LM27761 [TI]

具有集成 LDO 的低噪声稳压逆变器;
LM27761
型号: LM27761
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成 LDO 的低噪声稳压逆变器

文件: 总27页 (文件大小:2760K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM27761  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
LM27761 低噪声稳压开关电容器电压逆变器  
1 特性  
3 说明  
1
对输入电源电压进行反相和稳压  
LM27761 低噪声稳压开关电容器电压逆变器可针对  
2.7V 5.5V 范围内的输入电压,提供可调节的超低  
噪声输出。在应用解决方案中使用四个低成本电容器,  
可以提供高达 250mA 的输出电流。该器件的稳压输出  
可在 5V 1.5V 范围内进行调节。LM27761 以  
2MHz(典型值)开关频率运行,以减小输出电阻和电  
压波纹。LM27761 的工作电流仅为 370µA(对于大多  
数负载,电荷泵功率效率均高于 80%)并且关断电流  
典型值为 7µA,因此在驱动功率放大器、DAC 偏置电  
源轨以及其他大电流、低噪声电压应用时, 可提供理  
想的性能。  
低输出波纹  
关断时可使静态电流降至 7µA(典型值)  
输出电流高达 250mA  
2.5逆变器输出阻抗,VIN = 5V  
峰值负载时的稳定度为 ±4%  
370µA 静态电流  
2MHz(典型值)固定频率、低噪声运行  
2MHz 频率时的低压降稳压器 (LDO) 电源抑制比  
(PSRR) 35dB(典型值),  
负载电流为 80mA  
100mA 电流时的 LDO 压降电压为 30mV,  
VOUT = –5V  
器件信息(1)  
器件型号  
LM27761  
封装  
WSON (8)  
封装尺寸(标称值)  
限流和热保护  
使用 LM27761 并借助 WEBENCH® 电源设计器创  
建定制设计  
2.00mm x 2.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
运算放大器电源  
无线通信系统  
手机功率放大器偏置  
接口电源  
手持式仪表  
高保真 (Hi-Fi) 耳机放大器  
为数据转换器供电  
典型应用  
LM27761  
VIN  
EN  
VOUT  
C2  
4.7 µF  
R1  
R2  
C4  
2.2 µF  
VFB  
C1+  
C1-  
CPOUT  
C3  
4.7 µF  
C1  
1 µF  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSA85  
 
 
 
 
 
 
LM27761  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
8.1 Application Information............................................ 11  
8.2 Typical Application - Regulated Voltage Inverter.... 11  
Power Supply Recommendations...................... 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................. 10  
8
9
10 Layout................................................................... 16  
10.1 Layout Guidelines ................................................. 16  
10.2 Layout Example .................................................... 17  
11 器件和文档支持 ..................................................... 18  
11.1 器件支持................................................................ 18  
11.2 接收文档更新通知 ................................................. 18  
11.3 社区资源................................................................ 18  
11.4 ....................................................................... 18  
11.5 静电放电警告......................................................... 18  
11.6 Glossary................................................................ 18  
12 机械、封装和可订购信息....................................... 18  
7
4 修订历史记录  
Changes from Revision B (February 2016) to Revision C  
Page  
已添加 WEBENCH 链接 ......................................................................................................................................................... 1  
Changes from Revision A (December 2015) to Revision B  
Page  
已更改 典型应用图中位置颠倒的“C1”“C2” .......................................................................................................................... 1  
Deleted footnote 3 to Abs Max table ..................................................................................................................................... 4  
updated Specifications tables................................................................................................................................................. 4  
已添加 Condition statement for Typical Charcteristics ........................................................................................................... 6  
已更改 Figures 3 and 4; added Figures 16 through 18 ......................................................................................................... 8  
已更改 "... reducing the quiescent current to 1 µA" to "...reducing the quiescent current to 7 µA"...................................... 10  
已更改 "1-µA typical shutdown current" to "7-µA typical shutdown current" ........................................................................ 11  
已更改 "C2 is charging C3" to "C1 is charging C3".............................................................................................................. 12  
已更改 "VOUT" to "CPOUT" on Figure 20............................................................................................................................ 12  
已更改 "C2" to "C1" ............................................................................................................................................................. 13  
已更改 "RSW" to "(2 × RSW)" .................................................................................................................................................. 13  
已更改 equation 1 ................................................................................................................................................................ 13  
已更改 "–1.2 V" to "–1.22 V" ................................................................................................................................................ 13  
Changes from Original (October 2015) to Revision A  
Page  
已更改 器件文档形式,从单页产品预览改为完整的超前信息数据表 ...................................................................................... 1  
2
Copyright © 2015–2017, Texas Instruments Incorporated  
 
LM27761  
www.ti.com.cn  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
5 Pin Configuration and Functions  
DSG Package  
8-Pin WSON With Thermal Pad  
Top View  
1
8
7
6
5
2
3
4
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NUMBER  
NAME  
VIN  
1
2
3
4
P
G
P
P
P
Positive power supply input.  
Ground  
GND  
CPOUT  
VOUT  
Negative unregulated output voltage.  
Regulated negative output voltage.  
Feedback input. Connect VFB to an external resistor divider between VOUT and  
GND. DO NOT leave unconnected.  
5
VFB  
6
EN  
C1–  
I
Active high enable input.  
7
P
P
G
Negative terminal for C1.  
8
C1+  
Positive terminal for C1.  
Thermal Pad  
Ground. DO NOT leave unconnected.  
(1) P: Power; G: Ground; I: Input.  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
LM27761  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
5.8  
UNIT  
Ground voltage, VIN to GND or GND to VOUT  
EN  
V
(GND 0.3 V)  
(VIN + 0.3 V)  
300  
Continuous output current, CPOUT and VOUT  
mA  
°C  
(3)  
TJMAX  
150  
Storage temperature, Tstg  
–65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under . Exposure to  
absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the TI Sales Office/Distributors for availability and specifications.  
(3) The maximum power dissipation must be de-rated at elevated temperatures and is limited by TJMAX (maximum junction temperature), TA  
(ambient temperature) and RθJA (junction-to-ambient thermal resistance). The maximum power dissipation at any temperature is:  
PDissMAX = (TJMAX – TA)/RθJA up to the value listed in the Absolute Maximum Ratings.  
6.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
85  
UNIT  
Operating ambient temperature, TA  
Operating junction temperature, TJ  
Operating input voltage, VIN  
–40  
–40  
2.7  
0
°C  
°C  
V
125  
5.5  
Operating output current, IOUT  
250  
mA  
6.4 Thermal Information  
LM27761  
THERMAL METRIC(1)  
WSON (DSG)  
UNIT  
8 PINS  
67.7  
89.9  
37.6  
2.4  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
38  
RθJC(bot)  
9.4  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
LM27761  
www.ti.com.cn  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
6.5 Electrical Characteristics  
Typical limits apply for TA = 25°C, and minimum and maximum limits apply over the full temperature range. Unless otherwise  
specified, VIN = 5 V and values for C1 to C4 are as shown in the 典型应用.  
PARAMETER  
Supply current  
TEST CONDITIONS  
Open circuit, no load  
MIN  
TYP  
370  
7
MAX  
600  
12  
UNIT  
µA  
Iq  
ISD  
Shutdown supply current  
Switching frequency  
µA  
ƒSW  
RNEG  
VDO  
PSRR  
VN  
VIN = 3.6 V  
1.7  
2
2.3  
MHz  
Ω
Output resistance to CPOUT  
LDO dropout voltage  
VIN = 5.5 V  
2
ILOAD = 100 mA, VOUT = 5 V  
ILOAD = 80 mA, VCPOUT = 5 V  
ILOAD = 80 mA, 10 Hz to 100 kHz  
30  
35  
20  
1.22  
mV  
dB  
Power supply rejection ratio  
Output noise voltage  
µVRMS  
V
VFB  
VOUT  
Feedback pin reference voltage  
Adjustable output voltage  
Load regulation  
1.202  
–5  
1.238  
–1.5  
5.5 V VIN 2.7 V  
0 to 250 mA, VOUT = 1.8 V  
5.5 V VIN 2.7 V, ILOAD = 50 mA  
5.5 V VIN 2.7 V  
5.5 V VIN 2.7 V  
VIN falling  
V
4.6  
1.5  
µV/mA  
mV/V  
V
Line regulation  
VIH  
VIL  
Enable pin input voltage high  
Enable pin input voltage low  
1.2  
0.4  
V
2.6  
2.4  
UVLO  
Undervoltage lockout  
V
VIN rising  
版权 © 2015–2017, Texas Instruments Incorporated  
5
LM27761  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
Unless otherwise specified, TA = 25°C, VIN = 5 V, and values for C1 to C4 are as shown in the 典型应用.  
3.5  
3
2
1.8  
1.6  
1.4  
1.2  
1
2.5  
2
1.5  
1
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
VIN = 3 V, VOUT = -1.8 V  
VIN = 5.5 V, VOUT = -5 V  
0
50  
100  
150  
200  
250  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.5  
Output Current (mA)  
VIN (V)  
D001  
D002  
VOUT = –1.8 V  
IOUT = 100 mA  
1. Output Voltage Ripple vs Output Current  
2. Output Voltage Ripple vs Input Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
10  
9
8
7
6
5
4
3
2
1
0
25°C  
85°C  
-40°C  
25èC  
85èC  
-40èC  
0
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.5  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.7  
VIN (V)  
VIN (V)  
D015  
D016  
EN = 1  
ILOAD = 0 mA  
EN = 0  
3. Quiescent Current  
4. Shutdown Current  
-1.75  
-4.8  
-4.85  
-4.9  
25°C  
85°C  
-40°C  
-1.77  
-1.79  
-1.81  
-1.83  
-1.85  
-4.95  
-5  
-5.05  
-5.1  
25°C  
85°C  
-40°C  
-5.15  
-5.2  
0.001  
0.01  
0.1  
0.25  
0.001  
0.01  
0.1  
1
IOUT (A)  
IOUT (A)  
D006  
D007  
VIN = 3 V  
R1 = 237 kΩ  
VOUT = –1.8 V  
VIN = 5.5 V  
R1 = 1.54 MΩ  
VOUT = –5 V  
R2 = 500 kΩ  
R2 = 500 kΩ  
5. Load Regulation  
6. Load Regulation  
6
版权 © 2015–2017, Texas Instruments Incorporated  
LM27761  
www.ti.com.cn  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
Typical Characteristics (接下页)  
Unless otherwise specified, TA = 25°C, VIN = 5 V, and values for C1 to C4 are as shown in the 典型应用.  
-3.2  
-3.25  
-3.3  
-3.35  
-3.4  
0.001  
VIN = 5 V  
0.01  
IOUT (A)  
0.1  
0.25  
D011  
VIN = 3 V  
VOUT = –1.8 V  
IOUT = 250 mA  
VOUT = –3.3 V  
R1 = 856 kΩ  
R2 = 500 kΩ  
8. Output Voltage Ripple  
7. Load Regulation  
VIN = 5.5 V  
VOUT = –5 V  
IOUT = 250 mA  
9. Output Voltage Ripple  
10. Enable High  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = -5 V  
VOUT = -3 V  
VOUT = -3.3 V  
VOUT = -4.5 V  
0
50  
100  
150  
200  
250  
IOUT (mA)  
D008  
12. LDO Dropout Voltage vs IOUT  
11. Enable Low  
版权 © 2015–2017, Texas Instruments Incorporated  
7
LM27761  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
Unless otherwise specified, TA = 25°C, VIN = 5 V, and values for C1 to C4 are as shown in the 典型应用.  
-1.77  
-1.78  
-1.79  
-1.8  
-1.77  
-1.78  
-1.79  
-1.8  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
-1.81  
-1.82  
-1.83  
-1.81  
-1.82  
-1.83  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.5  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.5  
VIN (V)  
VIN (V)  
D012  
D013  
VOUT = –1.8 V  
IOUT = 50 mA  
VOUT = –1.8 V  
IOUT = 100 mA  
R1 = 237 kΩ  
R2 = 500 kΩ  
R1 = 237 kΩ  
R2 = 500 kΩ  
13. Line Regulation  
14. Line Regulation  
-1.78  
25°C  
85°C  
-40°C  
-1.79  
-1.8  
-1.81  
-1.82  
-1.83  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.5  
VIN (V)  
D014  
VOUT = –1.8  
IOUT = 250 mA  
R1 = 237 kΩ  
R2 = 500 kΩ  
15. Line Regulation  
8
版权 © 2015–2017, Texas Instruments Incorporated  
LM27761  
www.ti.com.cn  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
7 Detailed Description  
7.1 Overview  
The LM27761 regulated charge-pump voltage converter inverts a positive voltage in the range of 2.7 V to 5.5 V  
to a negative voltage in the range of –1.5 V to –5 V. The negative LDO (low drop-out regulator), at the output of  
the charge-pump voltage converter, allows the device to provide a very low noise output, low output-voltage  
ripple, high PSRR, and low line and load transient responses. The output is externally configurable with gain-  
setting resistors. The LM27761 uses four low-cost capacitors to deliver up to 250 mA of output current.  
7.2 Functional Block Diagram  
VIN  
Current Limit  
C1+  
Switch Array Switch  
2-MHz  
Oscillator  
Drivers  
C1-  
CPOUT  
EN  
GND  
Reference  
LPF  
VOUT  
Negative  
Bandgap  
LPF  
VFB  
LDO  
版权 © 2015–2017, Texas Instruments Incorporated  
9
LM27761  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Undervoltage Lockout  
The LM27761 has an internal comparator that monitors the voltage at VIN and forces the device into shutdown if  
the input voltage drops to 2.4 V. If the input voltage rises above 2.6 V, the LM27761 resumes normal operation.  
7.3.2 Input Current Limit  
The LM27761 contains current limit circuitry that protects the device in the event of excessive input current  
and/or output shorts to ground. The input current is limited to 500 mA (typical) when the output is shorted directly  
to ground. When the LM27761 is current limiting, power dissipation in the device is likely to be quite high. In this  
event, thermal cycling is expected.  
7.3.3 PFM Operation  
To minimize quiescent current during light load operation, the LM27761 allows PFM or pulse-skipping operation.  
By allowing the charge pump to switch less when the output current is low, the quiescent current drawn from the  
power source is minimized. The frequency of pulsed operation is not limited and can drop into the sub-2-kHz  
range when unloaded. As the load increases, the frequency of pulsing increases until it transitions to constant  
frequency. The fundamental switching frequency in the LM27761 is 2 MHz.  
7.3.4 Output Discharge  
In shutdown, the LM27761 actively pulls down on the output of the device until the output voltage reaches GND.  
In this mode, the current drawn from the output is approximately 1.85 mA.  
7.3.5 Thermal Shutdown  
The LM27761 implements a thermal shutdown mechanism to protect the device from damage due to  
overheating. When the junction temperature rises to 150°C (typical), the device switches into shutdown mode.  
The LM27761 releases thermal shutdown when the junction temperature is reduced to 130°C (typical).  
Thermal shutdown is most often triggered by self-heating, which occurs when there is excessive power  
dissipation in the device and/or insufficient thermal dissipation. The LM27761 device power dissipation increases  
with increased output current and input voltage. When self-heating brings on thermal shutdown, thermal cycling  
is the typical result. Thermal cycling is the repeating process where the part self-heats, enters thermal shutdown  
(where internal power dissipation is practically zero), cools, turns on, and then heats up again to the thermal  
shutdown threshold. Thermal cycling is recognized by a pulsing output voltage and can be stopped by reducing  
the internal power dissipation (reduce input voltage and/or output current) or the ambient temperature. If thermal  
cycling occurs under desired operating conditions, thermal dissipation performance must be improved to  
accommodate the power dissipation of the device.  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
An enable pin (EN) pin is available to disable the device and place the LM27761 into shutdown mode reducing  
the quiescent current to 7 µA. In shutdown, the output of the LM27761 is pulled to ground by an internal pullup  
current source (approximately 1.85 mA).  
7.4.2 Enable Mode  
Applying a voltage greater than 1.2 V to the EN pin brings the device into enable mode. When unloaded, the  
input current during operation is 370 µA. As the load current increases, so does the quiescent current. When  
enabled, the output voltage is equal to the inverse of the input voltage minus the voltage drop across the charge  
pump.  
10  
版权 © 2015–2017, Texas Instruments Incorporated  
LM27761  
www.ti.com.cn  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM27761 low-noise charge-pump voltage converter inverts a positive voltage in the range of 2.7 V to 5.5 V  
to a negative output voltage configurable with external gain setting resistors. The device uses four low-cost  
capacitors to provide up to 250 mA of output current. The LM27761 operates at a 2-MHz oscillator frequency to  
reduce charge-pump output resistance and voltage ripple under heavy loads. With an operating current of only  
370 µA and 7-µA typical shutdown current, the LM27761 provides ideal performance for battery-powered  
systems.  
8.2 Typical Application - Regulated Voltage Inverter  
LM27761  
VIN  
EN  
VOUT  
C2  
4.7 µF  
R1  
R2  
C4  
2.2 µF  
VFB  
C1+  
C1-  
CPOUT  
C3  
4.7 µF  
C1  
1 µF  
GND  
16. LM27761 Typical Application  
8.2.1 Design Requirements  
Example requirements for typical applications using the LM27761 device are listed in 1:  
1. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
2.7 V to 5.5 V  
–1.5 V to –5 V  
0 mA to 250 mA  
2 MHz  
Output voltage  
Output current  
Boost switching frequency  
版权 © 2015–2017, Texas Instruments Incorporated  
11  
 
LM27761  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM27761 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Charge-Pump Voltage Inverter  
The main application of the LM27761 is to generate a regulated negative supply voltage. The voltage inverter  
circuit uses only three external capacitors, and the LDO regulator circuit uses one additional output capacitor.  
The voltage inverter portion of the LM27761 contains four large CMOS switches which are switched in sequence  
to invert the input supply voltage. Energy transfer and storage are provided by external capacitors. 17 shows  
the voltage switches S2 and S4 are open. In the second time interval, S1 and S3 are open; at the same time, S2  
and S4 are closed, and C1 is charging C3. After a number of cycles, the voltage across C3 is pumped into VIN.  
Because the anode of C3 is connected to ground, the output at the cathode of C3 equals –(VIN) when there is no  
load current. When a load is added the output voltage dropis determined by the parasitic resistance (RDSON of the  
MOSFET switches and the equivalent series resistance (ESR) of the capacitors) and the charge transfer loss  
between the capacitors.  
S1  
C1+  
S2  
VIN  
CIN  
GND  
C1  
COUT  
GND  
S3  
S4  
C1-  
CPOUT  
OSC.  
2 MHz  
+
PFM COMP  
VIN  
17. Voltage Inverting Principle  
12  
版权 © 2015–2017, Texas Instruments Incorporated  
 
LM27761  
www.ti.com.cn  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
The output characteristic of this circuit can be approximated by an ideal voltage source in series with a  
resistance. The voltage source equals –(VIN). The output resistance ROUT is a function of the ON resistance of  
the internal MOSFET switches, the oscillator frequency, the capacitance, and the ESR of C1 and C3. Because  
the switching current charging and discharging C1 is approximately twice as the output current, the effect of the  
ESR of the pumping capacitor C1 is multiplied by four in the output resistance. The charge-pump output  
capacitor C3 is charging and discharging at a current approximately equal to the output current; therefore, its  
ESR only counts once in the output resistance. A good approximation of charge-pump ROUT is shown in 公式 1:  
ROUT = (2 × RSW) + [1 / (ƒSW × C)] + (4 × ESRC1) + ESRCOUT  
where  
RSW is the sum of the ON resistance of the internal MOSFET switches shown in 17.  
(1)  
High capacitance and low-ESR ceramic capacitors reduce the output resistance.  
8.2.2.3 Negative Low-Dropout Linear Regulator  
At the output of the inverting charge-pump the LM27761 features a low-dropout, linear negative voltage regulator  
(LDO). The LDO output is rated for a current of 250 mA. This negative LDO allows the device to provide a very  
low noise output, low output voltage ripple, high PSRR, and low line or load transient response.  
8.2.2.4 Power Dissipation  
The allowed power dissipation for any package is a measure of the ability of the device to pass heat from the  
junctions of the device to the heatsink and the ambient environment. Thus, the power dissipation is dependent  
on the ambient temperature and the thermal resistance across the various interfaces between the die junction  
and ambient air.  
The maximum allowable power dissipation can be calculated by 公式 2:  
PD-MAX = (TJ-MAX – TA) / RθJA  
(2)  
The actual power being dissipated in the device can be represented by 公式 3:  
PD = PIN – POUT = [VIN × (–IOUT + IQ) – (VOUT × IOUT)]  
(3)  
公式 2 and 公式 3 establish the relationship between the maximum power dissipation allowed due to thermal  
consideration, the voltage drop across the device, and the continuous current capability of the device. These  
equations must be used to determine the optimum operating conditions for the device in a given application.  
In lower power dissipation applications the maximum ambient temperature (TA-MAX) may be increased. In higher  
power dissipation applications the maximum ambient temperature(TA-MAX) may have to be derated. TA-MAX can be  
calculated using 公式 4:  
TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX  
)
where  
TJ-MAX-OP = maximum operating junction temperature (125°C)  
PD-MAX = the maximum allowable power dissipation  
RθJA = junction-to-ambient thermal resistance of the package  
(4)  
Alternately, if TA-MAX cannot be derated, the power dissipation value must be reduced. This can be accomplished  
by reducing the input voltage as long as the minimum VIN is not violated, or by reducing the output current, or  
some combination of the two.  
8.2.2.5 Output Voltage Setting  
The output voltage of the LM27761 is externally configurable. The value of R1 and R2 determines the output  
voltage setting. The output voltage can be calculated using 公式 5:  
VOUT = –1.22 V × (R1 + R2) / R2  
(5)  
The value for R2 must be no less than 50 kΩ.  
版权 © 2015–2017, Texas Instruments Incorporated  
13  
 
 
 
 
 
LM27761  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
www.ti.com.cn  
8.2.2.6 External Capacitor Selection  
The LM27761 requires 4 external capacitors for proper operation. Surface-mount multi-layer ceramic capacitors  
are recommended. These capacitors are small, inexpensive, and have very low ESR (15 mΩ typical). Tantalum  
capacitors, OS-CON capacitors, and aluminum electrolytic capacitors generally are not recommended for use  
with the LM27761 due to their high ESR compared to ceramic capacitors.  
For most applications, ceramic capacitors with an X7R or X5R temperature characteristic are preferable for use  
with the LM27761. These capacitors have tight capacitance tolerances (as good as ±10%) and hold their value  
over temperature (X7R: ±15% over –55°C to +125°C; X5R ±15% over –55°C to +85°C).  
Using capacitors with a Y5V or Z5U temperature characteristic is generally not recommended for the LM27761.  
These capacitors typically have wide capacitance tolerance (80%, ….20%) and vary significantly over  
temperature (Y5V: 22%, –82% over –30°C to +85°C range; Z5U: 22%, –56% over 10°C to 85°C range). Under  
some conditions a 1-µF-rated Y5V or Z5U capacitor could have a capacitance as low as 0.1 µF. Such  
detrimental deviation is likely to cause Y5V and Z5U capacitors to fail to meet the minimum capacitance  
requirements of the LM27761.  
Net capacitance of a ceramic capacitor decreases with increased DC bias. This degradation can result in lower-  
than-expected capacitance on the input and/or output, resulting in higher ripple voltages and currents. Using  
capacitors at DC bias voltages significantly below the capacitor voltage rating usually minimizes DC bias effects.  
Consult capacitor manufacturers for information on capacitor DC bias characteristics.  
Capacitance characteristics can vary quite dramatically with different application conditions, capacitor types, and  
capacitor manufacturers. TI strongly recommends that the LM27761 circuit be evaluated thoroughly early in the  
design-in process with the mass-production capacitor of choice. This helps ensure that any such variability in  
capacitance does not negatively impact circuit performance.  
8.2.2.6.1 Charge-Pump Output Capacitor  
In typical applications, a 4.7-µF low-ESR ceramic charge-pump output capacitor (C3) is recommended. Different  
output capacitance values can be used to reduce charge pump ripple, shrink the solution size, and/or cut the  
cost of the solution. However, changing the output capacitor may also require changing the flying capacitor or  
input capacitor to maintain good overall circuit performance.  
In higher-current applications, a 10-µF, 10-V low-ESR ceramic output capacitor is recommended. If a small  
output capacitor is used, the output ripple can become large during the transition between PFM mode and  
constant switching. To prevent toggling, a 2-µF capacitance is recommended. For example, 10-µF, 10-V output  
capacitor in a 0402 case size typically has only 2-µF capacitance when biased to 5 V.  
8.2.2.6.2 Input Capacitor  
The input capacitor (C2) is a reservoir of charge that aids in a quick transfer of charge from the supply to the  
flying capacitors during the charge phase of operation. The input capacitor helps to keep the input voltage from  
drooping at the start of the charge phase when the flying capacitors are connected to the input. It also filters  
noise on the input pin, keeping this noise out of the sensitive internal analog circuitry that is biased off the input  
line.  
Input capacitance has a dominant and first-order effect on the input ripple magnitude. Increasing (decreasing) the  
input capacitance results in a proportional decrease (increase) in input voltage ripple. Input voltage, output  
current, and flying capacitance also affects input ripple levels to some degree.  
In typical applications, a 4.7-µF low-ESR ceramic capacitor is recommended on the input. When operating near  
the maximum load of 250 mA, after taking into the DC bias derating, a minimum recommended input capacitance  
is 2 µF or larger. Different input capacitance values can be used to reduce ripple, shrink the solution size, and/or  
cut the cost of the solution.  
8.2.2.6.3 Flying Capacitor  
The flying capacitor (C1) transfers charge from the input to the output. Flying capacitance can impact both output  
current capability and ripple magnitudes. If flying capacitance is too small, the LM27761 may not be able to  
regulate the output voltage when load currents are high. On the other hand, if the flying capacitance is too large,  
the flying capacitor might overwhelm the input and charge pump output capacitors, resulting in increased input  
and output ripple.  
14  
版权 © 2015–2017, Texas Instruments Incorporated  
LM27761  
www.ti.com.cn  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
In typical high-current applications, 0.47-µF or 1-µF 10-V low-ESR ceramic capacitors are recommended for the  
flying capacitors. Polarized capacitors (tantalum, aluminum, electrolytic, etc.) must not be used for the flying  
capacitor, as they could become reverse-biased during LM27761 operation.  
8.2.2.6.4 LDO Output Capacitor  
The LDO output capacitor (C4) value and the ESR affect stability, output ripple, output noise, PSRR and  
transient response. The LM27761 only requires the use of a 2.2-µF ceramic output capacitor for stable operation.  
For typical applications, a 2.2-µF ceramic output capacitor located close to the output is sufficient.  
8.2.3 Application Curves  
100  
10  
1
200  
100  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
10  
1
0.001  
0.001  
0.01  
IOUT (A)  
0.1  
0.25  
0.01  
IOUT (A)  
0.1  
0.25  
D003  
D004  
VIN = 3 V  
VOUT = –1.8 V  
VIN = 5.5 V  
VOUT = –5 V  
18. Charge-Pump Output Impedance vs  
19. Charge-Pump Output Impedance vs  
Output Current  
Output Current  
VIN = 3 V  
VOUT = –1.8 V  
VIN = 4V to 4.5 V  
VOUT = –1.8 V  
IOUT = 100 mA  
21. Load Step  
20. Line Step  
版权 © 2015–2017, Texas Instruments Incorporated  
15  
LM27761  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
www.ti.com.cn  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
25°C  
85°C  
-40°C  
0
0.0001  
0.001  
0.01  
0.1  
1
Output Current (A)  
D005  
VIN = 5.5 V  
VOUT = –5 V  
R1 = 1.54 MΩ  
R2 = 500 kΩ  
22. Efficiency vs Output Current  
9 Power Supply Recommendations  
The LM27761 is designed to operate from an input voltage supply range between 2.7 V and 5.5 V. This input  
supply must be well regulated and capable of supplying the required input current. If the input supply is located  
far form the LM27761, additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
10 Layout  
10.1 Layout Guidelines  
The high switching frequency and large switching currents of the LM27761 make the choice of layout important.  
Use the following steps as a reference to ensure the device is stable and maintains proper LED current  
regulation across its intended operating voltage and current range:  
Place CIN on the top layer (same layer as the LM27761) and as close to the device as possible. Connecting  
the input capacitor through short, wide traces to both the VIN and GND pins reduces the inductive voltage  
spikes that occur during switching which can corrupt the VIN line.  
Place CCPOUT on the top layer (same layer as the LM27761) and as close to the VOUT and GND pins as  
possible. The returns for both CIN and CCPOUT must come together at one point, as close to the GND pin  
as possible. Connecting CCPOUT through short, wide traces reduces the series inductance on the VCPOUT  
and GND pins that can corrupt the VCPOUT and GND lines and cause excessive noise in the device and  
surrounding circuitry.  
Place C1 on top layer (same layer as the LM27761) and as close to the device as possible. Connect the  
flying capacitor through short, wide traces to both the C1+ and C1– pins.  
Place COUT on the top layer (same layer as the LM27761) and as close to the VOUT pin as possible. For  
best performance the ground connection for COUT must connect back to the GND connection at the thermal  
pad of the device.  
Place R1 and R2 on the top layer (same layer as LM27761) and as close to the VFB pin as possible. For best  
performance the ground connection of R2 must connect back to the GND connection at the thermal pad of  
the device.  
Connections using long trace lengths, narrow trace widths, or connections through vias must be avoided. These  
add parasitic inductance and resistance that results in inferior performance, especially during transient  
conditions.  
16  
版权 © 2015–2017, Texas Instruments Incorporated  
LM27761  
www.ti.com.cn  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
10.2 Layout Example  
C1  
R1  
R2  
COUT  
To Supply  
CIN  
CCPOUT  
To GND Plane  
23. LM27761 Layout Example  
版权 © 2015–2017, Texas Instruments Incorporated  
17  
LM27761  
ZHCSEO7C OCTOBER 2015REVISED JANUARY 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 使用 WEBENCH® 工具创建定制设计  
请单击此处,使用 LM27761 器件并借助 WEBENCH® 电源设计器创建定制设计。  
1. 在开始阶段键入输出电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键设计参数,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH Power Designer 提供一份定制原理图以及罗列实时价格和组件可用性的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
18  
版权 © 2015–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM27761DSGR  
LM27761DSGT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSG  
DSG  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
ZGLI  
ZGLI  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM27761DSGR  
LM27761DSGR  
LM27761DSGT  
LM27761DSGT  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
3000  
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM27761DSGR  
LM27761DSGR  
LM27761DSGT  
LM27761DSGT  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
3000  
3000  
250  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LM27761DSGR

具有集成 LDO 的低噪声稳压逆变器 | DSG | 8 | -40 to 85
TI

LM27761DSGT

具有集成 LDO 的低噪声稳压逆变器 | DSG | 8 | -40 to 85
TI

LM27762

具有集成 LDO 的低噪声正负输出电荷泵
TI

LM27762DSSR

具有集成 LDO 的低噪声正负输出电荷泵 | DSS | 12 | -40 to 85
TI

LM27762DSST

具有集成 LDO 的低噪声正负输出电荷泵 | DSS | 12 | -40 to 85
TI

LM2776DBVR

开关电容器逆变器 | DBV | 6 | -40 to 85
TI

LM2776DBVT

暂无描述
TI

LM2780

Ultra-Low Ripple Switched Capacitor Voltage Inverter
NSC

LM2780TP

Ultra-Low Ripple Switched Capacitor Voltage Inverter
NSC

LM2780TPX

Ultra-Low Ripple Switched Capacitor Voltage Inverter
NSC

LM2781

Ultra-Low Ripple Switched Capacitor Voltage Inverter
NSC

LM2781TP

Ultra-Low Ripple Switched Capacitor Voltage Inverter
NSC