LM34936RHFR [TI]

30V 宽输入电压同步 4 开关降压/升压控制器 | RHF | 28 | -40 to 125;
LM34936RHFR
型号: LM34936RHFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

30V 宽输入电压同步 4 开关降压/升压控制器 | RHF | 28 | -40 to 125

开关 控制器
文件: 总43页 (文件大小:2315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM34936  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
LM34936 30V 宽输入电压同4 开关降压/升压控制器  
1 特性  
3 说明  
• 单电感降压/升压控制器用于升压/降压直流/直流  
转换  
VIN4.2V2.5V 偏置30V42V 最大输入  
电压)  
• 灵活VOUT0.8 V 30 V  
• 输出电压短路保护  
LM34936 是一款同步 4 开关降压/升压直流/直流控制  
能够将输出电压稳定在等于、高于或低于输入电压  
的某一电压值上。LM34936 4.2V 30V最大绝  
对值为 42V的宽输入电压范围内工作可支持各种  
不同的应用。  
LM34936 在降压和升压工作模式下均采用电流模式控  
以提供出色的负载调节率和线性调节率。开关频率  
可通过外部电阻进行编程并且可与外部时钟信号同  
步。  
• 高效降压/升压转换  
• 可调开关频率  
• 可选频率同步和抖动  
• 集2A MOSFET 栅极驱动器  
• 逐周期电流限制和可选断续模式  
• 可选输入或输出平均电流限制  
• 可编程输UVLO 和软启动  
• 电源正常和输出过压保护  
• 采QFN-28 封装  
该器件还具有可编程的软启动功能并且提供诸如逐周  
期电流限制、输入欠压闭锁 (UVLO)、输出过压保护  
(OVP) 和热关断等各类保护特性。此外LM34936 具  
有平均输入或输出电流限制、用于减少峰值 EMI 的展  
频以及持续过载情况下的断续模式保护等选项。  
• 使LM34936 并借WEBENCH Power Designer  
创建定制设计  
器件信息  
封装(1)  
订货编号  
封装尺寸  
2 应用  
LM34936RHF  
QFN-28  
4.0mm x 5.0mm  
• 工PC 电源  
USB 电力输送  
• 电池供电型系统  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
LED 照明  
VIN  
VCC  
VOUT  
BOOT1  
EN/UVLO  
PGOOD  
SS  
Enable  
HDRV1  
SW1  
Power Good  
LDRV1  
CS  
SLOPE  
RT/SYNC  
CSG  
LM34936  
LDRV2  
SW2  
COMP  
AGND  
PGND  
VCC  
BOOT2  
VCC  
HDRV2  
VOSNS  
Copyright © 2018, Texas Instruments Incorporated  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSB52  
 
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
Table of Contents  
8 Application and Implementation..................................21  
8.1 Application Information............................................. 21  
8.2 Typical Application.................................................... 21  
9 Power Supply Recommendations................................29  
10 Layout...........................................................................30  
10.1 Layout Guidelines................................................... 30  
10.2 Layout Example...................................................... 31  
11 Device and Documentation Support..........................32  
11.1 Device Support........................................................32  
11.2 Documentation Support.......................................... 32  
11.3 接收文档更新通知................................................... 32  
11.4 支持资源..................................................................32  
11.5 Trademarks............................................................. 32  
11.6 Electrostatic Discharge Caution..............................32  
11.7 术语表..................................................................... 33  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics................................................9  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................20  
Information.................................................................... 33  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (September 2018) to Revision A (August 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Corrected WEBENCH link................................................................................................................................ 22  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM34936  
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
5 Pin Configuration and Functions  
MODE  
DITH  
RT  
1
2
3
4
5
6
7
8
22 LDRV1  
21 BIAS  
20 VCC  
SLOPE  
SS  
19 PGND  
18 LDRV2  
17 BOOT2  
16 HDRV2  
15 SW2  
COMP  
AGND  
FB  
5-1. QFN-28 RHF Package Top View  
5-1. Pin Functions  
PIN  
DESCRIPTION  
NO.  
NAME  
1.38 V < MODE < 2.22 V : CCM, Hiccup Enabled (Set RMODE resistor to AGND = 93.1 k). 2.6 V < MODE <  
VCC: CCM, Hiccup Disabled (Set RMODE resistor to AGND = 200 kor connect to VCC)  
1
MODE  
DITH  
A capacitor connected between the DITH pin and AGND is charged and discharged with a current source. As  
the voltage on the DITH pin ramps up and down the oscillator frequency is modulated by 10% of the nominal  
frequency set by the RT resistor. Grounding the DITH pin will disable the dithering feature. In the external  
Sync mode, the DITH pin voltage is ignored.  
2
3
Switching frequency programming pin. An external resistor is connected to the RT/SYNC pin and AGND to  
set the switching frequency. This pin can also be used to synchronize the PWM controller to an external clock.  
RT/SYNC  
A capacitor connected between the SLOPE pin and AGND provides the slope compensation ramp for stable  
current mode operation in both buck and boost mode.  
4
5
6
7
8
9
SLOPE  
SS  
Soft-start programming pin. A capacitor between the SS pin and AGND pin programs soft-start time.  
Output of the error amplifier. An external RC network connected between COMP and AGND compensates the  
regulator feedback loop.  
COMP  
AGND  
FB  
Analog ground of the IC.  
Feedback pin for output voltage regulation. Connect a resistor divider network from the output of the converter  
to the FB pin.  
VOSNS  
VOUT sense input. Connect to the power stage output rail.  
Input or Output Current Sense Amplifier inputs. An optional current sense resistor connected between  
ISNS(+) and ISNS() can be located either on the input side or on the output side of the converter. If the  
sensed voltage across the ISNS(+) and ISNS(-) pins reaches 50 mV, a slow Constant Current (CC) control  
loop becomes active and starts discharging the soft-start capacitor to regulate the drop across ISNS(+) and  
ISNS(-) to 50 mV. Short ISNS(+) and ISNS(-) together to disable this feature.  
10  
11  
ISNS()  
ISNS(+)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM34936  
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
5-1. Pin Functions (continued)  
PIN  
DESCRIPTION  
NO.  
12  
NAME  
The negative or ground input to the PWM current sense amplifier. Connect directly to the low-side (ground) of  
the current sense resistor.  
CSG  
13  
CS  
The positive input to the PWM current sense amplifier.  
Power Good open drain output. PGOOD is pulled low when FB is outside a -9%/+10% regulation window  
14  
PGOOD  
around the 0.8-V VREF  
.
15  
25  
SW2  
SW1  
The boost and the buck side switching nodes respectively.  
16  
24  
HDRV2  
HDRV1  
Output of the high-side gate drivers. Connect directly to the gates of the high-side MOSFETs.  
17  
23  
BOOT2  
BOOT1  
An external capacitor is required between the BOOT1, BOOT2 pins and the SW1, SW2 pins respectively to  
provide bias to the high-side MOSFET gate drivers.  
18  
22  
LDRV2  
LDRV1  
Output of the low-side gate drivers. Connect directly to the gates of the low-side MOSFETs.  
19  
20  
PGND  
VCC  
Power ground of the IC. The high current ground connection to the low-side gate drivers.  
Output of the VCC bias regulator. Connect capacitor to ground.  
Optional input to the VCC bias regulator. Powering VCC from an external supply instead of VIN can reduce  
power loss at high VIN. For VBIAS > 8 V, the VCC regulator draws power from the BIAS pin.  
21  
26  
BIAS  
Enable pin. For EN/UVLO < 0.4 V, the LM34936 is in a low current shutdown mode. For EN/UVLO > 1.22 V,  
the PWM function is enabled, provided VCC exceeds the VCC UV threshold.  
EN/UVLO  
27  
28  
VIN  
The input supply pin to the IC. Connect VIN to a supply voltage between 4.2 V and 30 V.  
VIN sense input. Connect to power stage input rail.  
VISNS  
The PowerPAD should be soldered to the analog ground. If possible, use thermal vias to connect to a PCB  
ground plane for improved power dissipation.  
-
PowerPAD™  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM34936  
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
MIN(1)  
0.3  
0.3  
0.3  
1  
MAX  
42  
UNIT  
VIN, EN/UVLO, VISNS, VOSNS, ISNS(+), ISNS()  
BIAS  
40  
FB, SS, DITH, RT/SYNC, SLOPE, COMP  
SW1, SW2  
3.6  
42  
SW1, SW2 (20 ns transient)  
VCC, MODE, PGOOD  
47  
5.0  
0.3  
0.3  
0.3  
0.3  
-0.3  
8.5  
8.5  
8.5  
8.5  
0.3  
0.3  
125  
150  
V
LDRV1, LDRV2  
BOOT1, HDRV1 with respect to SW1  
BOOT2, HDRV2 with respect to SW2  
ISNS(+) with respect to ISNS(-)  
CS, CSG  
0.3  
40  
65  
Operating junction temperature  
Storage temperature, Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±250  
UNIT  
(1)  
VESD  
Human body model (HBM) ESD stress voltage(2)  
Charged device model (CDM) ESD stress voltage(3)  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
into the device.  
(2) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500 V HBM allows safe  
manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250 V CDM allows safe  
manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
4.2  
NOM  
MAX  
30  
UNIT  
VIN  
Input bias voltage  
VISNS  
2.5  
30  
Input power stage voltage with external bias (BIAS 5 V  
or VIN 4.5 V)  
BIAS  
Bias supply voltage range (when VCC in regulation)  
Output voltage range  
8
0.8  
0
30  
30  
V
VOSNS  
EN/UVLO  
ISNS(+), ISNS(-)  
TJ  
Enable voltage range  
30  
Average current sense common mode range  
Operating temperature range(2)  
Operating frequency range  
0
30  
125  
600  
°C  
40  
100  
Fsw  
kHz  
(1) Recommended Operating Conditions are conditions under the device is intended to be functional. For specifications and test  
conditions, see 6.5 .  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM34936  
 
 
 
 
 
 
 
 
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
6.4 Thermal Information  
LM34936  
RHF (QFN)  
28 PINS  
34.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJC(top)  
RθJB  
26.6  
6.3  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJT  
6.2  
ψJB  
RθJC(bot)  
2.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the 40°C to 125°C junction temperature  
range unless otherwise stated. VIN = 24 V unless otherwise stated.(1)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE (VIN  
)
IQ  
VIN shutdown current  
VIN operating current  
VEN/UVLO = 0 V  
2.6  
2
10  
4
µA  
VEN/UVLO = 2 V, VFB = 0.9 V  
mA  
VCC  
VVCC(VIN)  
VUV(VCC)  
Regulation voltage  
VBIAS = 0 V, VCC open  
VCC increasing  
6.95  
3.11  
7.35  
3.27  
176  
7.88  
3.43  
V
VCC Undervoltage lockout  
Undervoltage hysteresis  
VCC current limit  
mV  
mA  
Ω
IVCC  
VVCC = 0 V  
65  
ROUT(VCC)  
BIAS  
VCC regulator output impedance  
IVCC = 30 mA, VIN = 4 V  
8
8
16  
VBIAS(SW)  
EN/UVLO  
VEN(STBY)  
IEN(STBY)  
VEN(OP)  
ΔIHYS(OP)  
SS  
BIAS switchover voltage  
VIN = 24 V  
7.25  
8.75  
V
Standby threshold  
EN/UVLO rising  
VEN/UVLO = 1.1 V  
EN/UVLO rising  
VEN/UVLO = 1.5 V  
0.55  
1
0.82  
2
0.97  
3
V
µA  
V
Standby source current  
Operating threshold  
1.17  
2.15  
1.22  
3.15  
1.29  
4.25  
Operating hysteresis current  
µA  
ISS  
Soft-start pull up current  
SS clamp voltage  
FB to SS offset  
VSS = 0 V  
SS open  
VSS = 0 V  
3.75  
5
1.21  
-18  
6.35  
µA  
V
VSS(CL)  
VFB - VSS  
mV  
EA (ERROR AMPLIFIER)  
VREF  
Feedback reference voltage  
Error amplifier gm  
FB = COMP  
0.788  
0.800  
1.31  
280  
20  
0.812  
V
gmEA  
mS  
µA  
ISINK/ISOURCE COMP sink/source current  
VFB=VREF ± 300 mV  
ROUT  
Amplifier output resistance  
Unity gain bandwidth  
MΩ  
MHz  
nA  
BW  
2
IBIAS(FB)  
FREQUENCY  
fSW(1)  
Feedback pin input bias current  
FB in regulation  
25  
Switching Frequency 1  
Switching Frequency 2  
175  
350  
200  
390  
225  
430  
RT = 40 kΩ  
RT = 20 kΩ  
kHz  
fSW(2)  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM34936  
 
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the 40°C to 125°C junction temperature  
range unless otherwise stated. VIN = 24 V unless otherwise stated.(1)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
DITHER  
IDITHER  
Dither source/sink current  
Dither high threshold  
Dither low threshold  
11  
1.27  
1.16  
µA  
V
VDITHER  
SYNC  
VSYNC  
Sync input high threshold  
Sync input low threshold  
2.1  
50  
V
1.2  
PWSYNC  
Minimum sync input pulse width  
ns  
CURRENT LIMIT  
VCS(BUCK)  
Buck current limit threshold (Valley)  
VIN = VVISNS = 24 V, VVOSNS = 12 V,  
VSLOPE = 0 V  
60  
96  
80  
94  
mV  
µA  
VCS(BOOST)  
IBIAS(CS/CSG)  
Boost current limit threshold (Peak)  
CS/CSG pin bias current  
VIN = VVISNS = 12 V, VVOSNS = 18 V,  
VSLOPE = 0 V  
120  
-80  
140  
VCS = VCSG = 0 V  
VCS = VCSG = 0 V  
IOFFSET(CS/CSG) CSG pin bias current  
19  
57  
CONSTANT CURRENT LOOP  
VSNS  
Average current loop regulation target  
VISNS(-) = 24 V, sweep ISNS(+), VSS  
0.8 V  
=
43  
50  
3
mV  
µA  
ISNS  
Gm  
VISNS(+) = VISNS() = VIN = 24 V  
ISNS(+)/ISNS() pin bias currents  
gm of soft-start pull down amplifier  
V
V
ISNS(+)VISNS() = 55 mV, VSS = 0.5  
1
mS  
SLOPE  
ISLOPE  
Buck adaptive slope current  
Boost adaptive slope current  
Slope compensation amplifier gm  
VIN = VVISNS = 24 V, VVOSNS = 12 V,  
VSLOPE = 0 V  
24  
13  
30  
35  
21  
µA  
µS  
VIN = VVISNS = 12 V, VVOSNS = 18 V,  
VSLOPE = 0 V  
17  
2
gmSLOPE  
MODE  
IMODE  
Source current out of MODE pin  
CCM with hiccup threshold  
CCM no hiccup threshold  
17  
1.18  
2.22  
20  
1.28  
2.4  
23  
1.38  
2.6  
µA  
V
VCCM_HIC  
VCCM  
V
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM34936  
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the 40°C to 125°C junction temperature  
range unless otherwise stated. VIN = 24 V unless otherwise stated.(1)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
PGOOD  
VPGD  
PGOOD trip threshold for falling FB  
PGOOD trip threshold for rising FB  
Hysteresis  
Measured with respect to VREF  
Measured with respect to VREF  
%
%
9  
10  
2.5  
%
ILEAK(PGD)  
ISINK(PGD)  
OUTPUT OVP  
VOVP  
PGOOD leakage current  
PGOOD sink current  
100  
6.5  
nA  
mA  
VPGOOD = 0.4 V  
2
4.2  
Output overvoltage threshold at FB pin  
Hysteresis  
Measured with respect to VREF  
10  
%
%
2.5  
NMOS DRIVERS  
IHDRV1,2  
Driver peak source current  
VBOOT - VSW = 7 V  
VBOOT - VSW = 7 V  
1.8  
2.2  
1.8  
2.2  
1.8  
1.1  
3.4  
150  
1.7  
1.3  
45  
Driver peak sink current  
A
ILDRV1,2  
Driver peak source current  
Driver peak sink current  
RHDRV1,2  
VUV(BOOT1,2)  
RLDRV1,2  
Driver pull up resistance  
VBOOT - VSW = 7 V  
VBOOT - VSW = 7 V  
HDRV1,2 shut off  
Driver pull down resistance  
BOOT1,2 to SW1,2 UVLO threshold  
BOOT1,2 to SW1,2 UVLO hysteresis  
Driver pull up resistance  
V
HDRV1,2 start switching  
mV  
Driver pull down resistance  
Dead time HDRV1,2 off to LDRV1,2 on  
Dead time LDRV1,2 off to HDRV1,2 on  
tDT1  
tDT2  
ns  
45  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
165  
15  
°C  
TSD(HYS)  
(1) All minimum and maximum limits are specified by correlating the electrical characteristics to process and temperature variations and  
applying statistical process control.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM34936  
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
6.6 Typical Characteristics  
At TA = 25°C, unless otherwise stated.  
99  
98  
97  
96  
95  
94  
93  
100  
96  
92  
88  
84  
80  
VIN = 9V  
VIN = 12V  
VIN = 24V  
0
1
2
3
4
LOAD CURRENT (A)  
5
6
5
10  
15  
20  
25  
30  
VIN (V)  
D008  
VINE  
VOUT =12 V  
Fsw=300 kHz  
L1=4.7 μH  
VOUT=12 V  
IOUT=5 A  
Fsw=300 kHz  
L1=4.7 μH  
6-2. Efficiency vs Load  
6-1. Efficiency vs VIN  
600  
8
6
4
2
500  
400  
300  
200  
100  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
2
4
6
VIN (V)  
8
10  
12  
RT (kW)  
D004  
D002  
6-3. Oscillator Frequency  
6-4. VCC vs VIN  
3
2.6  
2.2  
1.8  
1.4  
1
3
2.5  
2
1.5  
1
-40 èC  
25 èC  
125 èC  
0.5  
0
BIAS = 0V  
BIAS = 12V  
0
5
10  
15  
VIN (V)  
20  
25  
30  
0
5
10  
15  
VIN (V)  
20  
25  
30  
IBIA  
ISD  
6-5. IIN Operating vs VIN  
6-6. IIN Shutdown vs VIN  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM34936  
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
1.30  
1.26  
1.22  
1.18  
1.14  
1.10  
110  
100  
90  
80  
70  
60  
50  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (èC)  
TEMPERATURE (èC)  
D013  
D014  
6-7. ENABLE/UVLO Rising Threshold vs  
6-8. Buck Current Limit vs Temperature  
Temperature  
150  
140  
130  
120  
110  
100  
90  
SW1  
SW2  
IL1  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (èC)  
VOUT=12 V  
VIN=6 V  
D015  
6-9. Boost Current Limit vs Temperature  
6-10. Forced CCM Operation (Boost)  
SW1  
SW1  
SW2  
SW2  
IL1  
IL1  
VOUT=12 V  
VIN=11 V  
VOUT=12 V  
VIN=12 V  
6-11. Forced CCM Operation (Buck-Boost)  
6-12. Forced CCM Operation (Buck-Boost)  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM34936  
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
SW1  
SW1  
SW2  
SW2  
IL1  
IL1  
VOUT=12 V  
VIN=13 V  
VOUT=12 V  
VIN=24 V  
6-13. Forced CCM Operation (Buck-Boost)  
6-14. Forced CCM Operation (Buck)  
VOUT  
500 mV/div  
VOUT  
500 mV/div  
IOUT  
2 A/div  
IOUT  
2 A/div  
500 µs/div  
500 µs/div  
VIN=6 V  
VOUT=12 V  
Load 3A to 6A  
VIN=12 V  
VOUT=12 V  
Load 3A to 6A  
6-15. Load Step (Boost)  
6-16. Load Step (Buck-Boost)  
VOUT  
500 mV/div  
VIN  
10 V/div  
IOUT  
2 A/div  
VOUT  
1 V/div  
IL  
5 A/div  
500 µs/div  
Load 3A to 6A  
1 ms/div  
VIN=24 V  
VOUT=12 V  
VIN=8 V to 24 V  
VOUT=12 V  
IOUT=3A  
6-17. Load Step (Buck)  
6-18. Line Transient  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM34936  
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
15  
12  
9
Overload  
released  
VOUT  
5 V/div  
6
3
IL  
5 A/div  
0
20 ms/div  
Hiccup Enabled  
0
1
2
3
IOUT (A)  
4
5
6
D021  
VIN=24 V  
VOUT=12 V  
VIN=24 V  
RSNS=10 mΩ  
6-19. Hiccup Mode Current Limit  
6-20. Constant Current Constant Voltage (CCCV)  
Operation  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM34936  
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
7 Detailed Description  
7.1 Overview  
The LM34936 is a wide input voltage four-switch buck-boost controller IC with integrated drivers for N-channel  
MOSFETs. It operates in the buck mode when VIN is greater than VOUT and in the boost mode when VIN is less  
than VOUT. When VIN is close to VOUT, the device operates in a proprietary transition buck or boost mode. The  
control scheme provides smooth operation for any input/output combination within the specified operating range.  
The buck or boost transition control scheme provides a low ripple output voltage when VIN equals VOUT without  
compromising the efficiency.  
The LM34936 integrates four N-Channel MOSFET drivers including two low-side drivers and two high-side  
drivers, eliminating the need for external drivers or floating bias supplies. The internal VCC regulator supplies  
internal bias rails as well as the MOSFET gate drivers. The VCC regulator is powered either from the input  
voltage through the VIN pin or from the output or an external supply through the BIAS pin for improved efficiency.  
The PWM control scheme is based on valley current mode control for buck operation and peak current mode  
control for boost operation. The inductor current is sensed through a single sense resistor in series with the low-  
side MOSFETs. The sensed current is also monitored for cycle-by-cycle current limit. The behavior of the  
LM34936 during an overload condition is dependent on the MODE pin programming (see 7.4.2). If hiccup  
mode fault protection is selected, the controller turns off after a fixed number of switching cycles in cycle-by-  
cycle current limit and restarts after another fixed number of clock cycles. The hiccup mode reduces the heating  
in the power components in a sustained overload condition. If hiccup mode is disabled through the MODE pin,  
the controller remains in a cycle-by-cycle current limit condition until the overload is removed.  
In addition to the cycle-by-cycle current limiting, the LM34936 also provides an optional average current  
regulation loop that can be configured for either input or output current limiting. This is useful for battery charging  
or other applications where a constant current behavior may be required.  
The soft-start time of LM34936 is programmed by a capacitor connected to the SS pin to minimize the inrush  
current and overshoot during startup.  
The precision EN/UVLO pin supports programmable input undervoltage lockout (UVLO) with hysteresis. The  
output overvoltage protection (OVP) feature turns off the high-side drivers when the voltage at the FB pin  
exceeds the output overvoltage threshold (VOVP). The PGOOD output indicates when the FB voltage is inside  
the PGOOD regulation window centered at VREF  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM34936  
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
7.2 Functional Block Diagram  
VIN  
BIAS  
∆IHYS(OP)  
+
-
EN/UVLO  
VCC  
VEN(OP)  
OPERATING  
EN & BIAS  
LOGIC  
IEN(STBY)  
THERMAL  
SHUTDOWN  
+
-
VEN(STBY)  
STANDBY  
45 mV  
1.2 V  
PGOOD  
-
+
ISS  
SS  
1.1VREF  
FB  
OV  
-
-
+
VOVP  
ISNS(+)  
ISNS(-)  
+
-
+
-
+
1 mA/V  
0.91VREF  
CONSTANT  
CURRENT LOOP  
BOOT1  
HDRV1  
3.3V  
GM ERROR  
AMPLIFIER  
PWM  
COMPARATOR  
1.6V  
VREF  
+
+
SS  
FB  
+
-
SW1  
-
VCC  
LDRV1  
COMP  
CS AMPLIFIER  
CLK  
BUCK-BOOST CONTROLLER  
LOGIC  
BOOT2  
HDRV2  
CS  
+
ACS=5  
ILIMIT  
COMPARATOR  
CSG  
-
SW2  
+
-
VCC  
LDRV2  
VISNS  
VOSNS  
SLOPE  
V
ILIM  
SLOPE COMP  
MODE  
HICCUP CURRENT  
LIMIT  
RT/SYNC  
DITH  
OSC/SYNC  
CLK  
PGND  
AGND  
7.3 Feature Description  
7.3.1 Fixed Frequency Valley/Peak Current Mode Control with Slope Compensation  
The LM34936 implements a fixed frequency current mode control of both the buck and boost switches. The  
output voltage, scaled down by the feedback resistor divider, appears at the FB pin and is compared to the  
internal reference (VREF) by an internal error amplifier. The error amplifier produces an error voltage by driving  
the COMP pin. An adaptive slope compensation signal based on VIN, VOUT, and the capacitor at the SLOPE pin  
is added to the current sense signal measured across the CS and CSG pins. The result is compared to the  
COMP error voltage by the PWM comparator.  
The LM34936 regulates the output using valley current mode control in buck mode and peak current mode  
control in boost mode. For valley current mode control, the high-side buck MOSFET controlled by HDRV1 is  
turned on by the PWM comparator at the valley of the inductor ripple current and turned off by the oscillator clock  
signal. Valley current mode control is advantageous for buck converters where the PWM controller must resolve  
very short on-times. For peak current mode control in the boost mode, the low-side boost MOSFET controlled by  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM34936  
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
LDRV2 is turned on by the clock signal in each switching cycle and turned off by the PWM comparator at the  
peak of the inductor ripple current.  
The low-side gate drive LDRV1, complementary to the HDRV1 drive signal, controls the synchronous  
rectification MOSFET of the buck stage. The high-side gate drive HDRV2, complementary to the low-side gate  
drive LDRV2, controls the high-side synchronous rectifier of the boost stage. For operation with VIN close to  
VOUT, the LM34936 uses a proprietary buck or boost transition scheme to achieve smooth, low ripple transition  
zone behavior.  
Peak and valley current mode controllers require slope compensation for stable current loop operation at duty  
cycle greater than 50% in peak current mode control and less than 50% in valley current mode control. The  
LM34936 provides a SLOPE pin to program optimum slope for any VIN and VOUT combination using an external  
capacitor.  
7.3.2 VCC Regulator and Optional BIAS Input  
The VCC regulator provides a regulated bias supply to the gate drivers. When EN/UVLO is above the standby  
threshold (VEN(STBY)), the VCC regulator is turned on. For VIN less than the VCC regulation target, the VCC  
voltage tracks VIN with a small voltage drop as shown in 6-4. If the EN/UVLO input is above the operating  
threshold (VEN(OP)) and VCC exceeds the VCC UV threshold (VUV(VCC)), the controller is enabled and switching  
begins.  
The VCC regulator draws power from VIN when there is no supply voltage connected to the BIAS pin. If the BIAS  
pin is connected to an external voltage source that exceeds VCC by one diode drop, the VCC regulator draws  
power from the BIAS input instead of VIN. Connecting the BIAS pin to VOUT in applications with VOUT greater  
than 8.5 V improves the efficiency of the regulator in the buck mode.  
For low VIN operation, ensure that the VCC voltage is sufficient to fully enhance the MOSFETs. Use an external  
bias supply if VIN dips below the voltage required to sustain the VCC voltage. For these conditions, use a series  
blocking diode between the input supply and the VIN pin (7-1). This prevents VCC from back-feeding into VIN  
through the body diode of the VCC regulator.  
A ceramic capacitor of 16 V or higher voltage rating and a value between 1 µF and 4.7 µF is required to supply  
the VCC regulator load transients. The VCC bypass capacitor should be connected between VCC and PGND  
pins.  
Series Blocking Diode  
VIN  
VIN  
CVIN  
LM34936  
Optional  
Bias Supply/ VOUT  
BIAS  
CBIAS  
VCC  
CVCC  
Copyright © 2018, Texas Instruments Incorporated  
7-1. VCC Regulator and Optional BIAS  
7.3.3 Enable/UVLO  
The LM34936 has a dual function enable and undervoltage lockout (UVLO) circuit. The EN/UVLO pin has three  
distinct voltage ranges: shutdown, standby, and operating (see 7.4.1). When the EN/UVLO pin is below the  
standby threshold VEN(STBY), the converter is held in a low power shutdown mode. When EN/UVLO voltage is  
greater than the standby threshold VEN(STBY) but less than the operating threshold VEN(OP), the internal bias rails  
and the VCC regulator are enabled but the soft-start (SS) pin is held low and the PWM controller is disabled. A  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM34936  
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
pull-up current IEN(STBY) is sourced out of the EN/UVLO pin in standby mode to provide hysteresis between the  
shutdown mode and the standby mode. When EN/UVLO is greater than the operating threshold VEN(OP) and  
VCC is above the undervoltage threshold VUV(VCC), the controller starts operation. A hysteresis current  
ΔIHYS(OP) is sourced out of the EN/UVLO pin when the EN/UVLO input exceeds the operating threshold to  
provide hysteresis that prevents on/off chattering in the presence of noise with a slowly changing input voltage.  
The VIN UVLO threshold is typically set by a resistor divider from VIN to AGND (7-2). The turn-on threshold  
VIN (UV) is calculated using 方程式 1 where RUV2 is the upper resistor and RUV1 is the lower resistor in the EN/  
UVLO resistor divider:  
÷
RUV2  
RUV1  
V
= VEN(OP) ì 1+  
-RUV2 ìIEN(STBY)  
IN(UV)  
«
(1)  
The hysteresis between the UVLO turn-on threshold and turn-off threshold is set by the upper resistor in the EN/  
UVLO resistor divider and is given by:  
DVHYS(UV) = DIHYS(OP) ìRUV2  
(2)  
VIN  
LM34936  
RUV2  
EN/UVLO  
RUV1  
Copyright © 2018, Texas Instruments Incorporated  
7-2. UVLO Threshold Programming  
7.3.4 Soft-Start  
The LM34936 soft-start time is programmed using a soft-start capacitor from the SS pin to AGND. When the  
converter is enabled, an internal current source (ISS) charges the soft-start capacitor. When the SS pin voltage is  
below the feedback reference voltage VREF, the soft-start pin controls the regulated FB voltage. Once SS  
exceeds VREF, the soft-start interval is complete and the error amplifier is referenced to VREF. The soft-start time  
is given by 方程3:  
CSS ì VREF  
ISS  
tss  
=
(3)  
The soft-start capacitor is internally discharged when the converter is disabled because of EN/UVLO falling  
below the operating threshold or VCC falling below the VCC UV threshold. The soft-start pin is also discharged  
when the converter is in hiccup mode current limiting or in thermal shutdown. When average input or output  
current limiting is active, the soft-start capacitor is discharged by the constant current loop transconductance  
(gm) amplifier to limit either input or output current.  
7.3.5 Overcurrent Protection  
The LM34936 provides cycle-by-cycle current limit to protect against overcurrent and short circuit conditions. In  
buck operation, the sensed valley voltage across the CSG and CS pins is limited to VCS(BUCK). The high-side  
buck switch skips a cycle if the sensed voltage does not fall below this threshold during the buck switch off time.  
In boost operation, the maximum peak voltage across CS and CSG is limited to VCS(BOOST). If the peak current in  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM34936  
 
 
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
the low-side boost switch causes the voltage across CS and CSG to exceed this threshold voltage, the boost  
switch is turned off for the remainder of the clock cycle.  
Applying the appropriate voltage to the MODE pin of the LM34936 enables hiccup mode fault protection (see 节  
7.4.2). In the hiccup mode, the controller shuts down after detecting cycle-by-cycle current limiting for 128  
consecutive cycles and the soft-start capacitor is discharged. The soft-start capacitor is automatically released  
after 4000 oscillator clock cycles and the controller restarts. If hiccup mode protection is not enabled through the  
MODE pin, the LM34936 will operate in cycle-by-cycle current limiting as long as the overload condition persists.  
7.3.6 Average Input/Output Current Limiting  
The LM34936 provides optional average current limiting capability to limit either the input or the output current of  
the DC/DC converter. The average current limiting circuit uses an additional current sense resistor connected in  
series with the input supply or output voltage of the converter. A current sense gm amplifier with inputs at the  
ISNS(+) and ISNS(-) pins monitors the voltage across the sense resistor and compares it with an internal 50 mV  
reference. If the drop across the sense resistor is greater than 50 mV, the gm amplifier gradually discharges the  
soft-start capacitor. When the soft-start capacitor discharges below the feedback reference voltage VREF, the  
output voltage of the converter decreases to limit the input or output current. The average current limiting feature  
can be used in applications requiring a regulated current from the input supply or into the load. The target  
constant current is given by 方程4:  
50 mV  
ICL(AVG)  
=
RSNS  
(4)  
A filter network as shown in 8-1 is often used across ISNS(+) and ISNS(-) pins to filter the ripple in the  
average current sense signal.  
The average current loop can be disabled by shorting the ISNS(+) and ISNS(-) pins together to AGND.  
7.3.7 Operation Above 28-V Input  
For application where input voltage is higher than 28 V, a 2 kΩ resistor in series with the VISNS pin is required  
as shown in 8-1.  
7.3.8 CCM Operation  
The LM34936 works in continuous conduction mode (CCM). In CCM operation the inductor current can flow in  
either direction and the controller switches at a fixed frequency regardless of the load current. The CCM  
operation is useful for noise-sensitive applications where a fixed switching eases filter design.  
7.3.9 Frequency and Synchronization (RT/SYNC)  
The LM34936 switching frequency can be programmed between 100 kHz and 600 kHz using a resistor from the  
RT/SYNC pin to AGND. The RT resistor is related to the nominal switching frequency (Fsw) by the 方程5:  
«
÷
1
-190 ns  
F
sw ◊  
RT =  
116 pF  
(5)  
6-3 in the 6.6 shows the relationship between the programmed switching frequency (Fsw) and the RT  
resistor.  
The RT/SYNC pin can also be used for synchronizing the internal oscillator to an external clock signal. The  
external synchronization pulse is ac coupled using a capacitor to the RT/SYNC pin. The external synchronization  
pulse frequency range is 75% to 125% of the resistor programmed frequency. A 50% duty cycle is acceptable for  
external SYNC.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM34936  
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
LM34936  
RT/SYNC  
external SYNC  
CSYNC  
RT  
Copyright © 2018, Texas Instruments Incorporated  
7-3. Using External SYNC  
7.3.10 Frequency Dithering  
The LM34936 provides an optional frequency dithering function that is enabled by connecting a capacitor from  
DITH to AGND. 7-4 illustrates the dithering circuit. A triangular waveform centered at 1.22 V is generated  
across the CDITH capacitor. This triangular waveform modulates the oscillator frequency by 10% of the nominal  
frequency set by the RT resistor. The CDITH capacitance value sets the rate of the low frequency modulation. A  
lower CDITH capacitance will modulate the oscillator frequency at a faster rate than a higher capacitance. For the  
dithering circuit to effectively reduce peak EMI, the modulation rate must be much less than the oscillator  
frequency (Fsw). 方程式 6 calculates the DITH pin capacitance required to set the modulation frequency, FMOD  
.
Connecting the DITH pin directly to AGND disables frequency dithering, and the internal oscillator operates at a  
fixed frequency set by the RT resistor. Dither is disabled when external SYNC is used.  
10 mA  
FMOD ì0.24 V  
CDITH  
=
(6)  
1.22 V + 5%  
1.22 V  
LM34936  
1.22 V - 5 %  
DITH  
CDITH  
Copyright © 2018, Texas Instruments Incorporated  
7-4. Dither Operation  
7.3.11 Output Overvoltage Protection (OVP)  
The LM34936 provides an output overvoltage protection (OVP) circuit that turns off the gate drives when the  
feedback voltage is above the output overvoltage threshold VOVP. Switching resumes once the feedback voltage  
falls below the OVP threshold. There is a small hysteresis to prevent chattering.  
7.3.12 Power Good (PGOOD)  
PGOOD is an open drain output that is pulled low when the voltage at the FB pin is outside -9% / +10% of the  
nominal VREF. The PGOOD internal N-Channel MOSFET pull-down strength is typically 4.2 mA. This pin can be  
connected to a voltage supply of up to 8 V through a pull-up resistor.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM34936  
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
7.3.13 Gm Error Amplifier  
The LM34936 has a gm error amplifier for loop compensation. The gm amplifier output (COMP) range is 0.3 V to  
3 V. Connect an Rc1-Cc1 compensation network between COMP and ground for type II (PI) compensation (see  
8-1). Another pole is usually added using Cc2 to suppress higher frequency noise and switching frequency  
ripple.  
The COMP output voltage (VCOMP) range limits the possible VIN and IOUT range for a given design. In buck  
mode, the maximum VIN for which the converter can regulate the output at no load is when VCOMP reaches 0.3 V.  
方程7 gives VCOMP as a function of VIN at no load in CCM buck mode:  
2 mSV - V  
+ 6 mA  
VOUT  
(
)
sw  
IN  
OUT  
VCOMP(BUCK) = 1.6 V - ACS RSENSE  
1-D  
(
-
1-D  
(
BUCK  
)
)
BUCK  
2L1F  
CSLOPE F  
sw  
(7)  
Where DBUCK in the equation 方程7 is the buck duty cycle given by:  
VOUT  
DBUCK  
=
V
IN  
(8)  
A larger L1, lower slope ripple (higher CSLOPE), smaller sense resistor (RSENSE), and higher frequency can  
increase the maximum VIN range for buck operation.  
For boost mode, the minimum VIN for which the converter can regulate the output at full load is when VCOMP  
reaches 3 V. 方程9 gives VCOMP as a function of VIN in boost mode:  
2mSV  
- V + 5mA  
IN  
÷
VOUT  
V
(
)
OUT  
IN  
VCOMP(BOOST) = 1.6V + ACS RSENSE I  
+
DBOOST  
+
DBOOST  
OUT  
V
2L1F  
CSLOPE F  
sw  
«
IN  
sw  
(9)  
Where DBOOST in the 方程9 is the boost duty cycle given by:  
V
IN  
DBOOST = 1-  
VOUT  
(10)  
A larger L1, lower slope ripple (higher CSLOPE), smaller sense resistor (RSENSE), and higher frequency can  
extend the minimum VI N range for boost operation.  
7.3.14 Integrated Gate Drivers  
The LM34936 provides four N-channel MOSFET gate drivers: two floating high-side gate drivers at the HDRV1  
and HDRV2 pins, and two ground referenced low-side drivers at the LDRV1 and LDRV2 pins. Each driver is  
capable of sourcing 1.8 A and sinking 2.2 A peak current. In buck operation, LDRV1 and HDRV1 are switched  
by the PWM controller while HDRV2 remains continuously on. In boost operation, LDRV2 and HDRV2 are  
switched while HDRV1 remains continuously on.  
The low-side gate drivers are powered from VCC and the high-side gate drivers HDRV1 and HDRV2 are  
powered from bootstrap capacitors CBOOT1 (between BOOT1 and SW1) and CBOOT2 (between BOOT2 and  
SW2) respectively. The CBOOT1 and CBOOT2 capacitors are charged through external Schottky diodes connected  
to the VCC pin as shown in 8-1.  
In most applications, ceramic capacitors of 16-V or higher voltage rating and values between 0.1 µF and 0.22 µF  
are sufficient for CBOOT1 and CBOOT2  
.
7.3.15 Thermal Shutdown  
The LM34936 is protected by a thermal shutdown circuit that shuts down the device when the internal junction  
temperature exceeds 165°C (typical). The soft-start capacitor is discharged when thermal shutdown is triggered  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM34936  
 
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
and the gate drivers are disabled. The converter automatically restarts when the junction temperature drops by  
the thermal shutdown hysteresis of 15°C below the thermal shutdown threshold.  
7.4 Device Functional Modes  
Please refer to 7.3.3 for the description of EN/UVLO pin function. 7.4.1 lists the shutdown, standby, and  
operating modes for LM34936 as a function of EN/UVLO and VCC voltages.  
7.4.1 Shutdown, Standby, and Operating Modes  
EN/UVLO  
VCC  
DEVICE MODE  
EN/UVLO < VEN(STBY)  
VEN(STBY) < EN/UVLO < VEN(OP)  
EN/UVLO > VEN(OP)  
EN/UVLO > VEN(OP)  
Shutdown: VCC off, No switching  
Standby: VCC on, No switching  
Standby: VCC on, No switching  
Operating: VCC on, Switching enabled  
VCC < VUV(VCC)  
VCC > VUV(VCC)  
7.4.2 MODE Pin Configuration  
The MODE pin is used to select hiccup mode current limit. The MODE selection is based on the voltages at the  
MODE pin. The MODE voltage is decided by the programming resistor RMODE between MODE and AGND, and  
the source current out of the MODE pin (IMODE). MODE is latched during startup.  
MODE PIN CONNECTION  
HICCUP FAULT PROTECTION  
No Hiccup  
RMODE to AGND = 200 kΩor connect  
MODE to VCC  
Hiccup Enabled  
RMODE to AGND = 93.1 kΩ  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM34936  
 
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The LM34936 is a four-switch buck-boost controller. A quick-start tool on the LM34936 product webpage can be  
used to design a buck-boost converter using the LM34936. Alternatively, Webench®software can create a  
complete buck-boost design using the LM34936 and generate bill of materials, estimate efficiency, solution size,  
and cost of the complete solution. 8.2 describes a detailed step-by-step design procedure for a typical  
application circuit.  
8.2 Typical Application  
A typical application example is a buck-boost converter operating from a wide input voltage range of 6 V to 30 V  
and providing a stable 12 V output voltage with current capability of 6 A.  
RSNS  
0 Ω  
VIN  
VOUT  
0.1 µF  
CVIN  
CIN  
CIN  
COUT  
10 µF  
x5  
COUT  
2 kΩ  
RUV2  
4.7 µF  
x5  
180 µF  
x2  
68 µF  
10 Ω  
100 Ω  
1 µF  
100 Ω  
249 kΩ  
RUV1  
QH1  
QH2  
59.0 kΩ  
EN/UVLO  
VISNS  
VIN  
ISNS(-)  
ISNS(+)  
HDRV1  
L1  
10 kΩ  
VCC  
BOOT1  
VCC  
PGOOD  
4.7 µH  
QL1  
CBOOT1  
0.1 µF  
QL2  
RMODE  
SW1  
MODE  
93.1 kΩ  
LDRV1  
100 Ω  
RT/SYNC  
CS  
CSYNC  
1 nF  
RSENSE  
47 pF  
8 mΩ  
RT  
CSG  
27.4 kΩ  
LM34936  
100 Ω  
SS  
CSS  
0.1 µF  
LDRV2  
BOOT2  
VOUT  
BIAS  
VCC  
CBIAS  
CBOOT2  
0.1 µF  
0.1 µF  
SW2  
AGND  
PGND  
HDRV2  
VOSNS  
VCC  
DITH  
COMP  
SLOPE  
FB  
CVCC  
1 µF  
CSLOPE  
220 pF  
Cc1  
RRB2  
33 nF  
RRB1  
280 kΩ  
Cc2  
560 pF  
20 kΩ  
Rc1  
10 kΩ  
Copyright © 2018, Texas Instruments Incorporated  
8-1. LM34936 Four-Switch Buck Boost Application Schematic  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM34936  
 
 
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
8.2.1 Design Requirements  
For this design example, the following are used as the input parameters.  
DESIGN PARAMETER  
Input Voltage Range  
Output  
EXAMPLE VALUE  
6 V to 30 V  
12 V  
Load Current  
6 A  
Switching Frequency  
Mode  
300 kHz  
CCM, Hiccup  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design with WEBENCH Tools  
Click here to create a custom design using the LM34936 device with the WEBENCH® Power Designer.  
1. Start by entering your VIN, VOUT and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real  
time pricing and component availability.  
4. In most cases, you will also be able to:  
Run electrical simulations to see important waveforms and circuit performance,  
Run thermal simulations to understand the thermal performance of your board,  
Export your customized schematic and layout into popular CAD formats,  
Print PDF reports for the design, and share your design with colleagues.  
5. Get more information about WEBENCH tools at www.ti.com/webench.  
8.2.2.2 Frequency  
The switching frequency of LM34936 is set by an RT resistor connected from RT/SYNC pin to AGND. The RT  
resistor required to set the desired frequency is calculated using 方程式 5 or 6-3 . A 1% standard resistor of  
27.4 kis selected for Fsw = 300 kHz.  
8.2.2.3 VOUT  
The output voltage is set using a resistor divider to the FB pin. The internal reference voltage is 0.8 V. Normally  
the bottom resistor in the resistor divider is selected to be in the 1 kto 100 krange. Select  
RFB1 = 20 kW  
(11)  
(12)  
The top resistor in the feedback resistor divider is selected using 方程12:  
VOUT - 0.8 V  
0.8 V  
RFB2  
=
ìRFB1 = 280 kW  
8.2.2.4 Inductor Selection  
The inductor selection is based on consideration of both buck and boost modes of operation. For the buck mode,  
inductor selection is based on limiting the peak to peak current ripple ΔIL to ~40% of the maximum inductor  
current at the maximum input voltage. The target inductance for the buck mode is:  
(VIN(MAX) - VOUT)ì VOUT  
LBUCK  
=
= 12.7mH  
0.4ìIOUT(MAX) ìFsw ì V  
IN(MAX)  
(13)  
For the boost mode, the inductor selection is based on limiting the peak to peak current ripple ΔIL to ~30% of  
the maximum inductor current at the minimum input voltage. The target inductance for the boost mode is:  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM34936  
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
VI2N(MIN) ì(VOUT - V  
0.3 ìIOUT(MAX) ìFsw ì VO2UT  
)
IN(MIN)  
LBOOST  
=
= 2.8 mH  
(14)  
In this particular application, the buck inductance is larger. Choosing a larger inductance reduces the ripple  
current but also increases the size of the inductor. A larger inductor also reduces the achievable bandwidth of  
the converter by moving the right half plane zero to lower frequencies. Therefore a judicious compromise should  
be made based on the application requirements. For this design a 4.7-µH inductor is selected. With this inductor  
selection, the inductor current ripple is 5.1 A, 4.3 A, and 2.1 A, at VIN of 30 V, 24 V, and 6 V respectively.  
The maximum average inductor current occurs at the minimum input voltage and maximum load current:  
VOUT ìIOUT(MAX)  
IL(MAX)  
=
= 13.3 A  
0.9ì V  
IN(MIN)  
(15)  
where a 90% efficiency is assumed. The peak inductor current occurs at minimum input voltage and is given by:  
IN(MIN) ì(VOUT - V  
V
)
IN(MIN)  
IL(PEAK) = IL(MAX)  
+
= 14.4 A  
2ìL1ìF ì VOUT  
sw  
(16)  
To ensure sufficient output current, the current limit threshold must be set to allow the maximum load current in  
boost operation. The inductor peak current during overload depends on the current limit resistor RSENSE (refer to  
the sub-section on selecting RSENSE). The peak inductor current in current limit when in boost mode is given by:  
120 mV  
IL(PEAK, ILIMIT, BOOST)  
=
RSENSE  
(17)  
The peak inductor current in current limit when in buck mode happens at high input voltage and is given by:  
V
IN(MAX) - VOUT  
(
)
VOUT  
80 mV  
IL(PEAK, ILIMIT, BUCK)  
=
+
ì
«
÷
÷
RSENSE  
L1ìF  
V
IN(MAX)  
sw  
(18)  
The peak inductor current in current limit is 15 A and 16.5 A in boost mode and buck mode respectively. The  
inductor should be selected to handle this current.  
8.2.2.5 Output Capacitor  
In the boost mode, the output capacitor conducts high ripple current. The output capacitor RMS ripple current is  
given by 方程19 where the minimum VIN corresponds to the maximum capacitor current.  
VOUT  
ICOUT(RMS) = IOUT  
ì
-1  
V
IN  
(19)  
In this example the maximum output ripple RMS current is ICOUT(RMS) = 6 A. A 5-moutput capacitor ESR  
causes an output ripple voltage of 60 mV as given by:  
IOUT ì VOUT  
DVRIPPLE(ESR)  
=
ìESR  
V
IN(MIN)  
(20)  
A 400 µF output capacitor causes a capacitive ripple voltage of 25 mV as given by:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM34936  
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
V
÷
IN(MIN)  
IOUT ì 1-  
VOUT  
«
DVRIPPLE(COUT)  
=
COUT ìF  
sw  
(21)  
Typically a combination of ceramic and bulk capacitors is needed to provide low ESR and high ripple current  
capacity. The complete schematic in 8-1 at the end of this section shows a good starting point for COUT for  
typical applications.  
8.2.2.6 Input Capacitor  
In the buck mode, the input capacitor supplies high ripple current. The RMS current in the input capacitor is  
given by:  
ICIN(RMS) = IOUT Dì(1-D)  
(22)  
The maximum RMS current occurs at D = 0.5, which gives ICIN(RMS) = IOUT/2 = 3 A. A combination of ceramic  
and bulk capacitors should be used to provide short path for high di/dt current and to reduce the output voltage  
ripple. The complete schematic in 8-1 is a good starting point for CIN for typical applications.  
8.2.2.7 Sense Resistor (RSENSE  
)
The current sense resistor between the CS and CSG pins should be selected to ensure that current limit is set  
high enough for both buck and boost modes of operation. For the buck operation, the current limit resistor is  
given by:  
80 mV  
RSENSE(BUCK)  
=
= 13 mW  
IOUT(MAX)  
(23)  
(24)  
For the boost mode of operation, the current limit resistor is given by:  
120 mV  
RSENSE(BOOST)  
=
= 8.3 mW  
IL(PEAK)  
The closest standard value of RSENSE = 8 mis selected based on the boost mode operation.  
The maximum power dissipation in RSENSE happens at VIN(MIN)  
:
2
V
÷
«
÷
120mV  
IN(MIN)  
P
=
RSENSE 1-  
= 0.9W  
RSENSE(MAX)  
RSENSE ◊  
VOUT  
«
(25)  
Therefore, a sense resistor with 2 W power rating will be sufficient for this application.  
For some application circuits, it may be required to add a filter network to attenuate noise in the CS and CSG  
sense lines. Please see 8-1 for typical values. The filter resistance should not exceed 100 Ω.  
8.2.2.8 Slope Compensation  
For stable current loop operation and to avoid sub-harmonic oscillations, the slope capacitor should be selected  
based on 方程26:  
L1  
4.7 mH  
8 mWì5  
CSLOPE = gmSLOPE  
ì
= 2 mSì  
= 235 pF  
RSENSE ì ACS  
(26)  
This slope compensation results in dead-beatoperation, in which the current loop disturbances die out in  
one switching cycle. Theoretically a current mode loop is stable with half the dead-beatslope (twice the  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LM34936  
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
calculated slope capacitor value in 方程式 26). A smaller slope capacitor results in larger slope signal which is  
better for noise immunity in the transition region (VIN~VOUT). A larger slope signal, however, restricts the  
achievable input voltage range for a given output voltage, switching frequency, and inductor. For this design  
CSLOPE = 220 pF is selected for better transition region behavior while still providing the required VIN range. This  
selection of slope capacitor, inductor, switching frequency, and inductor satisfies the COMP range limitation  
explained in 7.3.13.  
8.2.2.9 UVLO  
The UVLO resistor divider must be designed for turn-on below 6V. Selecting a RUV2 = 249 kgives a UVLO  
hysteresis of 0.8 V based on 方程2. The lower UVLO resistor is the selected using 方程27:  
RUV2 ì VEN(OP)  
RUV1  
=
V
)
+IEN(STBY) ìRUV2 - VEN(OP)  
IN  
UV  
(
(27)  
A standard value of 59.0 kΩis selected for RUV1  
.
When programming the UVLO threshold for lower input voltage operation, it is important to choose MOSFETs  
with gate (Miller) plateau voltage lower than the minimum VIN.  
8.2.2.10 Soft-Start Capacitor  
The soft-start time is programmed using the soft-start capacitor. The relationship between CSS and the soft-start  
time is given by:  
CSS ì VREF  
ISS  
tss  
=
(28)  
CSS = 0.1 µF gives a soft-start time of 16 ms.  
8.2.2.11 Dither Capacitor  
The dither capacitor sets the modulation frequency of the frequency dithering around the nominal switching  
frequency. A larger CDITH results in lower modulation frequency. For proper operation the modulation frequency  
(FMOD) must be much lower than the switching frequency. Use 程式 29 to select CDITH for the target  
modulation frequency.  
10 mA  
FMOD ì0.24 V  
CDITH  
=
(29)  
For the current design dithering is not being implemented. Therefore a 0 resistor from the DITH pin to AGND  
disables this feature.  
8.2.2.12 MOSFETs QH1 and QL1  
The input side MOSFETs QH1 and QL1 need to withstand the maximum input voltage of 30 V. In addition they  
must withstand the transient spikes at SW1 during switching. Therefore QH1 and QL1 should be rated for 60 V  
or higher. The gate plateau voltages of the MOSFETs should be smaller than the minimum input voltage of the  
converter, otherwise the MOSFETs may not fully enhance during startup or overload conditions.  
The power loss in QH1 in the boost mode of operation is approximated by:  
2
÷
VOUT  
V
PCOND(QH1) = I  
RDSON(QH1)  
OUT  
«
IN ◊  
(30)  
The power loss in QH1 in the buck mode of operation consists of both conduction and switching loss  
components given by 方程31 and 方程32 respectively:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM34936  
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
«
÷
VOUT  
V
PCOND(QH1)  
=
I  
2 RDSON(QH1)  
OUT  
IN ◊  
(31)  
(32)  
1
2
PSW(QH1)  
=
VIN IOUT t + t F  
r f sw  
(
)
The rise (tr) and the fall (tf) times are based on the MOSFET datasheet information or measured in the lab.  
Typically a MOSFET with smaller RDSON (smaller conduction loss) will have longer rise and fall times (larger  
switching loss).  
The power loss in QL1 in the buck mode of operation is shown in 方程33:  
÷
VOUT  
V
PCOND(QL1) = 1-  
I  
2 RDSON(QL1)  
OUT  
«
IN ◊  
(33)  
8.2.2.13 MOSFETs QH2 and QL2  
The output side MOSFETs QH2 and QL2 see the output voltage of 12 V and additional transient spikes at SW2  
during switching. Therefore QH2 and QL2 should be rated for 20 V or more. The gate plateau voltages of the  
MOSFETs should be smaller than the minimum input voltage of the converter, otherwise the MOSFETs may not  
fully enhance during startup or overload conditions.  
The power loss in QH2 in the buck mode of operation is approximated by:  
PCOND(QH2) = IOUT2 RDSON(QH2)  
(34)  
The power loss in QL2 in the boost mode of operation consists of both conduction and switching loss  
components given by 方程35 and 方程36 respectively:  
2
’ ≈  
÷
V
VOUT  
IN  
PCOND(QL2) = 1-  
I  
÷ ∆ OUT  
RDSON(QL2)  
VOUT ◊ «  
V
«
IN ◊  
(35)  
(36)  
÷
VOUT  
V
1
PSW(QL2)  
=
VOUT I  
t + t F  
r f sw  
(
)
«
OUT  
2
IN ◊  
The rise (tr) and the fall (tf) times can be based on the MOSFET datasheet information or measured in the lab.  
Typically a MOSFET with smaller RDSON (lower conduction loss) has longer rise and fall times (larger switching  
loss).  
The power loss in QH2 in the boost mode of operation is shown in 方程37:  
2
÷
V
VOUT  
IN  
PCOND(QH2)  
=
I  
RDSON(QH2)  
OUT  
VOUT «  
V
IN ◊  
(37)  
8.2.2.14 Frequency Compensation  
This section presents the control loop compensation design procedure for the LM34936 buck-boost controller.  
The LM34936 operates mainly in buck or boost modes, separated by a transition region, and therefore the  
control loop design is done for both buck and boost operating modes. Then a final selection of compensation is  
made based on the mode that is more restrictive from a loop stability point of view. Typically for a converter  
designed to go deep into both buck and boost operating regions, the boost compensation design is more  
restrictive due to the presence of a right half plane zero (RHPZ) in the boost mode.  
The boost power stage output pole location is given by:  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LM34936  
 
 
 
 
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
÷
1
2
ƒp1(boost)  
=
= 398 Hz  
2p ROUT ìCOUT ◊  
«
(38)  
where ROUT = 2 corresponds to the maximum load of 6 A.  
The boost power stage ESR zero location is given by:  
÷
1
1
ƒz1  
=
= 79.6 kHz  
2p RESR ìCOUT ◊  
«
(39)  
(40)  
The boost power stage RHP zero location is given by:  
2
ROUT ì(1-DMAX  
L1  
)
1
ƒRHP  
=
= 16.9 kHz  
«
÷
÷
2p  
where DMAX is the maximum duty cycle at the minimum VIN.  
The buck power stage output pole location is given by:  
÷
1
1
ƒp1(buck)  
=
= 199 Hz  
2p ROUT ìCOUT ◊  
«
(41)  
The buck power stage ESR zero location is the same as the boost power stage ESR zero.  
It is clear from 方程式 40 that RHP zero is the main factor limiting the achievable bandwidth. For a robust design  
the crossover frequency should be less than 1/3 of the RHP zero frequency. Given the position of the RHP zero,  
a reasonable target bandwidth in boost operation is around 4 kHz:  
ƒbw = 4 kHz  
(42)  
For some power stages, the boost RHP zero might not be as restrictive. This happens when the boost maximum  
duty cycle (DMAX) is small, or when a really small inductor is used. In those cases, compare the limits posed by  
the RHP zero (fRHP/3) with 1/20 of the switching frequency and use the smaller of the two values as the  
achievable bandwidth.  
The compensation zero can be placed at 1.5 times the boost output pole frequency. Keep in mind that this  
locates the zero at 3 times the buck output pole frequency which results in approximately 30 degrees of phase  
loss before crossover of the buck loop and 15 degrees of phase loss at intermediate frequencies for the boost  
loop:  
ƒ
= 600 Hz  
zc  
(43)  
If the crossover frequency is well below the RHP zero and the compensation zero is placed well below the  
crossover, the compensation gain resistor Rc1 is calculated using the approximation:  
2pì ƒbw RFB1 +RFB2 ACS ìRSENSE ìCOUT  
Rc1  
=
ì
ì
= 9.49 kW  
gmEA  
RFB1  
1-DMAX  
(44)  
where DMAX is the maximum duty cycle at the minimum VIN in boost mode and ACS is the current sense amplifier  
gain. The compensation capacitor Cc1 is then calculated from:  
1
Cc1  
=
= 27.9 nF  
2ì pì ƒzc ìRc1  
(45)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LM34936  
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
The standard values of compensation components are selected to be Rc1 = 10 kand Cc1 = 33 nF.  
A high frequency pole (fpc2) is placed using a capacitor (Cc2) in parallel with Rc1 and Cc1. Set the frequency of  
this pole at 7 to 10 times of fbw to provide attenuation of switching ripple and noise on COMP while avoiding  
excessive phase loss at the crossover frequency. For a target fpc2 = 28 kHz, Cc2 is calculated using this  
equation:  
1
Cc2  
=
= 568 pF  
2ì p ì ƒpc2 ìRc1  
(46)  
Select a standard value of 560 pF for Cc2. These values provide a good starting point for the compensation  
design. Each design should be tuned in the lab to achieve the desired balance between stability margin across  
the operating range and transient response time.  
8.2.3 Application Curves  
100  
96  
92  
88  
84  
80  
99  
98  
97  
96  
95  
94  
93  
VIN = 9V  
VIN = 12V  
VIN = 24V  
0
1
2
3
4
LOAD CURRENT (A)  
5
6
5
10  
15  
20  
25  
30  
VIN (V)  
D008  
VINE  
8-2. Efficiency vs Load  
8-3. Efficiency vs Input Voltage  
VIN = 24 V  
VIN  
10 V/div  
VIN = 12 V  
VIN = 6 V  
VOUT  
1 V/div  
IL  
5 A/div  
1 ms/div  
200 mV/div  
5 µs/div  
8-5. Line Transient Response (8 V - 24 V, IOUT = 2  
8-4. Output Voltage Ripple  
A)  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LM34936  
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
9 Power Supply Recommendations  
The LM34936 is a power management device. The power supply for the device is any dc voltage source within  
the specified input range. The supply should also be capable of supplying sufficient current based on the  
maximum inductor current in boost mode operation. The input supply should be bypassed with additional  
electrolytic capacitor at the input of the application board to avoid ringing due to parasitic impedance of the  
connecting cables.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LM34936  
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
10 Layout  
10.1 Layout Guidelines  
The basic PCB board layout requires separation of sensitive signal and power paths. This checklist must be  
followed to get good performance for a well designed board.  
Place the power components including the input filter capacitor CIN, the power MOSFETs QL1 and QH1, and  
the sense resistor RSENSE close together to minimize the loop area for input switching current in buck  
operation.  
Place the power components including the output filter capacitor COUT, the power MOSFETs QL2 and QH2,  
and the sense resistor RSENSE close together to minimize the loop area for output switching current in boost  
operation.  
Use a combination of bulk capacitors and smaller ceramic capacitors with low series impedance for the input  
and output capacitors. Place the smaller capacitors closer to the IC to provide a low impedance path for high  
di/dt switching currents.  
Minimize the SW1 and SW2 loop areas as these are high dv/dt nodes.  
Layout the gate drive traces and return paths as directly as possible. Layout the forward and return traces  
close together, either running side by side or on top of each other on adjacent layers to minimize the  
inductance of the gate drive path.  
Use Kelvin connections to RSENSE for the current sense signals CS and CSG and run lines in parallel from  
the RSENSE terminals to the IC pins. Avoid crossing noisy areas such as SW1 and SW2 nodes or high-side  
gate drive traces. Place the filter capacitor for the current sense signal as close to the IC pins as possible.  
Place the CIN, COUT, and RSENSE ground pins as close as possible with thick ground trace and/or planes on  
multiple layers.  
Place the VCC bypass capacitor close to the controller IC, between the VCC and PGND pins. A 1-µF ceramic  
capacitor is typically used.  
Place the BIAS bypass capacitor close to the controller IC, between the BIAS and PGND pins. A 0.1-µF  
ceramic capacitor is typically used.  
Place the BOOT1 bootstrap capacitor close to the IC and connect directly to the BOOT1 to SW1 pins.  
Place the BOOT2 bootstrap capacitor close to the IC and connect directly to the BOOT2 to SW2 pins.  
Bypass the VIN pin to AGND with a low ESR ceramic capacitor located close to the controller IC. A 0.1 µF  
ceramic capacitor is typically used. When using external BIAS, use a diode between input rails and VIN pins  
to prevent reverse conduction when VIN < VCC.  
Connect the feedback resistor divider between the COUT positive terminal and AGND pin of the IC. Place the  
components close to the FB pin.  
Use care to separate the power and signal paths so that no power or switching current flows through the  
AGND connections which can either corrupt the COMP, SLOPE, or SYNC signals, or cause dc offset in the  
FB sense signal. The PGND and AGND traces can be connected near the PGND pin, near the VCC  
capacitor PGND connection, or near the PGND connection of the CS, CSG pin current sense resistor.  
When using the average current loop, divide the overall capacitor (CIN or COUT) between the two sides of the  
sense resistor to ensure small cycle-by-cycle ripple. Place the average current loop filter capacitor close to  
the IC between the ISNS(+) and ISNS(-) pins.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LM34936  
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
10.2 Layout Example  
L1  
SW1  
SW2  
VOUT  
VIN  
QL1  
QL2  
QH1  
QH2  
RISNS  
COUT  
CIN  
CIN  
RSENSE  
COUT  
LM34936  
GND  
GND  
10-1. LM34936 Power Stage Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LM34936  
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Development Support  
11.1.2.1 Custom Design with WEBENCH Tools  
Click here to create a custom design using the LM34936 device with the WEBENCH® Power Designer.  
1. Start by entering your VIN, VOUT and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real  
time pricing and component availability.  
4. In most cases, you will also be able to:  
Run electrical simulations to see important waveforms and circuit performance,  
Run thermal simulations to understand the thermal performance of your board,  
Export your customized schematic and layout into popular CAD formats,  
Print PDF reports for the design, and share your design with colleagues.  
5. Get more information about WEBENCH tools at www.ti.com/webench.  
11.2 Documentation Support  
11.2.1 Related Documentation  
Please visit TI homepage for latest technical document including application notes, user guides, and reference  
designs.  
IC Package Thermal Metrics application report, Semiconductor and IC Package Thermal Metrics.  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
PowerPADis a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
Webench®, WEBENCH® and are registered trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LM34936  
 
 
 
 
 
 
 
LM34936  
www.ti.com.cn  
ZHCSIQ5A SEPTEMBER 2018 REVISED AUGUST 2021  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LM34936  
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM34936RHFR  
LM34936RHFT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHF  
RHF  
28  
28  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
LM34936  
LM34936  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jul-2022  
OTHER QUALIFIED VERSIONS OF LM34936 :  
Automotive : LM34936-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM34936RHFR  
LM34936RHFT  
VQFN  
VQFN  
RHF  
RHF  
28  
28  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.3  
4.3  
5.3  
5.3  
1.3  
1.3  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM34936RHFR  
LM34936RHFT  
VQFN  
VQFN  
RHF  
RHF  
28  
28  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RHF0028A  
VQFN - 1.0 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
5.1  
4.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.55 0.1  
2X 2.5  
(0.2) TYP  
9
EXPOSED  
14  
THERMAL PAD  
24X 0.5  
15  
8
3.55 0.1  
2X  
29  
SYMM  
3.5  
SEE TERMINAL  
DETAIL  
1
22  
0.30  
0.18  
28X  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
28  
23  
SYMM  
0.05  
0.5  
0.3  
28X  
4220383/A 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHF0028A  
VQFN - 1.0 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.55)  
SYMM  
28  
23  
28X (0.6)  
22  
1
28X (0.24)  
(3.55)  
(1.525)  
24X (0.5)  
29  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
15  
(R0.05)  
TYP  
9
14  
(1.025)  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220383/A 11/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHF0028A  
VQFN - 1.0 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (1.13)  
(0.665) TYP  
23  
28  
28X (0.6)  
1
22  
28X (0.24)  
(0.865)  
TYP  
24X (0.5)  
SYMM  
(4.8)  
29  
4X (1.53)  
(R0.05) TYP  
8
15  
METAL  
TYP  
14  
9
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 29  
76% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4220383/A 11/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LM34936RHFT

30V 宽输入电压同步 4 开关降压/升压控制器 | RHF | 28 | -40 to 125
TI

LM34937

Wide Input Range Synchronous Buck Controller
TI

LM3495

Emulated Peak Current Mode Buck Controller for Low Output Voltage
NSC

LM3495MTC

Emulated Peak Current Mode Buck Controller for Low Output Voltage
NSC

LM3495MTC/NOPB

IC SWITCHING CONTROLLER, 1500 kHz SWITCHING FREQ-MAX, PDSO16, PLASTIC, TSSOP-16, Switching Regulator or Controller
NSC

LM3495MTCX

Emulated Peak Current Mode Buck Controller for Low Output Voltage
NSC

LM34966-Q1

500kHz 宽输入电压非同步升压、反激式和 SEPIC 控制器
TI

LM34966QPWPRQ1

500kHz 宽输入电压非同步升压、反激式和 SEPIC 控制器 | PWP | 14 | -40 to 150
TI

LM349J

Voltage-Feedback Operational Amplifier
ETC

LM349N/A+

Voltage-Feedback Operational Amplifier
ETC

LM349N/B+

Voltage-Feedback Operational Amplifier
ETC

LM34A

Precision Fahrenheit Temperature Sensors
NSC