LM3410-Q1 [TI]

具有内部补偿的 525kHz/1.6MHz、汽车恒流升压和 SEPIC LED 驱动器;
LM3410-Q1
型号: LM3410-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有内部补偿的 525kHz/1.6MHz、汽车恒流升压和 SEPIC LED 驱动器

驱动 驱动器
文件: 总57页 (文件大小:1402K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
LM3410, LM3410-Q1 525-kHz and 1.6-MHz, Constant-Current Boost and SEPIC LED Driver  
With Internal Compensation  
1 Features  
3 Description  
The LM3410 and LM3410-Q1 constant current LED  
driver are a monolithic, high frequency, PWM DC-DC  
converter, available in 6-pin WSON, 8-pin MSOP-  
PowerPad™, and 5-pin SOT-23 packages. With a  
minimum of external components the LM3410 and  
LM3410-Q1 are easy to use. It can drive 2.8-A  
(typical) peak currents with an internal 170-mΩ  
NMOS switch. Switching frequency is internally set to  
either 525 kHz or 1.6 MHz, allowing the use of  
extremely small surface mount inductors and chip  
capacitors. Even though the operating frequency is  
high, efficiencies up to 88% are easy to achieve.  
External shutdown is included, featuring an ultra-low  
standby current of 80 nA. The LM3410 and LM3410-  
Q1 use current-mode control and internal  
compensation to provide high-performance over a  
wide range of operating conditions. Additional  
features include PWM dimming, cycle-by-cycle  
current limit, and thermal shutdown.  
1
Qualified for Automotive Applications  
AEC-Q100 Test Guidance With the Following:  
Device Temperature Grade 1: –40°C to 125°C  
Ambient Operating Temperature Range  
Device HBM ESD Classification Level 2  
Device CDM ESD Classification Level C6  
Space-Saving SOT-23 and WSON Packages  
Input Voltage From 2.7 V to 5.5 V  
Output Voltage From 3 V to 24 V  
2.8-A (Typical) Switch Current Limit  
High Switching Frequency  
525 KHz (LM3410Y)  
1.6 MHz (LM3410X)  
170-mΩ NMOS Switch  
190-mV Internal Voltage Reference  
Internal Soft Start  
Device Information(1)  
Current-Mode, PWM Operation  
Thermal Shutdown  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
3.00 mm × 3.00 mm  
2.90 mm × 1.60 mm  
3.00 mm × 3.00 mm  
WSON (6)  
LM3410,  
LM3410Q  
MSOP-PowerPAD (8)  
SOT-23 (5)  
2 Applications  
LED Backlight Current Sources  
LiIon Backlight OLED and HB LED Drivers  
Handheld Devices  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
LED Flash Drivers  
Automotive Applications  
Typical Boost Application Circuit  
Typical Efficiency (LM3410X)  
L
1
D
1
V
IN  
DIMM  
4
3
LEDs  
FB  
2
DIM  
C
2
GND  
1
5
SW  
VIN  
C
1
R
1
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
Table of Contents  
8.1 Application Information............................................ 11  
8.2 Typical Applications ................................................ 19  
Power Supply Recommendations...................... 31  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
9
10 Layout................................................................... 32  
10.1 Layout Guidelines ................................................. 32  
10.2 Layout Examples................................................... 32  
10.3 Thermal Considerations........................................ 33  
11 Device and Documentation Support ................. 40  
11.1 Device Support...................................................... 40  
11.2 Documentation Support ........................................ 41  
11.3 Related Links ........................................................ 41  
11.4 Receiving Notification of Documentation Updates 41  
11.5 Community Resources.......................................... 41  
11.6 Trademarks........................................................... 41  
11.7 Electrostatic Discharge Caution............................ 41  
11.8 Glossary................................................................ 41  
7
8
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 42  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision G (April 2013) to Revision H  
Page  
Added Device Information table, ESD Ratings table, Thermal Information table, Detailed Description section,  
Feature Description section, Device Functional Modes section, Application and Implementation section, Typical  
Application section, Power Supply Recommendations section, Layout section, Device and Documentation Support  
section, and Mechanical, Packaging, and Orderable Information section.............................................................................. 1  
Added AEC-Q100 Test Guidance bullets to Features............................................................................................................ 1  
Changed RθJA value for NGG package from 80°C/W : to 55.3°C/W ...................................................................................... 4  
Changed RθJA value for DGN package from 80°C/W : to 53.7°C/W ...................................................................................... 4  
Changed RθJA value for DBV package from 118°C/W : to 164.2°C/W................................................................................... 4  
Changed RθJC(top) value for NGG package from 18°C/W : to 65.9°C/W ................................................................................. 4  
Changed RθJC(top) value for DGN package from 18°C/W : to 61.4°C/W ................................................................................. 4  
Changed RθJC(top) value for DBV package from 60°C/W : to 115.3°C/W................................................................................ 4  
Changes from Revision F (May 2013) to Revision G  
Page  
Changed layout of National Semiconductor Data Sheet to TI format .................................................................................... 1  
2
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
5 Pin Configuration and Functions  
NGG Package  
6-Pin WSON  
Top View  
DGN Package  
8-Pin MSOP-PowerPad  
Top View  
NC  
PGND  
VIN  
1
2
3
4
8
7
6
5
NC  
PGND  
VIN  
1
2
3
6
5
4
SW  
SW  
DAP  
AGND  
FB  
DAP  
AGND  
FB  
DIM  
DIM  
Not to scale  
Not to scale  
DBV Package  
5-Pin SOT-23  
Top View  
SW  
GND  
FB  
1
2
3
5
4
VIN  
DIM  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
MSOP-  
PowerPAD  
NAME  
WSON  
SOT-23  
Signal ground pin. Place the bottom resistor of the feedback network as close  
as possible to this pin and FB.  
AGND  
5
6
4
I
Dimming and shutdown control input. Logic high enables operation. Duty  
DIM  
FB  
3
4
Cycle from 0% to 100%. Do not allow this pin to float or be greater than VIN  
0.3 V.  
+
4
5
3
I
Feedback pin. Connect FB to external resistor to set output current.  
Die attach pad. Signal and Power ground. Connect to PGND and AGND on  
top layer. Place 4 to 6 vias from DAP to bottom layer GND plane.  
DAP  
DAP  
GND  
Signal and power ground pin. Place the bottom resistor of the feedback  
network as close as possible to this pin.  
2
NC  
1
1, 8  
2
1
O
I
No connection  
PGND  
SW  
Power ground pin. Place PGND and output capacitor GND close together.  
Output switch. Connect to the inductor, output diode.  
Supply voltage pin for power stage, and input supply voltage.  
6
7
VIN  
2
3
5
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
7
UNIT  
VIN  
SW  
26.5  
3
Input voltage  
V
FB  
DIM  
Operating juction temperature(3), TJ  
Storage temperature, Tstg  
7
150  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(3) Thermal shutdown occurs if the junction temperature exceeds the maximum junction temperature of the device.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
5.5  
UNIT  
V
VIN  
Input voltage  
2.7  
0
VDIM  
VSW  
TJ  
DIM control input(1)  
VIN  
V
Switch output  
3
24  
V
Operating junction temperature  
Power dissipation (Internal)  
–40  
125  
400  
°C  
mW  
SOT-23  
(1) Do not allow this pin to float or be greater than VIN + 0.3 V.  
6.4 Thermal Information  
LM3410, LM3410-Q1  
DGN  
(MSOP-  
PowerPAD)  
8 PINS  
53.7  
NGG  
(WSON)  
DBV  
(SOT-23)  
THERMAL METRIC(1)  
UNIT  
6 PINS  
55.3  
65.9  
29.6  
1.1  
5 PINS  
164.2  
115.3  
27  
RθJA  
Junction-to-ambient thermal resistance  
0 LFPM Air Flow  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
61.4  
RθJB  
ψJT  
Junction-to-board thermal resistance  
37.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
7.1  
12.8  
26.5  
ψJB  
29.7  
9.3  
37  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
6.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
6.5 Electrical Characteristics  
Typical values apply for TJ = 25°C; Minimum and maximum limits apply for TJ = –40°C to 125°C and VIN = 5 V (unless  
otherwise noted). Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference  
purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
190  
0.06  
0.1  
MAX  
UNIT  
mV  
VFB  
Feedback voltage  
178  
202  
ΔVFB/VIN Feedback voltage line regulation  
VIN = 2.7 V to 5.5 V  
%/V  
µA  
IFB  
Feedback input bias current  
1
2000  
680  
LM3410X  
LM3410Y  
LM3410X  
LM3410Y  
LM3410X  
LM3410Y  
MSOP and SOT-23  
WSON  
1200  
360  
1600  
525  
92%  
95%  
5%  
2%  
170  
190  
2.8  
fSW  
Switching frequency  
kHz  
88%  
90%  
DMAX  
Maximum duty cycle  
Minimum duty cycle  
Switch on resistance  
DMIN  
330  
350  
RDS(ON)  
mΩ  
ICL  
Switch current limit  
Start-up time  
2.1  
A
SU  
20  
µs  
LM3410X, VFB = 0.25 V  
LM3410Y, VFB = 0.25 V  
All versions, VDIM = 0 V  
VIN rising  
7
11  
7
Quiescent current (switching)  
Quiescent current (shutdown)  
Undervoltage lockout  
mA  
nA  
V
IQ  
3.4  
80  
2.3  
2.65  
0.4  
UVLO  
VIN falling  
1.7  
1.8  
1.9  
Shutdown threshold voltage  
Enable threshold voltage  
Switch leakage  
VDIM_H  
V
ISW  
IDIM  
TSD  
VSW = 24 V  
1
100  
165  
µA  
nA  
°C  
Dimming pin current  
Sink and source  
(1)  
Thermal shutdown temperature  
(1) Thermal shutdown occurs if the junction temperature exceeds the maximum junction temperature of the device.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
6.6 Typical Characteristics  
All curves taken at VIN = 5 V with the 50-mA boost configuration shown in Figure 18. TJ = 25°C, unless otherwise specified.  
RSET = 4 Ω  
Figure 1. LM3410X Efficiency vs VIN  
Figure 2. LM3410X Start-Up Signature  
500-Hz DIM Frequency  
D = 50%  
Figure 3. Four 3.3-V LEDs  
Figure 4. DIM Frequency and Duty Cycle vs Average ILED  
Figure 5. Current Limit vs Temperature  
Figure 6. RDS(ON) vs Temperature  
6
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
Typical Characteristics (continued)  
All curves taken at VIN = 5 V with the 50-mA boost configuration shown in Figure 18. TJ = 25°C, unless otherwise specified.  
LM3410X  
LM3410Y  
Figure 7. Oscillator Frequency vs Temperature  
Figure 8. Oscillator Frequency vs Temperature  
Figure 9. VFB vs Temperature  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The LM3410 and LM3410-Q1 are a constant frequency PWM, boost regulator IC. It delivers a minimum of 2.1-A  
peak switch current. The device operates very similar to a voltage regulated boost converter except that the  
device regulates the output current that passes through LEDs. The current magnitude is set with a series  
resistor. The converter regulates to the feedback voltage (190 mV) created by the multiplication of the series  
resistor and the LED current. The regulator has a preset switching frequency of either 525 kHz or 1.6 MHz. This  
high frequency allows the LM3410 or LM3410-Q1 to operate with small surface mount capacitors and inductors,  
resulting in a DC-DC converter that requires a minimum amount of board space. The LM3410 and LM3410-Q1  
are internally compensated and requires few external components, making usage simple. The LM3410 and  
LM3410-Q1 use current-mode control to regulate the LED current.  
The LM3410 and LM3410-Q1 supply a regulated LED current by switching the internal NMOS control switch at  
constant frequency and variable duty cycle. A switching cycle begins at the falling edge of the reset pulse  
generated by the internal oscillator. When this pulse goes low, the output control logic turns on the internal  
NMOS control switch. During this ON time, the SW pin voltage (VSW) decreases to approximately GND, and the  
inductor current (IL) increases with a linear slope. IL is measured by the current sense amplifier, which generates  
an output proportional to the switch current. The sensed signal is summed with the regulator’s corrective ramp  
and compared to the error amplifier’s output, which is proportional to the difference between the feedback  
voltage and reference voltage (VREF). When the PWM comparator output goes high, the output switch turns off  
until the next switching cycle begins. During the switch OFF time, inductor current discharges through diode D1,  
which forces the SW pin to swing to the output voltage plus the forward voltage (VD) of the diode. The regulator  
loop adjusts the duty cycle (D) to maintain a regulated LED current.  
V
O
I
L1  
D1  
L
I
Q1  
C
+
V
IN  
Control  
V
SW  
C 1  
-
I
LED  
Figure 10. Simplified Boost Topology Schematic  
8
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
Overview (continued)  
+ V  
V
OUT  
D
V
( )  
sw t  
t
V
IN  
V
( )  
L t  
t
V
- V  
-V  
IN OUT D  
I
i
( )  
L t  
L
t
I
DIODE(t)  
t
- i  
-
i
)
(
OUT  
L
I
Capacitor(t)  
t
-i  
OUT  
Dv  
V
( )  
OUT t  
DT  
T
S
S
Figure 11. Typical Waveforms  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
7.2 Functional Block Diagram  
DIM  
VIN  
Thermal  
SHDN  
-
Control Logic  
Oscillator  
+
+
-
UVLO=2.3V  
Ramp  
Artificial  
R
1.6MHz  
S
R
+
SW  
+
NMOS  
+
-
Q
V
-
FB  
+
Internal  
V
= 190 mV  
REF  
Compensation  
I
LIMIT  
I
SENSE  
+
-
GND  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Current Limit  
The LM3410 and LM3410-Q1 use cycle-by-cycle current limiting to protect the internal NMOS switch. This  
current limit does not protect the output from excessive current during an output short circuit. The input supply is  
connected to the output by the series connection of an inductor and a diode. If a short circuit is placed on the  
output, excessive current can damage both the inductor and diode.  
7.3.2 DIM Pin and Shutdown Mode  
The average LED current can be controlled using a PWM signal on the DIM pin. The duty cycle can be varied  
from 0 to 100%, to either increase or decrease LED brightness. PWM frequencies from 1 Hz to 25 kHz can be  
used. For controlling LED currents down to the µA levels, it is best to use a PWM signal frequency from 200 to  
1 kHz. The maximum LED current would be achieved using a 100% duty cycle, that is the DIM pin always high.  
7.4 Device Functional Modes  
7.4.1 Thermal Shutdown  
Thermal shutdown limits total power dissipation by turning off the output switch when the IC junction temperature  
exceeds 165°C. After thermal shutdown occurs, the output switch does not turn on until the junction temperature  
drops to approximately 150°C.  
10  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Boost Converter  
8.1.1.1 Setting the LED Current  
I
LED  
V
FB  
R
SET  
Figure 12. Setting ILED  
The LED current is set using the following equation:  
VFB  
= ILED  
RSET  
where  
RSET is connected between the FB pin and GND.  
(1)  
8.1.1.2 LED-Drive Capability  
When using the LM3410 or LM3410-Q1 in the typical application configuration, with LEDs stacked in series  
between the VOUT and FB pin, the maximum number of LEDs that can be placed in series is dependent on the  
maximum LED forward voltage (VFMAX).  
(VFMAX × NLEDs) + 190 mV < 24 V  
(2)  
When inserting a value for maximum VFMAX the LED forward voltage variation over the operating temperature  
range must be considered.  
8.1.1.3 Inductor Selection  
The inductor value determines the input ripple current. Lower inductor values decrease the physical size of the  
inductor, but increase the input ripple current. An increase in the inductor value decreases the input ripple  
current.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
Application Information (continued)  
Di  
I
( )  
L t  
L
i
L
V
IN  
L
V
-V  
OUT  
IN  
L
DT  
S
T
S
t
Figure 13. Inductor Current  
VIN ’  
2DiL  
DTS  
= ∆  
÷
÷
L
«
VIN ’  
÷ x DTS  
DiL =  
÷
2L  
«
(3)  
The Duty Cycle (D) for a Boost converter can be approximated by using the ratio of output voltage (VOUT) to input  
voltage (VIN).  
VOUT  
VIN  
1
1
=
=
1 - D DÅ  
÷
«
(4)  
Therefore:  
VOUT - VIN  
VOUT  
D =  
(5)  
Power losses due to the diode (D1) forward voltage drop, the voltage drop across the internal NMOS switch, the  
voltage drop across the inductor resistance (RDCR) and switching losses must be included to calculate a more  
accurate duty cycle (see Calculating Efficiency and Junction Temperature for a detailed explanation). A more  
accurate formula for calculating the conversion ratio is:  
h
VOUT  
VIN  
=
D‘  
where  
η equals the efficiency of the device application.  
(6)  
Or:  
VOUT ìILED  
h =  
V ìI  
IN IN  
(7)  
12  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
Application Information (continued)  
Therefore:  
VOUT - hV  
IN  
D =  
VOUT  
(8)  
Inductor ripple in a LED driver circuit can be greater than what would normally be allowed in a voltage regulator  
Boost and Sepic design. A good design practice is to allow the inductor to produce 20% to 50% ripple of  
maximum load. The increased ripple is unlikely to be a problem when illuminating LEDs.  
From the previous equations, the inductor value is then obtained.  
V ’  
IN ÷ x DTS  
L =  
÷
2DiL  
«
where  
1 / TS = fSW  
(9)  
Ensure that the minimum current limit (2.1 A) is not exceeded, so the peak current in the inductor must be  
calculated. The peak current (Lpk I) in the inductor is calculated by Equation 10:  
ILpk = IIN + ΔIL or ILpk = IOUT /D' + ΔiL  
(10)  
When selecting an inductor, make sure that it is capable of supporting the peak input current without saturating.  
Inductor saturation results in a sudden reduction in inductance and prevent the regulator from operating correctly.  
Because of the speed of the internal current limit, the peak current of the inductor only needs to be specified for  
the required maximum input current. For example, if the designed maximum input current is 1.5 A and the peak  
current is 1.75 A, then the inductor must be specified with a saturation current limit of >1.75 A. There is no need  
to specify the saturation or peak current of the inductor at the 2.8-A typical switch current limit.  
Because of the operating frequency of the LM3410 and LM3410-Q1, ferrite based inductors are preferred to  
minimize core losses. This presents little restriction because the variety of ferrite-based inductors is huge. Lastly,  
inductors with lower series resistance (DCR) provides better operating efficiency. For recommended inductor  
value examples, see Typical Applications.  
8.1.1.4 Input Capacitor  
An input capacitor is necessary to ensure that VIN does not drop excessively during switching transients. The  
primary specifications of the input capacitor are capacitance, voltage, RMS current rating, and ESL (Equivalent  
Series Inductance). TI recommens an input capacitance from 2.2 µF to 22 µF depending on the application. The  
capacitor manufacturer specifically states the input voltage rating. Make sure to check any recommended  
deratings and also verify if there is any significant change in capacitance at the operating input voltage and the  
operating temperature. The ESL of an input capacitor is usually determined by the effective cross sectional area  
of the current path. At the operating frequencies of the LM3410 and LM3410-Q1, certain capacitors may have an  
ESL so large that the resulting impedance (2πfL) is higher than that required to provide stable operation. As a  
result, TI recommends surface mount capacitors. Multilayer ceramic capacitors (MLCC) are good choices for  
both input and output capacitors and have very low ESL. For MLCCs TI recommends use of X7R or X5R  
dielectrics. Consult the capacitor manufacturer's datasheet for rated capacitance variation over operating  
conditions.  
8.1.1.5 Output Capacitor  
The LM3410 and LM3410-Q1 operate at frequencies allowing the use of ceramic output capacitors without  
compromising transient response. Ceramic capacitors allow higher inductor ripple without significantly increasing  
output ripple. The output capacitor is selected based upon the desired output ripple and transient response. The  
initial current of a load transient is provided mainly by the output capacitor. The output impedance therefore  
determines the maximum voltage perturbation. The output ripple of the converter is a function of the capacitor’s  
reactance and its equivalent series resistance (ESR) (see Equation 11).  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
Application Information (continued)  
VOUT x D  
2 x fSW x ROUT x COUT  
«
÷
DVOUT = DiL x RESR  
+
(11)  
When using MLCCs, the ESR is typically so low that the capacitive ripple may dominate. When this occurs, the  
output ripple is approximately sinusoidal and 90° phase shifted from the switching action.  
Given the availability and quality of MLCCs and the expected output voltage of designs using the LM3410 or  
LM3410-Q1, there no need to review any other capacitor technologies. Another benefit of ceramic capacitors is  
their ability to bypass high frequency noise. A certain amount of switching edge noise couples through parasitic  
capacitances in the inductor to the output. A ceramic capacitor bypasses this noise while a tantalum does not.  
Because the output capacitor is one of the two external components that control the stability of the regulator  
control loop, most applications requires a minimum at 0.47 µF of output capacitance. Like the input capacitor, TI  
recommends X7R or X5R as multilayer ceramic capacitors. Again, verify actual capacitance at the desired  
operating voltage and temperature.  
8.1.1.6 Diode  
The diode (D1) conducts during the switch off time. TI recommends Schottky diode for its fast switching times  
and low forward voltage drop. The diode must be chosen so that its current rating is greater than:  
ID1 IOUT  
(12)  
The reverse breakdown rating of the diode must be at least the maximum output voltage plus appropriate margin.  
8.1.1.7 Output Overvoltage Protection  
A simple circuit consisting of an external Zener diode can be implemented to protect the output and the LM3410  
or LM3410-Q1 device from an overvoltage fault condition. If an LED fails open, or is connected backwards, an  
output open circuit condition occurs. No current is conducted through the LEDs, and the feedback node equals  
zero volts. The LM3410 or LM3410-Q1 reacts to this fault by increasing the duty cycle, thinking the LED current  
has dropped. A simple circuit that protects the device is shown in Figure 14.  
Zener diode D2 and resistor R3 is placed from VOUT in parallel with the string of LEDs. If the output voltage  
exceeds the breakdown voltage of the Zener diode, current is drawn through the Zener diode, R3 and sense  
resistor R1. Once the voltage across R1 and R3 equals the feedback voltage of 190 mV, the LM3410 and  
LM3410-Q1 limits their duty cycle. No damage occurs to the device, the LEDs, or the Zener diode. Once the fault  
is corrected, the application will work as intended.  
14  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
Application Information (continued)  
D
1
LEDs  
V
SW  
O
D
2
V
P
C
2
R
3
V
FB  
R
1
Figure 14. Overvoltage Protection Circuit  
8.1.2 SEPIC Converter  
The LM3410 or LM3410-Q1 can easily be converted into a SEPIC converter. A SEPIC converter has the ability  
to regulate an output voltage that is either larger or smaller in magnitude than the input voltage. Other converters  
have this ability as well (CUK and Buck-Boost), but usually create an output voltage that is opposite in polarity to  
the input voltage. This topology is a perfect fit for Lithium Ion battery applications where the input voltage for a  
single cell Li-Ion battery varies from 2.7 V to 4.5 V and the output voltage is somewhere in between. Most of the  
analysis of the LM3410 Boost Converter is applicable to the LM3410 SEPIC Converter.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
Application Information (continued)  
V
V
IN  
O
D
L
1
C
3
1
C
LM 3410  
1
C
2
L
/
HB OLED  
2
1
2
3
6
5
4
R
2
R
1
Copyright © 2016, Texas Instruments Incorporated  
Figure 15. HB or OLED SEPIC Converter Schematic  
8.1.2.1 SEPIC Equations  
SEPIC Conversion ratio without loss elements:  
VOUT  
VIN  
D
=
D‘  
(13)  
(14)  
Therefore:  
VOUT  
D =  
VOUT + V  
IN  
Small ripple approximation:  
In a well-designed SEPIC converter, the output voltage, and input voltage ripple, the inductor ripple IL1 and IL2 is  
small in comparison to the DC magnitude. Therefore it is a safe approximation to assume a DC value for these  
components. The main objective of the Steady State Analysis is to determine the steady state duty cycle, voltage  
and current stresses on all components, and proper values for all components.  
In a steady-state converter, the net volt-seconds across an inductor after one cycle equals zero. Also, the charge  
into a capacitor equals the charge out of a capacitor in one cycle.  
Therefore:  
'
D
D
IL2  
=
=
ìI  
L1  
÷
÷
«
and  
D
÷
IL2  
ìILED  
« D' ◊  
(15)  
16  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
Application Information (continued)  
Substituting IL1 into IL2  
IL2 = ILED  
(16)  
The average inductor current of L2 is the average output load.  
V
( )  
L t  
AREA  
1
t
(s)  
AREA  
2
DT  
T
S
S
Figure 16. Inductor Volt-Second Balance Waveform  
Applying Charge balance on C1:  
'(VOUT  
)
D
VC3  
=
D
(17)  
Because there are no DC voltages across either inductor, and capacitor C3 is connected to Vin through L1 at  
one end, or to ground through L2 on the other end, we can say that  
VC3 = VIN  
(18)  
Therefore:  
'(VOUT  
)
D
VIN =  
D
(19)  
This verifies the original conversion ratio equation.  
It is important to remember that the internal switch current is equal to IL1 and IL2 during the D interval. Design the  
converter so that the minimum ensured peak switch current limit (2.1 A) is not exceeded.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
Application Information (continued)  
8.1.2.2 Steady State Analysis with Loss Elements  
v
+
v
( )  
L1 t  
( )  
C1 t  
-
-
i
+
i
i
L1(t)  
1( )  
C t  
1(t)  
D
R
v
L1  
( )  
D1t  
i
i
i
C2(t)  
(t)  
sw  
L2  
-
V
IN  
v
( )  
L2 t  
v
v
( )  
O t  
( )  
C2 t  
-
-
R
on  
R
L2  
Copyright © 2016, Texas Instruments Incorporated  
Figure 17. SEPIC Simplified Schematic  
8.1.2.2.1 Details  
Using inductor volt-second balance and capacitor charge balance, the following equations are derived:  
IL2 = (ILED  
)
(20)  
(21)  
and  
IL1 = (ILED) × (D/D')  
÷
1
VOUT  
D
÷
÷
= ∆  
÷
' ÷  
V
2
2
D
÷
IN  
«
VD  
÷
÷
R
R
L1  
RL2  
R
D
÷
D
ON  
÷
÷
÷
+
1+  
+
÷
+
2
÷
÷
R
VOUT  
'
R
'
«
«
«
« D ◊  
« D ◊  
÷
«
(22)  
(23)  
VOUT  
ROUT  
=
ILED  
Therefore:  
÷
1
÷
÷
÷
÷
h =  
2
2
÷
VD  
R
R
L1  
ROUT  
«
RL2  
D
2
÷
D
ON  
÷
÷
+
+
÷
1+  
+
÷
«
÷
«
÷
VOUT ROUT  
ROUT  
D'  
D'  
«
«
«
÷
(24)  
All variables are known except for the duty cycle (D). A quadratic equation is needed to solve for D. A less  
accurate method of determining the duty cycle is to assume efficiency, and calculate the duty cycle.  
VOUT  
D ’  
x h  
=
÷
VIN  
1 - D  
«
(25)  
18  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
Application Information (continued)  
VOUT  
«
D =  
÷
(VIN x h) +VOUT  
(26)  
Table 1. Efficiencies for Typical SEPIC Applications  
EXAMPLE 1  
2.7 V  
EXAMPLE 2  
3.3 V  
EXAMPLE 3  
5 V  
VIN  
VOUT  
IIN  
VIN  
VOUT  
IIN  
VIN  
VOUT  
IIN  
3.1 V  
3.1 V  
3.1 V  
770 mA  
600 mA  
375 mA  
ILED  
η
500 mA  
75%  
ILED  
η
500 mA  
80%  
ILED  
η
500 mA  
83%  
8.2 Typical Applications  
8.2.1 Low Input Voltage, 1.6-MHz, 3 to 5 White LED Output at 50-mA Boost Converter  
L
1
D
1
V
IN  
DIMM  
4
3
LEDs  
FB  
2
DIM  
C
2
GND  
1
5
SW  
VIN  
C
1
R
1
Copyright © 2016, Texas Instruments Incorporated  
Figure 18. Boost Schematic  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in Table 2 as the input parameters.  
Table 2. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
VIN  
2.7 V to 5.5 V  
50 mA  
ILED  
VOUT  
RD  
14.6 V (four 3.6-V LEDs in series plus 190 mV)  
8 Ω (dynamic resistance of 4 LEDs in series)  
100 mA (maximum)  
ΔILp–p  
ΔVOUTp–p  
250 mV (maximum)  
8.2.1.2 Detailed Design Procedure  
This design procedure uses the worst-case minimum input voltage and a nominal 4 LED series load for  
calculations.  
8.2.1.2.1 Set the LED Current (R1)  
Rearranging the LED current equation the current sense resistor R1 can be found using Equation 27.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
VFB  
ILED  
190mV  
50mA  
R1 =  
=
= 3.8  
(27)  
3.8 Ω is not a standard value so a standard value of R1 = 3.83 Ω is chosen.  
8.2.1.2.2 Calculate Maximum Duty Cycle (DMAX  
)
The maximum duty cycle is required for calculating the inductor value and the minimum output capacitance.  
Assuming an approximate conversion efficiency (η) of 90% DMAX is calculated using Equation 28.  
VOUT - × VIN(min)  
14.6V - 0.9 × 2.7V  
14.6V  
DMAX  
=
=
= 0.834  
VOUT  
(28)  
8.2.1.2.3 Calculate the Inductor Value (L1)  
Using the maximum duty cycle, the minimum input voltage, and the maximum inductor ripple current (ΔiLp–p) the  
minimum inductor value to achieve the maximum ripple current is calculated using Equation 29.  
VIN(min) × DMAX × TS  
2.7V × 0.834 × 625ns  
2 × 100mA  
L1 = F  
G = l  
p = 7.04H  
2 × iL-PP  
(29)  
To ensure the maximum inductor ripple current requirement is met with a 20% inductor tolerance an inductor  
value of L1 = 10 µH is selected.  
8.2.1.2.4 Calculate the Output Capacitor (C2)  
To maintain a maximum of 250-mV output voltage ripple the dynamic resistance of the LED stack (RD) must be  
used. Assuming a ceramic capacitor is used so the ESR can be neglected this minimum amount of capacitance  
can be found using Equation 30.  
VOUT × DMAX  
14.6V × 0.834  
C2 ≥  
=
= 1.9F  
2 × fSW × RD × VOUT 2 × 1.6MHz × 8× 14.6V  
(30)  
1.9 µF is not a standard value so a value of C2 = 2.2 µF is selected.  
8.2.1.2.5 Input Capacitor (C1) and Schottky Diode (D1)  
TI recommends an input capacitor from 2.2 µF to 22 µF. This is a relatively low power design optimized for a  
small footprint. For a good balance of input filtering and small size a 6.3-V capacitor with a value of C1 = 10 µF is  
selected. The output voltage with a 5 LED load is over 18 V and the reverse voltage of the schottky diode must  
be greater than this voltage. To give some headroom to avoid reverse breakdown and to maintain small size and  
reliability the diode selected is D1 = 30 V, 500 mA.  
20  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
 
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
8.2.1.3 Application Curves  
Figure 20. PWM Dimming  
Figure 19. Efficiency versus Input Voltage  
8.2.2 LM3410X SOT-23: 5 × 1206 Series LED String Application  
D
1
L
1
LEDs  
V
IN  
LM3410  
DIMM  
C
1
4
5
3
2
1
R
2
C
2
R
1
Copyright © 2016, Texas Instruments Incorporated  
Figure 21. LM3410X (1.6 MHz) 5 × 3.3-V LED String Application Diagram  
8.2.2.1 Design Requirements  
For this design example, use the parameters listed in Table 3 as the input parameters.  
Table 3. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
VIN  
2.7 V to 5.5 V  
ILED  
VOUT  
50 mA  
16.5 V (five 3.3-V LEDs in series)  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
Table 4. Part Values  
PART  
VALUE  
U1  
2.8-A ISW LED Driver  
10 µF, 6.3 V, X5R  
2.2 µF, 25 V, X5R  
0.4-Vf Schottky 500 mA, 30 VR  
10 µH, 1.2 A  
C1, Input capacitor  
C2, Output capacitor  
D1, Catch diode  
L1  
R1  
4.02 Ω, 1%  
R2  
100 kΩ, 1%  
LEDs  
SMD-1206, 50 mA, Vf 3.6 V  
8.2.3 LM3410Y SOT-23: 5 × 1206 Series LED String Application  
D
1
L
1
LEDs  
V
IN  
LM3410  
DIMM  
C
1
4
5
3
2
1
R
2
C
2
R
1
Copyright © 2016, Texas Instruments Incorporated  
Figure 22. LM3410Y (525 kHz) 5 × 3.3-V LED String Application Diagram  
8.2.3.1 Design Requirements  
For this design example, use the parameters listed in Table 5 as the input parameters.  
Table 5. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
VIN  
2.7 V to 5.5 V  
ILED  
VOUT  
50 mA  
16.5 V (five 3.3-V LEDs in series)  
Table 6. Part Values  
PART  
VALUE  
U1  
2.8-A ISW LED Driver  
10 µF, 6.3 V, X5R  
2.2 µF, 25 V, X5R  
0.4-Vf Schottky 500 mA, 30 VR  
15 µH, 1.2 A  
C1, Input capacitor  
C2, Output capacitor  
D1, Catch diode  
L1  
R1  
4.02 Ω, 1%  
R2  
100 kΩ, 1%  
LEDs  
SMD-1206, 50 mA, Vf 3.6 V  
22  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
8.2.4 LM3410X WSON: 7 × 5 LED Strings Backlighting Application  
LEDs  
L
D
1
1
VIN  
LM3410  
C
R
1
2
3
6
5
4
1
2
I
LED  
C
2
DIMM  
I
SET  
R
1
Copyright © 2016, Texas Instruments Incorporated  
Figure 23. LM3410X (1.6 MHz) 7 × 5 × 3.3-V LEDs Backlighting Application Diagram  
8.2.4.1 Design Requirements  
For this design example, use the parameters listed in Table 7 as the input parameters.  
Table 7. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
VIN  
2.7 V to 5.5 V  
ILED  
VOUT  
25 mA  
16.7 V (seven strings of five 3.3-V LEDs in series)  
Table 8. Part Values  
PART  
VALUE  
2.8-A ISW LED Driver  
10 µF, 6.3 V, X5R  
U1  
C1, Input capacitor  
C2, Output capacitor  
4.7 µF, 25 V, X5R  
D1, Catch Diode  
0.4-Vf Schottky 500 mA, 30 VR  
8.2 µH, 2 A  
L1  
R1  
1.15 Ω, 1%  
R2  
100 kΩ, 1%  
LEDs  
SMD-1206, 50 mA, Vf 3.6 V  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
8.2.5 LM3410X WSON: 3 × HB LED String Application  
L
1
D
1
V
IN  
LM3410  
C
1
HB- LEDs  
1
2
3
6
5
4
R
2
C
2
DIMM  
R
3
R
1
Copyright © 2016, Texas Instruments Incorporated  
Figure 24. LM3410X (1.6 MHz) 3 × 3.4-V LED String Application Diagram  
8.2.5.1 Design Requirements  
For this design example, use the parameters listed in Table 9 as the input parameters.  
Table 9. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
VIN  
2.7 V to 5.5 V  
ILED  
VOUT  
340 mA  
11 V (three 3.4-V LEDs in series)  
Table 10. Part Values  
PART  
VALUE  
U1  
2.8-A ISW LED Driver  
10 µF, 6.3 V, X5R  
2.2 µF, 25 V, X5R  
0.4-Vf Schottky 500 mA, 30 VR  
10 µH, 1.2 A  
C1, Input capacitor  
C2, Output capacitor  
D1, Catch diode  
L1  
R1  
1 Ω, 1%  
R2  
100 kΩ, 1%  
R3  
1.5 Ω, 1%  
HB – LEDs  
340 mA, Vf 3.6 V  
24  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
8.2.6 LM3410Y SOT-23: 5 × 1206 Series LED String Application With OVP  
LEDs  
L
D
1
1
V
IN  
DIMM  
LM3410  
C
1
OVP  
4
5
3
2
1
C
2
R
2
D
2
R
3
R
1
Copyright © 2016, Texas Instruments Incorporated  
Figure 25. LM3410Y (525 kHz) 5 × 3.3-V LED String Application With OVP Diagram  
8.2.6.1 Design Requirements  
For this design example, use the parameters listed in Table 11 as the input parameters.  
Table 11. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
VIN  
2.7 V to 5.5 V  
ILED  
VOUT  
50 mA  
16.5 V (five 3.3-V LEDs in series)  
Table 12. Part Values  
PART  
VALUE  
U1  
2.8-A ISW LED Driver  
10 µF, 6.3 V, X5R  
2.2 µF, 25 V, X5R  
0.4-Vf Schottky 500 mA, 30 VR  
18 V Zener diode  
15 µH, 0.7 A  
C1, Input capacitor  
C2, Output capacitor  
D1, Catch diode  
D2  
L1  
R1  
4.02 Ω, 1%  
R2  
100 kΩ, 1%  
R3  
100 Ω, 1%  
LEDs  
SMD-1206, 50 mA, Vf 3.6 V  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
8.2.7 LM3410X SEPIC WSON: HB or OLED Illumination Application  
V
V
IN  
O
D
L
1
C
3
1
C
LM 3410  
1
C
2
L
/
HB OLED  
2
1
2
3
6
5
4
R
2
R
1
Copyright © 2016, Texas Instruments Incorporated  
Figure 26. LM3410X (1.6 MHz) HB or OLED Illumination Application Diagram  
8.2.7.1 Design Requirements  
For this design example, use the parameters listed in Table 13 as the input parameters.  
Table 13. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
VIN  
2.7 V to 5.5 V  
300 mA  
3.8 V  
ILED  
VOUT  
Table 14. Part Values  
PART  
VALUE  
U1  
2.8-A ISW LED Driver  
10 µF, 6.3 V, X5R  
10 µF, 6.3 V, X5R  
2.2 µF, 25 V, X5R  
0.4-Vf Schottky 1 A, 20 VR  
4.7 µH, 3 A  
C1, Input capacitor  
C2, Output capacitor  
C3  
D1, Catch diode  
L1 and L2  
R1  
665 mΩ, 1%  
R2  
100 kΩ, 1%  
HB – LEDs  
350 mA, Vf 3.6 V  
26  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
8.2.8 LM3410X WSON: Boost Flash Application  
V
IN  
V
O
L
D
1
1
C
LM3410  
1
LEDs  
C
1
2
3
6
5
4
2
FLASH CTRL  
R
1
Copyright © 2016, Texas Instruments Incorporated  
Figure 27. LM3410X (1.6 MHz) Boost Flash Application Diagram  
8.2.8.1 Design Requirements  
For this design example, use the parameters listed in Table 15 as the input parameters.  
Table 15. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
VIN  
2.7 V to 5.5 V  
1 A (pulse)  
8 V  
ILED  
VOUT  
Table 16. Part Values  
PART  
VALUE  
U1  
2.8-A ISW LED Driver  
10 µF, 6.3 V, X5R  
10 µF, 16 V, X5R  
0.4-Vf Schottky 500 mA, 30 VR  
4.7 µH, 3 A  
C1, Input capacitor  
C2, Output capacitor  
D1, Catch diode  
L1  
R1  
200 mΩ, 1%  
LEDs  
500 mA, Vf 3.6 V, IPULSE = 1 A  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
8.2.9 LM3410X SOT-23: 5 × 1206 Series LED String Application With VIN > 5.5 V  
L
1
D
1
LEDs  
V
PWR  
DIMM  
LM3410  
C
1
R
3
4
5
3
2
1
R
2
C
2
D
2
C
3
R
1
Copyright © 2016, Texas Instruments Incorporated  
Figure 28. LM3410X (1.6 MHz) 5 × 1206 Series LED String Application With VIN > 5.5 V Diagram  
8.2.9.1 Design Requirements  
For this design example, use the parameters listed in Table 17 as the input parameters.  
Table 17. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
VPWR  
ILED  
9 V to 14 V  
50 mA  
VOUT  
16.5 V (five 3.3-V LEDs in series)  
Table 18. Part Values  
PART  
VALUE  
U1  
2.8-A ISW LED Driver  
10 µF, 6.3 V, X5R  
2.2 µF, 25 V, X5R  
0.1 µF, 6.3 V, X5R  
0.43-Vf Schottky 500 mA, 30 VR  
3.3 V Zener, SOT-23  
10 µH, 1.2 A  
C1, Input VPWRcapacitor  
C2, Output capacitor  
C3, Input VIN capacitor  
D1, Catch diode  
D2  
L1  
R1  
4.02 Ω, 1%  
R2  
100 kΩ, 1%  
R3  
576 Ω, 1%  
LEDs  
SMD-1206, 50 mA, Vf 3.6 V  
28  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
8.2.10 LM3410X WSON: Camera Flash or Strobe Circuit Application  
V
IN  
V
O
L
D
1
C
3
1
C
1
LM3410  
LED(s)  
L
2
C
R
R
1
2
3
6
5
4
2
2
Q
2
R
3
1
R
4
1
Q
FLASH CTRL  
Copyright © 2016, Texas Instruments Incorporated  
Figure 29. LM3410X (1.6 MHz) Camera Flash or Strobe Circuit Application Diagram  
8.2.10.1 Design Requirements  
For this design example, use the parameters listed in Table 19 as the input parameters.  
Table 19. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
VIN  
2.7 V to 5.5 V  
1.5 A (flash)  
7.5 V  
ILED  
VOUT  
Table 20. Part Values  
PART  
VALUE  
U1  
2.8-A ISW LED Driver  
10 µF, 6.3 V, X5R  
220 µF, 10 V, tantalum  
10 µF, 16 V, X5R  
0.43-Vf Schottky 1 A, 20 VR  
3.3 µH, 2.7 A  
C1, Input capacitor  
C2, Output capacitor  
C3 capacitor  
D1, Catch diode  
L1  
R1  
1 Ω, 1%  
R2  
37.4 kΩ, 1%  
R3  
100 kΩ, 1%  
R4  
0.15 Ω, 1%  
Q1 and Q2  
LEDs  
30 V, ID = 3.9 A  
SMD-1206, 50 mA, Vf 3.6 V, IPULSE = 1.5 A  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
8.2.11 LM3410X SOT-23: 5 × 1206 Series LED String Application With VIN and VPWR Rail > 5.5 V  
L
1
D
1
LEDs  
VPWR  
LM3410  
DIMM  
C
1
4
5
3
2
1
R
2
C
2
V
IN  
C
3
R
1
Copyright © 2016, Texas Instruments Incorporated  
Figure 30. LM3410X (1.6 MHz) 5 × 1206 Series LED String Application With VIN and VPWR Rail > 5.5 V  
Diagram  
8.2.11.1 Design Requirements  
For this design example, use the parameters listed in Table 21 as the input parameters.  
Table 21. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
VPWR  
VIN  
9 V to 14 V  
2.7 V to 5.5 V  
50 mA  
ILED  
VOUT  
16.5 V (five 3.3-V LEDs in series)  
Table 22. Part Values  
PART  
VALUE  
U1  
2.8-A ISW LED Driver  
10 µF, 6.3 V, X5R  
2.2 µF, 25 V, X5R  
0.1 µF, 6.3 V, X5R  
0.43-Vf Schottky 500 mA, 30 VR  
10 µH, 1.2 A  
C1, Input VPWRcapacitor  
C2, Output capacitor  
C3, Input VIN capacitor  
D1, Catch diode  
L1  
R1  
4.02 Ω, 1%  
R2  
100 kΩ, 1%  
LEDs  
SMD-1206, 50 mA, Vf 3.6 V  
30  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
8.2.12 LM3410X WSON: Boot-Strap Circuit to Extend Battery Life  
V
IN  
V
O
C
L
1
D
1
4
D
2
C
LM3410  
1
L
2
1
2
3
6
5
4
C
2
C
3
R
3
D
R
3
1
Copyright © 2016, Texas Instruments Incorporated  
Figure 31. LM3410X (1.6 MHz) Boot-Strap Circuit to Extend Battery Life  
8.2.12.1 Design Requirements  
For this design example, use the parameters listed in Table 3 as the input parameters.  
Table 23. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
1.9 V to 5.5 V  
VIN  
>2.3 V (typical) for start-up  
ILED  
300 mA  
Table 24. Part Values  
PART  
VALUE  
U1  
2.8-A ISW LED Driver  
10 µF, 6.3 V, X5R  
10 µF, 6.3 V, X5R  
0.1 µF, 6.3 V, X5R  
0.43-Vf Schottky 1 A, 20 VR  
Dual small signal Schottky  
3.3 µH, 3 A  
C1, Input VPWR capacitor  
C2, Output capacitor  
C3, Input VIN capacitor  
D1, Catch diode  
D2 and D3  
L1 and L2  
R1  
665 mΩ, 1%  
R3  
100 kΩ, 1%  
HB – LEDs  
350 mA, Vf 3.4 V  
9 Power Supply Recommendations  
Any DC output power supply may be used provided it has a high enough voltage and current range for the  
particular application required.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
When planning layout there are a few things to consider when trying to achieve a clean, regulated output. The  
most important consideration when completing a boost converter layout is the close coupling of the GND  
connections of the COUT capacitor and the PGND pin. The GND ends must be close to one another and be  
connected to the GND plane with at least two vias. There must be a continuous ground plane on the bottom  
layer of a two-layer board except under the switching node island. The FB pin is a high impedance node and the  
FB trace must be kept short to avoid noise pickup and inaccurate regulation. The RSET feedback resistor must be  
placed as close as possible to the IC, with the AGND of RSET (R1) placed as close as possible to the AGND of  
the IC. Radiated noise can be decreased by choosing a shielded inductor. The remaining components must also  
be placed as close as possible to the IC. See AN-1229 SIMPLE SWITCHER® PCB Layout Guidelins (SNVA054)  
for further considerations and the LM3410 demo board as an example of a four-layer layout.  
For certain high power applications, the PCB land may be modified to a dog bone shape (see Figure 33).  
Increasing the size of ground plane and adding thermal vias can reduce the RθJA for the application.  
10.2 Layout Examples  
COPPER  
LEDs  
PCB  
R1  
PGND  
DIM  
1
2
6
5
SW  
PGND  
VIN  
FB  
4
3
2
1
AGND  
AGND  
5
C2  
VIN  
VSW  
6
VO  
PGND  
D1  
3
4
FB  
DIM  
C1  
SW  
L1  
COPPER  
Figure 33. PCB Dog Bone Layout  
Figure 32. Boost PCB Layout Guidelines  
LED1  
VO  
PGND  
C2  
R1  
L2  
FB  
DIM  
D1  
4
3
2
1
AGND  
5
VIN  
C1  
C3  
6
PGND  
SW  
VIN  
L1  
The layout guidelines described for the LM3410 boost-converter are applicable to the SEPIC OLED Converter. This is  
a proper PCB layout for a SEPIC Converter.  
Figure 34. HB or OLED SEPIC PCB Layout  
32  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
10.3 Thermal Considerations  
10.3.1 Design  
When designing for thermal performance, many variables must be considered, such as ambient temperature,  
airflow, external components, and PCB design.  
The surrounding maximum air temperature is fairly explanatory. As the temperature increases, the junction  
temperature increases. This may not be linear though. As the surrounding air temperature increases, resistances  
of semiconductors, wires and traces increase. This decreases the efficiency of the application, and more power  
is converted into heat, and increases the silicon junction temperatures further.  
Forced air can drastically reduce the device junction temperature. Air flow reduces the hot spots within a design.  
Warm airflow is often much better than a lower ambient temperature with no airflow.  
Choose components that are efficient, and the mutual heating between devices can be reduced.  
The PCB design is a very important step in the thermal design procedure. The LM3410 and LM3410-Q1 are  
available in three package options (6-pin WSON, 8-pin MSOP, and 5-pin SOT-23). The options are electrically  
the same, but there are differences between the package sizes and thermal performances. The WSON and  
MSOP have thermal die attach pads (DAP) attached to the bottom of the packages, and are therefore capable of  
dissipating more heat than the SOT-23 package. It is important that the customer choose the correct package for  
the application. A detailed thermal design procedure has been included in this data sheet. This procedure helps  
determine which package is correct, and common applications are analyzed.  
There is one significant thermal PCB layout design consideration that contradicts a proper electrical PCB layout  
design consideration. This contradiction is the placement of external components that dissipate heat. The  
greatest external heat contributor is the external Schottky diode. Increasing the distance between the LM3410 or  
LM3410-Q1 and the Schottky diode may reduce the mutual heating effect. This, however, creates electrical  
performance issues. It is important to keep the device, the output capacitor, and Schottky diode physically close  
to each other (see Layout Guidelines). The electrical design considerations outweigh the thermal considerations.  
Other factors that influence thermal performance are thermal vias, copper weight, and number of board layers.  
Heat energy is transferred from regions of high temperature to regions of low temperature via three basic  
mechanisms: radiation, conduction and convection. Conduction and convection are the dominant heat transfer  
mechanism in most applications.  
The data sheet values for each packages thermal impedances are given to allow comparison of the thermal  
performance of one package against another. To achieve a comparison between packages, all other variables  
must be held constant in the comparison (PCB size, copper weight, thermal vias, power dissipation, VIN, VOUT  
,
load current, and others). This provides indication of package performance, but it would be a mistake to use  
these values to calculate the actual junction temperature in an application.  
10.3.2 LM3410 and LM3410-Q1 Thermal Models  
Heat is dissipated from the LM3410, LM3410-Q1, and other devices. The external loss elements include the  
Schottky diode, inductor, and loads. All loss elements mutually increase the heat on the PCB, and therefore  
increase each other’s temperatures.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
Thermal Considerations (continued)  
L
1
I
D
1
L(t)  
V
OUT(t)  
V
Q
IN  
1
C
1
Figure 35. Thermal Schematic  
RqCASE-AMB  
TCASE  
CqCASE-AMB  
RqJ-CASE  
CqJ-CASE  
INTERNAL  
PDISS  
SMALL  
LARGE  
PDISS-TOP  
TAMBIENT  
PDISS-PCB  
TJUNCTION  
CqJ-PCB  
RqJ-PCB  
DEVICE  
EXTERNAL  
PDISS  
RqPCB-AMB  
TPCB  
CqPCB-AMB  
PCB  
Figure 36. Associated Thermal Model  
34  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
Thermal Considerations (continued)  
10.3.3 Calculating Efficiency and Junction Temperature  
Use Equation 31 to calculate RθJA  
.
TJ - TA  
RqJA  
=
PDissipation  
(31)  
A common error when calculating RθJA is to assume that the package is the only variable to consider.  
Other variables are:  
Input voltage, output voltage, output current, RDS(ON)  
Ambient temperature and air flow  
Internal and external components' power dissipation  
Package thermal limitations  
PCB variables (copper weight, thermal vias, and component placement)  
Another common error when calculating junction temperature is to assume that the top case temperature is the  
proper temperature when calculating RθJC. RθJC represents the thermal impedance of all six sides of a package,  
not just the top side. This document refers to a thermal impedance called RΨJC. RΨJC represents a thermal  
impedance associated with just the top case temperature. This allows for the calculation of the junction  
temperature with a thermal sensor connected to the top case.  
The complete LM3410 and LM3410-Q1 boost converter efficiency can be calculated using Equation 32.  
POUT  
h =  
P
IN  
or  
POUT  
h =  
POUT + P  
LOSS  
where  
PLOSS is the sum of two types of losses in the converter, switching and conduction  
(32)  
Conduction losses usually dominate at higher output loads, where as switching losses remain relatively fixed and  
dominate at lower output loads.  
To calculate losses in the LM3410 or LM3410-Q1 device, use Equation 33.  
PLOSS = PCOND + PSW + PQ  
where  
PQ = quiescent operating power loss  
(33)  
Conversion ratio of the boost converter with conduction loss elements inserted is calculated with Equation 34.  
÷
Å
VOUT  
÷
÷
D x V  
1
1
Å
D
÷
÷
D
1-  
=
V
RDCR+ Dx R  
V
(
)
IN  
DSON  
«
IN ◊  
«
÷
÷
1+  
Å2  
ROUT  
D
where  
RDCR is the Inductor series resistance  
(34)  
35  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: LM3410 LM3410-Q1  
 
 
 
 
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
Thermal Considerations (continued)  
VOUT  
ROUT  
=
ILED  
(35)  
If the loss elements are reduced to zero, the conversion ratio simplifies to Equation 36.  
VOUT  
VIN  
1
=
D‘  
(36)  
(37)  
h
VOUT  
VIN  
=
D‘  
Therefore:  
Å
D x VD  
÷
1-  
VIN  
VOUT  
VIN  
÷
Å
h = D  
=
÷
RDCR + (D x RDSON  
)
÷
÷
1+  
Å2  
ROUT  
D
«
(38)  
Only calculations for determining the most significant power losses are discussed. Other losses totaling less than  
2% are not discussed.  
A simple efficiency calculation that takes into account the conduction losses is Equation 39.  
Å
D x VD  
÷
1-  
VIN  
÷
h ö  
÷
RDCR + (D x RDSON  
)
÷
÷
1+  
Å2  
ROUT  
D
«
(39)  
The diode, NMOS switch, and inductor (DCR) losses are included in this calculation. Setting any loss element to  
zero simplifies the equation.  
VD is the forward voltage drop across the Schottky diode. It can be obtained from Electrical Characteristics.  
Conduction losses in the diode are calculated with Equation 40.  
PDIODE = VD × ILED  
(40)  
Depending on the duty cycle, this can be the single most significant power loss in the circuit. Choose a diode that  
has a low forward voltage drop. Another concern with diode selection is reverse leakage current. Depending on  
the ambient temperature and the reverse voltage across the diode, the current being drawn from the output to  
the NMOS switch during time (D) could be significant, this may increase losses internal to the LM3410 or  
LM3410-Q1 and reduce the overall efficiency of the application. See the Schottky diode manufacturer’s data  
sheets for reverse leakage specifications.  
Another significant external power loss is the conduction loss in the input inductor. The power loss within the  
inductor can be simplified to Equation 41,  
2
PIND = IIN RDCR  
(41)  
Or Equation 42.  
36  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
 
 
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
Thermal Considerations (continued)  
2
÷
÷
IO RDCR  
PIND  
=
D'  
«
(42)  
The LM3410 and LM3410-Q1 conduction loss is mainly associated with the internal power switch.  
PCOND-NFET = I2SW-rms × RDS(ON) × D  
(43)  
Di  
IIN  
ISW(t)  
t
Figure 37. LM3410 and LM3410-Q1 Switch Current  
2
÷
1 Di  
Isw -rms = I  
D ì 1+  
ö I  
D
IND  
IND  
3 I  
« IND ◊  
(44)  
(45)  
(small ripple approximation)  
PCOND-NFET = IIN2 × RDS(ON) × D  
Or  
2
I  
= LED  
PCOND- NFET  
xRDSON x D  
÷
÷
D'  
«
(46)  
The value for RDS(ON) must be equal to the resistance at the desired junction temperature for analyzation. As an  
example, at 125°C and RDS(ON) = 250 mΩ (See Typical Characteristics for value).  
Switching losses are also associated with the internal power switch. They occur during the switch ON and OFF  
transition periods, where voltages and currents overlap resulting in power loss.  
The simplest means to determine this loss is empirically measuring the rise and fall times (10% to 90%) of the  
switch at the switch node.  
PSWR = 1/2 (VOUT × IIN × fSW × tRISE  
)
(47)  
(48)  
(49)  
PSWF = 1/2 (VOUT × IIN × fSW × tFALL  
PSW = PSWR + PSWF  
)
Table 25. Typical Switch-Node Rise and Fall Times  
VIN (V)  
VOUT (V)  
tRISE (ns)  
tFALL (ns)  
3
5
3
5
5
6
6
4
5
7
8
12  
12  
18  
8
10  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
10.3.3.1 Quiescent Power Losses  
IQ is the quiescent operating current, and is typically around 1.5 mA.  
PQ = IQ × VIN  
(50)  
10.3.3.2 RSET Power Losses  
RSET power loss is calculated with Equation 51.  
2
VFB  
PRSET  
=
RSET  
(51)  
10.3.4 Example Efficiency Calculation  
Operating Conditions:5 × 3.3-V LEDs + 190 mVREF 16.7 V  
Table 26. Operating Conditions  
PARAMETER  
VALUE  
VIN  
3.3 V  
VOUT  
ILED  
VD  
16.7 V  
50 mA  
0.45 V  
1.6 MHz  
3 mA  
fSW  
IQ  
tRISE  
tFALL  
RDS(ON)  
LDCR  
D
10 ns  
10 ns  
225 mΩ  
75 mΩ  
0.82  
IIN  
0.31 A  
ΣPCOND + PSW + PDIODE + PIND + PQ = PLOSS  
(52)  
(53)  
Quiescent Power Loss:  
PQ = IQ × VIN = 10 mW  
Switching Power Loss:  
PSWR = 1/2(VOUT × IIN × fSW × tRISE) 40 mW  
PSWF = 1/2(VOUT × IIN × fSW × tFALL) 40 mW  
PSW = PSWR + PSWF = 80 mW  
(54)  
(55)  
(56)  
Internal NFET Power Loss:  
RDS(ON) = 225 mΩ  
(57)  
(58)  
(59)  
PCONDUCTION = IIN2 × D × RDS(ON) = 17 mW  
IIN = 310 mA  
Diode Loss:  
VD = 0.45 V  
(60)  
(61)  
PDIODE = VD × ILED = 23 mW  
Inductor Power Loss:  
RDCR = 75 mΩ  
(62)  
(63)  
PIND = IIN2 × RDCR = 7 mW  
38  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
Table 27. Total Power Losses  
PARAMETER  
VALUE  
LOSS PARAMETER  
LOSS VALUE  
VIN  
VOUT  
ILED  
VD  
3.3 V  
16.7 V  
50 mA  
0.45 V  
1.6 MHz  
10 ns  
POUT  
825 W  
PDIODE  
23 mW  
fSW  
IQ  
tRISE  
IQ  
PSWR  
PSWF  
PQ  
40 mW  
40 mW  
10 mW  
17 mW  
7 mW  
10 ns  
3 mA  
RDS(ON)  
225 mΩ  
75 mΩ  
0.82  
PCOND  
PIND  
LDCR  
D
η
85%  
PLOSS  
137 mW  
PINTERNAL = PCOND + PSW = 107 mW  
(64)  
(65)  
10.3.5 Calculating RθJA and RΨJC  
TJ - TA  
T - TCase  
J
:
R qJA  
=
RYJC =  
PDissipation  
PDissipation  
We now know the internal power dissipation, and we are trying to keep the junction temperature at or below  
125°C. The next step is to calculate the value for RθJA or RΨJC. This is actually very simple to accomplish, and  
necessary for determining the correct package option for a given application.  
The LM3410 and LM3410-Q1 have a thermal shutdown comparator. When the silicon reaches a temperature of  
165°C, the device shuts down until the temperature drops to 150°C. From this, it is possible calculate the RθJA or  
the RΨJC of a specific application. Because the junction to top case thermal impedance is much lower than the  
thermal impedance of junction to ambient air, the error in calculating RΨJC is lower than for RθJA . However, a  
small thermocouple needs to be attached onto the top case of the device to obtain the RΨJC value.  
Knowing the temperature of the silicon when the device shuts down provides three of the four variables. After  
calculating the thermal impedance, working backwards with the junction temperature set to 125°C, the maximum  
ambient air temperature to keep the silicon below 125°C can be calculated.  
Procedure:  
Place the application into a thermal chamber. Dissipate enough power in the device to obtain an accurate  
thermal impedance value.  
Raise the ambient air temperature until the device goes into thermal shutdown. Record the temperatures of the  
ambient air and the top case temperature of the device. Calculate the thermal impedances.  
Example from previous calculations (SOT-23 Package):  
PINTERNAL = 107 mW  
(66)  
(67)  
(68)  
TA at shutdown = 155°C  
TC at shutdown = 159°C  
TJ - TA  
T - TCase-Top  
J
:
RYJC  
=
R qJA  
=
PDissipation  
PDissipation  
(69)  
(70)  
(71)  
R
θJA SOT-23 = 93°C/W  
ΨJC SOT-23 = 56°C/W  
R
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
Typical WSON and MSOP typical applications produces RθJA numbers from 53.7°C/W to 55.3°C/W, and RθJC  
varies from 61.4°C/W to 65.9°C/W. These values are for PCBs with two and four layer boards with 0.5 oz  
copper, and four to six thermal vias to bottom side ground plane under the DAP. The thermal impedances  
calculated above are higher due to the small amount of power being dissipated within the device.  
NOTE  
To use these procedures it is important to dissipate an amount of power within the device  
that indicates a true thermal impedance value. If a very small internal dissipated value is  
used, the resulting thermal impedance calculated is abnormally high, and subject to error.  
Figure 38 shows the nonlinear relationship of internal power dissipation vs RθJA  
.
Figure 38. RθJA vs Internal Dissipation  
For 5-pin SOT-23 package typical applications, RθJA numbers range from 164.2°C/W, and RθJC varies from  
115.3°C/W. These values are for PCBs with two and four layer boards with 0.5 oz copper, with two to four  
thermal vias from GND pin to bottom layer.  
Using typical thermal impedances and an ambient temperature maximum of 75°C, if the design requires more  
dissipation than 400 mW internal to the device, or there is 750 mW of total power loss in the application, TI  
recommends using the 6-pin WSON or the 8-pin MSOP-PowerPad package with the exposed DAP.  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
Radiation Electromagnetic transfer of heat between masses at different temperatures.  
Conduction Transfer of heat through a solid medium.  
Convection Transfer of heat through the medium of a fluid; typically air.  
RθJA  
Thermal impedance from silicon junction to ambient air temperature.  
θJA is the sum of smaller thermal impedances (see Figure 35 and Figure 36). Capacitors  
R
within the model represent delays that are present from the time that power and its  
associated heat is increased or decreased from steady state in one medium until the time  
that the heat increase or decrease reaches steady state in the another medium.  
RθJC  
Thermal impedance from silicon junction to device case temperature.  
40  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
 
LM3410, LM3410-Q1  
www.ti.com  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
Device Support (continued)  
CθJC  
CθCA  
Thermal Delay from silicon junction to device case temperature.  
Thermal Delay from device case to ambient air temperature.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
AN-1229 SIMPLE SWITCHER® PCB Layout Guidelins (SNVA054)  
11.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 28. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
LM3410  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
LM3410-Q1  
11.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.5 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.6 Trademarks  
PowerPad, E2E are trademarks of Texas Instruments.  
SIMPLE SWITCHER is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LM3410 LM3410-Q1  
LM3410, LM3410-Q1  
SNVS541H OCTOBER 2007REVISED AUGUST 2016  
www.ti.com  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
42  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM3410 LM3410-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM3410XMF/NOPB  
LM3410XMFE/NOPB  
LM3410XMFX/NOPB  
LM3410XMY/NOPB  
LM3410XMYE/NOPB  
LM3410XMYX/NOPB  
LM3410XQMF/NOPB  
LM3410XSD/NOPB  
LM3410XSDE/NOPB  
LM3410XSDX/NOPB  
LM3410YMF/NOPB  
LM3410YMFE/NOPB  
LM3410YMFX/NOPB  
LM3410YMY/NOPB  
LM3410YMYE/NOPB  
LM3410YMYX/NOPB  
LM3410YQMF/NOPB  
LM3410YQMFX/NOPB  
LM3410YSD/NOPB  
LM3410YSDE/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
HVSSOP  
HVSSOP  
HVSSOP  
SOT-23  
WSON  
DBV  
DBV  
DBV  
DGN  
DGN  
DGN  
DBV  
NGG  
NGG  
NGG  
DBV  
DBV  
DBV  
DGN  
DGN  
DGN  
DBV  
DBV  
NGG  
NGG  
5
5
5
8
8
8
5
6
6
6
5
5
5
8
8
8
5
5
6
6
1000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
SSVB  
SSVB  
SSVB  
SSXB  
SSXB  
SSXB  
SXUB  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
3000 RoHS & Green  
1000 RoHS & Green  
250  
RoHS & Green  
3500 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
3410X  
3410X  
3410X  
SSZB  
SSZB  
SSZB  
STAB  
STAB  
STAB  
SXXB  
SXXB  
3410Y  
3410Y  
WSON  
250  
RoHS & Green  
WSON  
4500 RoHS & Green  
1000 RoHS & Green  
SOT-23  
SOT-23  
SOT-23  
HVSSOP  
HVSSOP  
HVSSOP  
SOT-23  
SOT-23  
WSON  
250  
RoHS & Green  
3000 RoHS & Green  
1000 RoHS & Green  
250  
RoHS & Green  
3500 RoHS & Green  
1000 RoHS & Green  
3000 RoHS & Green  
1000 RoHS & Green  
WSON  
250  
RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM3410, LM3410-Q1 :  
Catalog: LM3410  
Automotive: LM3410-Q1  
NOTE: Qualified Version Definitions:  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM3410XMF/NOPB  
LM3410XMFE/NOPB  
LM3410XMFX/NOPB  
LM3410XMY/NOPB  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
5
5
5
8
8
8
5
6
6
6
5
5
5
8
8
8
1000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
330.0  
178.0  
178.0  
178.0  
330.0  
178.0  
178.0  
178.0  
178.0  
178.0  
330.0  
8.4  
8.4  
3.2  
3.2  
3.2  
5.3  
5.3  
5.3  
3.2  
3.3  
3.3  
3.3  
3.2  
3.2  
3.2  
5.3  
5.3  
5.3  
3.2  
3.2  
3.2  
3.4  
3.4  
3.4  
3.2  
3.3  
3.3  
3.3  
3.2  
3.2  
3.2  
3.4  
3.4  
3.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.0  
1.0  
1.0  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
4.0  
8.0  
8.0  
8.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q1  
Q1  
Q1  
Q3  
Q1  
Q1  
Q1  
Q3  
Q3  
Q3  
Q1  
Q1  
Q1  
3000  
1000  
250  
8.4  
8.0  
HVSSOP DGN  
12.4  
12.4  
12.4  
8.4  
12.0  
12.0  
12.0  
8.0  
LM3410XMYE/NOPB HVSSOP DGN  
LM3410XMYX/NOPB HVSSOP DGN  
3500  
1000  
1000  
250  
LM3410XQMF/NOPB  
LM3410XSD/NOPB  
LM3410XSDE/NOPB  
LM3410XSDX/NOPB  
LM3410YMF/NOPB  
LM3410YMFE/NOPB  
LM3410YMFX/NOPB  
LM3410YMY/NOPB  
SOT-23  
WSON  
WSON  
WSON  
SOT-23  
SOT-23  
SOT-23  
DBV  
NGG  
NGG  
NGG  
DBV  
DBV  
DBV  
12.4  
12.4  
12.4  
8.4  
12.0  
12.0  
12.0  
8.0  
4500  
1000  
250  
8.4  
8.0  
3000  
1000  
250  
8.4  
8.0  
HVSSOP DGN  
12.4  
12.4  
12.4  
12.0  
12.0  
12.0  
LM3410YMYE/NOPB HVSSOP DGN  
LM3410YMYX/NOPB HVSSOP DGN  
3500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM3410YQMF/NOPB  
SOT-23  
DBV  
DBV  
NGG  
NGG  
5
5
6
6
1000  
3000  
1000  
250  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
3.2  
3.2  
3.3  
3.3  
3.2  
3.2  
3.3  
3.3  
1.4  
1.4  
1.0  
1.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q1  
LM3410YQMFX/NOPB SOT-23  
LM3410YSD/NOPB  
LM3410YSDE/NOPB  
WSON  
WSON  
12.4  
12.4  
12.0  
12.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM3410XMF/NOPB  
LM3410XMFE/NOPB  
LM3410XMFX/NOPB  
LM3410XMY/NOPB  
LM3410XMYE/NOPB  
LM3410XMYX/NOPB  
LM3410XQMF/NOPB  
LM3410XSD/NOPB  
LM3410XSDE/NOPB  
LM3410XSDX/NOPB  
LM3410YMF/NOPB  
LM3410YMFE/NOPB  
LM3410YMFX/NOPB  
LM3410YMY/NOPB  
LM3410YMYE/NOPB  
LM3410YMYX/NOPB  
LM3410YQMF/NOPB  
LM3410YQMFX/NOPB  
SOT-23  
SOT-23  
SOT-23  
HVSSOP  
HVSSOP  
HVSSOP  
SOT-23  
WSON  
DBV  
DBV  
DBV  
DGN  
DGN  
DGN  
DBV  
NGG  
NGG  
NGG  
DBV  
DBV  
DBV  
DGN  
DGN  
DGN  
DBV  
DBV  
5
5
5
8
8
8
5
6
6
6
5
5
5
8
8
8
5
5
1000  
250  
208.0  
208.0  
208.0  
208.0  
208.0  
367.0  
208.0  
208.0  
208.0  
367.0  
208.0  
208.0  
208.0  
208.0  
208.0  
367.0  
208.0  
208.0  
191.0  
191.0  
191.0  
191.0  
191.0  
367.0  
191.0  
191.0  
191.0  
367.0  
191.0  
191.0  
191.0  
191.0  
191.0  
367.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
1000  
250  
3500  
1000  
1000  
250  
WSON  
WSON  
4500  
1000  
250  
SOT-23  
SOT-23  
SOT-23  
HVSSOP  
HVSSOP  
HVSSOP  
SOT-23  
SOT-23  
3000  
1000  
250  
3500  
1000  
3000  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM3410YSD/NOPB  
LM3410YSDE/NOPB  
WSON  
WSON  
NGG  
NGG  
6
6
1000  
250  
208.0  
208.0  
191.0  
191.0  
35.0  
35.0  
Pack Materials-Page 4  
PACKAGE OUTLINE  
DGN0008A  
PowerPADTM VSSOP - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE PACKAGE  
C
5.05  
4.75  
TYP  
A
0.1 C  
SEATING  
PLANE  
PIN 1 INDEX AREA  
6X 0.65  
8
1
2X  
3.1  
2.9  
1.95  
NOTE 3  
4
5
0.38  
8X  
0.25  
3.1  
2.9  
0.13  
C A B  
B
NOTE 4  
0.23  
0.13  
SEE DETAIL A  
EXPOSED THERMAL PAD  
4
5
0.25  
GAGE PLANE  
2.0  
1.7  
9
1.1 MAX  
8
0.15  
0.05  
1
0.7  
0.4  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1.88  
1.58  
4218836/A 11/2019  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGN0008A  
PowerPADTM VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(2)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(1.88)  
SOLDER MASK  
DEFINED PAD  
SYMM  
8X (1.4)  
(R0.05) TYP  
8
8X (0.45)  
1
(3)  
NOTE 9  
SYMM  
9
(2)  
(1.22)  
6X (0.65)  
5
4
(
0.2) TYP  
VIA  
SEE DETAILS  
(0.55)  
(4.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4218836/A 11/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGN0008A  
PowerPADTM VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(1.88)  
BASED ON  
0.125 THICK  
STENCIL  
SYMM  
(R0.05) TYP  
8X (1.4)  
8
1
8X (0.45)  
(2)  
BASED ON  
SYMM  
0.125 THICK  
STENCIL  
6X (0.65)  
5
4
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
(4.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD 9:  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 15X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.10 X 2.24  
1.88 X 2.00 (SHOWN)  
1.72 X 1.83  
0.125  
0.15  
0.175  
1.59 X 1.69  
4218836/A 11/2019  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
MECHANICAL DATA  
NGG0006A  
SDE06A (Rev A)  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY