LM358LVIDR [TI]

双路、5.5V、1MHz 运算放大器 | D | 8 | -40 to 125;
LM358LVIDR
型号: LM358LVIDR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路、5.5V、1MHz 运算放大器 | D | 8 | -40 to 125

放大器 运算放大器
文件: 总50页 (文件大小:3099K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
LM321LVLM358LVLM324LV 行业标准低电压运算放大器  
1 特性  
3 说明  
• 适用于成本敏感型系统的行业标准放大器  
• 低输入失调电压±1mV  
• 共模电压范围包括接地  
LM3xxLV 系列包括单路 LM321LV、双路 LM358LV 和  
四路 LM324LV 运算放大器。这些器件由 2.7V 5.5V  
的低电压供电。  
• 单位增益带宽1MHz  
• 低宽带噪声40nV/Hz  
在成本敏感型低压应用中些运算放大器可作为  
LM321LM358 LM324 的替代产品。部分应用为大  
型电器、烟雾探测器和个人电子产品。LM3xxLV 器件  
在低电压下可提供比 LM3xx 器件更佳的性能并且功  
耗更低。这些运算放大器具有单位增益稳定性并且在  
过驱情况下不会出现相位反转。ESD 设计为 LM3xxLV  
系列提供了至2kV HBM 规格。  
• 低静态电流90µA/通道  
• 单位增益稳定  
• 可2.7V 5.5V 的电源电压范围内工作  
• 提供单通道、双通道和四通道型号  
• 严格ESD 规格2kV HBM  
• 工作温度范围40°C 125°C  
LM3xxLV 列采用行业标准封装。这些封装包括  
SOT-23SOICVSSOP TSSOP 封装。  
2 应用  
• 无线电器  
• 不间断电源  
• 电池组、充电器和测试设备  
• 电源模块  
• 环境传感器信号调节  
• 现场变送器温度传感器  
• 示波器、数字万用表、测试设备  
• 机架式服务器  
HVAC暖通空调  
• 直流电机控制  
• 低侧电流感测  
器件信息  
器件型号(1)  
LM321LV  
封装尺寸标称值)  
1.60mm × 2.90mm  
1.25mm × 2.00mm  
3.91mm × 4.90mm  
1.60mm × 2.90mm  
3.00mm × 4.40mm  
3.00mm × 3.00mm  
8.65mm × 3.91mm  
4.40mm × 5.00mm  
4.20 mm × 2.00 mm  
封装  
SOT-23 (5)  
SC70 (5)  
SOIC (8)  
SOT-23 (8)  
TSSOP (8)  
VSSOP (8)  
SOIC (14)  
TSSOP (14)  
SOT-23 (14)  
LM358LV  
LM324LV  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
RF  
RG  
R1  
VOUT  
VIN  
C1  
1
2pR1C1  
f
=
-3 dB  
VOUT  
VIN  
RF  
1
1 + sR1C1  
=
1 +  
(
(
(  
(
RG  
单极低通滤波器  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS944  
 
 
 
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
内容  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 修订历史记录.....................................................................2  
5 引脚配置和功能................................................................. 3  
6 规格................................................................................... 6  
6.1 绝对最大额定值...........................................................6  
6.2 ESD 额定值.................................................................6  
6.3 建议运行条件.............................................................. 6  
6.4 热性能信息LM321LV............................................... 7  
6.5 热性能信息LM358LV............................................... 7  
6.6 热性能信息LM324LV............................................... 7  
6.7 电气特性......................................................................8  
6.8 典型特性......................................................................9  
7 详细说明.......................................................................... 14  
7.1 概述...........................................................................14  
7.2 功能方框图................................................................14  
7.3 特性说明....................................................................14  
7.4 器件功能模式............................................................ 15  
8 应用和实现.......................................................................16  
8.1 应用信息....................................................................16  
8.2 典型应用....................................................................16  
9 电源相关建议...................................................................18  
9.1 输入ESD 保护.......................................................18  
10 布局............................................................................... 19  
10.1 布局指南..................................................................19  
10.2 布局示例..................................................................19  
11 器件和文档支持..............................................................20  
11.1 文档支持..................................................................20  
11.2 接收文档更新通知................................................... 20  
11.3 支持资源..................................................................20  
11.4 商标.........................................................................20  
11.5 Electrostatic Discharge Caution..............................20  
11.6 术语表..................................................................... 20  
12 机械、封装和可订购信息...............................................21  
4 修订历史记录  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (September 2019) to Revision E (February 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 向器件信表中添加SOT-23 (DYY) 封装...................................................................................................... 1  
• 向引脚配置和功能部分中添加DYY (SOT-23) 信息.........................................................................................3  
• 向热性能信息LM324LV 表中添加DYY (SOT-23)........................................................................................ 7  
Changes from Revision C (May 2019) to Revision D (September 2019)  
Page  
• 删除了数据表SOT-23 (DDF) 封装的全部预发布说明..................................................................................... 1  
Changes from Revision B (February 2019) to Revision C (May 2019)  
Page  
• 向器件信表中添加SOT-23 (DDF) 封装...................................................................................................... 1  
• 向引脚配置和功能部分中添加DDF (SOT-23) 信息.........................................................................................3  
• 向热性能信息LM358LV 表中添加DDF (SOT-23)........................................................................................ 7  
Changes from Revision A (January 2019) to Revision B (February 2019)  
Page  
• 更改LM321LVIDBV (SOT-23) 引脚图以匹LM321LVIDCK (SC70) 引脚排列..............................................3  
Changes from Revision * (September 2018) to Revision A (January 2019)  
Page  
• 将数据表标题LM3xxLV... 更改LM321LVLM358LVLM324LV... ...........................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM321LV LM324LV LM358LV  
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
5 引脚配置和功能  
IN+  
Vœ  
1
2
3
5
V+  
INœ  
4
OUT  
Not to scale  
5-1. LM321LV DBV DCK 封装  
5 SOT-23 SC70  
顶视图)  
5-1. 引脚功能LM321LV  
引脚  
I/O  
说明  
名称  
编号  
3
1
4
2
I
IN–  
反相输入  
IN+  
I
同相输入  
OUT  
V–  
V+  
O
I —  
I
输出  
电源或接地对于单电源供电)  
电源  
5
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM321LV LM324LV LM358LV  
 
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT2  
IN2œ  
IN2+  
Not to scale  
5-2. LM358LV DDGKPW DDF 封装  
8 SOICVSSOPTSSOP SOT-23  
顶视图)  
5-2. 引脚功能LM358LV  
引脚  
I/O  
说明  
名称  
编号  
2
I
I
IN1–  
IN1+  
反相输入1  
同相输入1  
反相输入2  
同相输入2  
输出1  
3
6
5
1
7
4
8
I
IN2–  
IN2+  
OUT1  
OUT2  
V–  
I
O
O
输出2  
I 电源或接地对于单电源供电)  
V+  
I
电源  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM321LV LM324LV LM358LV  
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
OUT1  
IN1œ  
IN1+  
V+  
1
2
3
4
5
6
7
14  
OUT4  
IN4œ  
IN4+  
Vœ  
13  
12  
11  
10  
9
IN2+  
IN2œ  
OUT2  
IN3+  
IN3œ  
OUT3  
8
Not to scale  
5-3. LM324LV DPW DYY 封装  
14 SOICTSSOP SOT-23  
顶视图)  
5-3. 引脚功能LM324LV  
引脚  
I/O  
说明  
名称  
编号  
2
I
I
IN1–  
IN1+  
反相输入1  
同相输入1  
反相输入2  
同相输入2  
反相输入3  
同相输入3  
反相输入4  
同相输入4  
输出1  
3
6
I
IN2–  
IN2+  
IN3–  
IN3+  
IN4–  
IN4+  
OUT1  
OUT2  
OUT3  
OUT4  
V–  
5
I
9
I
10  
13  
12  
1
I
I
I
O
O
O
O
7
输出2  
8
输出3  
14  
11  
4
输出4  
I 电源或接地对于单电源供电)  
V+  
I
电源  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM321LV LM324LV LM358LV  
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
6 规格  
6.1 绝对最大额定值  
在工作结温范围内测得除非另有说明(1)  
最小值  
最大值  
单位  
0
6
V
电源电压([V+] [V])  
(V+) + 0.5  
(V+) (V) + 0.2  
10  
V
V
(V) 0.5  
共模  
差分  
电压(2)  
信号输入引脚  
电流(2)  
-10  
-55  
-65  
mA  
输出短路(3)  
持续  
150  
150  
150  
°C  
°C  
°C  
温度TA  
运行结温TJ  
贮存温度Tstg  
(1) 超出绝对最大额定值下所列的值的应力可能会对器件造成永久损坏。这些仅仅是压力额定值并不表示器件在这些条件下以及在建议运  
行条件以外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。  
(2) 输入引脚被二极管钳制至电源轨。摆幅超过电源0.5V 的输入信号的电流必须限制10mA 或者更少。  
(3) 对地短路每个封装对应一个放大器。  
6.2 ESD 额定值  
单位  
人体放电模(HBM)ANSI/ESDA/JEDEC JS-001 标准(1)  
充电器件模(CDM)JEDEC JESD22-C101(2)  
±2000  
V(ESD)  
V
静电放电  
±1000  
(1) JEDEC JEP155 指出500V HBM 时能够在标ESD 控制流程下安全生产。  
(2) JEDEC JEP157 指出250V CDM 可实现在标ESD 控制流程下安全生产。  
6.3 建议运行条件  
在工作结温范围内测得除非另有说明)  
最小值  
最大值  
单位  
VS  
VIN  
TA  
2.7  
5.5  
V
电源电[(V+) (V)]  
输入引脚电压范围  
额定温度  
V
(V) 0.1  
(V+) 1  
-40  
125  
°C  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM321LV LM324LV LM358LV  
 
 
 
 
 
 
 
 
 
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.4 热性能信息LM321LV  
LM321LV  
热指标(1)  
DBV (SOT-23)  
5 引脚  
232.9  
DCK (SC70)  
5 引脚  
239.6  
单位  
RθJA  
RθJC(top)  
RθJB  
ψJT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
结至环境热阻  
153.8  
148.5  
结至外壳顶部热阻  
结至电路板热阻  
100.9  
82.3  
77.2  
54.5  
结至顶部特征参数  
结至电路板特征参数  
100.4  
81.8  
ψJB  
(1) 有关新旧热指标的更多信息请参阅半导体IC 封装热指标。  
6.5 热性能信息LM358LV  
LM358LV  
热指标(1)  
D (SOIC)  
DGK (VSSOP)  
PW (TSSOP)  
DDF (SOT-23)  
单位  
8 引脚  
8 引脚  
8 引脚  
8 引脚  
RθJA  
207.9  
201.2  
200.7  
183.7  
°C/W  
°C/W  
结至环境热阻  
Rθ  
92.8  
85.7  
95.4  
112.5  
结至外壳顶部热阻  
JC(top)  
RθJB  
ψJT  
129.7  
26  
122.9  
21.2  
128.6  
27.2  
98.2  
18.8  
97.6  
°C/W  
°C/W  
°C/W  
结至电路板热阻  
结至顶部特征参数  
结至电路板特征参数  
127.9  
121.4  
127.2  
ψJB  
(1) 有关新旧热指标的更多信息请参阅半导体IC 封装热指标。  
6.6 热性能信息LM324LV  
LM324LV  
热指标(1)  
D (SOIC)  
PW (TSSOP)  
14 引脚  
148.3  
DYY (SOT-23)  
14 引脚  
154.6  
单位  
14 引脚  
102.1  
56.8  
RθJA  
RθJC(top)  
RθJB  
ψJT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
结至环境热阻  
68.1  
86.3  
结至外壳顶部热阻  
结至电路板热阻  
58.5  
92.7  
67.3  
20.5  
16.9  
9.8  
结至顶部特征参数  
结至电路板特征参数  
58.1  
91.8  
67.1  
ψJB  
(1) 有关新旧热指标的更多信息请参阅半导体IC 封装热指标。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM321LV LM324LV LM358LV  
 
 
 
 
 
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.7 电气特性  
VS = (V+) (V) = 2.7V 5.5V±1.35V ±2.75VTA = 25°CRL = 10kΩ(连接VS/2VCM = VOUT = VS/2  
条件下测得除非另有说明)  
参数  
测试条件  
最小值  
典型值  
最大值  
单位  
失调电压  
VS = 5V  
±1  
±3  
±5  
VOS  
mV  
输入失调电压  
OS 温漂  
电源抑制比  
VS = 5VTA = 40°C 125°C  
TA = 40°C 125°C  
dVOS/dT  
PSRR  
±4  
µV/°C  
dB  
V
80  
100  
VS = 2.7 V 5.5VVCM = (V)  
输入电压范围  
VCM  
V
(V) 0.1  
(V+) 1  
共模电压范围  
无相位反转  
VS = 2.7V(V) 0.1V < VCM < (V+) 1V,  
TA = 40°C 125°C  
84  
92  
CMRR  
dB  
共模抑制比  
VS = 5.5V(V) 0.1V < VCM < (V+) 1V,  
TA = 40°C 125°C  
63  
输入偏置电流  
IB  
VS = 5V  
±15  
±5  
pA  
pA  
输入偏置电流  
输入失调电流  
IOS  
噪声  
En  
5.1  
40  
µVPP  
输入电压噪声峰峰值)  
ƒ= 0.1Hz 10HzVS = 5V  
ƒ= 1kHzVS = 5V  
en  
nV/Hz  
输入电压噪声密度  
输入电容  
CID  
2
pF  
pF  
差分  
共模  
CIC  
5.5  
开环增益  
110  
125  
VS = 2.7V(V) + 0.15V < VO < (V+) 0.15VRL = 2kΩ  
VS = 5.5V(V) + 0.15V < VO < (V+) 0.15VRL = 2kΩ  
AOL  
dB  
开环电压增益  
频率响应  
GBW  
VS = 5V  
1
75  
1.5  
4
MHz  
°
增益带宽积  
相位裕度  
压摆率  
VS = 5.5VG = 1  
φm  
SR  
VS = 5V  
V/µs  
精度达0.1%VS = 5V2V 阶跃G = 1CL = 100pF  
精度达0.01%VS = 5V2V 阶跃G = 1CL = 100pF  
VS = 5VVIN × > VS  
tS  
µs  
µs  
趋稳时间  
5
tOR  
1
过载恢复时间  
VS = 5.5VVCM = 2.5VVO = 1VRMSG = 1f = 1kHz,  
80kHz BW  
THD+N  
0.005%  
总谐波失+ 噪声  
输出  
VOH  
1
V
R
R
L 2kΩTA = 40°C 125°C  
L 10kΩTA = 40°C 125°C  
相对于正电源的电压输出摆幅  
相对于负电源的电压输出摆幅  
短路电流  
VOL  
ISC  
ZO  
40  
±40  
75  
mV  
mA  
Ω
VS = 5.5V  
VS = 5Vf = 1 MHz  
1200  
开环输出阻抗  
电源  
VS  
2.7 (±1.35)  
5.5 (±2.75)  
150  
V
额定电压范围  
IO = 0mAVS = 5.5 V  
90  
IQ  
µA  
每个放大器的静态电流  
160  
IO = 0mAVS = 5.5VTA = 40°C 125°C  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM321LV LM324LV LM358LV  
 
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.8 典型特性  
TA = 25°CV+ = 2.75VV= 2.75VRL = 10kΩ连接VS/2VCM = VS/2 VOUT = VS/2 条件下测得除非另  
有说明)  
10  
8
160  
140  
120  
100  
80  
6
4
2
0
IB-  
IB+  
IOS  
-2  
-4  
-6  
-8  
-10  
60  
40  
20  
VS = 5.5 V  
VS = 2.5 V  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-3 -2.5 -2 -1.5 -1 -0.5  
0
Common-Mode Voltage (V)  
0.5  
1
1.5  
2
2.5  
3
Temperature (èC)  
D008  
D007  
6-2. 开环增益与温度间的关系  
6-1. IB IOS 与共模电压间的关系  
100  
80  
60  
40  
20  
0
120  
160  
140  
120  
100  
80  
100  
80  
60  
40  
20  
0
60  
40  
Gain  
Phase  
20  
-20  
0
1k  
10k  
100k  
Frequency (Hz)  
1M  
-3  
-2  
-1 0  
Output Voltage (V)  
1
2
3
D009  
D010  
CL = 10pF  
6-4. 开环电压增益与输出电压间的关系  
6-3. 开环增益和相位与频率间的关系  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain = -1  
Gain = 1  
Gain = 10  
Gain = 100  
Gain = 1000  
-10  
-20  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
D011  
CL = 10pF  
6-5. 闭环增益与频率间的关系  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM321LV LM324LV LM358LV  
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.8 典型特性  
TA = 25°CV+ = 2.75VV= 2.75VRL = 10kΩ连接VS/2VCM = VS/2 VOUT = VS/2 条件下测得除非另  
有说明)  
2
1.5  
1
120  
100  
80  
60  
40  
20  
0
PSRR+  
PSRR-  
0.5  
0
-40 èC  
25 èC  
85 èC  
125 èC  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
0
5
10  
15  
20  
25  
30  
Output Current (mA)  
35  
40  
45  
50  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
D012  
D013  
6-6. 输出电压与输出电流间的关系爪形)  
6-7. PSRR 与频率间的关系  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
Temperature (èC)  
D014  
D015  
6-9. CMRR 与频率间的关系  
VS=2.7 V 5.5 V  
6-8. PSRR 与温度间的关系  
120  
100  
80  
60  
40  
20  
0
VS = 2.7 V  
VS = 5.5 V  
Time (1 s/div)  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D017  
D016  
6-11. 0.1Hz 10Hz 集成电压噪声  
VCM = (V) 0.1V (V+) 1.5V  
6-10. CMRR 与温度间的关系  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM321LV LM324LV LM358LV  
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.8 典型特性  
TA = 25°CV+ = 2.75VV= 2.75VRL = 10kΩ连接VS/2VCM = VS/2 VOUT = VS/2 条件下测得除非另  
有说明)  
-50  
140  
120  
100  
80  
-60  
-70  
60  
-80  
40  
-90  
20  
RL = 2K  
RL = 10K  
-100  
0
100  
1k  
Frequency (Hz)  
10k  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
D019  
D018  
VS = 5.5V  
BW = 80kHz  
VCM = 2.5V  
G = 1  
6-12. 输入电压噪声频谱密度  
VOUT = 0.5VRMS  
6-13. THD+N 与频率间的关系  
0
100  
90  
80  
70  
60  
G = +1, RL = 2 kW  
G = +1, RL = 10 kW  
G = -1, RL = 2 kW  
G = -1, RL = 10 kW  
-20  
-40  
-60  
-80  
-100  
0.001  
0.01  
0.1  
Amplitude (VRMS  
1
2
2.5  
3
3.5  
4
Voltage Supply (V)  
4.5  
5
5.5  
)
D020  
D021  
VS = 5.5V  
BW = 80kHz  
VCM = 2.5V  
f = 1kHz  
G = 1  
6-15. 静态电流与电源电压间的关系  
6-14. THD + N 与幅度间的关系  
100  
90  
80  
70  
60  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D023  
D022  
6-17. 开环输出阻抗与频率间的关系  
6-16. 静态电流与温度间的关系  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM321LV LM324LV LM358LV  
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.8 典型特性  
TA = 25°CV+ = 2.75VV= 2.75VRL = 10kΩ连接VS/2VCM = VS/2 VOUT = VS/2 条件下测得除非另  
有说明)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Overshoot (+)  
Overshoot (–)  
Overshoot (+)  
Overshoot (–)  
0
0
0
200  
400 600  
Capacitance Load (pF)  
800  
1000  
0
200  
400 600  
Capacitance Load (pF)  
800  
1000  
D024  
D025  
G = 1  
VIN = 100mVpp  
VIN = 100mVpp  
G = 1  
6-18. 小信号过冲与容性负载间的关系  
6-19. 小信号过冲与容性负载间的关系  
90  
VOUT  
VIN  
80  
70  
60  
50  
40  
30  
20  
10  
0
Time (100 ms/div)  
0
200  
400 600  
Capacitance Load (pF)  
800  
1000  
D027  
D026  
G = 1  
VIN = 6.5 VPP  
6-20. 相位裕度与容性负载间的关系  
6-21. 无相位反转  
VOUT  
VIN  
VOUT  
VIN  
Time (20 ms/div)  
Time (10 ms/div)  
D028  
D029  
G = -10  
VIN = 600 mVPP  
G = 1  
VIN = 100 mVPP  
CL = 10pF  
6-22. 过载恢复  
6-23. 小信号阶跃响应  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM321LV LM324LV LM358LV  
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.8 典型特(continued)  
TA = 25°CV+ = 2.75VV= 2.75VRL = 10kΩ连接VS/2VCM = VS/2 VOUT = VS/2 条件下测得除非另  
有说明)  
VOUT  
VIN  
Time (1 μs/div)  
Time (10 ms/div)  
D031  
D030  
G = 1  
CL = 100pF  
2V 阶跃  
G = 1  
VIN = 4 VPP  
CL = 10pF  
6-25. 大信号稳定时间)  
6-24. 大信号阶跃响应  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
Sinking  
Sourcing  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Time (1 ms/div)  
Temperature (èC)  
D033  
D032  
6-27. 短路电流与温度间的关系  
G = 1  
CL = 100pF  
2V 阶跃  
6-26. 大信号稳定时间)  
140  
120  
100  
80  
0
-20  
-40  
-60  
-80  
60  
-100  
-120  
-140  
40  
20  
0
10M  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
Frequency (Hz)  
1G  
10G  
D036  
D035  
6-29. 通道分离  
6-28. 以同相输入为基准的电磁干扰抑制(EMIRR+) 与频率间的  
关系  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM321LV LM324LV LM358LV  
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
7 详细说明  
7.1 概述  
LM3xxLV 系列低功耗运算放大器适用于成本优化型系统。这些器件的工作电压范围为 2.7V 5.5V具有单位增  
益稳定特性并且适用于各种通用应用。输入共模电压范围包括负电源轨并支持将 LM3xxLV 系列用于许多单电  
源应用。  
7.2 功能方框图  
V+  
Reference  
Current  
VIN+  
VIN-  
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
V-  
(Ground)  
7.3 特性说明  
7.3.1 工作电压  
LM3xxLV 系列的运算放大器的额定工作电压范围是 2.7V 5.5V。此外许多规格在 –40°C 125°C 的温度范  
围内都适用电气特性部分展示了随着工作电压或温度而显著变化的参数。  
7.3.2 共模输入范围包括接地  
LM3xxLV 系列的输入共模电压范围扩展到负电源轨低于正电源轨不1V整个供电电压范围2.7V 5.5V。  
该性能通过 P 沟道差分对实现功能方框图所示。此外还并联了一个互补N 沟道差分对以消除前几代运  
算放大器常见的相位反转问题。不过N 沟道对并未针对运行进行优化并且在其运行期间性能会显著下降。TI  
建议将在输入端施加的任何电压限制为至少比正电源轨 (V+) 1V以确保运算放大器符合电气特性部分中详述  
的规格。  
7.3.3 过载恢复  
过载恢复定义为运算放大器输出从饱和状态恢复到线性状态所需的时间。当输出电压由于高输入电压或高增益而  
超过额定输出电压摆幅时运算放大器的输出器件进入饱和区。器件进入饱和区后输出器件中的电荷载体需要  
时间回到线性状态。当电荷载体回到线性状态时器件开始以指定的压摆率进行转换。因此传播延迟过载情  
况下等于过载恢复时间与转换时间之和。LM3xxLV 系列的过载恢复时间通常1µs。  
7.3.4 电气过应力  
设计人员经常会问到关于运算放大器耐受电气过应力的问题。这些问题往往侧重于器件输入但是也可能涉及到  
电源电压引脚。这些不同的引脚功能均具有由特定半导体制造工艺和连接到引脚的特定电路的电压击穿特性所决  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM321LV LM324LV LM358LV  
 
 
 
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
定的电应力限制。此外这些电路均内置内部静电放电 (ESD) 保护功能可在产品组装之前和组装过程中保护电  
路不受意ESD 事件的影响。  
能够充分了解该基本 ESD 电路及其与电气过应力事件的关联性会有所帮助。7-1 展示了 LM3xxLV 中包含的  
ESD 电路。ESD 保护电路中涉及多个导流二极管这些二极管从输入引脚和输出引脚连接回内部供电线路并且  
它们均连接到运算放大器内部的吸收器件。该保护电路在电路正常工作时处于未激活状态。  
V+  
Power Supply  
ESD Cell  
+IN  
+
œ
OUT  
œ IN  
Vœ  
7-1. 等效内ESD 电路  
7.3.5 EMI 易感性和输入滤波  
德州仪器 (TI) 已经开发出在 10MHz 6GHz 扩展宽频谱范围内准确测量和量化运算放大器抗扰度的功能。图  
6-28 图说明了 LM3xxLV 系列的 EMI 滤波器在很宽的频率范围内的性能。更多详细信息请参阅可从 www.ti.com  
下载的运算放大器EMI 抑制比。  
7.4 器件功能模式  
LM3xxLV 系列具有单功能模式。只要电源电压2.7 V (±1.35 V) 5.5V (±2.75V) 之间这些器件就会启动。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM321LV LM324LV LM358LV  
 
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8 应用和实现  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 应用信息  
LM3xxLV 器件是一系列低功耗、成本优化型运算放大器。这些器件的工作电压为 2.7V 5.5V单位增益稳定,  
适合广泛的通用应用。输入共模电压范围包括负电源轨并支持LM3xxLV 用于任何单电源应用。  
8.2 典型应用  
8-1 展示了低侧电流感测应用中配置LM3xxLV 器件。  
VBUS  
ILOAD  
ZLOAD  
5 V  
+
VOUT  
Þ
+
RSHUNT  
VSHUNT  
RF  
0.1 Ω  
255 kΩ  
Þ
RG  
7.5 kΩ  
8-1. 低侧电流感测应用中LM3xxLV 器件  
8.2.1 设计要求  
此设计的设计要求如下:  
• 负载电流0A 1A  
• 输出电压3.5V  
• 最大分流电压100mV  
8.2.2 详细设计过程  
方程1 提供了8-1 中的电路传递函数:  
VOUT = ILOAD ìRSHUNT ìGain  
(1)  
负载电流 (ILOAD) 在分流电阻器 (RSHUNT) 上产生压降。负载电流设置为 0A 1A。为了在最大负载电流下保持分  
流电压低100mV使用方程2 展示了允许的最大分流电阻器。  
VSHUNT _MAX  
100mV  
1A  
RSHUNT  
=
=
=100mW  
ILOAD_MAX  
(2)  
根据方程2 计算出RSHUNT 100mΩ。ILOAD RSHUNT 产生的电压降LM3xxLV 器件放大从而产生大约  
0V 3.5V 的输出电压。LM3xxLV 产生必要输出电压时所需的增益根据方程3 算出:  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM321LV LM324LV LM358LV  
 
 
 
 
 
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
V
OUT _MAX - VOUT _MIN  
(
)
Gain =  
VIN_MAX - V  
(
)
IN_MIN  
(3)  
使用方程3 计算出的所需增益为 35 V/V该值由电阻RF RG 设置。方程4 调整电阻RF RG 的阻值  
大小从而LM3xxLV 器件的增益设置35V/V。  
R
(
(
)
)
F
Gain = 1+  
R
G
(4)  
8.2.3 应用曲线  
RF 255kΩRG 7.5kΩ可提供等同35V/V 的组合。8-2 展示了8-1 中所示电路测得的  
传递函数。请注意增益只是反馈和增益电阻器的函数。通过改变电阻器的比率来调整该增益实际电阻器阻值  
由设计人员希望建立的阻抗水平决定。阻抗水平决定了电流消耗、杂散电容的影响以及其他一些行为。并不存在  
适用于每个系统的最佳阻抗选择您必须选择适合您的系统参数的阻抗。  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
ILOAD (A)  
1
Outp  
8-2. 低侧电流感测传递函数  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM321LV LM324LV LM358LV  
 
 
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9 电源相关建议  
LM3xxLV 系列的额定工作电压范围为 2.7V 5.5V±1.35V ±2.75V);多种规格适用于 –40°C 125°C 的  
温度范围。电气特部分介绍了可能会随工作电压或温度而显著变化的参数。  
CAUTION  
电源电压大6V 可能对器件造成永久损坏请参阅绝对最大额定值表。  
0.1µF 旁路电容器置于电源引脚附近以减少来自高噪声电源或高阻抗电源的耦合误差。有关旁路电容器放置  
位置的详细信息请参阅布局指南部分。  
9.1 输入ESD 保护  
LM3xxLV 系列在所有引脚上均整合了内部 ESD 保护电路。对于输入和输出引脚这种保护主要包括输入和电源  
引脚之间连接的导流二极管。只要电流如6.1 表中所述不超过 10mA这些 ESD 保护二极管就能提供电路内输  
入过驱保护。9-1 展示了如何通过将串联输入电阻器添加到被驱动的输入端来限制输入电流。添加的电阻器会  
增加放大器输入端的热噪声在对噪声敏感的应用中该值必须非常小。  
V+  
IOVERLOAD  
10-mA maximum  
VOUT  
Device  
VIN  
5 kW  
9-1. 输入电流保护  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM321LV LM324LV LM358LV  
 
 
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
10 布局  
10.1 布局指南  
为了使器件具有最佳运行性能请使用良好的印刷电路(PCB) 布局实践包括:  
• 噪声可以通过整个电路的电源引脚和运算放大器本身的电源引脚传入模拟电路。旁路电容用于通过为局部模拟  
电路提供低阻抗电源以降低耦合噪声。  
– 在每个电源引脚和接地端之间接入低等效串联电(ESR) 0.1µF 陶瓷旁路电容并尽量靠近器件放置。针  
对单电源应用V+ 与接地端之间可以接入单个旁路电容器。  
• 将电路中模拟和数字部分单独接地是最简单和最有效的噪声抑制方法之一。多PCB 上的一层或多层通常专  
门用于作为接地平面。接地层有助于散热和降低电磁干(EMI) 噪声拾取。注意在物理上分离数字接地和模拟  
接地。使用热特征EMI 测量技术来确定大部分接地电流流向何处并确保将该路径从敏感的模拟电路引开。  
更多详细信息请参阅电路板布局技巧应用手册。  
• 为了减少寄生耦合请让输入走线尽可能远离电源或输出走线。如果这些走线不能保持分开90 度角穿  
过敏感走线比平行于噪声走线来排布走线要好得多。  
• 应尽可能靠近器件放置外部元件10-2 所示。使RF RG 接近反相输入可最大限度地减小寄生电容。  
• 尽可能缩短输入走线。切记输入走线是电路中最敏感的部分。  
• 考虑在关键走线周围设定驱动型低阻抗保护环。这样可显著减少附近不同电势下的走线所产生的泄漏电流。  
• 为获得最佳性能建议在组PCB 板后进行清洗。  
• 任何精密集成电路都可能因湿气渗入塑料封装中而出现性能变化。请遵循所有PCB 水清洁流程建议将  
PCB 组装烘干以去除清洗时渗入器件封装中的湿气。大多数情形下清洗后85°C 下低温烘30 分钟即  
可。  
10.2 布局示例  
VIN 1  
VIN 2  
+
+
VOUT 1  
VOUT 2  
RG  
RG  
RF  
RF  
10-1. 原理图表示:  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
OUT 1  
Use low-ESR,  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VS+  
GND  
OUT1  
V+  
RF  
OUT 2  
GND  
IN1œ  
IN1+  
Vœ  
OUT2  
IN2œ  
IN2+  
RF  
RG  
VIN 1  
GND  
RG  
VIN 2  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VSœ  
Ground (GND) plane on another layer  
as possible .  
10-2. 布局示例  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM321LV LM324LV LM358LV  
 
 
 
 
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
• 德州仪(TI)运算放大器EMI 抑制比应用报告  
• 德州仪(TI)电路板布局技巧应用手册  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 商标  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM321LV LM324LV LM358LV  
 
 
 
 
 
 
 
LM321LV, LM324LV, LM358LV  
ZHCSI65E SEPTEMBER 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
12 机械、封装和可订购信息  
下述页面包含机械、封装和订购信息。这些信息是指定器件的最新可用数据。数据如有变更恕不另行通知且  
不会对此文档进行修订。如需获取此数据表的浏览器版本请查看左侧的导航面板。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM321LV LM324LV LM358LV  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM321LVIDBVR  
LM321LVIDCKR  
LM324LVIDR  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
D
5
5
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1SPF  
1DH  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
SN  
NIPDAU  
SOIC  
14  
14  
14  
8
LM324LV  
LM324L  
LM324LV  
L58L  
LM324LVIDYYR  
LM324LVIPWR  
LM358LVIDDFR  
LM358LVIDGKR  
LM358LVIDR  
ACTIVE SOT-23-THIN  
ACTIVE TSSOP  
ACTIVE SOT-23-THIN  
DYY  
PW  
DDF  
DGK  
D
NIPDAU  
SN  
NIPDAU  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
SOIC  
8
NIPDAUAG | SN  
NIPDAU | SN  
NIPDAU | SN  
1PKX  
8
L358LV  
358LV  
LM358LVIPWR  
TSSOP  
PW  
8
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Dec-2022  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM321LVIDBVR  
LM321LVIDCKR  
LM324LVIDR  
SOT-23  
SC70  
DBV  
DCK  
D
5
5
3000  
3000  
2500  
3000  
180.0  
178.0  
330.0  
330.0  
8.4  
9.0  
3.2  
2.4  
6.5  
4.8  
3.2  
2.5  
9.0  
3.6  
1.4  
1.2  
2.1  
1.6  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q3  
SOIC  
14  
14  
16.4  
12.4  
16.0  
12.0  
LM324LVIDYYR  
SOT-23-  
THIN  
DYY  
LM324LVIPWR  
LM358LVIDDFR  
TSSOP  
PW  
14  
8
2000  
3000  
330.0  
180.0  
12.4  
8.4  
6.9  
3.2  
5.6  
3.2  
1.6  
1.4  
8.0  
4.0  
12.0  
8.0  
Q1  
Q3  
SOT-23-  
THIN  
DDF  
LM358LVIDGKR  
LM358LVIDGKR  
LM358LVIDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
8
8
2500  
2500  
2500  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
6.4  
7.0  
7.0  
3.4  
3.4  
5.2  
3.6  
3.6  
1.4  
1.4  
2.1  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
LM358LVIPWR  
LM358LVIPWR  
TSSOP  
TSSOP  
PW  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM321LVIDBVR  
LM321LVIDCKR  
LM324LVIDR  
SOT-23  
SC70  
DBV  
DCK  
D
5
5
3000  
3000  
2500  
3000  
2000  
3000  
2500  
2500  
2500  
2000  
2000  
210.0  
190.0  
356.0  
336.6  
366.0  
210.0  
366.0  
366.0  
356.0  
356.0  
366.0  
185.0  
190.0  
356.0  
336.6  
364.0  
185.0  
364.0  
364.0  
356.0  
356.0  
364.0  
35.0  
30.0  
35.0  
31.8  
50.0  
35.0  
50.0  
50.0  
35.0  
35.0  
50.0  
SOIC  
14  
14  
14  
8
LM324LVIDYYR  
LM324LVIPWR  
LM358LVIDDFR  
LM358LVIDGKR  
LM358LVIDGKR  
LM358LVIDR  
SOT-23-THIN  
TSSOP  
DYY  
PW  
DDF  
DGK  
DGK  
D
SOT-23-THIN  
VSSOP  
VSSOP  
SOIC  
8
8
8
LM358LVIPWR  
LM358LVIPWR  
TSSOP  
PW  
PW  
8
TSSOP  
8
Pack Materials-Page 2  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.38  
0.22  
8X  
0.1  
C A B  
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/C 10/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0014A  
C
3.36  
3.16  
SEATING PLANE  
PIN 1 INDEX  
AREA  
A
0.1 C  
12X 0.5  
14  
1
4.3  
4.1  
NOTE 3  
2X  
3
7
8
0.31  
0.11  
14X  
0.1  
C A  
B
1.1 MAX  
2.1  
1.9  
B
0.2  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAUGE PLANE  
0°- 8°  
0.1  
0.0  
0.63  
0.33  
DETAIL A  
TYP  
4224643/B 07/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed  
0.15 per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side.  
5. Reference JEDEC Registration MO-345, Variation AB  
www.ti.com  
EXAMPLE BOARD LAYOUT  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0014A  
SYMM  
14X (1.05)  
1
14  
14X (0.3)  
SYMM  
12X (0.5)  
8
7
(R0.05) TYP  
(3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224643/B 07/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0014A  
SYMM  
14X (1.05)  
1
14  
14X (0.3)  
SYMM  
12X (0.5)  
8
7
(R0.05) TYP  
(3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 20X  
4224643/B 07/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
PW0008A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
8
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
A
0.1 C  
6X 0.65  
8
5
1
3.1  
2.9  
NOTE 3  
2X  
1.95  
4
0.30  
0.19  
8X  
4.5  
4.3  
1.2 MAX  
B
0.1  
C A  
B
NOTE 4  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
0 - 8  
DETAIL A  
TYPICAL  
4221848/A 02/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
8X (0.45)  
(R0.05)  
1
4
TYP  
8
SYMM  
6X (0.65)  
5
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221848/A 02/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
(R0.05) TYP  
8X (0.45)  
1
4
8
SYMM  
6X (0.65)  
5
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221848/A 02/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY