
A simple efficiency calculation that takes into account the conduction losses is shown below:  
Å
D x VD  
÷
1-  
V
÷
÷
IN  
h ö  
RDCR + D x R  
(
)
DSON  
«
÷
÷
1+  
Å2  
ROUT  
D
(23)  
The diode, NMOS switch, and inductor DCR losses are included in this calculation. Setting any loss element to  
zero will simplify the equation.  
VD is the forward voltage drop across the Schottky diode. It can be obtained from the manufacturer’s Electrical  
Characteristics section of the data sheet.  
The conduction losses in the diode are calculated as follows:  
PDIODE = VD x IO  
(24)  
Depending on the duty cycle, this can be the single most significant power loss in the circuit. Care should be  
taken to choose a diode that has a low forward voltage drop. Another concern with diode selection is reverse  
leakage current. Depending on the ambient temperature and the reverse voltage across the diode, the current  
being drawn from the output to the NMOS switch during time D could be significant, this may increase losses  
internal to the LM2735 and reduce the overall efficiency of the application. Refer to Schottky diode  
manufacturer’s data sheets for reverse leakage specifications, and typical applications within this data sheet for  
diode selections.  
Another significant external power loss is the conduction loss in the input inductor. The power loss within the  
inductor can be simplified to:  
2
PIND = IIN RDCR  
(25)  
2
÷
÷
IO RDCR  
«
P
=
IND  
'
D
(26)  
The LM2735 conduction loss is mainly associated with the internal NFET:  
PCOND-NFET = I2SW-rms x RDSON x D  
(27)  
20  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
Di  
I
I
sw(t)  
t
Figure 30. LM2735 Switch Current  
2
Di  
IIND  
1
3
D x  
D
Isw-rms = IIND  
1 +  
I
IND  
ö
PIND = IIN2 x RIND-DCR  
(small ripple approximation)  
PCOND-NFET = IIN2 x RDSON x D  
(28)  
(29)  
IO2  
P
x RDSON x D  
=
«
÷
÷
COND- NFET  
'
D
(30)  
The value for should be equal to the resistance at the junction temperature you wish to analyze. As an example,  
at 125°C and VIN = 5V, RDSON = 250 m(See typical graphs for value).  
Switching losses are also associated with the internal NMOS switch. They occur during the switch on and off  
transition periods, where voltages and currents overlap resulting in power loss.  
The simplest means to determine this loss is to empirically measuring the rise and fall times (10% to 90%) of the  
switch at the switch node:  
PSWR = 1/2(VOUT x IIN x FSW x TRISE  
)
(31)  
(32)  
(33)  
PSWF = 1/2(VOUT x IIN x FSW x TFALL  
)
PSW = PSWR + PSWF  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
Table 1. Typical Switch-Node Rise and Fall Times  
VIN  
3V  
5V  
3V  
5V  
VOUT  
5V  
TRISE  
6nS  
6nS  
7nS  
7nS  
TFALL  
4nS  
5nS  
5nS  
5nS  
12V  
12V  
18V  
Quiescent Power Losses  
IQ is the quiescent operating current, and is typically around 4mA.  
PQ = IQ x VIN  
(34)  
Example Efficiency Calculation:  
Table 2. Operating Conditions  
VIN  
VOUT  
IOUT  
VD  
5V  
12V  
500mA  
0.4V  
FSW  
IQ  
1.60MHz  
4mA  
TRISE  
TFALL  
RDSon  
RDCR  
D
6nS  
5nS  
250mΩ  
50mΩ  
0.64  
IIN  
1.4A  
ΣPCOND + PSW + PDIODE + PIND + PQ = PLOSS  
(35)  
(36)  
Quiescent Power Losses  
PQ = IQ x VIN = 20 mW  
Switching Power Losses  
PSWR = 1/2(VOUT x IIN x FSW x TRISE) 6 ns 80 mW  
PSWF = 1/2(VOUT x IIN x FSW x TFALL) 5 ns 70 mW  
PSW = PSWR + PSWF = 150 mW  
(37)  
(38)  
(39)  
Internal NFET Power Losses  
RDSON = 250 mΩ  
(40)  
(41)  
PCONDUCTION = IIN2 x D x RDSON x 305 mW  
Diode Losses  
VD = 0.45V  
(42)  
(43)  
PDIODE = VD x IIN(1-D) = 236 mW  
Inductor Power Losses  
RDCR = 75 mΩ  
(44)  
(45)  
PIND = IIN2 x RDCR = 145 mW  
22  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
Total Power Losses are:  
Table 3. Power Loss Tabulation  
VIN  
5V  
VOUT  
12V  
IOUT  
500mA  
0.4V  
POUT  
6W  
VD  
PDIODE  
236mW  
FSW  
1.6MHz  
6nS  
TRISE  
PSWR  
PSWF  
PQ  
80mW  
70mW  
20mW  
305mW  
145mW  
TFALL  
5nS  
IQ  
4mA  
RDSon  
250mΩ  
75mΩ  
0.623  
86%  
PCOND  
PIND  
RDCR  
D
η
PLOSS  
856mW  
(46)  
PINTERNAL = PCOND + PSW = 475 mW  
RqJA  
RYJC  
Calculating  
and  
T - TA  
J
RqJA  
=
PDissipation  
and  
T - TCASE  
J
RYJC  
=
PDissipation  
(47)  
We now know the internal power dissipation, and we are trying to keep the junction temperature at or below  
125°C. The next step is to calculate the value for RθJA and/or RψJC. This is actually very simple to accomplish,  
and necessary if you think you may be marginal with regards to thermals or determining what package option is  
correct.  
The LM2735 has a thermal shutdown comparator. When the silicon reaches a temperature of 160°C, the device  
shuts down until the temperature reduces to 150°C. Knowing this, one can calculate the RθJA or the RψJC of a  
specific application. Because the junction to top case thermal impedance is much lower than the thermal  
impedance of junction to ambient air, the error in calculating RψJC is lower than for RθJA . However, you will need  
to attach a small thermocouple onto the top case of the LM2735 to obtain the RψJC value.  
Knowing the temperature of the silicon when the device shuts down allows us to know three of the four variables.  
Once we calculate the thermal impedance, we then can work backwards with the junction temperature set to  
125°C to see what maximum ambient air temperature keeps the silicon below the 125°C temperature.  
Procedure:  
Place your application into a thermal chamber. You will need to dissipate enough power in the device so you can  
obtain a good thermal impedance value.  
Raise the ambient air temperature until the device goes into thermal shutdown. Record the temperatures of the  
ambient air and/or the top case temperature of the LM2735. Calculate the thermal impedances.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
Example from previous calculations:  
Pdiss = 475 mW  
Ta @ Shutdown = 139°C  
Tc @ Shutdown = 155°C  
T - TA  
T - TCase-Top  
J
J
:
RYJC =  
RqJA  
=
PDissipation  
PDissipation  
(48)  
R
θJA WSON = 55°C/W  
ψJC WSON = 21°C/W  
R
WSON & MSOP-PowerPAD typical applications will produce RθJA numbers in the range of 50°C/W to 65°C/W,  
and RψJC will vary between 18°C/W and 28°C/W. These values are for PCB’s with two and four layer boards with  
0.5 oz copper, and four to six thermal vias to bottom side ground plane under the DAP.  
For 5-pin SOT-23 package typical applications, RθJA numbers will range from 80°C/W to 110°C/W, and RψJC will  
vary between 50°C/W and 65°C/W. These values are for PCB’s with two & four layer boards with 0.5 oz copper,  
with two to four thermal vias from GND pin to bottom layer.  
Here is a good rule of thumb for typical thermal impedances, and an ambient temperature maximum of 75°C: If  
your design requires that you dissipate more than 400mW internal to the LM2735, or there is 750mW of total  
power loss in the application, it is recommended that you use the 6 pin WSON or the 8 pin MSOP-PowerPAD  
package.  
NOTE  
NOTE: To use these procedures it is important to dissipate an amount of power within the  
device that will indicate a true thermal impedance value. If one uses a very small internal  
dissipated value, one can see that the thermal impedance calculated is abnormally high,  
and subject to error. The graph below shows the nonlinear relationship of internal power  
dissipation vs RθJA  
.
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
PDISS  
Figure 31. RθJA vs Internal Dissipation for the WSON  
and MSOP-PowerPAD Package  
24  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
SEPIC Converter  
The LM2735 can easily be converted into a SEPIC converter. A SEPIC converter has the ability to regulate an  
output voltage that is either larger or smaller in magnitude than the input voltage. Other converters have this  
ability as well (CUK and Buck-Boost), but usually create an output voltage that is opposite in polarity to the input  
voltage. This topology is a perfect fit for Lithium Ion battery applications where the input voltage for a single cell  
Li-Ion battery will vary between 3V & 4.5V and the output voltage is somewhere in between. Most of the analysis  
of the LM2735 Boost Converter is applicable to the LM2735 SEPIC Converter.  
SEPIC Design Guide:  
SEPIC Conversion ratio without loss elements:  
Vo  
D
=
VIN  
D'  
(49)  
(50)  
Therefore:  
VO  
D =  
VO + VIN  
Small ripple approximation:  
In a well-designed SEPIC converter, the output voltage, and input voltage ripple, the inductor ripple and is small  
in comparison to the DC magnitude. Therefore it is a safe approximation to assume a DC value for these  
components. The main objective of the Steady State Analysis is to determine the steady state duty-cycle, voltage  
and current stresses on all components, and proper values for all components.  
In a steady-state converter, the net volt-seconds across an inductor after one cycle will equal zero. Also, the  
charge into a capacitor will equal the charge out of a capacitor in one cycle.  
Therefore:  
«
÷
D
D'  
IL2 =  
x IL1  
and  
VO’  
D
≈ ’  
«
IL1  
x
=
÷
'÷  
R
« D ◊  
(51)  
(52)  
Substituting IL1 into IL2  
VO  
=
IL2  
R
The average inductor current of L2 is the average output load.  
V
( )  
AREA  
1
L t  
t
(s)  
AREA  
2
DT  
T
S
S
Figure 32. Inductor Volt-Sec Balance Waveform  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
Applying Charge balance on C1:  
'
(
)
D V  
o
VC1  
=
D
(53)  
Since there are no DC voltages across either inductor, and capacitor C6 is connected to Vin through L1 at one  
end, or to ground through L2 on the other end, we can say that  
VC1 = VIN  
(54)  
Therefore:  
'
(
)
D V  
o
VIN  
=
D
(55)  
This verifies the original conversion ratio equation.  
It is important to remember that the internal switch current is equal to IL1 and IL2. During the D interval. Design  
the converter so that the minimum specified peak switch current limit (2.1A) is not exceeded.  
V
IN  
VO  
L
1
D
1
C
6
LM2735  
L
2
1
2
3
6
5
4
R2  
C
5
C
3
C
4
R
3
R
1
C
1
C
2
Figure 33. SEPIC CONVERTER Schematic  
Steady State Analysis with Loss Elements  
v
v
( )  
C1 t  
+
( )  
L1 t  
-
-
+
i
i
C1(t)  
i
L1(t)  
D1(t)  
R
v
L1  
( )  
D1 t  
i
i
i
C2(t)  
L2(t)  
sw  
-
V
IN  
v
( )  
L2 t  
v
-
( )  
O t  
v
( )  
C2 t  
-
R
on  
R
L2  
26  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
Using inductor volt-second balance & capacitor charge balance, the following equations are derived:  
V
«
÷
O
IL2 =  
R
and  
V
÷
«
≈  
D
D'  
O
IL1  
x
=
«
÷
R
(56)  
(57)  
÷
÷
÷
÷
÷
Vo  
1
D
= ∆  
÷
÷
'
2
2
÷
÷
VIN  
D
VD  
÷
÷
R
R
L1  
«
RL2  
R
D
D
÷
÷
ON  
1+  
+
+
+
2
«
÷
«
÷
«
÷
'
'
VO  
R
R
«
«
«
D
D
Therefore:  
÷
÷
÷
÷
÷
1
h =  
2
÷
VD  
VO  
R
R
RL2  
R
D
÷
D
÷
ON  
L1  
÷
÷
÷
1+  
+
+
+
2
2
«
÷
«
÷
«
÷
'
'
R
R
«
«
«
D
D
(58)  
One can see that all variables are known except for the duty cycle (D). A quadratic equation is needed to solve  
for D. A less accurate method of determining the duty cycle is to assume efficiency, and calculate the duty cycle.  
VO  
÷
D
x h  
=
VIN  
1 - D  
«
(59)  
(60)  
VO  
÷
D
=
(V x h) +VO  
IN  
«
Vin  
Vo  
2.7V  
3.1V  
Vin  
Vo  
3.3V  
3.1V  
Vin  
Vo  
5V  
3.1V  
Iin 770 mA  
Iin 600 mA  
Iin 375 mA  
Io  
h
Io  
h
Io  
h
500 mA  
75%  
500 mA  
80%  
500 mA  
83%  
Figure 34. Efficiencies for Typical SEPIC Application  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
SEPIC Converter PCB Layout  
The layout guidelines described for the LM2735 Boost-Converter are applicable to the SEPIC Converter. Below  
is a proper PCB layout for a SEPIC Converter.  
CIN  
PCB  
VIN  
PGND  
FB  
EN  
4
3
L1  
VIN  
AGND  
CIN  
5
2
PGND  
1
COUT  
SW  
6
D1  
L2  
VO  
C6  
Figure 35. SEPIC PCB Layout  
28  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
WSON Package  
The LM2735 packaged in the 6–pin WSON:  
Figure 36. Internal WSON Connection  
For certain high power applications, the PCB land may be modified to a "dog bone" shape (see Figure 37).  
Increasing the size of ground plane, and adding thermal vias can reduce the RθJA for the application.  
COPPER  
1
2
6
5
SW  
PGND  
Vin  
AGND  
3
4
FB  
EN  
COPPER  
Figure 37. PCB Dog Bone Layout  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LM2735  
 
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
LM2735X SOT-23 Design Example 1  
L
1
3
FB  
4
EN  
R
3
2
GND  
V
12V  
IN  
1
SW  
5
Vin  
D
1
C
C
R
3
1
2
C
2
R
LOAD  
R
1
Figure 38. LM2735X (1.6MHz): Vin = 5V, Vout = 12V @ 350mA  
Part ID  
Part Value  
2.1A Boost Regulator  
22µF, 6.3V, X5R  
10µF, 25V, X5R  
330pF  
Manufacturer  
TI  
Part Number  
LM2735XMF  
U1  
C1, Input Cap  
TDK  
C2012X5R0J226M  
C3216X5R1E106M  
C1608X5R1H331K  
STPS120M  
C2 Output Cap  
TDK  
C3 Comp Cap  
TDK  
D1, Catch Diode  
0.4Vf Schottky 1A, 20VR  
15µH 1.5A  
ST  
L1  
R1  
R2  
R3  
Coilcraft  
Vishay  
Vishay  
Vishay  
MSS5131-153ML  
CRCW06031022F  
CRCW06038662F  
CRCW06031003F  
10.2k, 1%  
86.6k, 1%  
100k, 1%  
30  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
LM2735Y SOT-23 Design Example 2  
L
1
3
FB  
4
EN  
R
3
2
GND  
V
12V  
C
IN  
1
SW  
5
Vin  
D
1
C
R
3
1
2
C
2
R
LOAD  
R
1
Figure 39. LM2735Y (520kHz): Vin = 5V, Vout = 12V @ 350mA  
Part ID  
Part Value  
2.1A Boost Regulator  
22µF, 6.3V, X5R  
10µF, 25V, X5R  
330pF  
Manufacturer  
TI  
Part Number  
LM2735YMF  
U1  
C1, Input Cap  
TDK  
C2012X5R0J226M  
C3216X5R1E106M  
C1608X5R1H331K  
STPS120M  
C2 Output Cap  
TDK  
C3 Comp Cap  
TDK  
D1, Catch Diode  
0.4Vf Schottky 1A, 20VR  
33µH 1.5A  
ST  
L1  
R1  
R2  
R3  
Coilcraft  
Vishay  
Vishay  
Vishay  
DS3316P-333ML  
CRCW06031022F  
CRCW06038662F  
CRCW06031003F  
10.2k, 1%  
86.6k, 1%  
100k, 1%  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
LM2735X WSON Design Example 3  
V
IN  
L
1
D
LM2735  
1
R
3
1
2
6
5
C
R
R
C
2
2
C
1
5
R
LOAD  
C
3
4
3
C
4
1
Figure 40. LM2735X (1.6MHz): Vin = 3.3V, Vout = 12V @ 350mA  
Part ID  
U1  
Part Value  
2.1A Boost Regulator  
22µF, 6.3V, X5R  
No Load  
Manufacturer  
Part Number  
LM2735XSD  
TI  
C1 Input Cap  
C2 Input Cap  
TDK  
C2012X5R0J226M  
C3 Output Cap  
10µF, 25V, X5R  
No Load  
TDK  
C3216X5R1E106M  
C4 Output Cap  
C5 Comp Cap  
330pF  
TDK  
ST  
C1608X5R1H331K  
STPS120M  
D1, Catch Diode  
0.4Vf Schottky 1A, 20VR  
6.8µH 2A  
L1  
R1  
R2  
R3  
Coilcraft  
Vishay  
Vishay  
Vishay  
DO1813H-682ML  
CRCW06031022F  
CRCW06038662F  
CRCW06031003F  
10.2k, 1%  
86.6k, 1%  
100k, 1%  
32  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
LM2735Y WSON Design Example 4  
V
IN  
L
1
D
LM2735  
1
R
3
1
2
6
5
C
R
R
C
2
2
C
1
5
R
LOAD  
C
3
4
3
C
4
1
Figure 41. LM2735Y (520kHz): Vin = 3.3V, Vout = 12V @ 350mA  
Part ID  
U1  
Part Value  
2.1A Boost Regulator  
22µF, 6.3V, X5R  
No Load  
Manufacturer  
Part Number  
LM2735YSD  
TI  
C1 Input Cap  
C2 Input Cap  
TDK  
C2012X5R0J226M  
C3 Output Cap  
10µF, 25V, X5R  
No Load  
TDK  
C3216X5R1E106M  
C4 Output Cap  
C5 Comp Cap  
330pF  
TDK  
ST  
C1608X5R1H331K  
STPS120M  
D1, Catch Diode  
0.4Vf Schottky 1A, 20VR  
15µH 2A  
L1  
R1  
R2  
R3  
Coilcraft  
Vishay  
Vishay  
Vishay  
MSS5131-153ML  
CRCW06031022F  
CRCW06038662F  
CRCW06031003F  
10.2k, 1%  
86.6k, 1%  
100k, 1%  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
LM2735Y MSOP-PowerPAD Design Example 5  
V
IN  
L1  
D
1
R
3
LM2735  
1
2
3
4
NC  
8
7
6
5
NC  
SW  
C
C
2
1
R
R
PGND  
VIN  
EN  
2
1
C
5
AGND  
FB  
R
LOAD  
C
C
4
3
Figure 42. LM2735Y (520kHz): Vin = 3.3V, Vout = 12V @ 350mA  
Part ID  
Part Value  
2.1A Boost Regulator  
22µF, 6.3V, X5R  
No Load  
Manufacturer  
Part Number  
LM2735YMY  
U1  
TI  
C1 Input Cap  
C2 Input Cap  
TDK  
C2012X5R0J226M  
C3 Output Cap  
C4 Output Cap  
C5 Comp Cap  
10µF, 25V, X5R  
No Load  
TDK  
C3216X5R1E106M  
330pF  
TDK  
ST  
C1608X5R1H331K  
STPS120M  
D1, Catch Diode  
0.4Vf Schottky 1A, 20VR  
15µH 1.5A  
L1  
R1  
R2  
R3  
Coilcraft  
Vishay  
Vishay  
Vishay  
MSS5131-153ML  
CRCW06031022F  
CRCW06038662F  
CRCW06031003F  
10.2k, 1%  
86.6k, 1%  
100k, 1%  
34  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
LM2735X SOT-23 Design Example 6  
L
1
3
FB  
4
SHDN  
R
3
2
GND  
V
5V  
C
IN  
1
SW  
5
Vin  
D
1
C
R
3
1
2
C
2
R
LOAD  
R
1
Figure 43. LM2735X (1.6MHz): Vin = 3V, Vout = 5V @ 500mA  
Part ID  
Part Value  
2.1A Boost Regulator  
10µF, 6.3V, X5R  
10µF, 6.3V, X5R  
1000pF  
Manufacturer  
TI  
Part Number  
LM2735XMF  
U1  
C1, Input Cap  
TDK  
C2012X5R0J106K  
C2012X5R0J106K  
C1608X5R1H102K  
STPS120M  
C2, Output Cap  
TDK  
C3 Comp Cap  
TDK  
D1, Catch Diode  
0.4Vf Schottky 1A, 20VR  
10µH 1.2A  
ST  
L1  
R1  
R2  
R3  
Coilcraft  
Vishay  
Vishay  
Vishay  
DO1608C-103ML  
CRCW08051002F  
CRCW08053012F  
CRCW06031003F  
10.0k, 1%  
30.1k, 1%  
100k, 1%  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
LM2735Y SOT-23 Design Example 7  
L
1
3
FB  
4
SHDN  
R
3
2
GND  
V
5V  
IN  
1
SW  
5
Vin  
D
1
C
C
R
3
1
2
C
2
R
LOAD  
R
1
Figure 44. LM2735Y (520kHz): Vin = 3V, Vout = 5V @ 750mA  
Part ID  
Part Value  
2.1A Boost Regulator  
22µF, 6.3V, X5R  
22µF, 6.3V, X5R  
1000pF  
Manufacturer  
TI  
Part Number  
U1  
LM2735YMF  
C1 Input Cap  
TDK  
C2012X5R0J226M  
C2012X5R0J226M  
C1608X5R1H102K  
STPS120M  
C2 Output Cap  
TDK  
C3 Comp Cap  
TDK  
D1, Catch Diode  
0.4Vf Schottky 1A, 20VR  
22µH 1.2A  
ST  
L1  
R1  
R2  
R3  
Coilcraft  
Vishay  
Vishay  
Vishay  
MSS5131-223ML  
CRCW08051002F  
CRCW08053012F  
CRCW06031003F  
10.0k, 1%  
30.1k, 1%  
100k, 1%  
36  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
LM2735X SOT-23 Design Example 8  
L
1
3
FB  
4
SHDN  
R
3
2
GND  
V
20V  
C
IN  
1
SW  
5
Vin  
D
1
C
R
3
1
2
C
2
R
LOAD  
R
1
Figure 45. LM2735X (1.6MHz): Vin = 3.3V, Vout = 20V @ 100mA  
Part ID  
Part Value  
2.1A Boost Regulator  
22µF, 6.3V, X5R  
4.7µF, 25V, X5R  
470pF  
Manufacturer  
TI  
Part Number  
LM2735XMF  
U1  
C1, Input Cap  
TDK  
C2012X5R0J226M  
C3216X5R1E475K  
C1608X5R1H471K  
MBR0530  
C2, Output Cap  
TDK  
C3 Comp Cap  
TDK  
D1, Catch Diode  
0.4Vf Schottky 500mA, 30VR  
10µH 1.2A  
Vishay  
Coilcraft  
Vishay  
Vishay  
Vishay  
L1  
R1  
R2  
R3  
DO1608C-103ML  
CRCW06031002F  
CRCW06031503F  
CRCW06031003F  
10.0k, 1%  
150k, 1%  
100k, 1%  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
LM2735Y SOT-23 Design Example 9  
L
1
3
FB  
4
SHDN  
R
3
2
GND  
V
20V  
IN  
1
SW  
5
Vin  
D
1
C
C
R
3
1
2
C
2
R
LOAD  
R
1
Figure 46. LM2735Y (520kHz): Vin = 3.3V, Vout = 20V @ 100mA  
Part ID  
Part Value  
2.1A Boost Regulator  
22µF, 6.3V, X5R  
10µF, 25V, X5R  
470pF  
Manufacturer  
TI  
Part Number  
LM2735YMF  
U1  
C1 Input Cap  
TDK  
C2012X5R0J226M  
C3216X5R1E106M  
C1608X5R1H471K  
MBR0530  
C2 Output Cap  
TDK  
C3 Comp Cap  
TDK  
D1, Catch Diode  
0.4Vf Schottky 500mA, 30VR  
33µH 1.5A  
Vishay  
Coilcraft  
Vishay  
Vishay  
Vishay  
L1  
R1  
R2  
R3  
DS3316P-333ML  
CRCW06031002F  
CRCW06031503F  
CRCW06031003F  
10.0k, 1%  
150.0k, 1%  
100k, 1%  
38  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
LM2735X WSON Design Example 10  
V
IN  
L
1
D
LM2735  
1
R
3
1
2
6
5
C
R
R
C
2
2
C
1
5
R
LOAD  
C
3
4
3
C
4
1
Figure 47. LM2735X (1.6MHz): Vin = 3.3V, Vout = 20V @ 150mA  
Part ID  
U1  
Part Value  
2.1A Boost Regulator  
22µF, 6.3V, X5R  
22µF, 6.3V, X5R  
10µF, 25V, X5R  
No Load  
Manufacturer  
Part Number  
LM2735XSD  
TI  
C1 Input Cap  
C2 Input Cap  
TDK  
TDK  
TDK  
C2012X5R0J226M  
C2012X5R0J226M  
C3216X5R1E106M  
C3 Output Cap  
C4 Output Cap  
C5 Comp Cap  
470pF  
TDK  
Vishay  
Coilcraft  
Vishay  
Vishay  
Vishay  
C1608X5R1H471K  
MBR0530  
D1, Catch Diode  
0.4Vf Schottky 500mA, 30VR  
8.2µH 2A  
L1  
R1  
R2  
R3  
DO1813H-822ML  
CRCW06031002F  
CRCW06031503F  
CRCW06031003F  
10.0k, 1%  
150k, 1%  
100k, 1%  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
LM2735Y WSON Design Example 11  
V
IN  
L
1
D
LM2735  
1
R
3
1
2
6
5
C
R
R
C
2
2
C
1
5
R
LOAD  
C
3
4
3
C
4
1
Figure 48. LM2735Y (520kHz): Vin = 3.3V, Vout = 20V @ 150mA  
Part ID  
U1  
Part Value  
2.1A Boost Regulator  
10µF, 6.3V, X5R  
10µF, 6.3V, X5R  
10µF, 25V, X5R  
No Load  
Manufacturer  
Part Number  
LM2735YSD  
TI  
C1 Input Cap  
C2 Input Cap  
TDK  
TDK  
TDK  
C2012X5R0J106K  
C2012X5R0J106K  
C3216X5R1E106M  
C3 Output Cap  
C4 Output Cap  
C5 Comp Cap  
470pF  
TDK  
Vishay  
Coilcraft  
Vishay  
Vishay  
Vishay  
C1608X5R1H471K  
MBR0530  
D1, Catch Diode  
0.4Vf Schottky 500mA, 30VR  
22µH 1.5A  
L1  
R1  
R2  
R3  
DS3316P-223ML  
CRCW06031002F  
CRCW06031503F  
CRCW06031003F  
10.0k, 1%  
150k, 1%  
100k, 1%  
40  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
LM2735X WSON SEPIC Design Example 12  
V
IN  
VO  
L
1
D
1
C
6
LM2735  
L
2
1
2
3
6
5
4
R2  
C
5
C
3
C
4
R
3
R
1
C
1
C
2
Figure 49. LM2735X (1.6MHz): Vin = 2.7V - 5V, Vout = 3.3V @ 500mA  
Part ID  
Part Value  
2.1A Boost Regulator  
22µF, 6.3V, X5R  
No Load  
Manufacturer  
Part Number  
LM2735XSD  
U1  
TI  
C1 Input Cap  
TDK  
C2012X5R0J226M  
C2 Input Cap  
C3 Output Cap  
10µF, 25V, X5R  
No Load  
TDK  
C3216X5R1E106M  
C4 Output Cap  
C5 Comp Cap  
2200pF  
TDK  
TDK  
C1608X5R1H222K  
C2012X5R1C225K  
STPS120M  
C6  
2.2µF 16V  
D1, Catch Diode  
0.4Vf Schottky 1A, 20VR  
6.8µH  
ST  
L1  
L2  
Coilcraft  
Coilcraft  
Vishay  
Vishay  
Vishay  
DO1608C-682ML  
DO1608C-682ML  
CRCW06031002F  
CRCW06031652F  
CRCW06031003F  
6.8µH  
R1  
R2  
R3  
10.2k, 1%  
16.5k, 1%  
100k, 1%  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
LM2735Y MSOP-PowerPAD SEPIC Design Example 13  
V
IN  
L1  
D
C
1
6
R
3
LM2735  
1
2
3
4
NC  
8
7
6
5
NC  
SW  
C
C
2
1
R
R
PGND  
VIN  
EN  
2
1
C
5
L
2
AGND  
FB  
R
LOAD  
C
C
4
3
Figure 50. LM2735Y (520kHz): Vin = 2.7V - 5V, Vout = 3.3V @ 500mA  
Part ID  
Part Value  
2.1A Boost Regulator  
22µF, 6.3V, X5R  
No Load  
Manufacturer  
Part Number  
LM2735YMY  
U1  
TI  
C1 Input Cap  
C2 Input Cap  
TDK  
C2012X5R0J226M  
C3 Output Cap  
10µF, 25V, X5R  
No Load  
TDK  
C3216X5R1E106M  
C4 Output Cap  
C5 Comp Cap  
2200pF  
TDK  
TDK  
C1608X5R1H222K  
C2012X5R1C225K  
STPS120M  
C6  
2.2µF 16V  
D1, Catch Diode  
0.4Vf Schottky 1A, 20VR  
15µH 1.5A  
ST  
L1  
L2  
Coilcraft  
Coilcraft  
Vishay  
Vishay  
Vishay  
MSS5131-153ML  
MSS5131-153ML  
CRCW06031002F  
CRCW06031652F  
CRCW06031003F  
15µH 1.5A  
R1  
R2  
R3  
10.2k, 1%  
16.5k, 1%  
100k, 1%  
42  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
LM2735X SOT-23 LED Design Example 14  
L
1
3
FB  
2
4
R
SHDN  
3
C
2
D
1
Vin  
1
5
SW  
Vin  
C
1
R
1
R
2
DIM-CTRL  
Figure 51. LM2735X (1.6MHz): Vin = 2.7V - 5V, Vout = 20V @ 50mA  
Part ID  
Part Value  
2.1A Boost Regulator  
22µF, 6.3V, X5R  
4.7µF, 25V, X5R  
0.4Vf Schottky 500mA, 30VR  
15µH 1.5A  
Manufacturer  
TI  
Part Number  
LM2735XMF  
U1  
C1 Input Cap  
TDK  
C2012X5R0J226M  
C3216JB1E475K  
MBR0530  
C2 Output Cap  
TDK  
D1, Catch Diode  
Vishay  
Coilcraft  
Vishay  
Vishay  
Vishay  
L1  
R1  
R2  
R3  
MSS5131-153ML  
CRCW080525R5F  
CRCW08051000F  
CRCW06031003F  
25.5, 1%  
100, 1%  
100k, 1%  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
LM2735Y WSON FlyBack Design Example 15  
+
12V  
D
1
R
R
2
1
C
f
T
1
R
LOAD  
V
IN  
C
2
LM2735  
R
3
C
1
2
6
5
3
R
LOAD  
C
1
D
2
-
12V  
3
4
Figure 52. LM2735Y (520kHz): Vin = 5V, Vout = ±12V 150mA  
Part ID  
Part Value  
2.1A Boost Regulator  
22µF, 6.3V, X5R  
10µF, 25V, X5R  
Manufacturer  
TI  
Part Number  
U1  
LM2735YSD  
C1 Input Cap  
TDK  
C2012X5R0J226M  
C3216X5R1E106M  
C3216X5R1E106M  
C1608X5R1H331K  
MBR0530  
C2 Output Cap  
TDK  
C3 Output Cap  
10µF, 25V, X5R  
TDK  
Cf Comp Cap  
330pF  
TDK  
D1, D2 Catch Diode  
0.4Vf Schottky 500mA, 30VR  
Vishay  
T1  
R1  
R2  
R3  
10.0k, 1%  
86.6k, 1%  
100k, 1%  
Vishay  
Vishay  
Vishay  
CRCW06031002F  
CRCW06038662F  
CRCW06031003F  
44  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
LM2735X SOT-23 LED Design Example 16  
VRAIL > 5.5V Application  
D
L
1
1
VPWR  
R
2
LM2735  
C
EN  
4
C
1
R
4
4
5
3
2
1
R
3
C
2
R
1
D
C
2
3
Figure 53. LM2735X (1.6MHz): VPWR = 9V, Vout = 12V @ 500mA  
Part ID  
Part Value  
2.1A Boost Regulator  
10µF, 6.3V, X5R  
10µF, 25V, X5R  
0.1µF, 6.3V, X5R  
1000pF  
Manufacturer  
TI  
Part Number  
LM2735XMF  
U1  
C1, Input Cap  
TDK  
C2012X5R0J106K  
C3216X5R1E106M  
C2012X5R0J104K  
C1608X5R1H102K  
STPS120M  
C2, Output Cap  
TDK  
C3 VIN Cap  
TDK  
C4 Comp Cap  
TDK  
D1, Catch Diode  
0.4Vf Schottky 1A, 20VR  
3.3V Zener, SOT-23  
6.8µH 2A  
ST  
D2  
L1  
Diodes Inc  
Coilcraft  
Vishay  
Vishay  
Vishay  
Vishay  
BZX84C3V3  
DO1813H-682ML  
CRCW08051002F  
CRCW08058662F  
CRCW06031003F  
CRCW06034991F  
R1  
R2  
R3  
R4  
10.0k, 1%  
86.6k, 1%  
100k, 1%  
499, 1%  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LM2735  
LM2735  
SNVS485F JUNE 2007REVISED APRIL 2013  
www.ti.com  
LM2735X SOT-23 LED Design Example 17  
Two Input Voltage Rail Application  
D
L
1
1
VPWR  
C
R
R
LM2735  
EN  
4
2
C
1
4
5
3
2
1
R
3
C
2
1
VIN  
C
3
Figure 54. LM2735X (1.6MHz): VPWR = 9V in = 2.7V - 5.5V, Vout = 12V @ 500mA  
Part ID  
U1  
Part Value  
2.1A Boost Regulator  
10µF, 6.3V, X5R  
10µF, 25V, X5R  
0.1µF, 6.3V, X5R  
1000pF  
Manufacturer  
TI  
Part Number  
LM2735XMF  
C2012X5R0J106K  
C3216X5R1E106M  
C2012X5R0J104K  
C1608X5R1H102K  
STPS120M  
C1, Input Cap  
C2, Output Cap  
C3 VIN Cap  
C4 Comp Cap  
D1, Catch Diode  
L1  
TDK  
TDK  
TDK  
TDK  
0.4Vf Schottky 1A, 20VR  
6.8µH 2A  
ST  
Coilcraft  
Vishay  
Vishay  
Vishay  
DO1813H-682ML  
CRCW08051002F  
CRCW08058662F  
CRCW06031003F  
R1  
10.0k, 1%  
R2  
86.6k, 1%  
R3  
100k, 1%  
46  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM2735  
 
LM2735  
www.ti.com  
SNVS485F JUNE 2007REVISED APRIL 2013  
REVISION HISTORY  
Changes from Revision E (April 2013) to Revision F  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 46  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: LM2735  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
LM2735XMF/NOPB  
LM2735XMFX/NOPB  
LM2735XMY/NOPB  
LM2735XMYX/NOPB  
LM2735XQMF/NOPB  
LM2735XQMFX/NOPB  
LM2735XSD/NOPB  
LM2735XSDX/NOPB  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOT-23  
SOT-23  
DBV  
5
5
8
8
5
5
6
6
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
SLEB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DBV  
DGN  
DGN  
DBV  
DBV  
NGG  
NGG  
3000  
1000  
3500  
1000  
3000  
1000  
4500  
Green (RoHS  
& no Sb/Br)  
SLEB  
SRJB  
SRJB  
SVDB  
SVDB  
2735X  
2735X  
MSOP-  
PowerPAD  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
Green (RoHS  
& no Sb/Br)  
SOT-23  
SOT-23  
WSON  
WSON  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
LM2735YMF  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
5
5
1000  
1000  
TBD  
Call TI  
CU SN  
Call TI  
SLFB  
SLFB  
LM2735YMF/NOPB  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LM2735YMFX/NOPB  
LM2735YMY/NOPB  
LM2735YMYX/NOPB  
LM2735YQMF/NOPB  
LM2735YQMFX/NOPB  
LM2735YQSD/NOPB  
LM2735YQSDX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
DBV  
DGN  
DGN  
DBV  
DBV  
NGG  
NGG  
5
8
8
5
5
6
6
3000  
1000  
3500  
1000  
3000  
1000  
4500  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
SLFB  
SRKB  
SRKB  
SXUB  
SXUB  
L283B  
L283B  
MSOP-  
PowerPAD  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
Green (RoHS  
& no Sb/Br)  
SOT-23  
SOT-23  
WSON  
WSON  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LM2735YSD/NOPB  
LM2735YSDX/NOPB  
ACTIVE  
WSON  
WSON  
NGG  
6
6
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
Level-1-260C-UNLIM  
2735Y  
2735Y  
ACTIVE  
NGG  
4500  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM2735, LM2735-Q1 :  
Catalog: LM2735  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Automotive: LM2735-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM2735XMF/NOPB  
LM2735XMFX/NOPB  
LM2735XMY/NOPB  
SOT-23  
SOT-23  
DBV  
DBV  
DGN  
5
5
8
1000  
3000  
1000  
178.0  
178.0  
178.0  
8.4  
8.4  
3.2  
3.2  
5.3  
3.2  
3.2  
3.4  
1.4  
1.4  
1.4  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
MSOP-  
Power  
PAD  
12.4  
12.0  
LM2735XMYX/NOPB  
LM2735XQMF/NOPB  
MSOP-  
Power  
PAD  
DGN  
8
3500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
SOT-23  
DBV  
DBV  
NGG  
NGG  
DBV  
DBV  
DBV  
DGN  
5
5
6
6
5
5
5
8
1000  
3000  
1000  
4500  
1000  
1000  
3000  
1000  
178.0  
178.0  
178.0  
330.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
3.2  
3.2  
3.3  
3.3  
3.2  
3.2  
3.2  
5.3  
3.2  
3.2  
3.3  
3.3  
3.2  
3.2  
3.2  
3.4  
1.4  
1.4  
1.0  
1.0  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
8.0  
8.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q1  
Q3  
Q3  
Q3  
Q1  
LM2735XQMFX/NOPB SOT-23  
LM2735XSD/NOPB  
LM2735XSDX/NOPB  
LM2735YMF  
WSON  
WSON  
SOT-23  
SOT-23  
SOT-23  
12.4  
12.4  
8.4  
12.0  
12.0  
8.0  
LM2735YMF/NOPB  
LM2735YMFX/NOPB  
LM2735YMY/NOPB  
8.4  
8.0  
8.4  
8.0  
MSOP-  
Power  
PAD  
12.4  
12.0  
LM2735YMYX/NOPB  
MSOP-  
Power  
DGN  
8
3500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PAD  
LM2735YQMF/NOPB  
SOT-23  
DBV  
DBV  
NGG  
NGG  
NGG  
NGG  
5
5
6
6
6
6
1000  
3000  
1000  
4500  
1000  
4500  
178.0  
178.0  
178.0  
330.0  
178.0  
330.0  
8.4  
8.4  
3.2  
3.2  
3.3  
3.3  
3.3  
3.3  
3.2  
3.2  
3.3  
3.3  
3.3  
3.3  
1.4  
1.4  
1.0  
1.0  
1.0  
1.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
LM2735YQMFX/NOPB SOT-23  
LM2735YQSD/NOPB  
LM2735YQSDX/NOPB  
LM2735YSD/NOPB  
LM2735YSDX/NOPB  
WSON  
WSON  
WSON  
WSON  
12.4  
12.4  
12.4  
12.4  
12.0  
12.0  
12.0  
12.0  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM2735XMF/NOPB  
LM2735XMFX/NOPB  
LM2735XMY/NOPB  
LM2735XMYX/NOPB  
LM2735XQMF/NOPB  
LM2735XQMFX/NOPB  
LM2735XSD/NOPB  
LM2735XSDX/NOPB  
LM2735YMF  
SOT-23  
SOT-23  
DBV  
DBV  
DGN  
DGN  
DBV  
DBV  
NGG  
NGG  
DBV  
DBV  
5
5
8
8
5
5
6
6
5
5
1000  
3000  
1000  
3500  
1000  
3000  
1000  
4500  
1000  
1000  
210.0  
210.0  
210.0  
367.0  
210.0  
210.0  
210.0  
367.0  
210.0  
210.0  
185.0  
185.0  
185.0  
367.0  
185.0  
185.0  
185.0  
367.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
MSOP-PowerPAD  
MSOP-PowerPAD  
SOT-23  
SOT-23  
WSON  
WSON  
SOT-23  
LM2735YMF/NOPB  
SOT-23  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM2735YMFX/NOPB  
LM2735YMY/NOPB  
LM2735YMYX/NOPB  
LM2735YQMF/NOPB  
LM2735YQMFX/NOPB  
LM2735YQSD/NOPB  
LM2735YQSDX/NOPB  
LM2735YSD/NOPB  
LM2735YSDX/NOPB  
SOT-23  
MSOP-PowerPAD  
MSOP-PowerPAD  
SOT-23  
DBV  
DGN  
DGN  
DBV  
DBV  
NGG  
NGG  
NGG  
NGG  
5
8
8
5
5
6
6
6
6
3000  
1000  
3500  
1000  
3000  
1000  
4500  
1000  
4500  
210.0  
210.0  
367.0  
210.0  
210.0  
210.0  
367.0  
210.0  
367.0  
185.0  
185.0  
367.0  
185.0  
185.0  
185.0  
367.0  
185.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
SOT-23  
WSON  
WSON  
WSON  
WSON  
Pack Materials-Page 3  
MECHANICAL DATA  
DGN0008A  
MUY08A (Rev A)  
BOTTOM VIEW  
www.ti.com  
MECHANICAL DATA  
NGG0006A  
SDE06A (Rev A)  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LM2735YQMFX/NOPB

LM2735/LM2735-Q1 520kHz/1.6MHz – Space-Efficient Boost and SEPIC DC-DC Regulator
TI

LM2735YQSD/NOPB

LM2735/LM2735-Q1 520kHz/1.6MHz – Space-Efficient Boost and SEPIC DC-DC Regulator
TI

LM2735YQSDX/NOPB

LM2735/LM2735-Q1 520kHz/1.6MHz – Space-Efficient Boost and SEPIC DC-DC Regulator
TI

LM2735YSD

520kHz/1.6MHz - Space-Efficient Boost and SEPIC DC-DC Regulator
NSC

LM2735YSD/NOPB

LM2735/LM2735-Q1 520kHz/1.6MHz – Space-Efficient Boost and SEPIC DC-DC Regulator
TI

LM2735YSDX

520kHz/1.6MHz - Space-Efficient Boost and SEPIC DC-DC Regulator
NSC

LM2735YSDX/NOPB

LM2735/LM2735-Q1 520kHz/1.6MHz – Space-Efficient Boost and SEPIC DC-DC Regulator
TI

LM2735YSDX/NOPB

IC 3 A SWITCHING REGULATOR, 680 kHz SWITCHING FREQ-MAX, DSO6, LLP-6, Switching Regulator or Controller
NSC

LM2735_08

520kHz/1.6MHz - Space-Efficient Boost and SEPIC DC-DC Regulator
NSC

LM2735_15

LM2735-xx 520-kHz and 1.6-MHz Space-Efficient Boost and SEPIC DC-DC Regulator
TI

LM2736

Thin SOT23 750mA Load Step-Down DC-DC Regulator
NSC

LM2736

LM2736 Thin SOT 750mA Load Step-Down DC-DC Regulator
TI