LM36010YKBR [TI]

LM36010 同步升压 LED 闪光灯驱动器 | YKB | 8 | -40 to 85;
LM36010YKBR
型号: LM36010YKBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LM36010 同步升压 LED 闪光灯驱动器 | YKB | 8 | -40 to 85

驱动 闪光灯 驱动器
文件: 总40页 (文件大小:3102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
LM36010 具有 1.5A 高侧电流源的同步升压、单 LED 闪光灯驱动器  
1 特性  
3 说明  
1
精确且可编程 LED 电流  
LM36010 是一款超小型 LED 闪光灯驱动器,具有高  
度可调节性。总解决方案尺寸为 7mm2,可提供高达  
1.5A LED 闪光灯电流或高达 376mA 的手电筒电  
流。  
闪光灯/IR 电流范围:11mA 1.5A128 个级  
别)  
手电筒电流范围:2.4mA 376mA128 个级  
别)  
该器件采用 2MHz 4MHz 固定频率的同步升压转换  
器为 1.5A 恒定电流 LED 源供电。自适应调节方法可  
在闪光灯模式下将电流控制在 11mA 1.5A 的范围  
内,或在手电筒模式下将电流控制在 2.4mA 376mA  
的范围内,因此可确保电流源保持可调节状态,并可最  
大限度地提高效率。  
闪光灯超时时间长达 1.6 秒  
优化了低电池电量条件下的闪光灯 LED 电流  
(IVFM)  
LED 阴极对地短路运行以提高热管理  
较小的总体解决方案尺寸:< 7mm2  
硬件闪光灯使能 (STROBE)  
输入电压范围:2.5V 5.5V  
400kHz I2C 兼容接口  
LM36010 的特性由与 I2C 兼容的接口控制。这些 特性  
包括:硬件闪光灯 (STROBE) 以及适用于闪光灯和影  
片模式(手电筒)的 128 级可编程电流。该器件的开  
关频率为 2MHz 4MHz,具备过压保护 (OVP) 和可  
调节限流功能,因此可使用微型超薄电感器和陶瓷电容  
器。该器件可在 -40°C +85°C 的环境温度范围下工  
作。  
I2C 地址 = 0x64  
2 应用  
手机  
平板电脑  
IR LED 驱动器  
视频监控:IP 摄像机  
条形码扫描仪  
便携式数据终端  
器件信息(1)  
器件型号  
LM36010  
封装  
封装尺寸(标称值)  
DSBGA (8)  
1.512mm × 0.800mm  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
简化电路原理图  
L1  
IN  
SW  
VIN  
C1  
2.5 V œ 5.5 V  
OUT  
C2  
SDA  
µP/µC  
SCL  
LED  
D1  
STROBE  
GND  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSAN4  
 
 
 
 
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 18  
7.6 Register Descriptions.............................................. 20  
Applications and Implementation ...................... 22  
8.1 Application Information............................................ 22  
8.2 Typical Application ................................................. 22  
Power Supply Recommendations...................... 33  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 5  
6.7 Switching Characteristics.......................................... 5  
6.8 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ...................................... 13  
7.3 Feature Description ................................................ 14  
7.4 Device Functioning Modes...................................... 16  
8
9
10 Layout................................................................... 33  
10.1 Layout Guidelines ................................................. 33  
10.2 Layout Example ................................................... 34  
11 器件和文档支持 ..................................................... 35  
11.1 器件支持................................................................ 35  
11.2 文档支持................................................................ 35  
11.3 接收文档更新通知 ................................................. 35  
11.4 社区资源................................................................ 35  
11.5 ....................................................................... 35  
11.6 静电放电警告......................................................... 35  
11.7 Glossary................................................................ 35  
12 机械、封装和可订购信息....................................... 36  
7
4 修订历史记录  
Changes from Revision A (July 2017) to Revision B  
Page  
更正了封装尺寸 .................................................................................................................................................................... 36  
Changes from Original (April 2017) to Revision A  
Page  
已更改 器件状态从高级信息更改为生产数据” ..................................................................................................................... 1  
2
Copyright © 2017, Texas Instruments Incorporated  
 
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
5 Pin Configuration and Functions  
YKB Package  
8-Pin DSBGA  
Top View  
A1  
B1  
A2  
B2  
Pin A1  
C2  
D2  
C1  
D1  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
A1  
GND  
G
P
P
I
Ground  
Input voltage connection. Connect IN to the input supply and bypass to GND with a 10-µF or  
larger ceramic capacitor.  
A2  
B1  
B2  
IN  
SW  
Drain connection for Internal NMOS and synchronous PMOS switches.  
Active high hardware flash enable. Drive STROBE high to turn on flash pulse. An internal  
pulldown resistor of 300 kΩ is between STROBE and GND.  
STROBE  
Step-up DC-DC converter output. Connect a 10-µF ceramic capacitor between this terminal  
and GND.  
C1  
OUT  
P
C2  
D1  
D2  
SDA  
LED  
SCL  
I/O  
P
I2C serial data input/output.  
High-side current source output for flash LED.  
I2C serial clock input.  
I
(1) G = Ground; P = Power; I = Input; O = Output  
Copyright © 2017, Texas Instruments Incorporated  
3
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
0.3  
0.3  
MAX  
UNIT  
IN, SW, OUT, LED  
6
V
SDA, SCL, STROBE  
(VIN+ 0.3) w/ 6 V maximum  
Continuous power dissipation(3)  
Junction temperature, TJ-MAX  
Storage temperature, Tstg  
Internally limited  
150  
150  
°C  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 150°C (typical) and  
disengages at TJ = 135°C (typical). Thermal shutdown is ensured by design.  
6.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
5.5  
UNIT  
VIN  
2.5  
40  
40  
V
Junction temperature, TJ  
Ambient temperature, TA  
125  
85  
°C  
°C  
(3)  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).  
6.4 Thermal Information  
LM36010  
THERMAL METRIC(1)  
YKB (DSBGA)  
8 PINS  
117.3  
1.3  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
34.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.5  
ΨJB  
34.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
 
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
6.5 Electrical Characteristics  
TA = 25°C and VIN = 3.6 V, unless otherwise specified. Minimum and maximum limits apply over the full operating ambient  
temperature range (–40°C TA 85°C).(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT SOURCE SPECIFICATIONS  
(3)  
VOUT = 4 V , flash code = 0x7F = 1.5 A  
–10%  
–10%  
1.5  
376  
550  
350  
5
10%  
10%  
A
ILED  
Current source accuracy  
VOUT = 4 V , torch code = 0x7F = 376 mA  
mA  
ILED = 1.5 A  
Flash  
Torch  
LED current source regulation  
voltage  
VHR  
mV  
V
ILED = 376 mA  
ON threshold  
OFF threshold  
4.86  
4.71  
5.10  
4.95  
VOVP  
Overvoltage Protection  
4.85  
STEP-UP DC-DC CONVERTER SPECIFICATIONS  
RPMOS  
RNMOS  
PMOS switch on-resistance  
NMOS switch on-resistance  
175  
130  
1.9  
2.8  
2.5  
mΩ  
Reg 0x01, bit [5] = 0  
Reg 0x01, bit [5] = 1  
Falling VIN  
–15%  
–15%  
15%  
15%  
ICL  
Switch current limit  
A
VUVLO  
VIVFM  
Undervoltage lockout threshold  
V
V
Input voltage flash monitor trip  
threshold  
Reg 0x02, bits [7:5] = 000  
–3%  
2.9  
0.3  
0.8  
3%  
4
IQ  
Quiescent supply current  
Device not switching, in pass mode  
mA  
µA  
Device disabled  
2.5 V VIN 5.5 V  
ISB  
Standby supply current  
STROBE VOLTAGE SPECIFICATIONS  
VIL  
VIH  
Input logic low  
Input logic high  
0
0.4  
VIN  
V
V
2.5 V VIN 5.5 V  
1.2  
I2C-COMPATIBLE INTERFACE SPECIFICATIONS (SCL, SDA)  
VIL  
Input logic low  
Input logic high  
Output logic low  
0
0.4  
VIN  
2.5 V VIN 4.2 V  
V
VIH  
VOL  
1.2  
ILOAD = 3 mA  
400  
mV  
(1) Minimum (MIN) and Maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified,  
but do represent the most likely norm. Unless otherwise specified, conditions for typical specifications are: VIN = 3.6 V and TA = 25°C.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) The ability to deliver 1.5 A of LED current is highly dependent upon the input voltage, LED voltage, ambient temperature and PCB  
layout. Depending upon the system conditions, it is possible that the device could hit the internal thermal shutdown or thermal scale-  
back value before the desired flash duration is reached. See Thermal Performance for more details.  
6.6 Timing Requirements  
MIN  
2.4  
100  
0
NOM  
MAX  
UNIT  
µs  
t1  
t2  
t3  
t4  
t5  
SCL clock period  
Data in set-up time to SCL high  
Data out stable after SCL low  
SDA low set-up time to SCL low (start)  
SDA high hold time after SCL high (stop)  
ns  
ns  
100  
100  
ns  
ns  
6.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
-10%  
-10%  
2
4
10%  
10%  
ƒSW  
Switching frequency  
2.5 V VIN 5.5 V  
MHz  
Copyright © 2017, Texas Instruments Incorporated  
5
 
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
t
1
SCL  
SDA_IN  
t
t
5
4
t
2
SDA_OUT  
t
3
1. I2C-Compatible Interface Specifications  
6
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
6.8 Typical Characteristics  
TA = 25°C, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, L = 1 µH, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back  
(TSB) disabled, unless otherwise noted.  
1.5  
1.2  
0.9  
0.6  
0.3  
0
1.5  
1.2  
0.9  
0.6  
0.3  
0
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
0x00 0x0F 0x1F 0x2F 0x3F 0x4F 0x5F 0x6F 0x7F  
0x00 0x0F 0x1F 0x2F 0x3F 0x4F 0x5F 0x6F 0x7F  
Brightness Code (hex)  
D001  
Brightness Code (hex)  
D002  
ƒSW = 2 MHz  
ICL = 2.8 A  
ƒSW = 4 MHz  
ICL = 2.8 A  
2. LED Flash Current vs Brightness Code  
3. LED Flash Current vs Brightness Code  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Code 0x47  
Code 0x4F  
Code 0x57  
Code 0x5F  
Code 0x67  
Code 0x6F  
Code 0x77  
Code 0x7F  
Code 0x00  
Code 0x07  
Code 0x0F  
Code 0x17  
Code 0x1F  
Code 0x27  
Code 0x2F  
Code 0x37  
Code 0x3F  
0.9  
0.8  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
2.5  
ƒSW = 2 MHz  
4. LED Flash Current vs Input Voltage  
3
3.5  
4
4.5  
5
5.5  
D004  
VIN (V)  
.
D003  
ƒSW = 2 MHz  
ICL = 2.8 A  
ICL = 2.8 A  
5. LED Flash Current vs Input Voltage  
1.6  
1.6  
1.52  
1.44  
1.36  
1.28  
1.2  
1.52  
1.44  
1.36  
1.28  
1.2  
1.12  
1.04  
0.96  
0.88  
0.8  
1.12  
1.04  
0.96  
0.88  
0.8  
85èC  
85èC  
25èC  
25èC  
-40èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D005  
D006  
ƒSW = 2 MHz  
ICL = 1.9 A  
IFLASH = 1.5 A  
Flash Time-out < 120 ms at 85°C  
ƒSW = 4 MHz  
ICL = 1.9 A  
IFLASH = 1.5 A  
Flash Time-out < 120 ms at 85°C  
6. LED Flash Current vs Input Voltage  
7. LED Flash Current vs Input Voltage  
版权 © 2017, Texas Instruments Incorporated  
7
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25°C, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, L = 1 µH, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back  
(TSB) disabled, unless otherwise noted.  
1.28  
1.24  
1.2  
1.28  
1.24  
1.2  
1.16  
1.12  
1.08  
1.04  
1
1.16  
1.12  
1.08  
1.04  
1
0.96  
0.92  
0.88  
0.96  
0.92  
0.88  
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D007  
D008  
ƒSW = 2 MHz  
ICL = 1.9 A  
IFLASH = 1.2 A  
Flash Time-out < 280 ms at 85°C  
ƒSW = 4 MHz  
ICL = 1.9 A  
IFLASH = 1.2 A  
Flash Time-out < 280 ms at 85°C  
8. LED Flash Current vs Input Voltage  
9. LED Flash Current vs Input Voltage  
1.08  
1.06  
1.04  
1.02  
1
1.08  
1.06  
1.04  
1.02  
1
0.98  
0.96  
0.94  
0.92  
0.9  
0.98  
0.96  
0.94  
0.92  
0.9  
85èC  
85èC  
25èC  
25èC  
-40èC  
-40èC  
0.88  
0.88  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D009  
D010  
ƒSW = 2 MHz  
IFLASH = 1.03 A  
ICL = 1.9 A  
ƒSW = 4 MHz  
IFLASH = 1.03 A  
ICL = 1.9 A  
10. LED Flash Current vs Input Voltage  
11. LED Flash Current vs Input Voltage  
1.08  
1.06  
1.04  
1.02  
1
1.08  
1.06  
1.04  
1.02  
1
0.98  
0.96  
0.94  
0.92  
0.9  
0.98  
0.96  
0.94  
0.92  
0.9  
85èC  
85èC  
25èC  
25èC  
-40èC  
-40èC  
0.88  
0.88  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D011  
D012  
ƒSW = 2 MHz  
IFLASH = 1.03 A  
ICL = 2.8 A  
ƒSW = 4 MHz  
IFLASH = 1.03 A  
ICL = 2.8 A  
12. LED Flash Current vs Input Voltage  
13. LED Flash Current vs Input Voltage  
8
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
Typical Characteristics (接下页)  
TA = 25°C, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, L = 1 µH, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back  
(TSB) disabled, unless otherwise noted.  
0.772  
0.764  
0.756  
0.748  
0.74  
0.772  
0.764  
0.756  
0.748  
0.74  
0.732  
0.724  
0.716  
0.708  
0.7  
0.732  
0.724  
0.716  
0.708  
0.7  
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D013  
D014  
ƒSW = 2 MHz  
IFLASH = 0.75 A  
ICL = 1.9 A  
ƒSW = 4 MHz  
IFLASH = 0.75 A  
ICL = 1.9 A  
14. LED Flash Current vs Input Voltage  
15. LED Flash Current vs Input Voltage  
0.772  
0.764  
0.756  
0.748  
0.74  
0.772  
0.764  
0.756  
0.748  
0.74  
0.732  
0.724  
0.716  
0.708  
0.7  
0.732  
0.724  
0.716  
0.708  
0.7  
85èC  
85èC  
25èC  
25èC  
-40èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D015  
D016  
ƒSW = 2 MHz  
IFLASH = 0.75 A  
ICL = 2.8 A  
ƒSW = 4 MHz  
IFLASH = 0.75 A  
ICL = 2.8 A  
16. LED Flash Current vs Input Voltage  
17. LED Flash Current vs Input Voltage  
0.4  
0.36  
0.32  
0.28  
0.24  
0.2  
0.4  
0.36  
0.32  
0.28  
0.24  
0.2  
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
0.16  
0.12  
0.08  
0.04  
0
0.16  
0.12  
0.08  
0.04  
0
0x00 0x0F 0x1F 0x2F 0x3F 0x4F 0x5F 0x6F 0x7F  
0x00 0x0F 0x1F 0x2F 0x3F 0x4F 0x5F 0x6F 0x7F  
Brightness Code (hex)  
Brightness Code (hex)  
D017  
D018  
ƒSW = 2 MHz  
ƒSW = 4 MHz  
18. LED Torch Current vs Brightness Code  
19. LED Torch Current vs Brightness Code  
版权 © 2017, Texas Instruments Incorporated  
9
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25°C, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, L = 1 µH, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back  
(TSB) disabled, unless otherwise noted.  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
0.4  
0.38  
0.36  
0.34  
0.32  
0.3  
Code 0x00  
Code 0x07  
Code 0x0F  
Code 0x17  
Code 0x1F  
Code 0x27  
Code 0x2F  
Code 0x37  
Code 0x3F  
Code 0x47  
Code 0x4F  
Code 0x57  
Code 0x5F  
Code 0x67  
Code 0x6F  
Code 0x77  
Code 0x7F  
0.08  
0.06  
0.04  
0.02  
0
0.28  
0.26  
0.24  
0.22  
0.2  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D019  
D020  
ƒSW = 2 MHz  
ƒSW = 2 MHz  
20. LED Torch Current vs Input Voltage  
21. LED Torch Current vs Input Voltage  
0.4  
0.39  
0.38  
0.37  
0.36  
0.35  
0.34  
0.33  
0.32  
0.4  
0.39  
0.38  
0.37  
0.36  
0.35  
0.34  
0.33  
0.32  
85èC  
85èC  
25èC  
25èC  
-40èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D021  
D022  
ƒSW = 2 MHz  
ITORCH = 376 mA  
ƒSW = 4 MHz  
ITORCH = 376 mA  
22. LED Torch Current vs Input Voltage  
23. LED Torch Current vs Input Voltage  
0.28  
0.274  
0.268  
0.262  
0.256  
0.25  
0.212  
0.206  
0.2  
85èC  
85èC  
25èC  
25èC  
-40èC  
-40èC  
0.194  
0.188  
0.182  
0.176  
0.17  
0.244  
0.238  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D023  
D024  
ƒSW = 2 MHz  
ITORCH = 258 mA  
ƒSW = 2 MHz  
ITORCH = 188 mA  
24. LED Torch Current vs Input Voltage  
25. LED Torch Current vs Input Voltage  
10  
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
Typical Characteristics (接下页)  
TA = 25°C, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, L = 1 µH, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back  
(TSB) disabled, unless otherwise noted.  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
180  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
180  
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D025  
D026  
Mode (Reg 0x01 bits[1:0]) = 01 (IR Mode)  
Mode (Reg 0x01 bits[1:0]) = 10 (Torch Mode)  
26. LED Off Current vs Input Voltage  
27. LED On Current vs Input Voltage  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
85èC  
25èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
D027  
28. Standby Current vs Input Voltage  
版权 © 2017, Texas Instruments Incorporated  
11  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LM36010 is a high-power white LED flash driver capable of delivering up to 1.5 A to the LED. The device  
incorporates a 2-MHz or 4-MHz constant frequency-synchronous current-mode PWM boost converter and a high-  
side current source to regulate the LED current over the 2.5-V to 5.5-V input voltage range.  
The LM36010 PWM DC-DC boost converter switches and boosts the output to maintain at least VHR across the  
current source. This minimum headroom voltage ensures that the current source remains in regulation. If the  
input voltage is above the LED voltage + current source headroom voltage the device does not switch, but turns  
the PFET on continuously (pass mode). In pass mode, the drop across the current source is the difference  
between (VIN - ILED × RPMOS) and VLED  
.
The device has one logic input for a hardware flash enable (STROBE). This logic input has an internal 300-kΩ  
(typical) pulldown resistor to GND.  
Additional features of the device include an input voltage monitor that can reduce the flash current during low VIN  
conditions and a temperature based current scale-back feature that forces the flash current to the set torch level  
if the on-chip junction temperature reaches 125°C.  
Control is done via an I2C-compatible interface. This includes adjustment of the flash and torch current levels,  
changing the switch current limit, and changing the flash time-out duration. Additionally, there are flag and status  
bits that indicate flash current time-out, LED over-temperature condition, LED failure (open/short), device thermal  
shutdown, thermal current scale-back, and VIN undervoltage conditions.  
12  
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
7.2 Functional Block Diagram  
SW  
Over Voltage  
Comparator  
2/4 MHz  
Oscillator  
-
+
IN  
VREF  
VOVP  
160 mΩ  
Input Voltage  
Flash Monitor  
UVLO  
OUT  
ILED1  
PWM  
Control  
130 mΩ  
Thermal Current  
Scale Back  
+125oC  
Thermal Shutdown  
+150oC  
LED  
Error  
Amplifier  
+
-
OUT-VHR  
Current Sense/  
Current Limit  
Slope  
Compensation  
Soft-Start  
Control  
Logic/  
Registers  
SDA  
SCL  
I2C  
Interface  
STROBE  
GND  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2017, Texas Instruments Incorporated  
13  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Flash Mode  
In flash mode, the LED current source provides 128 target current levels from 11 mA to 1.5 A, set by the LED  
Flash Brightness Register (0x03 bits [6:0]). Flash mode is activated by the Enable Register (0x01), setting mode  
M1, M0 (bits [1:0]) to 11. Once the flash sequence is activated, the LED current source ramps up to the  
programmed flash current by stepping through all current steps until the programmed current is reached. The  
headroom on the current source is regulated to provide 11 mA to 1.5 A.  
When flash mode is enabled using the mode M1, M0 (bits [1:0]) of the Enable Register (0x01), the mode bits in  
the Enable Register are cleared after a flash time-out event.  
7.3.2 Torch Mode  
In torch mode, the LED current source provides 128 target current levels from 2.4 mA to 376 mA, set by the LED  
Torch Brightness Register (0x04 bits [6:0]). Torch mode is activated by the Enable Register (0x01), setting mode  
M1, M0 (bits [1:0]) to 10. Once the TORCH sequence is activated, the LED current source ramps up to the  
programmed torch current by stepping through all current steps until the programmed current is reached. The  
rate at which the current ramps is determined by the value chosen in the Torch Ramp bit [0] in Timing Register  
(0x02).  
7.3.3 IR Mode  
In IR mode, the target LED current is equal to the value stored in the LED Flash Brightness Register (0x03 bits  
[7:0]). When IR mode is enabled by the Enable Register (0x01) setting mode M1, M0 (bits [1:0]) to 01, the boost  
converter turns on and sets the output equal to the input (pass mode). In IR mode, toggling the STROBE pin  
enables and disables the LED current source. The STROBE pin can only be set to be Level sensitive, as all  
timing of the IR pulse is externally controlled. In IR mode, the current source does not control the ramp rate of  
the LED output. The current transitions immediately from off to on and then on to off.  
BOOST  
PASS  
OFF  
VOUT  
STROBE  
ILED  
(1) If needed, the DC/DC boost will turn on when the LED current is delivered (Strobe Pin = High). When the Strobe Pin  
goes low, the output voltage will return to VIN (Pass Mode)  
29. IR Mode with Boost  
14  
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
Feature Description (接下页)  
VOUT  
STROBE  
ILED  
(1) In pass mode, the boost stays disabled and VOUT = VIN when the Strobe Pin is high or low  
30. IR Mode Pass Only  
VOUT  
STROBE  
ILED  
TIME-OUT  
Reached  
VOUT goes low,  
LED turn off  
TIME-OUT  
Start  
(1) When the flash timer elapses, the device goes into stand-by regardless of strobe state  
31. IR Mode Time-out  
版权 © 2017, Texas Instruments Incorporated  
15  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
7.4 Device Functioning Modes  
7.4.1 Start-Up (Enabling The Device)  
At turnon the LED current source steps through each FLASH or TORCH level until the target LED current is  
reached. This gives the device a controlled turnon and limits inrush current from the VIN supply. The target LED  
flash and the target LED torch currents are set by the LED Flash Brightness Register (0x03 bits [6:0]) and LED  
Torch Brightness Register (0x04 bits [6:0]) respectively.  
7.4.2 Pass Mode  
The LM36010 starts up in pass mode and stays there until boost mode is needed to maintain regulation. If the  
voltage difference between VOUT and VLED falls below VHR, the device switches to boost mode. In pass mode, the  
boost converter does not switch, the synchronous PFET turns fully on bringing VOUT up to VIN – ILED × RPMOS  
,
and the inductor current is not limited by the peak current limit.  
7.4.3 Input Voltage Flash Monitor (IVFM)  
The LM36010 has the ability to adjust the flash current based upon the voltage level present at the IN pin  
utilizing the input voltage flash monitor (IVFM). The adjustable threshold IVFM-D ranges from 2.9 V to 3.6 V in  
100-mV steps and is set by Configuration Register (0x02) bits [7:5]. Additionally, the IVFM-D threshold sets the  
input voltage boundary that forces the LM36010 to stop ramping the flash current during start-up.  
IVFM ENABLE  
LEVEL STROBE  
VIN PROFILE for Stop and Hold Mode  
IVFM-D  
Set Target Flash Current  
Dotted line shows O/P Current Profile with  
O/P Current Profile in  
Stop and Hold Mode  
IVFM Disabled  
SET RAMP FROM  
THE RAMP  
REGISTER USED  
32. IVFM Mode  
7.4.4 Fault/Protections  
Upon a fault condition, the LM36010 sets the appropriate flag(s) in the Flags Register (0x05) and switches into  
stand-by mode obtained by clearing the mode M1, M0 (bits [1:0]) of the Enable Register (0x01). The LM36010  
remains in standby until an I2C read of the Flags Register. I2C read of the Flags Register clears the flags and the  
fault status can be re-checked. If the fault(s) is still present, the LM36010 re-sets the appropriate flag bits and  
enters stand-by again.  
7.4.4.1 Overvoltage Protection (OVP)  
The output voltage is limited to typically 5 V (see VOVP specification in the Electrical Characteristics). In situations  
such as an open LED, the LM36010 raises the output voltage in order to keep the LED current at its target value.  
When VOUT reaches 5 V (typical), the overvoltage comparator trips and turns off the internal NFET. When OVP  
condition is present for three consecutive OVP events, LM36010 enters stand-by mode and OVP flag (bit [0]) of  
Flags Register (0x01) is set. Checking for three consecutive events prevents forcing the device to shut down due  
to momentary OVP condition. When VOUT falls below the VOVP off threshold, the LM36010 switches again.  
16  
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
Device Functioning Modes (接下页)  
7.4.4.2 Input Voltage Flash Monitor (IVFM)  
When the input voltage crosses the IVFM-D value, programmed by Configuration Register (0x02) bits [7:5], the  
LM36010 sets the IVFM flag (bit [6]) of Flags Register (0x05).  
7.4.4.3 LED and/or VOUT Short Fault  
LM36010 enters stand-by mode from flash or torch mode and VLED Short Fault flag (bit [5]) of Flags Register  
(0x05) is set, if the LED output and/or VOUT experiences a short condition. An LED short condition occurs if the  
voltage at the LED pin goes below 500 mV (typical). There is a deglitch time of 256 µs before the LED short flag  
is valid, and a deglitch time of 2.048 ms before the VOUT short flag is valid. The LED and/or VOUT short fault  
can be reset to 0 by removing power to the LM36010, or setting the software reset field (Register 0x06 bit [7]) to  
a 1, or by reading back the Flags Register.  
7.4.4.4 Current Limit (OCP)  
The LM36010 features two selectable inductor current limits, 1.9A and 2.8A, programmable through the I2C-  
compatible interface by writing to Register 0x01 bit [5] . When the inductor current limit is reached, the LM36010  
terminates the charging phase of the switching cycle and sets the OCP flag (bit [4]) of Flags Register (0x05).  
However, the mode M1, M0 (bits [1:0]) are not cleared as the device operates at current limit. Switching resumes  
at the start of the next switching period.  
In pass mode, there is no mechanism to limit the current as the current does not flow through the NMOS, which  
senses the current limit.  
In the boost mode or the pass mode, if VOUT falls below 2.3 V, the device stops switching, and the PFET  
operates as a current source limiting the current to 200 mA. This prevents the LM36010 from drawing excessive  
current from the battery during output short-circuit conditions.  
7.4.4.5 Thermal Scale-Back (TSB)  
When the LM36010 die temperature reaches 125°C, the thermal scale-back (TSB) circuit trips and TSB flag (bit  
[2]) of Flags Register (0x05) is set. The LED current then shifts to torch current level, set by the LED Torch  
Brightness Register (0x04 bits [6:0]) for the duration of the flash pulse, set by the flash time-out in the  
Configuration Register (0x02 bits [4:1]) After I2C read of the Flags Register and upon re-flash, if the die  
temperature is still above 125°C, the LM36010 re-enters into torch current level and sets the TSB flag bit again.  
7.4.4.6 Thermal Shutdown (TSD)  
When the LM36010 die temperature reaches 150°C, the thermal shutdown (TSD) circuit trips, forcing the  
LM36010 into standby and writing a 1 to the TSD flag (bit [2]) of the Flags Register (0x05). The LM36010 restarts  
only after the Flags Register is read, which clears the fault flag. Upon restart, if the die temperature is still above  
150°C, the LM36010 resets the TSD flag and re-enters standby.  
7.4.4.7 Undervoltage Lockout (UVLO)  
The LM36010 has an internal comparator that monitors the voltage at IN pin. If the input voltage drops to 2.5 V,  
the UVLO flag (bit [1]) of Flags Register (0x05) is set and the LM36010 switches to stand-by mode. After the  
UVLO flag is set, even if the input voltage rises above 2.5 V, the LM36010 is not available for operation until  
there is an I2C read of the Flags Register. Upon an I2C read of the Flags Register, the UVLO fault is cleared and  
normal operation can resume.  
7.4.4.8 Flash Time-out (FTO)  
The LM36010 sources the flash current for the time period set by Flash Time-out (0x02 bits [4:1]). The LED  
current source has 16 time-out levels ranging from 40 ms to 1600 ms.  
版权 © 2017, Texas Instruments Incorporated  
17  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
7.5 Programming  
7.5.1 Control Truth Table  
M1 (Register 0x01  
bit[1])  
M0 (Register 0x01 bit[0])  
STROBE EN (Register  
0x01 bit[2])  
STROBE PIN  
ACTION  
0
0
1
1
0
0
0
0
0
0
1
1
1
1
0
1
X
X
0
1
1
X
Standby  
Ext flash  
pos edge  
X
Int torch  
X
Int flash  
X
0
IR LED standby  
IR LED standby  
IR LED enabled  
pos edge  
7.5.2 I2C-Compatible Interface  
7.5.2.1 Data Validity  
The data on SDA must be stable during the HIGH period of the clock signal (SCL). In other words, the state of  
the data line can only be changed when SCL is LOW.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
change  
allowed  
data  
valid  
33. Data Validity Data  
A pullup resistor between the VIO line of the controller and SDA must be greater than [(VIO – VOL) / 3 mA] to  
meet the VOL requirement on SDA. Using a larger pullup resistor results in lower switching current with slower  
edges, while using a smaller pullup resistor results in higher switching currents with faster edges.  
7.5.2.2 Start and Stop Conditions  
START and STOP conditions classify the beginning and the end of the I2C session. A START condition is  
defined as the SDA signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined  
as the SDA transitioning from LOW to HIGH while SCL is HIGH. The I2C master always generates START and  
STOP conditions. The I2C bus is considered busy after a START condition and free after a STOP condition.  
During data transmission, the I2C master can generate repeated START conditions. First START and repeated  
START conditions are equivalent, function-wise.  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
34. Start and Stop Conditions  
18  
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
7.5.2.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) transferred first. Each  
byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the  
master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LM36010 pulls down  
the SDA line during the 9th clock pulse, signifying an acknowledge. The LM36010 generates an acknowledge  
after each byte is received. There is no acknowledge created after data is read from the device.  
After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (R/W). The LM36010 7-bit address is 0x64. For the eighth bit, a 0 indicates  
a WRITE, and a 1 indicates a READ. The second byte selects the register to which the data is written. The third  
byte contains data to write to the selected register.  
ack from  
slave  
ack from  
slave  
ack from  
slave  
msb Chip  
Address lsb  
start  
w
ack msb Register Add lsb ack msb DATA lsb  
ack stop  
SCL  
SDA  
start  
Id = 64h  
w
ack  
addr = 01h  
ack  
Data = 03h  
ack stop  
35. Write Cycle W = Write (SDA = 0) R = Read (SDA = 1) Ack = Acknowledge  
(SDA Pulled Down by Either Master or Slave) ID = Chip Address, 64h for LM36010  
7.5.2.4 I2C-Compatible Chip Address  
The device address for the LM36010 is 1100100 (0x64). After the START condition, the I2C-compatible master  
sends the 7-bit address followed by an eighth read or write bit (R/W). R/W = 0 indicates a WRITE and R/W = 1  
indicates a READ. The second byte following the device address selects the register address to which the data is  
written. The third byte contains the data for the selected register.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
1
Bit 3  
0
Bit 2  
0
Bit 1  
R/W  
Bit 0  
I2C Slave Address (chip address)  
36. I2C-Compatible Chip Address  
版权 © 2017, Texas Instruments Incorporated  
19  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
7.6 Register Descriptions  
POWER ON/RESET VALUE  
REGISTER NAME  
INTERNAL HEX ADDRESS  
LM36010  
0x20  
Enable Register  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
Configuration Register  
LED Flash Brightness Register  
LED Torch Brightness Register  
Flags Register  
0x15  
0x00  
0x00  
0x00  
Device ID Register  
0x01  
7.6.1 Enable Register (0x01)  
Bit 7  
Bit 6  
Boost  
Frequency  
Select  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Boost Mode  
0 = Normal  
(Default)  
Boost Current IVFM Enable  
Limit Setting 0 = Disabled  
0 = 1.9 A  
1 = 2.8 A  
(Default)  
Strobe Type  
0 = Level  
Triggered  
(Default)  
1 = Edge  
Triggered  
Strobe Enable Mode Bits: M1, M0  
0 = Disabled  
(Default )  
00 = Standby (Default)  
01 = IR Drive  
10 = Torch  
(Default)  
1 = Enabled  
1 = Pass Mode 0 = 2 MHz  
1 = Enabled  
Only  
(Default)  
1 = 4 MHz  
11 = Flash  
Edge strobe mode is not valid in IR MODE. Switching between level and edge strobe  
types while the device is enabled is not recommended.  
In edge or level strobe mode, TI recommends that the trigger pulse width be set greater  
than 1 ms to ensure proper turn-on of the device.  
7.6.2 Configuration Register (0x02)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IVFM Levels (IVFM-D)  
000 = 2.9 V (Default)  
001 = 3 V  
Flash Time-out Duration  
0000 = 40 ms  
0001 = 80 ms  
Torch Ramp  
0 = No Ramp  
1 = 1 ms  
010 = 3.1 V  
011 = 3.2 V  
100 = 3.3 V  
101 = 3.4 V  
110 = 3.5 V  
111 = 3.6 V  
0010 = 120 ms  
0011 = 160 ms  
0100 = 200 ms  
0101 = 240 ms  
0110 = 280 ms  
0111 = 320 ms  
1000 = 360 ms  
1001 = 400 ms  
1010 = 600 ms (Default)  
1011 = 800 ms  
1100 = 1000 ms  
1101 = 1200 ms  
1110 = 1400 ms  
1111 = 1600 ms  
(default)  
On the LM36010, special care must be taken with regards to thermal management when  
using time-out values greater than 500 ms. Depending on the PCB layout, input voltage,  
and output current, it is possible to have the internal thermal shutdown circuit trip prior to  
reaching the desired flash time-out value.  
20  
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
7.6.3 LED Flash Brightness Register (0x03)  
Bit 7  
Thermal  
Current  
Scale-Back  
0 = Disabled  
1 = Enabled  
(default)  
If enabled, the .......................  
LED current  
shifts to torch  
current level if 01100110 (0x66) = 1.2 A  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 3  
Bit 3  
Bit 2  
Bit 2  
Bit 2  
Bit 1  
Bit 0  
Bit 0  
Bit 0  
LED Flash Brightness Level  
0000000 = 11 mA (Default)  
.......................  
00010101 (0x15) = 0.257 A  
.......................  
0111111 (0x3F) = 0.75 A  
0101111 (0x5F) = 1.03 A  
.......................  
TJ reaches  
125 °C  
.......................  
1111111 (0x7F) = 1.5 A  
7.6.4 LED Torch Brightness Register (0x04)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 1  
LED Torch Brightness Levels  
0000000 = 2.4 mA (Default)  
.......................  
00010101 (0x15) = 64 mA  
.......................  
0111111 (0x3F) = 188 mA  
.......................  
0101111 (0x5F) = 258 mA  
.......................  
RFU  
01100110 (0x66) = 302 mA  
.......................  
1111111 (0x7F) = 376 mA  
7.6.5 Flags Register (0x05)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 1  
Thermal Current  
Scale-back  
Thermal  
Shutdown  
(TSD) Fault  
IVFM Trip  
Flag  
VOUT / VLED  
Short Fault  
Current Limit  
Flag  
Flash Time-Out  
Flag  
OVP Fault  
UVLO Fault  
(TSB) Flag  
7.6.6 Device ID and RESET Register (0x06)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Software  
RESET  
Device ID  
000  
Silicon Revision Bits  
001  
0 = Normal  
(default)  
RFU  
1 = Force  
device RESET  
版权 © 2017, Texas Instruments Incorporated  
21  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
8 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM36010 can drive a flash LED at currents up to 1.5 A. The 2-MHz or 4-MHz DC-DC boost regulator allows  
for the use of small value discrete external components.  
8.2 Typical Application  
L1  
IN  
SW  
VIN  
C1  
2.5 V œ 5.5 V  
OUT  
C2  
SDA  
µP/µC  
SCL  
LED  
D1  
STROBE  
GND  
Copyright © 2016, Texas Instruments Incorporated  
37. LM36010 Typical Application  
8.2.1 Design Requirements  
Example requirements based on default register values:  
1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Brightness control  
EXAMPLE VALUE  
2.5 V to 5.5 V  
I2C Register  
LED configuration  
1 flash LED  
Boost switching frequency  
Flash brightness  
2 MHz (4 MHz selectable)  
1.5-A maximum current  
22  
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
8.2.2 Detailed Design Procedure  
8.2.2.1 Thermal Performance  
Output power is limited by three things: the peak current limit, the ambient temperature, and the maximum power  
dissipation in the package. If the die temperature of the device is below the absolute maximum rating of 125°C,  
the maximum output power can be over 6 W. However, any appreciable output current causes the internal power  
dissipation to increase and therefore increase the die temperature. Any circuit configuration must ensure that the  
die temperature remains below 125°C taking into account the ambient temperature derating. The thermal scale-  
back protection (TSB) helps ensure that temperature requirement is held valid. If the TSB feature is disabled,  
thermal shutdown (TSD) is the next level of protection for the device, which is set to 150°C. This mechanism  
cannot be disabled, and operation of the device above 125°C is not ensured by the electrical specification.  
In boost mode, where VIN < VLED + VHR, the power dissipation can be approximated by 公式 1:  
»
ö …  
ÿ
Ÿ
»
ÿ
V
- V ì V  
»
ÿ
PFET Ÿ  
(
)
«
÷
VOUT  
OUT  
IN  
OUT  
P
ìI 2 ìR  
+
ìILED2 ìR  
+ VHR ìILED  
(
NFET Ÿ  
)
÷
÷
DISS  
LED  
2
V
V
Ÿ
Ÿ
IN  
«
IN  
(1)  
When the device is in pass mode, where VIN > VLED + VHR, the power dissipation equals:  
»
ÿ
P
= » V - VLED ìI ÿ - I 2 ìRINDUCTOR  
(
)
(
)
DISS  
IN  
LED  
LED  
(2)  
(3)  
Use 公式 3 to calculate the junction temperature (TJ) of the device:  
TJ = RqJA ìP  
DISS  
Note that these equations only provide approximation of the junction temperature and do not take into account  
thermal time constants, which play a large role in determining maximum deliverable output power and flash  
durations.  
8.2.2.2 Output Capacitor Selection  
The LM36010 is designed to operate with a 10-µF ceramic output capacitor. When the boost converter is  
running, the output capacitor supplies the load current during the boost converter on-time. When the NMOS  
switch turns off, the inductor energy is discharged through the internal PMOS switch, supplying power to the load  
and restoring charge to the output capacitor. This causes a sag in the output voltage during the on-time and a  
rise in the output voltage during the off-time. Therefore, choose the output capacitor to limit the output ripple to  
an acceptable level depending on load current and input or output voltage differentials and also to ensure the  
converter remains stable.  
Larger capacitors such as a 22-µF or capacitors in parallel can be used if lower output voltage ripple is desired.  
To estimate the output voltage ripple considering the ripple due to capacitor discharge (ΔVQ) and the ripple due  
to the capacitors ESR (ΔVESR), use 公式 4 and 公式 5:  
For continuous conduction mode, the output voltage ripple due to the capacitor discharge is:  
ILED ì V  
- V  
IN  
(
)
OUT  
DVQ =  
fSW ì VOUT ìCOUT  
(4)  
The output voltage ripple due to the output capacitors ESR is found by:  
«
÷
ILED ì VOUT  
V ì V  
- V  
IN  
(
)
IN  
OUT  
DVESR = RESR  
ì
+ D  
IL  
÷
÷
DIL =  
V
2ì fSW ìL ì VOUT  
IN  
«
(5)  
In ceramic capacitors, the ESR is very low so the assumption is that 80% of the output voltage ripple is due to  
capacitor discharge and 20% from ESR. 2 lists different manufacturers for various output capacitors and their  
case sizes suitable for use with the LM36010.  
版权 © 2017, Texas Instruments Incorporated  
23  
 
 
 
 
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
8.2.2.3 Input Capacitor Selection  
Choosing the correct size and type of input capacitor helps minimize the voltage ripple caused by the switching  
of the boost converter and reduces noise on the input pin of the boost converter that can feed through and  
disrupt internal analog signals. In the typical application circuit a 10-µF ceramic input capacitor works well. It is  
important to place the input capacitor as close as possible to the LM36010 input (IN) pin. This reduces the series  
resistance and inductance that can inject noise into the device due to the input switching currents. 2 lists  
various input capacitors recommended for use with the LM36010.  
2. Recommended Input/Output Capacitors (X5R/X7R Dielectric)  
MANUFACTURER  
TDK Corporation  
TDK Corporation  
Murata  
PART NUMBER  
C1608JB0J106M  
VALUE  
10 µF  
10 µF  
10 µF  
10 µF  
CASE SIZE  
VOLTAGE RATING  
0603 (1.6 mm × 0.8 mm × 0.8 mm)  
0805 (2 mm × 1.25 mm × 1.25 mm)  
0603 (1.6 mm × 0.8 mm × 0.8 mm)  
0805 (2 mm × 1.25 mm × 1.25 mm)  
6.3 V  
10 V  
6.3 V  
10 V  
C2012JB1A106M  
GRM188R60J106M  
GRM21BR61A106KE19  
Murata  
8.2.2.4 Inductor Selection  
The LM36010 is designed to use a 0.47-µH or 1-µH inductor. 3 lists various inductors and their manufacturers  
that work well with the LM36010. When the device is boosting (VOUT > VIN) the inductor is typically the largest  
area of efficiency loss in the circuit. Therefore, choosing an inductor with the lowest possible series resistance is  
important. Additionally, the saturation rating of the inductor must be greater than the maximum operating peak  
current of the LM36010. This prevents excess efficiency loss that can occur with inductors that operate in  
saturation. For proper inductor operation and circuit performance, ensure that the inductor saturation and the  
peak current limit setting of the LM36010 are greater than IPEAK in 公式 6:  
V ì V  
- V  
IN  
(
)
ILED VOUT  
IN  
OUT  
DI =  
+ DIL  
IPEAK  
=
ì
L
2ì fSW ìL ì VOUT  
h
V
IN  
where  
ƒSW = 2 or 4 MHz  
(6)  
Efficiency details can be found in the Application Curves.  
3. Recommended Inductors  
MANUFACTURER  
TOKO  
L
PART NUMBER  
DFE201610P-R470M  
DFE201610P-1R0M  
DIMENSIONS (L×W×H)  
2 mm × 1.6 mm × 1 mm  
2 mm × 1.6 mm × 1 mm  
ISAT  
4.1 A  
3.7 A  
RDC  
0.47 µH  
1 µH  
32 mΩ  
58 mΩ  
TOKO  
24  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
8.2.3 Application Curves  
TA = 25°C, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, L = 1 µH, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back  
(TSB) disabled, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
0x00 0x0F 0x1F 0x2F 0x3F 0x4F 0x5F 0x6F 0x7F  
0x00 0x0F 0x1F 0x2F 0x3F 0x4F 0x5F 0x6F 0x7F  
Brightness Code (hex)  
Brightness Code (hex)  
D028  
D029  
ƒSW = 2 MHz  
ICL = 2.8 A  
ƒSW = 4 MHz  
ICL = 2.8 A  
38. LED Flash Efficiency vs Brightness Code  
39. LED Flash Efficiency vs Brightness Code  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
Code 0x07  
Code 0x0F  
Code 0x17  
Code 0x1F  
Code 0x27  
Code 0x2F  
Code 0x37  
Code 0x3F  
Code 0x47  
Code 0x4F  
Code 0x57  
Code 0x5F  
Code 0x67  
Code 0x6F  
Code 0x77  
Code 0x7F  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D030  
D031  
ƒSW = 2 MHz  
ICL = 2.8 A  
ƒSW = 2 MHz  
ICL = 2.8 A  
40. LED Flash Efficiency vs Input Voltage  
41. LED Flash Efficiency vs Input Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D032  
D033  
ƒSW = 2 MHz  
ICL = 1.9 A  
IFLASH = 1.5 A  
Flash Time-out < 120 ms at 85°C  
ƒSW = 4 MHz  
ICL = 1.9 A  
IFLASH = 1.5 A  
Flash Time-out < 120 ms at 85°C  
42. LED Flash Efficiency vs Input Voltage  
43. LED Flash Efficiency vs Input Voltage  
版权 © 2017, Texas Instruments Incorporated  
25  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
TA = 25°C, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, L = 1 µH, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back  
(TSB) disabled, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D034  
D035  
ƒSW = 2 MHz  
ICL = 1.9 A  
IFLASH = 1.2 A  
Flash Time-out < 280 ms at 85°C  
ƒSW = 4 MHz  
ICL = 1.9 A  
IFLASH = 1.2 A  
Flash Time-out < 280 ms at 85°C  
44. LED Flash Efficiency vs Input Voltage  
45. LED Flash Efficiency vs Input Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D036  
D037  
ƒSW = 2 MHz  
IFLASH = 1.03 A  
ICL = 1.9 A  
ƒSW = 4 MHz  
IFLASH = 1.03 A  
ICL = 1.9 A  
46. LED Flash Efficiency vs Input Voltage  
47. LED Flash Efficiency vs Input Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
85èC  
85èC  
25èC  
25èC  
-40èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
ƒSW = 2 MHz  
48. LED Flash Efficiency vs Input Voltage  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D039  
D038  
ƒSW = 4 MHz  
IFLASH = 1.03 A  
ICL = 2.8 A  
IFLASH = 1.03 A  
ICL = 2.8 A  
49. LED Flash Efficiency vs Input Voltage  
26  
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
TA = 25°C, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, L = 1 µH, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back  
(TSB) disabled, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D040  
D041  
ƒSW = 2 MHz  
IFLASH = 0.75 A  
ICL = 1.9 A  
ƒSW = 4 MHz  
IFLASH = 0.75 A  
ICL = 1.9 A  
50. LED Flash Efficiency vs Input Voltage  
51. LED Flash Efficiency vs Input Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D042  
D043  
ƒSW = 2 MHz  
IFLASH = 0.75 A  
ICL = 2.8 A  
ƒSW = 4 MHz  
IFLASH = 0.75 A  
ICL = 2.8 A  
52. LED Flash Efficiency vs Input Voltage  
53. LED Flash Efficiency vs Input Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
0x00 0x0F 0x1F 0x2F 0x3F 0x4F 0x5F 0x6F 0x7F  
0x00 0x0F 0x1F 0x2F 0x3F 0x4F 0x5F 0x6F 0x7F  
Brightness Code (hex)  
Brightness Code (hex)  
D044  
D045  
ƒSW = 2 MHz  
ƒSW = 4 MHz  
54. LED Torch Efficiency vs Brightness Code  
55. LED Torch Efficiency vs Brightness Code  
版权 © 2017, Texas Instruments Incorporated  
27  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
TA = 25°C, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, L = 1 µH, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back  
(TSB) disabled, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
Code 0x07  
Code 0x0F  
Code 0x17  
Code 0x1F  
Code 0x27  
Code 0x2F  
Code 0x37  
Code 0x3F  
Code 0x07  
Code 0x0F  
Code 0x17  
Code 0x1F  
Code 0x27  
Code 0x2F  
Code 0x37  
Code 0x3F  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D046  
D047  
ƒSW = 2 MHz  
ƒSW = 2 MHz  
56. LED Torch Efficiency vs Input Voltage  
57. LED Torch Efficiency vs Input Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D048  
D049  
ƒSW = 2 MHz  
ITORCH = 376 mA  
ƒSW = 4 MHz  
ITORCH = 376 mA  
58. LED Torch Efficiency vs Input Voltage  
59. LED Torch Efficiency vs Input Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
85èC  
25èC  
-40èC  
85èC  
25èC  
-40èC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D050  
D051  
ƒSW = 2 MHz  
ITORCH = 258 mA  
ƒSW = 2 MHz  
ITORCH = 188 mA  
60. LED Torch Efficiency vs Input Voltage  
61. LED Torch Efficiency vs Input Voltage  
28  
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
TA = 25°C, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, L = 1 µH, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back  
(TSB) disabled, unless otherwise noted.  
Time (100 ms/DIV)  
Time (400 µs/DIV)  
Flash Time-out (Reg 0x02 bits[4:1]) = 0111 (320 ms)  
Mode bits (Reg 0x01 bit[1:0]) = 11 (Flash Mode)  
62. Flash Start-up with I2C  
63. Flash Time-Out  
Time (2 ms/DIV)  
Time (400 µs/DIV)  
Mode bits (Reg 0x01 bit[1:0]) = 10 (Torch Mode)  
64. Flash Turnoff with I2C  
65. Torch Start-up with I2C  
Time (4 ms/DIV)  
Time (400 µs/DIV)  
Mode bits (Reg 0x01 bit[1:0]) = 00 (Standby Mode)  
STROBE Enabled (Reg 0x01 bit[2] = 1)  
66. Torch Turnoff with I2C  
67. Flash Start-up with STROBE  
版权 © 2017, Texas Instruments Incorporated  
29  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
TA = 25°C, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, L = 1 µH, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back  
(TSB) disabled, unless otherwise noted.  
Time (100 ms/DIV)  
Time (100 ms/DIV)  
STROBE Enabled (Reg 0x01 bit[2] = 1)  
Level Triggered (Reg 0x01 bit[3] = 0)  
Strobe pulse = 100 ms  
STROBE Enabled (Reg 0x01 bit[2] = 1)  
Edge Triggered (Reg 0x01 bit[3] = 1)  
Flash Time-out = 320 ms  
68. Flash Turnoff with Level Triggered STROBE  
69. Flash Turnoff with Edge Triggered STROBE  
Time (400 µs/DIV)  
Reg 0x01 = 0x26  
Time (400 µs/DIV)  
Reg 0x01 = 0x27  
70. Boost I2C Torch  
71. Boost I2C Flash  
Time (400 µs/DIV)  
Reg 0x01 = 0x2C  
Time (400 µs/DIV)  
Reg 0x01 = 0x24  
72. Boost Edge Triggered Flash  
73. Boost Level Triggered Flash  
30  
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
TA = 25°C, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, L = 1 µH, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back  
(TSB) disabled, unless otherwise noted.  
Time (400 µs/DIV)  
Reg 0x01 = 0xA6  
Time (400 µs/DIV)  
Reg 0x01 = 0xA7  
74. Pass Mode I2C Torch  
75. Pass Mode I2C Flash  
Time (400 µs/DIV)  
Reg 0x01 = 0xAC  
Time (400 µs/DIV)  
Reg 0x01 = 0xA4  
76. Pass mode Edge Triggered Flash  
77. Pass mode Level Triggered Flash  
Time (200 ns/DIV)  
Time (200 ns/DIV)  
ƒSW = 2 MHz  
ƒSW = 4 MHz  
78. Inductor Current and Switch node (SW) Waveform  
79. Inductor Current and Switch node (SW) Waveform  
版权 © 2017, Texas Instruments Incorporated  
31  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
TA = 25°C, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, L = 1 µH, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back  
(TSB) disabled, unless otherwise noted.  
Time (400 µs/DIV)  
Reg 0x01 = 0x13  
IVFM Trip Level (Reg 0x02 bits[7:5]) = 001 (3 V)  
80. IVFM - Ramp and Hold  
32  
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
9 Power Supply Recommendations  
The LM36010 is designed to operate from an input voltage supply range between 2.5 V and 5.5 V. This input  
supply must be well regulated and capable to supply the required input current. If the input supply is located far  
from the LM36010 additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
10 Layout  
10.1 Layout Guidelines  
The high switching frequency and large switching currents of the LM36010 make the choice of layout important.  
The following steps are to be used as a reference to ensure the device is stable and maintains proper LED  
current regulation across its intended operating voltage and current range.  
1. Place CIN on the top layer (same layer as the LM36010) and as close as possible to the device. The input  
capacitor conducts the driver currents during the low-side MOSFET turnon and turnoff and can detect current  
spikes over 1 A in amplitude. Connecting the input capacitor through short, wide traces to both the IN and  
GND pins reduces the inductive voltage spikes that occur during switching which can corrupt the VIN line.  
2. Place COUT on the top layer (same layer as the LM36010) and as close as possible to the OUT and GND  
pins. The returns for both CIN and COUT must come together at one point, as close as possible to the GND  
pin. Connecting COUT through short, wide traces reduce the series inductance on the OUT and GND pins that  
can corrupt the VOUT and GND lines and cause excessive noise in the device and surrounding circuitry.  
3. Connect the inductor on the top layer close to the SW pin. There must be a low-impedance connection from  
the inductor to SW due to the large DC inductor current, and at the same time the area occupied by the SW  
node must be small so as to reduce the capacitive coupling of the high dV/dT present at SW that can couple  
into nearby traces.  
4. Avoid routing logic traces near the SW node so as to avoid any capacitively coupled voltages from SW onto  
any high-impedance logic lines such as STROBE, SDA, and SCL. A good approach is to insert an inner layer  
GND plane underneath the SW node and between any nearby routed traces. This creates a shield from the  
electric field generated at SW.  
5. Terminate the flash LED cathode directly to the GND pin of the LM36010. If possible, route the LED return  
with a dedicated path so as to keep the high amplitude LED current out of the GND plane. For a flash LED  
that is routed relatively far away from the LM36010, a good approach is to sandwich the forward and return  
current paths over the top of each other on two layers. This helps reduce the inductance of the LED current  
path.  
版权 © 2017, Texas Instruments Incorporated  
33  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
10.2 Layout Example  
IN  
10 mF  
VIAs to GND  
tlane  
CIN  
GND  
SW  
IN  
L
1 mH  
COUT  
STROBE  
10 mF  
STROBE  
SW  
SDA  
SCL  
OUT  
LED  
SDA  
SCL  
OUT  
LED  
81. LM36010 Layout Example  
34  
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 文档支持  
11.2.1 相关文档  
相关文档如下:  
AN-1112 DSBGA 晶圆级芯片级封装  
11.3 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2017, Texas Instruments Incorporated  
35  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
36  
版权 © 2017, Texas Instruments Incorporated  
LM36010  
www.ti.com.cn  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
版权 © 2017, Texas Instruments Incorporated  
37  
LM36010  
ZHCSGJ8B APRIL 2017REVISED OCTOBER 2017  
www.ti.com.cn  
38  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM36010YKBR  
ACTIVE  
DSBGA  
YKB  
8
3000 RoHS & Green SAC396 | SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
6010  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

LM36011

无电感器 LED 闪存驱动器
TI

LM36011YKBR

无电感器 LED 闪存驱动器 | YKB | 8 | -40 to 85
TI

LM360H

High Speed Differential Comparator
NSC

LM360H/A+

Analog Comparator
ETC

LM360H/NOPB

COMPARATOR, 5000uV OFFSET-MAX, 14ns RESPONSE TIME, MBCY8
TI

LM360J

IC COMPARATOR, 5000 uV OFFSET-MAX, 13 ns RESPONSE TIME, CDIP8, CERAMIC, DIP-8, Comparator
TI

LM360J-14

IC COMPARATOR, 5000 uV OFFSET-MAX, 13 ns RESPONSE TIME, CDIP14, CERAMIC, DIP-14, Comparator
NSC

LM360J-14

COMPARATOR, 5000 uV OFFSET-MAX, 13 ns RESPONSE TIME, CDIP14
TI

LM360M

High Speed Differential Comparator
NSC

LM360M

具有差分输出的高速、低电压比较器 | D | 8 | 0 to 70
TI

LM360M/NOPB

IC COMPARATOR, 5000 uV OFFSET-MAX, 14 ns RESPONSE TIME, PDSO8, SOP-8, Comparator
NSC

LM360M/NOPB

具有差分输出的高速、低电压比较器 | D | 8 | 0 to 70
TI