LM3631YFFR [TI]

适用于 LCD 面板的集成式 WLED 背光驱动器和偏置电源 | YFF | 24 | -40 to 85;
LM3631YFFR
型号: LM3631YFFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 LCD 面板的集成式 WLED 背光驱动器和偏置电源 | YFF | 24 | -40 to 85

驱动 CD 驱动器
文件: 总56页 (文件大小:1547K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM3631  
SNVS834 AUGUST 2014  
LM3631 Complete LCD Backlight and Bias Power  
1 Features  
2 Applications  
Mobile Device LCD Backlighting and Bias  
1
Drives up to Two Strings with Maximum of Eight  
LEDs in Series  
3 Description  
Integrated Backlight Boost with 29-V Maximum  
Output Voltage  
The LM3631 is a complete LCD backlight and bias  
power solution for mobile devices. This one-chip  
solution has an integrated high-efficiency backlight  
LED driver and positive/negative bias supplies for  
LCD drivers addressing the power requirements of  
high-definition LCDs. Integrated solution allows small  
solution size while still maintaining high performance.  
Two Low-Side Constant-Current LED Drivers  
with 25-mA Maximum Output Current  
Backlight Efficiency Up to 90%  
11-Bit Linear or Exponential Dimming with up to  
17-Bit Output Resolution  
Capable of driving up to 16 LEDs, the LM3631 is  
ideal for small- to medium-size displays. Two  
additional programmable LDO regulator outputs can  
be used to power display controller, LCD gamma  
reference, or any additional peripherals.  
External PWM Input for CABC Backlight  
Operation  
LCD Bias Efficiency > 85%  
Programmable Positive LCD bias, 4-V to 6-V,  
100-mA Maximum Output Current  
A high level of integration and programmability allows  
the LM3631 to address a variety of applications  
without the need for hardware changes. Voltage  
levels, backlight configuration, and power sequences  
are all configurable through I2C interface.  
Programmable Negative LCD bias, –4-V to –6-V,  
80-mA Maximum Output Current  
Two Positive Programmable LDO Reference  
Outputs  
4-V to 6-V, 50-mA Maximum Output Current  
Device Information(1)  
1.8-V to 3.3-V, 80-mA Maximum Output  
Current  
PART NUMBER  
PACKAGE  
BODY SIZE (MAX)  
LM3631  
DSBGA (24)  
2.585 mm x 1.885 mm  
2.7-V to 5-V Input Voltage Range  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Simplified Schematic  
Backlight Efficiency, 2P6S  
LSW  
D1  
95  
90  
85  
80  
75  
70  
65  
+
-
CIN  
Up to 8 LEDs / string  
COUT  
VIN  
SW  
VOUT  
LED1  
VIN  
BST_SW  
LBST  
LED2  
C2  
CIN  
SDA  
CFLY  
C1  
SCL  
LM3631  
nRST  
BST_OUT  
CP_VNEG  
LDO_OREF  
LDO_VPOS  
LDO_CONT  
VNEG (-5.4V)  
LCD_EN  
PWM  
60  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VOREF (+4.0V to +6.0V)  
VPOS (+5.4V)  
55  
50  
OTP_SEL  
FLAG  
VCONT (+1.8V)  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
D007  
GND_BST_SW  
AGND  
GND_SW  
PGND  
CVPOS  
CNEG CBST  
COREF  
CCONT  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
Table of Contents  
8.3 Features Description............................................... 20  
8.4 Device Functional Modes........................................ 34  
8.5 Programming........................................................... 36  
8.6 Register Maps......................................................... 40  
Application and Implementation ........................ 46  
9.1 Application Information............................................ 46  
9.2 Typical Application .................................................. 46  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 Handling Ratings ...................................................... 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information ................................................. 6  
7.5 Electrical Characteristics .......................................... 6  
7.6 I2C Timing Requirements (SDA, SCL) .................. 10  
7.7 Typical Characteristics............................................ 11  
Detailed Description ............................................ 17  
8.1 Overview ................................................................. 17  
8.2 Functional Block Diagram ....................................... 19  
9
10 Power Supply Recommendations ..................... 49  
11 Layout................................................................... 49  
11.1 Layout Guidelines ................................................ 49  
11.2 Layout Example ................................................... 50  
12 Device and Documentation Support ................. 51  
12.1 Device Support...................................................... 51  
12.2 Trademarks........................................................... 51  
12.3 Electrostatic Discharge Caution............................ 51  
12.4 Glossary................................................................ 51  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 51  
4 Revision History  
DATE  
REVISION  
NOTES  
August 2014  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
 
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
5 Device Comparison Table  
Table 1. Register Default Values  
I2C Address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x16  
Register  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
OTP_SEL Low  
0x01  
OTP_SEL High  
0x01  
Device Control  
LED Brightness LSB  
LED Brightness MSB  
Faults  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Faults and Power-Good  
Backlight Configuration 1  
Backlight Configuration 2  
Backlight Configuration 3  
Backlight Configuration 4  
Backlight Configuration 5  
LCD_Configuration 1  
LCD_Configuration 2  
LCD_Configuration 3  
LCD_Configuration 4  
LCD_Configuration 5  
LCD_Configuration 6  
LCD_Configuration 7  
LCD_Configuration 8  
LCD_Configuration 9  
FLAG Configuration  
Revision (6 LSB bits only)  
0x00  
0x00  
0xCF  
0x07  
0xCF  
0x27  
0xC7  
0x49  
0xC6  
0x49  
0x03  
0x03  
0x1E  
0x01  
0x1E  
0x14  
0xDC  
0x20  
0x1A  
0x1E  
0x1E  
0x1E  
0x0F  
0x60  
0x20  
0x1E  
0x05  
0x50  
0x00  
0x00  
0x09  
0x09  
0x01  
0x01  
Values in bold are OTP configurable.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM3631  
 
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
6 Pin Configuration and Functions  
DSBGA  
24 BUMPS  
F4  
E4  
D4  
C4  
B4  
A4  
F3  
E3  
D3  
C3  
B3  
A3  
F2  
E2  
D2  
C2  
B2  
A2  
F1  
E1  
D1  
C1  
B1  
A1  
F1  
E1  
D1  
C1  
B1  
A1  
F2  
E2  
D2  
C2  
B2  
A2  
F3  
E3  
D3  
C3  
B3  
A3  
F4  
E4  
D4  
C4  
B4  
A4  
TOP VIEW  
BOTTOM VIEW  
Pin Functions  
PIN  
DESCRIPTION  
NUMBER  
NAME  
CP_VNEG  
C2  
A1  
A2  
Negative LCD bias supply voltage. Can be left unconnected if charge pump is disabled.  
Inverting charge pump flying capacitor negative pin. Can be left unconnected if charge pump is  
disabled.  
A3  
A4  
PGND  
C1  
Power ground connection for boost converters and charge pump.  
Inverting charge pump flying capacitor positive pin. Can be left unconnected if charge pump is  
disabled.  
B1  
B2  
B3  
B4  
LDO_OREF  
PWM  
LDO_OREF output voltage. Can be left unconnected if LDO is disabled.  
PWM input for brightness control. Must be connected to GND if not used.  
Serial data connection for I2C-compatible interface. Must be pulled high to VDDIO if not used.  
SDA  
BST_OUT  
LCD bias boost output voltage. Internally connected to the input of CP_VNEG, LDO_VPOS, and  
LDO_OREF.  
C1  
C2  
C3  
C4  
D1  
D2  
D3  
D4  
E1  
E2  
E3  
E4  
F1  
F2  
F3  
F4  
LDO_VPOS  
LDO_CONT  
SCL  
Positive LCD bias supply rail. Can be left unconnected if LDO is disabled.  
Positive supply voltage for display panel controller. Can be left unconnected if disabled.  
Serial clock connection for I2C-compatible interface. Must be pulled high to VDDIO if not used.  
LCD bias boost switch pin.  
BST_SW  
AGND  
Analog ground connection for control circuitry.  
OTP_SEL  
FLAG  
Default setting selection. Must be tied to GND or to VDDIO.  
Programmable interrupt flag. Open drain output. Can be left unconnected if not used.  
LCD bias boost and inverting charge pump ground connection.  
Input pin to internal LED current sink 2. Can be left unconnected if not used.  
LCD enable input. Logic high turns on LCD bias voltages and backlight per sequencing settings.  
Active low reset input.  
GND_BST_SW  
LED2  
LCD_EN  
nRST  
VIN  
Input voltage connection. Connect to 2.7-V to 5-V supply voltage.  
Input pin to internal LED current sink 1. Can be left unconnected if not used.  
Backlight boost output voltage. Output capacitor is connected to this pin.  
Backlight boost switch pin.  
LED1  
VOUT  
SW  
GND_SW  
Backlight boost ground connection.  
4
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
–0.3  
–0.3  
–7.0  
–0.3  
MAX  
UNIT  
Voltage on VIN, nRST, LCD_EN, PWM, SCL, SDA, FLAG, LDO_CONT, OTP_SEL  
Voltage on BST_SW, BST_OUT, LDO_VPOS, LDO_OREF, C1  
Voltage on CP_VNEG, C2  
6
7
V
V
V
V
0.3  
30  
Voltage on SW, VOUT, LED1, LED2  
Internally  
limited  
Continuous power dissipation  
TJ(MAX)  
Maximum junction temperature  
Note(2)  
150  
°C  
TSOLDERING  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) For detailed soldering specifications and information, please refer to Texas Instruments Application Note 1112: DSBGA Wafer Level  
Chip Scale Package (AN-1112).  
7.2 Handling Ratings  
PARAMETER  
MIN  
–45  
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins  
except SW(1)  
–1000  
1000  
Electrostatic  
discharge  
V(ESD)  
Human body model (HBM), SW pin  
–600  
–500  
600  
500  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
0
NOM  
MAX  
UNIT  
V
VIN  
Input voltage  
3.7  
5
Voltage on nRST, LCD_EN, PWM, SCL, SDA, FLAG, LDO_CONT, OTP_SEL  
VIN + 0.3V with  
5V max  
V
Voltage on LDO_VPOS, LDO_OREF, C1  
Voltage on BST_SW, BST_OUT  
Voltage on CP_VNEG, C2  
0
0
6.5  
7
V
V
–6.5  
0
0
V
Voltage on SW, VOUT, LED1, LED2  
29  
85  
V
(1)  
TA  
Operating ambient temperature  
–40  
°C  
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
125ºC), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).  
=
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
7.4 Thermal Information  
DSBGA  
(20 PINS)  
63.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.3  
9.4  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.6  
ΨJB  
9.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.5 Electrical Characteristics  
Unless otherwise specified, limits apply over the full operating ambient temperature range (40°C TA 85°C), VIN = 3.6 V,  
VPOS = VOREF = 5.4 V, VNEG = –5.4 V, VBST = 5.7 V, VCONT = 3.3V.  
PARAMETER  
CURRENT CONSUMPTION  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
ISD  
Shutdown current  
nRST = LOW, LCD_EN = LOW  
1
µA  
µA  
Quiescent current, device not  
switching  
nRST = HIGH, LCD_EN = LOW,  
2.7 V VIN 5 V  
IQ  
60  
nRST = HIGH, LCD_EN = HIGH,  
2.7 V VIN 5 V, no load,  
Backlight disabled  
mA  
ILCD_EN  
1
DEVICE PROTECTION  
VIN decreasing  
VIN increasing  
2.5  
2.6  
140  
20  
V
V
UVLO  
Undervoltage lockout  
TSD  
Thermal shutdown(1)  
Hysteresis(1)  
°C  
°C  
TSD(hyst)  
LED CURRENT SINKS  
Minimum output current  
Brightness code 0x001  
50  
25  
µA  
Brightness code 0x7FF,  
exponential mapping  
mA  
Maximum output current  
Maximum output current  
Absolute LED current accuracy  
ILED1/2  
Brightness code 0x7FF, linear  
mapping  
mA  
25.3  
2.7 V VIN 5.0 V, LED Currents  
0.05 mA, 1 mA, 5 mA, 25 mA  
(2)  
IACCURACY  
–3%  
0%  
3%  
2.7 V VIN 5.0 V, LED Currents  
0.05 mA, 1 mA, 5 mA, 25 mA  
(2)  
IMATCH  
LED1 to LED2 current matching  
Current sink saturation voltage  
3%  
50  
VHR_MIN  
ILED = 95% of 5 mA  
30  
mV  
V
BACKLIGHT BOOST CONVERTER  
Backlight boost output overvoltage  
protection  
VOVP_BL  
2.7 V VIN 5 V, 29-V Option  
28.8  
88%  
ILED = 10 mA/string, 2P6S LED  
configuration  
(1)  
ηLED_DRIVE  
LED drive efficiency  
1235AS-H-220M Inductor  
ILED = 25 mA  
ILED = 5 mA  
ISW = 250 mA  
250  
100  
0.5  
mV  
mV  
Ω
Regulated current sink headroom  
voltage  
VHR  
RDSON  
ICL  
NMOS switch on resistance  
Selectable NMOS switch current limit 900-mA setting  
900  
mA  
(1) Typical value only for reference.  
(2) Output Current Accuracy is the difference between the actual value of the output current and programmed value of this current.  
Matching is the maximum difference from the average. For the constant current sinks on the part (LED1 and LED2), the following is  
determined: the maximum output current (MAX), the minimum output current (MIN), and the average output current of both outputs  
(AVG). Matching number is calculated: (MAX - MIN)/AVG. The typical specification provided is the most likely norm of the matching  
figure of all parts. LED current sinks were characterized with 1-V headroom voltage. Note that some manufacturers have different  
definitions in use.  
6
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
Electrical Characteristics (continued)  
Unless otherwise specified, limits apply over the full operating ambient temperature range (40°C TA 85°C), VIN = 3.6 V,  
VPOS = VOREF = 5.4 V, VNEG = –5.4 V, VBST = 5.7 V, VCONT = 3.3V.  
PARAMETER  
TEST CONDITION  
500-kHz mode  
MIN  
450  
900  
TYP  
500  
MAX  
550  
UNIT  
ƒSW  
Switching frequency  
Maximum duty cycle  
kHz  
1-MHz mode  
1000  
94%  
1100  
DMAX  
LCD BIAS BOOST CONVERTER  
LCD bias boost output overvoltage  
VOVP_BST  
ƒSW_BST  
6.8  
V
protection  
(1)  
Switching frequency  
Load current 100mA  
2500  
4.5  
kHz  
Minimum Bias boost output voltage  
Maximum Bias boost output voltage  
Output voltage step size  
LCD_BST_OUT = 000000b  
LCD_BST_OUT = 100101b  
V
6.35  
50  
mV  
(3)  
Peak-to-peak ripple voltage  
ILOAD = 50 mA, CBST = 10 µF  
50  
mVpp  
VIN + 500 mVp-p AC square wave,  
Tr = 100 mV/µs, 200 Hz, 12.5%  
Duty, ILOAD 5 mA, CIN = 10 µF,  
CBST = 10 µF  
VBST  
(3)  
BST_OUT line transient response  
BST_OUT load transient response  
–50  
±25  
50  
mV  
Load current step 0 mA - 150 mA,  
TRISE/FALL = 100 mA/µs, CIN = 10  
µF, CBST = 10 µF  
(3)  
–150  
150  
mV  
ICL_BST  
Valley current limit  
1000  
170  
mA  
High-side MOSFET on resistance  
Low-side MOSFET on resistance  
TA = 25°C  
RDSON_BST  
mΩ  
TA = 25°C  
290  
(4)  
ηBST  
Efficiency  
80 mA < IBST < 200 mA  
CBST = 20 µF  
92%  
Start-up time (BST_OUT), VBST_OUT  
= 10% to 90%  
tST_BST  
1000  
µs  
(5)  
LCD POSITIVE BIAS OUTPUT (LDO_VPOS)  
Minimum output voltage  
LDO_VPOS_TARGET = 000000b  
LDO_VPOS_TARGET = 101000b  
4.0  
6.0  
50  
V
V
Maximum output voltage  
Output voltage step size  
mV  
Output voltage = 5.4 V, ILOAD= 1  
mA  
Output voltage accuracy  
VPOS  
–1.5%  
–25  
1.5%  
25  
VIN + 500 mVp-p AC square wave,  
Tr = 100 mV/µs, 200 Hz, ILOAD 25  
mA, CIN = 10 µF  
LDO_VPOS line transient response  
mV  
(5)  
LDO_VPOS load transient response  
5 mA to 100 mA load transient,  
TRISE/FALL = 2 µs , CVPOS = 10 µF  
–100  
100  
20  
mV  
mV  
(5)  
(5)  
DC load regulation  
1 mA ILOAD 100 mA  
Power-good threshold, voltage  
increasing  
% of target VPOS  
PGRISING  
95%  
90%  
Power-good threshold, voltage  
% of target VPOS  
PGFALLING  
decreasing  
IPOS_MAX  
ICL_VPOS  
Maximum output current  
Output current limit  
100  
200  
mA  
mA  
VBST = 6.3 V, VPOS = 6 V, CVPOS  
10 µF  
=
(5)  
(6)  
IRUSH_PK_VPOS  
VDO_VPOS  
Peak start-up inrush current  
LDO_VPOS dropout voltage  
500  
80  
mA  
mV  
ILOAD = 100 mA, VPOS = 4 V  
(3) Limits set by characterization and/or simulation only.  
(4) Typical value only for reference.  
(5) Limits set by characterization and/or simulation only.  
(6) VBST – VPOS when VPOS has dropped 100 mV below target.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
Electrical Characteristics (continued)  
Unless otherwise specified, limits apply over the full operating ambient temperature range (40°C TA 85°C), VIN = 3.6 V,  
VPOS = VOREF = 5.4 V, VNEG = –5.4 V, VBST = 5.7 V, VCONT = 3.3V.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
ƒ = 10 Hz to 500 kHz, ILOAD= 50  
mA, VBST to VPOS, 300 mV  
minimum headroom  
Power supply rejection ratio,  
LDO_VPOS  
PSRRVPOS  
25  
dB  
(5)  
Start-up time LDO_VPOS, VLDO_VPOS CVPOS = 10 µF  
= 10% to 90%  
tST_VPOS  
1
ms  
(5)  
Output pull-down resistor,  
LDO_VPOS  
LDO_VPOS pull-down enabled,  
LDO_VPOS disabled  
RPD_VPOS  
52  
80  
110  
Ω
LCD NEGATIVE BIAS OUTPUT (CP_VNEG)  
LCD bias negative charge-pump  
VOVP_VNEG  
Below VNEG output voltage target  
–250  
–1  
mV  
V
output overvoltage protection  
LCD bias negative charge-pump  
VSHORT_VNEG  
output short circuit protection  
Minimum output voltage  
Maximum output voltage  
Output voltage step size  
Output accuracy  
CP_VNEG_TARGET = 101000b  
CP_VNEG_TARGET = 000000b  
–6.0  
–4.0  
50  
V
V
mV  
Output voltage = –5.4V  
–1.5%  
1.5%  
ILOAD = 50 mA,  
CVNEG = 10 µF  
(5)  
Peak-to-peak ripple voltage  
60  
mVpp  
mV  
VNEG  
VIN + 500 mVp-p AC square wave,  
100 mV/µs 200 Hz, 12.5% DS at 5  
mA  
(5)  
CP_VNEG line transient response  
CP_VNEG load transient response  
–50  
±25  
50  
5 mA to 50 mA load transient,  
TRISE/FALL = 1 µs, CVNEG = 10 µF  
(5)  
–100  
100  
mV  
PGRISING  
Power good increasing  
Power good decreasing  
% of Target VNEG  
% of Target VNEG  
95%  
90%  
PGFALLING  
VIN = 3,7V, VBST = 5,7V VNEG = -  
5.4V, 20mA < ILOAD < 80mA  
ηCP  
Efficiency(7)  
92%  
50  
VIN = 3.7 V, VBST = 5.6 V,  
VNEG = –5.4V  
mA  
(8)  
INEG_MAX  
Maximum output current  
VIN = 3.7 V, VBST = 5.7 V,  
VNEG = –5.4 V  
80  
mA  
mA  
ms  
(8)  
ICL_VNEG  
tST_VNEG  
Output current limit  
150  
Start-up time, CP_VNEG,  
VCP_VNEG = 10 % to 90 %  
VNEG = –6V, CVNEG = 10 µF  
1
(8)  
CP_VNEG Pull-Up Enabled,  
CP_VNEG Disabled, VBST > 4.8V  
(8)  
RPU_VNEG  
Output pull-up resistor, CP_VNEG  
30  
40  
Ω
LCD GAMMA REFERENCE OUTPUT (LDO_OREF)  
Minimum Output voltage  
LDO_OREF_TARGET = 000000b  
LDO_OREF_TARGET = 101000b  
4.0  
6.0  
50  
V
V
Maximum Output voltage  
Output voltage step size  
mV  
ILOAD_LDO_OREF < 5 mA, VOREF  
5.4V  
=
Output accuracy  
–1.5%  
–50  
1.5%  
50  
VIN + 500 mVp-p AC Square  
Wave, 100 mV/µs 200 Hz at 5 mA,  
CIN = 10 µF  
VOREF  
LDO_OREF line transient response  
mV  
(8)  
5 mA to 50 mA load transient @ 2  
µs TRISE/FALL, CIN = 10 µF  
(8)  
LDO_OREF load transient  
–50  
50  
20  
mV  
mV  
1 mA ILOAD_LDO_OREF  
(8)  
DC load regulation  
ILOAD_LDO_OREF_MAX  
PGRISING  
Power good increasing  
% of target VLDO_OREF  
95%  
(7) Typical value only for reference.  
(8) Limits set by characterization and/or simulation only.  
8
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
Electrical Characteristics (continued)  
Unless otherwise specified, limits apply over the full operating ambient temperature range (40°C TA 85°C), VIN = 3.6 V,  
VPOS = VOREF = 5.4 V, VNEG = –5.4 V, VBST = 5.7 V, VCONT = 3.3V.  
PARAMETER  
TEST CONDITION  
% of target VLDO_OREF  
MIN  
TYP  
90%  
50  
MAX  
UNIT  
PGFALLING  
IOREF_MAX  
ICL_OREF  
Power good decreasing  
Maximum output current  
Output current limit  
mA  
mA  
80  
VBIASBST = 5.8 V, VOREF = 5.5 V,  
COREF = 10 µF  
(8)  
(9)  
IRUSH_PK_OREF  
Peak start-up inrush current  
LDO_OREF dropout voltage  
Power supply rejection ratio,  
250  
mA  
ILOAD_LDO_OREF  
ILOAD_LDO_OREF_MAX, VLDO_OREF  
4.0 V  
=
VDO_OREF  
=
80  
mV  
F = 10 Hz to 500 kHz @ Imax/2  
,
PSRROREF  
VBST_OUT to VLDO_OREF, 300 mV  
minimum headroom  
25  
dB  
(8)  
LDO_OREF  
Start-up time, LDO_OREF,  
VLDO_OREF = 10% to 90%  
COREF = 10 µF, VLDO_OREF = 5.5 V  
tST_OREF  
1
ms  
(8)  
Output pull-down resistor,  
LDO_OREF  
LDO_OREF pull-down enabled,  
LDO_OREF disabled  
RPD_OREF  
130  
200  
270  
Ω
LCD CONTROLLER SUPPLY OUTPUT (LDO_CONT)  
LDO_CONT_VOUT = 00  
LDO_CONT_VOUT = 01  
LDO_CONT_VOUT = 10  
LDO_CONT_VOUT = 11  
Output Voltage = 1.8 V, 1-mA load  
1.8  
2.3  
2.8  
3.3  
Output voltage  
V
Output accuracy  
VCONT  
–2%  
–50  
2%  
50  
LDO_CONT line transient response  
VIN + 500 mVp-p AC Square  
Wave, 100 mV/µs 200 Hz at 5 mA  
mV  
mV  
(8)  
LDO_CONT load transient response 5-mA to 80-mA load transient @ 2  
–50  
50  
20  
(8)  
µs TRISE/FALL  
(8)  
DC load regulation  
1 mA ILOAD_LDO_CONT 80 mA  
mV  
mA  
mA  
mV  
ICONT_MAX  
ICL_CONT  
Maximum output current  
Output current limit  
80  
130  
(10)  
VDO_CONT  
LDO_CONT dropout voltage  
ILOAD = 80 mA, VCONT = 3.3 V  
80  
1
F = 10 Hz to 500 kHz @ Imax/2 VIN  
to VLDO_CONT, 300-mV minimum  
headroom  
Power supply rejection ratio,  
PSRRLDO_CONT  
25  
dB  
(11)  
LDO_CONT  
Start-up time, LDO_CONT, VCONT  
=
VCONT = 1.8 V  
tST_CONT  
ms  
(11)  
10% to 90%  
Output pull-down resistor,  
LDO_CONT  
LDO_CONT pull-down enabled,  
LDO_CONT disabled  
RPD_CONT  
200  
Ω
LOGIC INPUTS (PWM, NRST, LCD_EN, SCL, SDA, OTP_SEL)  
VIL  
Input logic low  
0
1.2  
–1  
0.4  
VIN  
1
V
V
VIH  
Input logic high  
Logic input current  
IINPUT  
µA  
LOGIC OUTPUTS (SDA, FLAG)  
VOL  
Output logic low  
IOL = 3 mA  
0
0.4  
1
V
ILEAKAGE  
PWM INPUT  
ƒPWM_INPUT  
tMIN  
Output leakage current  
µA  
PWM input frequency  
Minimum PWM ON/OFF time  
PWM timeout(11)  
100  
20000  
Hz  
ns  
400  
24  
tTIMEOUT  
ms  
(9) VBST – VOREF when VOREF has dropped 100 mV below target.  
(10) VIN – VCONT when VCONT has dropped 100 mV below target.  
(11) Limits set by characterization and/or simulation only.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
(1)  
7.6 I2C Timing Requirements (SDA, SCL)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
kHz  
µs  
ƒSCL  
1
Clock frequency  
400  
Hold time (repeated) START  
condition  
0.6  
2
3
4
Clock low time  
Clock high time  
1.3  
600  
600  
µs  
ns  
ns  
Set-up time for a repeated START  
condition  
5
6
7
8
9
Data hold time  
50  
100  
ns  
ns  
ns  
ns  
µs  
Data set-up time  
Rise time of SDA and SCL  
Fall time of SDA and SCL  
20 + 0.1Cb  
15 + 0.1Cb  
1.3  
300  
300  
Set-Up time between a STOP and a  
START condition  
Cb  
Capacitive load for each bus line  
10  
200  
pF  
(1) Limits set by characterization and/or simulation only  
Figure 1. I2C Timing Parameters  
10  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
7.7 Typical Characteristics  
Ambient temperature is 25°C unless otherwise noted. Backlight load is the sum of LED1 and LED2 current. Backlight Total  
Efficiency defined as PLED / PIN, where PLED is actual power consumed in LEDs.  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D001  
D006  
D008  
D002  
D007  
D009  
1235AS-H-220M 22-µH Inductor  
2P6S LED Configuration  
1235AS-H-220M 22-µH Inductor  
2P6S LED Configuration  
500-kHz Boost SW Frequency  
500-kHz Boost SW Frequency  
Figure 2. Backlight Boost Efficiency  
Figure 3. Backlight Total Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
1235AS-H-220M 22-µH Inductor  
2P6S LED Configuration  
1235AS-H-220M 22-µH Inductor  
2P6S LED Configuration  
1-MHz Boost SW Frequency  
1-MHz Boost SW Frequency  
Figure 4. Backlight Boost Efficiency  
Figure 5. Backlight Total Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
VLF403210MT-100M 10-µH Inductor  
2P6S LED Configuration  
VLF403210MT-100M 10-µH Inductor  
2P6S LED Configuration  
500-kHz Boost SW Frequency  
500-kHz Boost SW Frequency  
Figure 6. Backlight Boost Efficiency  
Figure 7. Backlight Total Efficiency  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
11  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
Typical Characteristics (continued)  
Ambient temperature is 25°C unless otherwise noted. Backlight load is the sum of LED1 and LED2 current. Backlight Total  
Efficiency defined as PLED / PIN, where PLED is actual power consumed in LEDs.  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D010  
D011  
VLF403210MT-100M 10-µH Inductor  
2P6S LED Configuration  
VLF403210MT-100M 10-µH Inductor  
2P6S LED Configuration  
1-MHz Boost SW Frequency  
1-MHz Boost SW Frequency  
Figure 8. Backlight Boost Efficiency  
Figure 9. Backlight Total Efficiency  
3
2.8  
2.6  
2.4  
2.2  
2
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D003  
D012  
No load on LCD Bias  
2P6S LED Configuration  
500-kHz BL Boost SW Frequency  
No load on LCD Bias  
2P6S LED Configuration  
1-MHz BL Boost SW Frequency  
Figure 10. Device Current Consumption, Backlight Driving  
Figure 11. Device Current Consumption, Backlight Driving  
22  
0.28  
0.26  
0.24  
0.22  
0.2  
21  
20  
19  
18  
17  
0.18  
0.16  
16  
0.14  
VIN 2.7V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
15  
14  
VIN 3.7V  
VIN 5.0V  
0.12  
0.1  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
LED Current (mA)  
Load (mA)  
D004  
D005  
2P6S LED Configuration  
2P6S LED Configuration  
Figure 12. Backlight Boost Output Voltage  
Figure 13. LED Driver Headroom Voltage  
12  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
Typical Characteristics (continued)  
Ambient temperature is 25°C unless otherwise noted. Backlight load is the sum of LED1 and LED2 current. Backlight Total  
Efficiency defined as PLED / PIN, where PLED is actual power consumed in LEDs.  
27  
24  
21  
18  
15  
12  
9
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
0.08  
0.06  
0.04  
0.02  
0
6
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
3
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
LED Current (mA)  
0
250 500 750 1000 1250 1500 1750 2000 2250  
Step (DEC)  
D013  
D014  
I2C Brightness Control  
VLF403210MT-100M 10-µH Inductor  
1-MHz BL Boost SW Frequency  
2P6S LED Configuration  
Figure 14. LED Current Matching  
Figure 15. LED Current, Linear Control  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
27  
24  
21  
18  
15  
12  
9
6
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
3
0
0
250 500 750 1000 1250 1500 1750 2000 2250  
Step (DEC)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Load (mA)  
D015  
D016  
I2C Brightness Control  
VBST set to 5.2 V  
Figure 16. LED Current, Exponential Control  
Figure 17. LCD Boost Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
0
20  
40  
60  
80 100 120 140 160 180 200  
Load (mA)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Load (mA)  
D017  
D018  
VBST set to 5.5 V  
VBST set to 5.9 V  
Figure 18. LCD Boost Efficiency  
Figure 19. LCD Boost Efficiency  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
Typical Characteristics (continued)  
Ambient temperature is 25°C unless otherwise noted. Backlight load is the sum of LED1 and LED2 current. Backlight Total  
Efficiency defined as PLED / PIN, where PLED is actual power consumed in LEDs.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
D019  
D020  
VNEG set to –5 V  
VNEG set to –5.5 V  
Figure 20. VNEG Efficiency  
Figure 21. VNEG Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
5.3  
5.28  
5.26  
5.24  
5.22  
5.2  
5.18  
5.16  
5.14  
5.12  
5.1  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.6V  
VIN 4.3V  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
50 100 150 200 250 300 350 400 450 500  
Load (mA)  
Load (mA)  
D021  
D022  
VNEG set to –6 V  
VBST set to 5.2 V  
Figure 22. VNEG Efficiency  
Figure 23. LCD Boost Load Regulation  
5.6  
5.58  
5.56  
5.54  
5.52  
5.5  
6
5.98  
5.96  
5.94  
5.92  
5.9  
5.48  
5.46  
5.44  
5.42  
5.4  
5.88  
5.86  
5.84  
5.82  
5.8  
VIN 2.7V  
VIN 3.6V  
VIN 4.3V  
VIN 2.7V  
VIN 3.6V  
VIN 4.3V  
0
50 100 150 200 250 300 350 400 450 500  
Load (mA)  
0
50 100 150 200 250 300 350 400 450 500  
Load (mA)  
D023  
D024  
VBST set to 5.5 V  
VBST set to 5.9 V  
Figure 24. LCD Boost Load Regulation  
Figure 25. LCD Boost Load Regulation  
14  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
Typical Characteristics (continued)  
Ambient temperature is 25°C unless otherwise noted. Backlight load is the sum of LED1 and LED2 current. Backlight Total  
Efficiency defined as PLED / PIN, where PLED is actual power consumed in LEDs.  
-4.9  
-4.92  
-4.94  
-4.96  
-4.98  
-5  
-5.4  
-5.42  
-5.44  
-5.46  
-5.48  
-5.5  
-5.02  
-5.04  
-5.06  
-5.08  
-5.1  
-5.52  
-5.54  
-5.56  
-5.58  
-5.6  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
D025  
D026  
VNEG set to –5 V  
VNEG set to –5.5 V  
Figure 26. VNEG Load Regulation  
Figure 27. VNEG Load Regulation  
-5.9  
-5.92  
-5.94  
-5.96  
-5.98  
-6  
5.05  
5.04  
5.03  
5.02  
5.01  
5
-6.02  
-6.04  
-6.06  
-6.08  
-6.1  
4.99  
4.98  
4.97  
4.96  
4.95  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Load (mA)  
Load (mA)  
D027  
D028  
VNEG set to –6 V  
VPOS set to 5 V  
Figure 28. VNEG Load Regulation  
Figure 29. VPOS Load Regulation  
5.55  
5.54  
5.53  
5.52  
5.51  
5.5  
6.05  
6.04  
6.03  
6.02  
6.01  
6
5.49  
5.48  
5.47  
5.46  
5.45  
5.99  
5.98  
5.97  
5.96  
5.95  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Load (mA)  
Load (mA)  
D029  
D030  
VPOS set to 5.5 V  
VPOS set to 6 V  
Figure 30. VPOS Load Regulation  
Figure 31. VPOS Load Regulation  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
Typical Characteristics (continued)  
Ambient temperature is 25°C unless otherwise noted. Backlight load is the sum of LED1 and LED2 current. Backlight Total  
Efficiency defined as PLED / PIN, where PLED is actual power consumed in LEDs.  
5.05  
5.04  
5.03  
5.02  
5.01  
5
5.55  
5.54  
5.53  
5.52  
5.51  
5.5  
4.99  
4.98  
4.97  
4.96  
4.95  
5.49  
5.48  
5.47  
5.46  
5.45  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D031  
D033  
D035  
D032  
D034  
D036  
VOREF set to 5 V  
VOREF set to 5.5 V  
Figure 32. VOREF Load Regulation  
Figure 33. VOREF Load Regulation  
6.05  
6.04  
6.03  
6.02  
6.01  
6
1.85  
1.84  
1.83  
1.82  
1.81  
1.8  
5.99  
5.98  
5.97  
5.96  
5.95  
1.79  
1.78  
1.77  
1.76  
1.75  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
VIN 2.7V  
VIN 3.7V  
VIN 5.0V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
10  
20  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
VOREF set to 6 V  
VCONT set to 1.8 V  
Figure 34. VOREF Load Regulation  
Figure 35. VCONT Load Regulation  
2.85  
2.84  
2.83  
2.82  
2.81  
2.8  
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
2.79  
2.78  
2.77  
2.76  
2.75  
3.29  
3.28  
3.27  
3.26  
3.25  
VIN 3.7V  
VIN 5.0V  
VIN 3.7V  
VIN 5.0V  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Load (mA)  
Load (mA)  
VCONT set to 2.8 V  
VCONT set to 3.3 V  
Figure 36. VCONT Load Regulation  
Figure 37. VCONT Load Regulation  
16  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
8 Detailed Description  
8.1 Overview  
The LM3631 is a single-chip complete LCD power and backlight solution. It can drive up to two LED strings with  
up to 8 LEDs each (up to 27 V typ.), with a maximum of 25 mA per string. The power for the LED strings comes  
from a integrated asynchronous backlight boost converter with two selectable switching frequencies (500 kHz or  
1 MHz) to optimize performance or solution area. LED current is regulated by two low-headroom current sinks.  
Automatic voltage scaling adjust the output voltage of the backlight boost converter to minimize the LED driver  
head room voltage.  
The LCD bias power portion of the LM3631 consists of an LCD bias boost converter, inverting charge pump, and  
three integrated LDOs. The device can generate all the required voltages for a LCD panel:  
1. The LCD positive bias voltage VPOS (up to 6V). VPOS voltage is post-regulated from the LCD bias boost  
converter output voltage.  
2. LCD negative bias voltage VNEG (down to –6 V). VNEG is generated from the LCD bias boost converter output  
using a regulated inverting charge pump.  
3. The third output VOREF can supply the LCD gamma (or VCOM reference) voltage. VOREF is post-regulated  
from the LCD bias boost converter output voltage.  
4. The fourth output VCONT can be used to supply the display controller. VCONT regulator is powered from the  
VIN input.  
The LM3631 flexible control interface consists from nRST active low reset input, LCD_EN enable input, PWM  
input for content adaptive backlight control (CABC), and an I2C-compatible interface. In applications with limited  
IO pin count the LCD_EN input pin function can be replaced with the LCD_EN I2C register bit. In this case the  
LCD_EN pin needs to be connected to ground. OTP_SEL input can be used to select from two different factory-  
programmed default One Time Programmable Memory (OTP) settings. The default OTP settings can be  
overwritten using the I2C-compatible interface. Programmable settings include LED ramp up/down profiles, LED  
output current and brightness control modes, enabling/disabling individual power supply outputs, and  
programmable LCD output power up/down sequencing. Open drain FLAG output can be used to notify host  
processor from various power-good signals or fault conditions.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
Overview (continued)  
VLED+  
LCD  
Diffuser  
LCD Module  
LCD Panel  
Connector  
Image Data  
LED  
Sinks1,2  
CABC  
System  
I2C Bus  
PWM  
Prox  
ALS  
EN_LCD  
nRST  
LM3631  
Apps Processor  
V+ BUS  
Main Board  
Figure 38. System Example  
18  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
8.2 Functional Block Diagram  
Up to 8 LEDs/String  
with up to 27 V  
VIN  
+
CIN  
COUT  
-
VIN  
SW  
VOUT  
Programmable  
Overvoltage Protection  
Reference and  
Thermal Shutdown  
Programmable Current  
Limit  
Backligh Boost Converter  
GND_SW  
Global Active-low  
Reset  
nRST  
Programmable  
500 kHz/1 MHz  
Oscillator  
V
Voltage  
HR  
Feedback  
LED1  
LED2  
OTP_SEL  
OTP Memory  
LED String Open/Short  
Detection  
FLAG  
PWM  
FLAG Control  
(Power OK or Fault)  
Backlight LED Control  
1. 11-bit brightness  
adjustment  
LED Drivers  
PWM Detector  
With  
Low Pass Filter  
2. Exponential/Linear  
Dimming  
3. LED Current  
Ramping  
VIN  
LDO_CONT  
LDO_CONT (Panel  
controller)  
SDA  
SCL  
I2C Compatible  
Interface  
LDO_OREF  
C1  
LDO_OREF (Gamma  
Reference, VCOM, VCS  
)
Power OK  
Enable  
CP_VNEG  
(LCD Negative Bias)  
LCD_EN  
C2  
LCD Bias Output  
Sequencing Control  
CP_VNEG  
LCD Boost Converter  
GND_BST_SW  
LDO_VPOS  
(LCD Postive Bias)  
LDO_VPOS  
Internal Logic  
AGND  
PGND  
BST_SW  
BST_OUT  
+
VIN  
-
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
8.3 Features Description  
8.3.1 Backlight  
The backlight is enabled by setting the BL_EN = 1 and a brightness value higher than zero. LCD bias power rails  
need to reach their target voltages before the backlight can be started. Note that all bias voltages don't need to  
be enabled to start up the backlight. For example, if only VPOS and VNEG are required, the backlight can be  
enabled once these voltages have reach their target voltages. In this case VCONT and VOREF can be disabled. If  
all four outputs (LDO_CONT, LDO_OREF, CP_VNEG, and LDO_VPOS) are disabled, the backlight can be  
enabled once the LCD biast boost converter has settled. The LCD bias boost is always enabled when the  
LCD_EN pin or bit is set high.  
When the brightness value is '0', or BL_EN bit is ‘0’, the backlight is disabled. The BL_EN bit is '1' by default. The  
backlight can be disabled at any time by setting the brightness value to zero or by writing the BL_EN bit to ‘0’.  
LED driver LED2 can be separately enabled and disabled from the I2C register. LED driver LED1 is always  
enabled when the backlight is turned on.  
Table 2. Backlight Control  
BRIGHTNESS VALUE (I2C AND/OR  
BL_EN BIT  
BACKLIGHT ON/OFF  
EXTERNAL PWM)  
0
0
1
1
0
1  
0
OFF  
OFF  
OFF  
ON  
1  
8.3.1.1 Backlight Brightness Control  
Brightness can be controlled either by the I2C brightness register, with an external PWM control, or a  
combination of both. BRT_MODE bits select the brightness control mode. Different brightness control modes are  
shown in Table 3.  
When controlling brightness through I2C, registers 0x01 and 0x02 are used. Registers 0x01 and 0x02 hold the  
11-bit brightness data. Register 0x02 contains the 8 MSBs, and register 0x01 contains the 3 LSBs. The LED  
current only transitions to the new level after a write is done to register 0x02.  
When controlling brightness through I2C, setting brightness value to '0' shuts down the backlight. When  
controlling the brightness with PWM input, if PWM input is low for a certain period of time (24 ms typ.), the  
backlight shuts down. When using the combination of a PWM input and the I2C register, either option shuts down  
the backlight.  
NOTE  
The backlight does not start before the LCD bias start-up sequence is finished even if  
BL_EN bit is '1' and the brightness setting is 1.  
Table 3. Brightness Control  
BRT_MODE bits  
BRIGHTNESS CONTROL  
00  
01  
10  
11  
I2C register used for brightness control  
PWM input duty cycle used for brightness control  
I2C register code multiplied with PWM duty cycle before sloping  
Sloped I2C register code multiplied with PWM duty cycle  
20  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
 
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
Up to 8 LEDs/string  
with up to 27V  
Up to 8 LEDs/string  
with up to 27V  
V
OUT  
V
OUT  
Digital  
Domain  
Analog  
Domain  
Digital  
Domain  
Analog  
Domain  
High Efficiency  
Boost Regulator  
High Efficiency  
Boost Regulator  
EN_ADVANCED_SLOPE  
EN_ADVANCED_SLOPE  
min  
DACi  
I
I
LED2  
min  
LED1  
PWM input signal  
PWM  
detector  
Curve  
bending  
DACi  
Sloper  
Mapper  
I
I
LED2  
LED1  
2
Curve  
bending  
Dither  
Sloper  
Mapper  
DAC  
Driver_1  
Driver_2  
I
C BRT Reg  
Dither  
DAC  
Driver_1  
Driver_1  
MAPPER_SEL  
HYSTERESIS  
[1:0]  
SLOPE[3:0]  
MAPPER_SEL  
SLOPE[3:0]  
DITHER[3:0]  
DITHER[3:0]  
Figure 39. Brightness Control with  
BRT_MODE bit 00  
Figure 40. Brightness Control with  
BRT_MODE bit 01  
Up to 8 LEDs/string  
with up to 27V  
Up to 8 LEDs/string  
with up to 27V  
V
OUT  
V
OUT  
Digital  
Domain  
Analog  
Domain  
Digital  
Domain  
Analog  
Domain  
High Efficiency  
Boost Regulator  
High Efficiency  
Boost Regulator  
EN_ADVANCED_SLOPE  
Curve  
MAPPER_SEL  
Mapper  
EN_ADVANCED_SLOPE  
min  
DACi  
min  
Driver_1  
Driver_2  
I
I
LED2  
LED1  
DACi  
2
Sloper  
Mapper  
I
I
LED2  
I
C
BRT Reg  
LED1  
bending  
2
Curve  
bending  
Sloper  
I
C BRT Reg  
Driver_1  
Driver_1  
DAC  
Dither  
DAC  
Dither  
MAPPER_SEL  
PWM input signal  
PWM  
detector  
SLOPE[3:0]  
SLOPE[3:0]  
DITHER[3:0]  
HYSTERESIS  
[1:0]  
DITHER[3:0]  
PWM input signal  
PWM  
detector  
HYSTERESIS  
[1:0]  
Figure 41. Brightness Control with  
BRT_MODE bit 10  
Figure 42. Brightness Control with  
BRT_MODE bit 11  
8.3.1.1.1 LED Current With Brightness Selection '00'  
When LED brightness is controlled from the I2C brightness registers, the 11-bit brightness data directly controls  
the LED current in LED1 and LED2. LED mapping can be selected as either linear or exponential. When this  
mode is selected setting PWM input to 0 does not disable the backlight.  
With exponential mapping the 11-bit code-to-current response is approximated by the equation:  
ILED = 50 µA × 1.003040572I2C BRT CODE (for codes > 0)  
(1)  
This equation is valid for I2C brightness codes between 1 and 2047. Code 0 disables the backlight. Resolution  
achieved at the output is maximum 16-bit at low brightness levels and additional 1 bit can be achieved with the  
dithering resulting in up to 17-bit output resolution. Step sizes increase when the current increases with the  
exponential control.  
Figure 43 and Figure 44 detail the exponential response of the LED current vs. brightness code. Figure 43 shows  
the response on a linear Y axis while Figure 44 shows the response on a log Y axis to show the low current  
levels at the lower codes.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM3631  
 
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
25  
20  
15  
10  
5
100  
10  
1
0.1  
0.01  
0
0
256  
512  
768  
1024  
1280  
1536  
1792  
2048  
0
256  
512  
768  
1024  
1280  
1536  
1792  
2048  
11-Bit Brightness Code  
11-Bit Brightness Code  
C001  
C002  
Figure 43. Exponential Response of the LED Current vs  
Brightness Code  
Figure 44. Response of the LED Current vs Brightness  
Code on a Log Y Axis  
With linear mapping the 11-bit code to current response is approximated by the equation:  
ILED = 37.67 µA + 12.33 µA × I2C BRT CODE (for codes > 0)  
(2)  
This equation is valid for codes between 1 and 2047. Code 0 disables the backlight.  
8.3.1.1.2 LED Current With Brightness Selection '01'  
When LED brightness is controlled from the PWM, the PWM duty cycle directly controls the LED current in LED1  
and LED2. LED mapping can be selected to be either linear or exponential. When this mode is selected, setting  
the I2C brightness register to 0 does not disable the backlight.  
With exponential mapping the PWM duty cycle-to-current response is approximated by the equation:  
ILED = 50 µA × 1.0030405722047 × PWM D/C (PWM D/C 0)  
(3)  
Equation 3 is valid for PWM duty cycles other than 0. Duty cycle 0 disables the backlight.  
With linear mapping the PWM duty cycle-to-current response is approximated by the equation:  
ILED = 37.67 µA + (12.33 µA × 2047 × PWM D/C) (PWM D/C 0)  
(4)  
Equation 4 is valid for PWM duty cycles other than 0. Duty cycle 0 disables the backlight.  
8.3.1.1.3 LED Current With Brightness Selections '10' and '11'  
When LED brightness is controlled with the combination of the I2C register and the PWM duty cycle, the  
multiplication result of I2C register value and PWM duty cycle controls the LED current in LED1 and LED2. LED  
mapping can be selected as either linear or exponential.  
With exponential mapping the multiplication result-to-current response is approximated by the equation:  
ILED = 50 µA × 1.003040572I2C BRT CODE × PWM D/C  
(5)  
Equation 5 is valid for brightness values other than 0. Brightness value (PWM D/C or I2C BRT CODE) 0 disables  
the backligh.  
With linear mapping the PWM duty cycle-to-current response is approximated by the equation:  
ILED = 37.67 µA + (12.33 µA × I2C BRT CODE × PWM D/C)  
(6)  
Equation 6 is valid for brightness values other than 0. Brightness value (PWM D/C or I2C BRT CODE) 0  
programs 0 current.  
The key difference between the two brightness modes is how the PWM input affects the LED output current.  
When brightness mode is '10', changing PWM value causes LED current to slope form the current value to the  
new value. With the brightness setting '11', a change in PWM value causes an instant change in the LED current.  
This makes brightness setting '11' suitable for CABC operation.  
8.3.1.2 Linear Slope and Advanced Slope  
Sloper smooths the transition from one brightness value to another. Slope time can be adjusted from 0 ms to  
4000 ms with SLOPE[3:0] bits. Slope time is used for sloping up and down. Slope time always remains the same  
regardless of the amount of change in brightness. Advanced slope makes brightness changes smooth for the  
human eye.  
22  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
 
 
 
 
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
Dithering function further smooths the slope by jumping between two adjacent current values. Dithering  
frequency can be programmed with DITHER_FREQ_SEL[3:0] bits. Dithering function can be disabled with  
DISABLE_DITHER bit.  
Sloper  
Input  
Brightness  
Time  
Brightness  
Output  
Steady state with or without dithering  
Normal  
slope  
Advanced  
slope  
Time  
Slope  
Time  
If dither is enabled it will  
be used during transition  
to enable smooth effect.  
Figure 45. Sloper  
Table 4. Slope Times  
SLOPE BITS[3:0]  
SLOPE TIME (ms)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0, slope function disabled, immediate brightness change  
1
2
5
10  
20  
50  
100  
250  
500  
750  
1000  
1500  
2000  
3000  
4000  
8.3.1.3 Mapper  
The mapper block maps the digital word into current code which is set for the LED driver. The user can select  
whether the mapping is exponential or linear with the LINEAR_MAPPER bit.  
Exponential control is tailored to the response of the human eye such that the perceived change in brightness  
during ramp up or ramp down is linear.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
8.3.1.4 PWM Detector and PWM Input  
The PWM detector block measures the duty cycle in the PWM pin. The PWM period is measured from the  
rising/falling edge to the next rising/falling edge. PWM edge detection can be selected as rising or falling from  
register 0x08 bit 7. PWM polarity can be changed with register 0x08 bit 6. The PWM input block timeout is 24 ms  
after the last rising edge, which should be taken into account for 0% and 100% brightness settings (for setting  
100% brightness, high level of PWM input signal should be at least 24 ms). Minimum on and off times for PWM  
input signal are 400 ns.  
PWM input resolution is defined by the PWM detector sampling rate (24 MHz typ.). Resolution depends on the  
input signal frequency — for example, with 10-kHz PWM input frequency the resolution is 11-bit. If a higher input  
frequency is used, the resolution is lower. The minimum recommended PWM frequency is 100 Hz, and maximum  
recommended PWM frequency is 20 kHz.  
PWM hysteresis selection sets the minimum allowable change to the input. If a smaller change is detected, it is  
ignored. With hysteresis the constant changing between two brightness values is avoided if there is small jitter in  
the input signal. Hysteresis is selected with HYSTERESIS bits in register 0x08. Using a higher hysteresis setting  
is recommended with high PWM input frequencies.  
The PWM detector is disabled in I2C brightness mode to minimize current consumption.  
8.3.2 Backlight Boost Converter  
The LM3631 can drive two LED strings with up to 8 LEDs per string. The high voltage required by the LED  
strings is generated with an asynchronous backlight boost converter. An adaptive voltage control loop  
automatically adjusts the output voltage based on the voltage over the LED drivers LED1 and LED2.  
The LM3631 has two switching frequency modes (high and low). These are set via the Boost Frequency Select  
bit. The nominal low- and high-frequency set points are 500 kHz and 1 MHz, respectively. Operation in low-  
frequency mode results in better efficiency at lighter load currents due to the decreased switching losses.  
Operation in high-frequency mode gives better efficiency at higher load currents due to the reduced inductor  
current ripple and the resulting lower conduction losses in the MOSFETs and inductor.  
LED1  
LED2  
VOUT  
SW  
BL_BST_OVP [1:0]  
LIGHT  
LOAD  
BOOST_SEL_I [1:0]  
BOOST_SEL_P [1:0]  
OVP  
VHR  
(Feedback)  
R
R
S
R
-
GM  
+
VREF  
R
GATE  
DRIVER  
OCP  
CURRENT  
SENSE  
LED Driver  
BL_BST_FREQ [0]  
OFF/BLANK TIME  
PULSE GENERATOR  
CURRENT RAMP  
GENERATOR  
GM  
BOOST OSCILLATOR  
PEAK_CURR_LIM [1:0]  
INDUCTOR [0]  
Figure 46. Backlight Boost Block Diagram  
24  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
8.3.2.1 Headroom Voltage  
Saturation voltage of the LED drivers depends on the output current setting. In order to optimize LED drive  
efficiency, while maintaining good LED current accuracy, the LED-driver-regulated headroom voltage (VHR) is  
kept slightly above LED driver saturation voltage. To maintain good LED current accuracy with lower current  
settings, LED driver size is scaled down for the lower current settings (below 1/16 of max current). In order to  
ensure that both current sinks remain in regulation when there is a mismatch in string voltages, the boost  
converter output voltage is regulated based on the LED driver with lower headroom voltage. For example, if the  
LEDs connected to LED1 require 25 V at the programmed current, and the LEDs connected to LED2 require  
25.5 V at the programmed current, the voltage at LED1 is VHR + 0.5 V, and the voltage at LED2 is VHR  
.
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
0.01  
0.1  
1
10  
100  
String LED Current (mA)  
D001  
Figure 47. Regulated Headroom vs LED Current  
8.3.2.2 Automatic Switching Frequency Shift  
To take advantage of frequency vs load dependent losses, the LM3631 has an automatic frequency-select mode.  
In automatic frequency-select mode the switching-frequency bit is automatically changed based on the  
programmed LED current. The threshold (or LED Brightness Code) at which the frequency switchover occurs is  
programmable via the AUTOFREQ_THRESHOLD. This register contains an 8-bit code which is compared  
against the 8 MSB’s of the brightness code (BRT[10:3]). When BRT[10:3] > AUTOFREQ_THRESH[7:0], the  
Boost Frequency Select Bit is set to a ‘1’, and the device operates in high-frequency mode. When BRT[10:3] ≤  
AUTOFREQ_THRESH[7:0], the Frequency Select Bit is automatically set to ‘0’, and the device operates in low-  
frequency mode.  
When automatic frequency-select mode is disabled, the switching frequency operates at the programmed high-  
or low-frequency setting across the entire LED current range.  
8.3.2.3 Inductor Select Bit  
The LM3631 can operate with a 10-µH or 22-µH inductor. However, the LM3631 backlight boost-control loop  
requires adjustment of internal loop compensation parameters based on the inductance value selected for the  
application. This is done through the INDUCTOR bit. For 10-µH inductors, the INDUCTOR bit must be set to '1'.  
For a 22-µH inductor, the INDUCTOR bit should be set to ‘0’.  
8.3.2.4 PI-Compensator  
The LM3631 backlight boost converter internal loop-compensation parameters (SEL_I[1:0] and SEL_P[1:0]) are  
factory-selected to optimize performance and stability for most backlight configurations. These settings should  
not need adjustment. If these settings are changed, application needs to be carefully evaluated to ensure stability  
and performance in all operating conditions.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
8.3.3 Backlight Protection and Faults  
8.3.3.1 Overvoltage Protection (OVP) and Open-Load Fault Protection  
The LM3631 provides an OVP that monitors the LED boost output voltage (VOUT) and protects OUT and SW  
from exceeding safe operating voltages. The OVP threshold can be set with the I2C register bits. The OVP limit  
can be set to 17 V, 21 V, 25 V, or 29 V. The OVP monitor differentiates between two overvoltage conditions and  
responds accordingly as outlined below:  
Case 1 (OVP Threshold hit and (VLED1 and VLED2 ) > 40 mV): In steady-state operation with VOUT near the  
OVP threshold (VOVP), a rapid change in VIN or brightness code can result in a momentary transient  
excursion of VOUT above the OVP threshold. In this case the boost circuitry is disabled until VOUT  
drops below VOVP - VHYST. Once this happens the boost is re-enabled, and steady state regulation  
can commence. If the OVP pulse length is over 1 ms, an OVP fault is set.  
Case 2 (OVP Threshold hit and (VLED1 and VLED2 ) < 40 mV): When one or all of the LED strings is open,  
the boost converter drives VOUT above VOVP and at the same time the open string(s) current sink  
headroom voltage(s) drops to 0. When LM3631 detects three pulses (if VOUT > VOVP and (VLED1 or  
VLED2) < 40 mV), the OVP Fault flag (BL_OVPFLT) is set. If the OVP pulse length is over 1 ms, an  
OVP fault is set. The flag is cleared with rising LCD_EN or an I2C write.  
8.3.3.2 Overcurrent Protection (OCP) and Overcurrent Protection Fault  
The LM3631 has 4 selectable OCP thresholds. The programmable options are 600 mA, 700 mA, 800 mA, or 900  
mA. The OCP threshold is a cycle-by-cycle current limit detected in the low-side NFET. Once the threshold is  
reached, the NFET turns off for the remainder of the switching period.  
8.3.3.2.1 Overcurrent Protection Fault Flag (BL_OCPFLT)  
If enough OCP threshold events occur the Overcurrent Protection Fault (BL_OCPFLT) flag is set. To avoid  
transient conditions from inadvertently setting the BL_OCPFLT Flag, a Pulse Density Counter monitors OCP  
threshold events over a 128-µs period. If the Pulse Density Counter counts 2 or more OCP events during the  
128-µs period, the pulse density count is considered true. If 8 consecutive 128-µs periods occur where the pulse  
density count is true (1024 µs total), the BL_OCPFLT fault is set. Fault is cleared by rising edge of the LCD_EN  
or an I2C write '1' to the BL_OCPFLT bit.  
NOTE  
The OCP signaling is ignored for 4 ms after the backlight boost is started or the brightness  
value is changed.  
8.3.3.2.2 Short Circuit Fault Flag (BL_SCFLT)  
If an OCP fault has occurred, and the headroom voltage is too low (VLED1 or VLED2 < 40 mV), the Short Circuit  
Fault (BL_SCFLT) fault is set, and all power is shut down. The fault must be cleared to enable power — it is  
cleared by the rising edge of the LCD_EN or by an I2C write '1' to the BL_SCFLT bit.  
NOTE  
The OCP signaling is ignored for 4 ms after the backlight boost is started or the brightness  
value is changed.  
8.3.4 LCD Bias  
8.3.4.1 Display Bias Power (VPOS, VNEG, VOREF  
)
A single high-efficiency boost converter provides a positive voltage rail, VBST_OUT, which serves as the power rail  
for the LCD VPOS and VNEG biases, as well as for an additional regulated output VOREF. This can be used to  
supply the display gamma reference, VCOM and VCS voltages.  
The VPOS output LDO, LDO_VPOS, has a programmable range from 4 V up to 6 V with 50-mV steps and can  
supply up to 100 mA.  
The VNEG output, CP_VNEG, is generated from a regulated, inverting charge pump and has an adjustable  
26  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
range of –6 V up to –4 V with 50-mV steps and a maximum load of 80 mA. During start-up there is a  
minimum delay of 500 µs due to biasing the flycap.  
The VOREF output LDO, LDO_OREF, has programmable range from 4 V to 6 V, further adjustable in 50-mV  
increments and can supply up to 50 mA.  
The boost voltage can be selected from the an I2C register. When selecting suitable boost-output voltage, the  
following estimation can be used VBST = max(VLDO_VPOS, |VCP_VNEG|,VLDO_OREF) + 200 mV (with lower currents) or  
+ 300 mV (with higher currents). When the device input voltage (VIN) > sets the LCD boost output voltage, the  
boost voltage goes to VIN + 100 mV.  
Table 5. LCD Boost VOUT  
LCD_BOOST_VOUT BITS  
000 000  
000 001  
000 010  
000 011  
000 100  
000 101  
000 110  
...  
LCD BOOST OUTPUT VOLTAGE (V)  
4.50  
4.55  
4.60  
4.65  
4.70  
4.75  
4.80  
...  
011 111  
100 000  
100 001  
100 010  
100 011  
100 100  
100 101  
6.05  
6.10  
6.15  
6.20  
6.25  
6.30  
6.35  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
LCD Controller  
Supply Output  
LDO_CONT  
VCONT  
LDO_CONT  
BST_OUT  
VIN  
10 µF  
VOUT  
BST_SW  
LCD Bias Boost  
Converter  
+
VIN  
10 µF  
CIN  
10 µF  
±
LCD Gamma  
Reference Output  
LDO_OREF  
LDO_OREF  
VOREF  
10 µF  
VPOS  
LCD Positive  
Bias Output  
LDO_VPOS  
LDO_VPOS  
C1  
10 µF  
10 µF  
C2  
LCD Negative  
Bias Output  
CP_VNEG  
VNEG  
CP_VNEG  
10 µF  
Figure 48. LCD Boost  
8.3.4.2 Display Bias Power Sequencing (VPOS, VNEG, VOREF, VCONT  
)
The LM3631 supports configurable output power-up and power-down timing for VPOS, VNEG, VCONT and VOREF  
.
The LED current sinks can start up after the bias voltages power ok signals (or after the timeout period has  
elapsed (20 ms typ.)) and shuts down before the bias power-down sequence begins. The bias power-down  
sequence does not start until after the LED current sinks have turned off.  
The trigger for the power-up sequence is either a change from logic LOW to logic HIGH on the LCD_EN pin or  
the Display Bias Outputs bit. The trigger for the power-down sequence is either a change from logic HIGH to  
logic LOW on the LCD_EN pin or the Display Bias Outputs bit. The pull-downs or pull-ups for each output, if  
enabled, disengage immediately upon start-up of each respective output and re-engages immediately upon  
shutdown of each respective output.  
Table 6. Start-Up and Shutdown Delays  
START-UP DELAY SETTING (LDO_OREF_SU_DLY,  
LDO_VPOS_SU_DLY, CP_VNEG_SU_DLY) (ms)  
SHUTDOWN DELAY SETTING (LDO_OREF_SD_DLY,  
LDO_VPOS_SD_DLY, CP_VNEG_SD_DLY) (ms)  
0000 = 0  
0001 = 1  
0010 = 2  
0011 = 3  
0100 = 4  
0101 = 5  
0110 = 6  
0111 = 7  
1000 = 8  
0000 = 0  
0001 = 1  
0010 = 2  
0011 = 3  
0100 = 4  
0101 = 5  
0110 = 6  
0111 = 7  
1000 = 8  
28  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
Table 6. Start-Up and Shutdown Delays (continued)  
START-UP DELAY SETTING (LDO_OREF_SU_DLY,  
SHUTDOWN DELAY SETTING (LDO_OREF_SD_DLY,  
LDO_VPOS_SU_DLY, CP_VNEG_SU_DLY) (ms)  
LDO_VPOS_SD_DLY, CP_VNEG_SD_DLY) (ms)  
1001 = 9  
1010 = 10  
1011 = 11  
1100 = 12  
1101 = 13  
1110 = 14  
1111 = 15  
1001 = 9  
1010 = 10  
1011 = 11  
1100 = 12  
1101 = 13  
1110 = 14  
1111 = 15  
LDO_CONT start-up/shutdown delay has a 3-bit programmable range.  
Table 7. LDO_CONT Start-Up/Shutdown Delays  
LDO_CONT START-UP/SHUTDOWN DELAY SETTING  
START-UP/SHUTDOWN DELAY (ms)  
(LDO_CONT_SU_DLY, LDO_CONT_SD_DLY)  
000  
001  
010  
011  
100  
101  
110  
111  
0
2
5
10  
20  
50  
100  
200  
LDO_OREF_SD_DLY  
ULVO_OK  
LDO_CONT_  
SU_DLY  
LDO_OREF_  
SU_DLY  
SU_DLY  
LDO_VPOS_SD_DLY  
VIN  
nRST  
LCD_EN  
LDO_CONT  
BST_OUT  
LDO_OREF  
BST_PWROK  
(Internal Signal)  
LDO_VPOS  
CP_VNEG  
BSTOK  
LDO_VPOS_SU_DLY  
CP_VNEG_  
SD_DLY  
LDO_CONT_  
SD_DLY  
CP_VNEG_SU_DLY  
Figure 49. General LCD Bias Power Sequence Without Backlight  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
Last bias  
power OK  
LDO_OREF_SD_DLY  
ULVO_OK  
SU_DLY  
LDO_CONT_  
SU_DLY  
LDO_VPOS_SD_DLY  
LDO_OREF_SU_DLY  
VIN  
nRST  
LCD_EN  
LDO_CONT  
BST_OUT  
LCD bias and  
Backlight ON  
LDO_OREF  
BST_PWROK  
(Internal Signal)  
LDO_VPOS  
CP_VNEG  
BSTOK  
LDO_VPOS_SU_DLY  
CP_VNEG_SU_DLY  
CP_VNEG_  
SD_DLY  
LDO_CONT_  
SD_DLY  
Backlight  
LED sinks  
turned off  
Figure 50. General LCD Bias Power Sequence With Backlight  
8.3.4.2.1 Start-Up and Shutdown Delays  
SU_DLY  
Start-up delay from LCD_EN = HIGH to start up of the internal references, bias, and oscillator.  
LDO_CONT_SU_DLY Delay between the time LDO_CONT signal starts to rise ‘HIGH’, and the time before  
BST_OUT starts to rise. LDO_CONT delay can be adjusted with LDO_CONT_SU_DLY I2C register  
start-up delay bits. In case LDO_CONT is disabled, BST_OUT starts to rise after LCD_EN is set  
‘HIGH’.  
BSTOK  
Bias boost startup delay. Time between the time when BST_OUT voltage starts to rise and the time  
when BST_PWROK (internal) signal rises to ‘HIGH’.  
LDO_OREF_SU_DLY Delay between the time when BST_PWROK signal rises to ‘HIGH’ and LDO_OREF  
signal starts to rise. Delay can be adjusted with I2C register start-up delay bits  
LDO_OREF_SU_DLY.  
LDO_VPOS_SU_DLY Delay between the time when BST_PWROK signal rises to ‘HIGH’ and LDO_VPOS  
signal starts to rise. Delay can be adjusted with I2C register start-up delay bits  
LDO_VPOS_SU_DLY.  
CP_VNEG_SU_DLY Delay between the time when BST_PWROK signal rises to ‘HIGH’ and CP_VNEG signal  
starts to fall. Delay can be adjusted with I2C register start-up delay bits CP_VNEG_SU_DLY. Note  
that there is a minimum delay of 500 µs (typ.) due to biasing of the flycap.  
CP_VNEG_SD_DLY Delay between the time when LCD_EN signal is set LOW and the time when CP_VNEG  
signal starts to rise. Delay can be adjusted with I2C register off delay bits CP_VNEG_SD_DLY.  
30  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
LDO_VPOS_SD_DLY Delay between the time when LCD_EN signal is set LOW and the time when  
LDO_VPOS signal starts to fall. Delay can be adjusted with I2C register off delay bits  
LDO_VPOS_SD_DLY.  
LDO_OREF_SD_DLY Delay between the time when LCD_EN signal is set LOW and the time when  
LDO_OREF signals start to fall. Delay can be adjusted with I2C register off delay bits  
LDO_OREF_SD_DLY.  
LDO_CONT_SD_DLY After last of the LDO_OREF, CP_VNEG, or LDO_VPOS shutdown time has ended  
LDO_CONT signal starts to fall in case it is enabled.  
8.3.4.2.2 Special Conditions During Display Bias Power Sequencing  
Short nRST Condition During Shutdown Sequence If nRST is logic LOW for longer than the deglitch time, all  
appropriate outputs are sequenced down completely. If nRST is toggled or is held at logic HIGH  
before the all outputs are shutdown, the shutdown sequencing continues to turn off all outputs and  
set all the internal registers to the default state. Note that if nRST is toggled or is held at logic HIGH  
before all outputs are shut down, and FLAG pin is configured as fault, there are small glitches in the  
FLAG line after nRST is set HIGH.  
Thermal Fault During Shutdown Sequence A thermal fault, when the die temperature is greater than TSD  
,
shuts down all outputs. When the die temperature drops by TSD(HYSTERESIS), the outputs can be re-  
started by toggling LCD_EN or the “LCD_EN” bit of register 0x00.  
Backlight Sequence During LCD Bias Start-up Sequence Backlight cannot be enabled before LCD bias start-  
up sequence is complete. If the backlight is enabled (via either the PWM or I2C register) before the  
LCD bias start-up sequence is complete, the backlight start-up sequence starts after LCD bias  
start-up sequence is complete.  
8.3.4.3 Active Discharge  
An active discharge is implemented for each output rail (LDO_OREF, LDO_VPOS, LDO_CONT and CP_VNEG)  
with internal switch resistance. The discharge function is programmable by I2C interface and is triggered by  
LCD_EN = “LOW”. During power-up, each output programmed to be actively discharged (at power-down) is  
actively discharged as long as it is not enabled internally.  
8.3.4.4 LCD Bias Protection  
The LM3631 provides OVP that monitors the LCD Bias boost output voltage (VOUT) and protects BST_OUT and  
BST_SW from exceeding safe operating voltages. The OVP threshold can be set with the I2C register bits. If  
there is an LCD bias overvoltage fault, an LCD_OVPFLT fault is set. The fault is cleared with the rising edge of  
LCD_EN or an I2C write '1' to the LCD_OVPFLT bit.  
LDO_VPOS has an OCP that limits the maximum current drawn to 200 mA (typ.). If the fault condition persists  
over 2 ms, the LCD is shut down according to the normal shutdown sequence, and an LDO_VPOS_FLT fault is  
set. The fault must be cleared to enable power; the fault is cleared with rising edge of LCD_EN or an I2C write '1'  
to LDO_VPOS_FLT bit.  
LDO_OREF has OCP that limits the maximum current drawn to 80 mA (typ.). If the fault condition persists over 2  
ms, the LCD is shut down according to the normal shutdown sequence, and an LDO_OREF_FLT fault is set. The  
fault must be cleared to enable powers; the fault is cleared with rising edge of LCD_EN or I2C write '1' to  
LDO_OREF_FLT bit.  
CP_VNEG has a short-circuit and OVP feature, which monitors the charge-pump voltage.  
If the charge-pump voltage goes 250 mv (typ.) below its target set-point, the charge pump is shut down. If the  
OVP persists for 2 ms, all bias outputs are turned off following the normal shutdown sequence, and a  
NEG_CP_OVP fault is set. The fault must be cleared, to re-enable the outputs, with the rising edge of  
LCD_EN or an I2C write '1' to NEG_CP_OVP bit.  
If the charge-pump voltage goes over –1 V, the charge pump is shut down, and a NEG_CP_SC fault gets set.  
The fault must be cleared, to re-enable the outputs, with rising edge of LCD_EN or an I2C write '1' to  
NEG_CP_SC.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
8.3.5 Display Controller Power (VLDO_CONT  
)
The LM3631 supports an additional regulated output VLDO_CONT which can supply, for example, the display’s  
controller voltage. The LDO_CONT has a 2-bit programmable range with 1.8-V, 2.3-V, 2.8-V and 3.3-V values  
and can supply up to 80 mA. This LDO is powered directly from VIN voltage.  
NOTE  
When the LDO voltage is set to 2.8 V, VIN voltage must be kept over 2.8 V to ensure LDO  
proper functionality. Similarly, when LDO voltage is set to 3.3 V, the battery voltage must  
be kept over 3.3 V to ensure LDO proper functionality.  
LDO_CONT has an OCP feature. If the OCP fault condition persists over 2 ms, a fault is set. LDO_CONT limits  
the current. Fault is cleared with rising edge of LCD_EN or an I2C write '1' to the LDO_CONT_FLT bit.  
8.3.6 RESET Register  
I2C register 0x14 is the register reset. Writing FFh into this register resets all I2C register values to default values.  
Default values are described in Table 1.  
8.3.7 nRST Input  
The nRST input is a global hardware enable for the LM3631. This pin must be pulled to logic HIGH to enable the  
device and the I2C-compatible interface. This pin is high-impedance and cannot be left floating. When this pin is  
at logic LOW, the LM3631 is placed in shutdown, the I2C-compatible interface is disabled, and the internal  
registers are reset to their default state. It is recommended that VIN has risen above a 2.7-V before setting nRST  
HIGH.  
8.3.8 FLAG Pin  
The FLAG pin can be used as an indicator to the application processor when the LM3631 encounters, for  
example, OVP. The fault conditions which set the FLAG pin to pull low can be programmed via I2C. Additionally,  
the power-good flag can be set to trigger from the flag for the bias voltages.  
The FLAG pin is an open-drain output. When this pin is used, a pullup resistor is needed. If not used, this pin can  
be left floating.  
Table 8. FLAG Pin Configuration  
FLAG PIN CONFIGURATION BITS  
FLAG PIN INFORMATION  
00  
Flag disabled, no flag indication  
Power-Good state, selectable with Power-Good flag control bits  
(PG_FLAG_CTRL)  
01  
10  
11  
Backlight on state  
Fault state  
8.3.9 Power-Good Flag  
The Power-Good flag can be used to indicate an application processor power-good situation of the bias voltages.  
The Power-Good flag information can be selected with Power-Good Flag control bits (PG_FLAG_CTRL). This  
information can be directed to the FLAG pin with FLAG pin configuration bits.  
NOTE  
When nRST is pulled low before the power sequence is complete, the Power-Good Flag  
indication is triggered even though the condition (described in Table 9) to trigger that the  
Power-Good flag is not fulfilled. When the Power-Good configuration is '00' (after last  
supply reaches target), LDO_VPOS, CP_VNEG, and LDO_OREF all need to be enabled.  
32  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
Table 9. Power-Good Flag Configuration  
POWER-GOOD FLAG  
CONFIGURATION BITS  
FLAG PIN INFORMATION DURING START-UP  
FLAG PIN INFORMATION DURING SHUTDOWN  
Power-Good bit set to '1' after last supply reaches  
target  
Power-Good bit set to '0' after first supply falls below  
target  
00  
Power-Good bit set to '1' after LDO_VPOS reaches Power-Good bit set to '0' after LDO_VPOS falls below  
01  
10  
11  
target  
target  
Power-Good bit set to '1' after CP_VNEG reaches  
target  
Power-Good bit set to '0' after CP_VNEG falls below  
target  
Power-Good bit set to '1' after LDO_OREF reaches Power-Good bit set to '0' after LDO_OREF falls below  
target target  
8.3.10 OTP_SEL Pin  
The OTP selection pin is dedicated for selection between two different default setups. Setting this pin to VBATT  
or GND selects the OTP from where the default setup is loaded. Note that this selection applies only for the  
backlight and LCD configuration registers (registers from 0x05h to 0x12h).  
8.3.11 Thermal Shutdown  
The LM3631 has Thermal Shutdown protection which shuts down the backlight, all bias voltage outputs and  
enters standby mode when the die temperature reaches or exceeds 140°C (typ.). When the die temperature falls  
below 120°C (typ.), the LM3631 comes out of standby. The I2C interface remains active during a Thermal  
Shutdown event. If a TSD fault occurs, TMPFLT fault is set — the fault is cleared by an I2C write '1' to TMPFLT  
bit or by setting LCD_EN high.  
8.3.12 Undervoltage Lockout  
The LM3631 has an undervoltage lockout feature (UVLO), which indicates of the device operation at low input  
voltages. If the supply voltage VIN is below the UVLO threshold, a UVLO fault is set. UVLO fault is cleared by an  
I2C write '1' to UVLO bit. UVLO does not shut down the outputs.  
UVLO rising threshold is 2.6 V (typ.), and UVLO falling threshold is 2.5 V (typ.).  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
8.4 Device Functional Modes  
8.4.1 Modes of Operation  
Shutdown: The LM3631 is in shutdown when nRST pin is low.  
Standby:  
After nRST pin is set high, and VIN is over UVLO limit, the LM3631 goes into Standby mode. Before  
entering Standby mode, references and bias currents are enabled (bias delay typically 200 µs), and  
registers are read from OTP (EPROM read delay typically 700 µs). In Standby mode references  
and bias currents are enabled, and I2C writes are allowed. LCD powers, and backlight are disabled.  
Normal mode: When LCD_EN is set to high (pin or bit), the start-up sequence is started. During the start-up  
sequence LDO_CONT, LCD Boost, and LCD bias powers are started. If the LDO_CONT is  
disabled, the start-up sequence goes directly to LCD Boost start-up.  
LDO_CONT start-up: LDO_CONT is enabled. Programmable delay of 0 to 200 ms.  
LCD Boost start-up: LCD Boost is enabled. Waits until Boost output voltage is reached  
90% of target value.  
LCD bias start-up enables, sequentially, LDO_VPOS, CP_VNEG, and LDO_OREF  
according to start-up delay settings.  
After the LCD bias start-up has completed, the LM3631 enters backlight start-up mode if  
BL_EN bit is set to ‘1’, and the PWM brightness value is different than 0. Even if the  
backlight is not enabled, LCD powers remains active. If the backlight is enabled, and BL_EN  
bit is set to ‘0’ or PWM brightness value is set to 0, backlight is disabled. LCD powers  
remains active.  
If LCD_EN is set to ‘0’, the LM3631 shuts down backlight and bias powers and enters  
Standby mode. During power down the backlight is shut down first if it was enabled. After  
backlight shutdown is completed, the device enters LCD Bias shutdown. In LCD bias  
shutdown LDO_VPOS, CP_VNEG, and LDO_OREF are shut down sequentially according to  
shutdown delay settings. After the LDO_VPOS, CP_VNEG, and LDO_OREF shutdown  
sequence is complete, LCD Boost and LDO_CONT (if it was enabled) are shut down.  
LDO_CONT is shut down after adjustable delay (0 to 200 ms). Once LDO_CONT has shut  
down, the LM3631 enters Standby mode.  
In a fault situation (thermal, backlight boost short circuit, LDO_OREF overcurrent, VPOS  
overcurrent, or CP short circuit), the device starts the shutdown sequence and enters  
Standby mode.  
34  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
Device Functional Modes (continued)  
Shutdown  
UVLO fault  
during startup  
nRST = HIGH &  
> UVLO  
V
IN  
Bias delay  
(200 µs typ)  
No UVLO fault  
during startup  
Eprom read  
(700 µs typ)  
eprom_read_done  
Standby  
LCD Bias Shutdown done  
and  
LDO_CONT disabled  
LDO Cont  
Shutdown done  
LCD disable  
LCD Bias  
LCD_EN = 1 (pin or bit)  
and no faults active  
LDO_CONT enabled  
LCD_EN = 1 (pin or bit)  
and no faults active  
LDO_CONT disabled  
LDO_Cont  
Start Up  
LDO Cont  
Shutdown  
Shutdown done  
LCD_Boost  
Start Up  
LCD Bias  
Shutdown  
LCD disable  
LCD disable  
BST_PWROK  
LCD Bias  
Start Up  
LCD disable  
Normal Operation  
LCD bias  
Startup done  
LCD disable or  
BL_EN=0 or PWM=0  
Backlight  
Shutdown  
LCD Active  
LCD enabled and  
backlight shutdown  
done  
Power Good OK,  
BL_EN=1 DQGꢀ3:00  
Backlight startup done  
Backlight  
Startup  
Figure 51. Modes of Operations  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
8.5 Programming  
8.5.1 I2C-Compatible Serial Bus Interface  
8.5.1.1 Interface Bus Overview  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers on  
the device. This protocol uses a two-wire interface for bidirectional communications between the IC's connected  
to the bus. The two interface lines are the Serial Data Line (SDA) and the Serial Clock Line (SCL). These lines  
should be connected to a positive supply via a pull-up resistor and remain HIGH even when the bus is idle.  
Every device on the bus is assigned a unique address and acts as either a Master or a Slave, depending  
whether it generates or receives the serial clock (SCL).  
8.5.1.2 Data Transactions  
One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock  
(SCL). Consequently, throughout the clock’s high period, the data should remain stable. Any changes on the  
SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New  
data should be sent during the low SCL state. This protocol permits a single data line to transfer both  
command/control information and data using the synchronous serial clock.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
Figure 52. Data Validity  
Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software), and a  
Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is  
transferred with the most significant bit first. After each byte, an Acknowledge signal must follow. The following  
sections provide further details of this process.  
Transmitter Stays off the  
Bus During the Acknowledge Clock  
Acknowledge Signal from Receiver  
3...6  
7
9
1
8
2
S
Start  
Condition  
Figure 53. Acknowledge Signal  
36  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
Programming (continued)  
The Master device on the bus always generates the Start and Stop Conditions (control codes). After a Start  
Condition is generated, the bus is considered busy, and it retains this status until a certain time after a Stop  
Condition is generated. A high-to-low transition of the data line (SDA) while the clock (SCL) is high indicates a  
Start Condition. A low-to-high transition of the SDA line while the SCL is high indicates a Stop Condition.  
SDA  
SCL  
S
P
START condition  
STOP condition  
Figure 54. Start and Stop Conditions  
In addition to the first Start Condition, a repeated Start Condition can be generated in the middle of a transaction.  
This allows another device to be accessed, or a register read cycle.  
8.5.1.3 Acknowledge Cycle  
The Acknowledge Cycle consists of two signals: the acknowledge clock pulse the master sends with each byte  
transferred, and the acknowledge signal sent by the receiving device.  
The master generates the acknowledge clock pulse on the ninth clock pulse of the byte transfer. The transmitter  
releases the SDA line (permits it to go high) to allow the receiver to send the acknowledge signal. The receiver  
must pull down the SDA line during the acknowledge clock pulse and ensure that SDA remains low during the  
high period of the clock pulse, thus signaling the correct reception of the last data byte and its readiness to  
receive the next byte.  
8.5.1.4 Acknowledge After Every Byte Rule  
The master generates an acknowledge clock pulse after each byte transfer. The receiver sends an acknowledge  
signal after every byte received.  
There is one exception to the “acknowledge after every byte” rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not-acknowledging (“negative acknowledge”) the last byte clocked  
out of the slave. This “negative acknowledge” still includes the acknowledge clock pulse (generated by the  
master), but the SDA line is not pulled down.  
8.5.1.5 Addressing Transfer Formats  
Each device on the bus has a unique slave address. The LM3631 operates as a slave device with the 7-bit  
address. If an 8-bit address is used for programming, the 8th bit is '1' for read and '0' for write. The 7-bit address  
for the LM3631 is 0x29.  
Before any data is transmitted, the master transmits the address of the slave being addressed. The slave device  
should send an acknowledge signal on the SDA line, once it recognizes its address. The slave address is the  
first seven bits after a Start Condition. The direction of the data transfer (R/W) depends on the bit sent after the  
slave address — the eighth bit.  
When the slave address is sent, each device in the system compares this slave address with its own. If there is a  
match, the device considers itself addressed and sends an acknowledge signal. Depending upon the state of the  
R/W bit (1:read, 0:write), the device acts as a transmitter or a receiver.  
MSB  
LSB  
ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0  
R/W  
bit0  
Bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
I2C SLAVE address (chip address)  
Figure 55. I2C Device Address  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
Programming (continued)  
Control Register Write Cycle  
Master device generates start condition.  
Master device sends slave address (7 bits) and the data direction bit (r/w = 0).  
Slave device sends acknowledge signal if the slave address is correct.  
Master sends control register address (8 bits).  
Slave sends acknowledge signal.  
Master sends data byte to be written to the addressed register.  
Slave sends acknowledge signal.  
If master sends further data bytes the control register address is incremented by one after acknowledge  
signal.  
Write cycle ends when the master creates stop condition.  
Control Register Read Cycle  
Master device generates a start condition.  
Master device sends slave address (7 bits) and the data direction bit (r/w = 0).  
Slave device sends acknowledge signal if the slave address is correct.  
Master sends control register address (8 bits).  
Slave sends acknowledge signal  
Master device generates repeated start condition.  
Master sends the slave address (7 bits) and the data direction bit (r/w = 1).  
Slave sends acknowledge signal if the slave address is correct.  
Slave sends data byte from addressed register.  
If the master device sends acknowledge signal, the control register address is incremented by one. Slave  
device sends data byte from addressed register.  
Read cycle ends when the master does not generate acknowledge signal after data byte and generates stop  
condition.  
Table 10. I2C Data Read/Write(1)  
ADDRESS MODE  
<Start Condition>  
<Slave Address><r/w =0>[Ack]  
<Register Addr>[Ack]  
<Repeated Start Condition>  
<Slave Address><r/w = 1>[Ack]  
Data Read  
[Register Data]<Ack or NAck>  
...additional reads from subsequent register address possible  
<Stop Condition>  
<Start Condition>  
<Slave Address><r/w = 0>[Ack]  
<Register Addr>[Ack]  
<Register Data>[Ack]  
Data Write  
...additional writes to subsequent register address possible  
<Stop Condition>  
(1) < > = Data from master, [ ] = Data from slave  
38  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
ack from slave  
ack from slave  
ack from slave  
start MSB Chip id LSB  
w
ack MSB Register Addr LSB ack MSB  
Data  
LSB ack stop  
SCL  
SDA  
start  
id = 010 1001b  
w
ack  
address = 02H  
ack  
address 02H data  
ack stop  
Figure 56. Register Write Format  
When a READ function is to be accomplished, a WRITE function must precede the READ function, as show in  
the Read Cycle waveform.  
ack from slave  
ack from slave repeated start  
ack from slavedata from slave nack from master  
Register  
Addr  
start MSB Chip id LSB  
w
MSB  
LSB  
rs MSB Chip Address LSB  
r
MSB Data LSB  
stop  
SCL  
SDA  
start  
id = 010 1001b  
w
ack  
address = 00H  
ack rs  
id = 010 1001b  
r ack address 00H data nack stop  
Figure 57. Register Read Format  
NOTE  
w = write (SDA = 0), r = read (SDA = 1), ack = acknowledge (SDA pulled down by either  
master or slave), rs = repeated start id = 7-bit chip address  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
8.6 Register Maps  
Table 11. Device Control Register (0x00)  
[Bit 1]  
LCD_EN  
[Bit 0]  
BL_EN  
[Bit 7]  
[Bit 6]  
[Bit 5]  
[Bit 4]  
[Bit 3]  
[Bit 2]  
0 = LCD  
disabled  
1 = LCD  
enabled  
0 = Backlight  
disabled  
1 = Backlight  
enabled  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Table 12. LED Brightness Register LSB (0x01)  
[Bits 2:0]  
Brightness LSB  
[Bit 7]  
[Bit 6]  
[Bit 5]  
[Bit 4]  
[Bit 3]  
BRT[2:0]. Lower 3 bits (LSB's) of brightness code.  
Concatenated with brightness bits in Register 0x02  
(MSB).  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Table 13. LED Brightness Register MSB (0x02)  
[Bits 7:0] Brightness MSB  
BRT[10:3]. Upper 8 bits (MSB's) of brightness code. Concatenated with brightness bits in Register 0x01 (LSB).  
Table 14. Faults Register (0x03)  
[Bit 2]  
[Bit 1]  
[Bit 7]  
BL_SCFLT  
[Bit 6]  
TMPFLT  
[Bit 5]  
BL_OCPFLT  
[Bit 4]  
BL_OVPFLT  
[Bit 3]  
LCD_OVPFLT  
[Bit 0]  
UVLO FLAG  
LDO_OREF_F LDO_VPOS_F  
LT  
LT  
0 = normal  
1 = fault,  
backlight boost  
overvoltage  
protection limit protection limit  
reached reached  
0 = normal  
1 = fault, LCD  
boost  
0 = normal  
1 = device has  
hit thermal  
shutdown  
0 = normal  
1 = fault,  
backlight boost  
current limit  
reached  
0 = normal  
1 = fault,  
LDO_OREF  
short circuit  
condition  
0 = normal  
1 = fault,  
LDO_VPOS  
short circuit  
condition  
0 = normal  
1 = backlight  
short circuit  
condition  
0 = normal  
1 = UVLO  
event  
overvoltage  
threshold  
Table 15. Faults and Power-Good Register (0x04)  
[Bit 1]  
LDO_CONT_F  
LT  
[Bit 3]  
[Bit 2]  
[Bit 0]  
PG_FLAG  
[Bit 7]  
[Bit 6]  
[Bit 5]  
[Bit 4]  
NEG_CP_SC NEG_CP_OVP  
0 = normal  
0 = normal  
1 = fault,  
0 = normal  
1 = fault, LDO  
Controller  
current limit  
reached  
1 = fault,  
negative  
negative  
Power-Good  
flag  
Not Used  
Not Used  
Not Used  
Not Used  
chargepump  
chargepump  
overvoltage  
short circuit  
protection limit  
condition  
reached  
Table 16. Backlight Configuration (Auto Frequency Threshold) Register 1 (0x05)  
[Bits 7:0]  
AUTO_FREQ_THRES  
LED current threshold value. When the Auto Frequency Select Mode Bit is ‘1’ (Bit[3] in register 0x07), the 8 bit code in this register  
(AUTOFREQ_THRESH) is compared against the MSB’s of the I2C Brightness code (BRT [10:3]), and this comparison is used to determine  
whether the device operates in Low Frequency or High Frequency Mode.  
1. When BRT[10:3] > AUTOFREQ_THRESH[7:0] , the Boost Frequency Select Bit is automatically set to ‘1’ forcing the device into High  
Frequency Mode.  
2. When BRT[10:3] AUTOFREQ_THRESH[7:0], the Boost Frequency Select Bit automatically set to ‘0’ and the device operates in Low  
Frequency Mode.  
40  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
[Bit 7]  
SNVS834 AUGUST 2014  
Table 17. Backlight Configuration Register 2 (0x06)  
[Bit 5]  
LINEAR_MAP  
PER  
[Bit 3]  
STRING_MOD  
E
[Bit 2]  
INDUCTOR  
[Bits 1:0]  
PEAK_CURR_LIM  
[Bit 6]  
[Bit 4]  
0 = Inductor  
typical value =  
22 µH  
1 = Inductor  
typical value =  
10 µH  
0 = Both LED  
strings enabled  
1 = Only LED  
string 1  
0= Exponential  
mapping in use  
1 = Linear  
00 = 600 mA  
01 = 700 mA  
10 = 800 mA  
11 = 900 mA  
Not Used  
Not Used  
Not Used  
mapping in use  
enabled  
Table 18. Backlight Configuration Register 3 (0x07)  
[Bit 0]  
BL_BST_FRE  
Q
[Bits 7:6]  
SEL_I  
[Bits 5:4]  
SEL_P  
[Bit 3]  
BL_AUTOFRQ  
[Bits 2:1]  
BL_BST_OVP  
0 = Manual  
frequency  
mode  
1 = Auto  
frequency  
mode  
Backlight Boost OVP target  
00 = 17 V  
Backlight boost compensator  
adjustment. Select value  
according to number of LEDs in  
LED string.  
Backlight Boost  
frequency  
0 = 500 kHz  
1 = 1 MHz  
Backlight boost compensator  
adjustment. Select value  
according to inductor  
01 = 21 V  
10 = 25 V  
11 = 29 V  
Table 19. Backlight Configuration Register 4 (0x08)  
[Bit 7]  
PWM_EDGE_D  
ET_SEL  
[Bit 6]  
PWM  
POLARITY  
[Bit 1]  
[Bit 0]  
[Bits 5:4]  
HYSTERESIS  
[Bits 3:2]  
BRT_MODE  
EN__ADV_SL DISABLE_DIT  
OPE  
HER  
PWM edge  
detection  
selection  
Brightness mode selection  
00 = I2C register used for  
brightness control  
PWM input hysteresis selection  
(change in 11-bit brightness)  
00 = 0.05% shift causes change  
0 = PWM active  
polarity LOW  
0 = Advanced  
slope disabled  
1 = Advanced  
slope enabled  
0 = Dither  
enabled  
1 = Dither  
disabled  
0 = PWM  
01 = PWM input duty cycle used  
for brightness control  
measured from  
rising edge  
1 = PWM  
measured from  
falling edge  
1 = PWM active 01 = 0.1% shift causes change  
10 = I2C code multiplied with  
PWM duty cycle before sloping  
11 = Sloped I2C brightness code  
multiplied with PWM duty cycle  
polarity HIGH  
10 = 0.2% shift causes change  
11 = 0.4% shift causes change  
Table 20. Backlight Configuration Register 5 (0x09)  
[Bits 7:4]  
SLOPE  
[Bits 3:0]  
DITHER_FREQ_SEL  
0000 = Slope function disabled, immediate brightness change  
0001 = 1 ms  
0010 = 2 ms  
0011 = 5 ms  
0100 = 10 ms  
0101 = 20 ms  
0110 = 50 ms  
0111 = 100 ms  
1000 = 250 ms  
1001 = 500 ms  
Dithering frequency selection  
0000 = 62.5 kHz  
0001 = 31.3 kHz  
0010 = 15.6 kHz  
0011 = 7.8 kHz  
0100 = 3.9 kHz  
0101 = 1.95 kHz  
0110 = 977 Hz  
1010 = 750 ms  
0111 = 488 Hz  
1000 = 244 Hz  
1001 = 122 Hz  
1011 = 1000 ms  
1100 = 1500 ms  
1101 = 2000 ms  
1110 = 3000 ms  
1111 = 4000 ms  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
Table 21. LCD Configuration Register 1 (0x0A)  
[Bit 6]  
[Bit 5]  
[Bit 4]  
[Bit 3]  
[Bit 2]  
[Bit 0]  
LDO_OREF_E  
N
[Bit 1]  
CP_VNEG_EN  
[Bit 7]  
LDO_CONT_S LDO_OREF_S CP_VNEG_SD LDO_VPOS_S LDO_VPOS_E  
D_PULLDN  
D_PULLDN  
_PULLUP  
D_PULLDN  
N
0 =  
0 =  
0 =  
LDO_CONT  
pull-down  
resistor  
disabled  
1 =  
LDO_CONT  
pull-down  
resistor  
LDO_OREF  
pull-down  
resistor  
disabled  
1 =  
LDO_OREF  
pull-down  
resistor  
LDO_VPOS  
pull-down  
resistor  
disabled  
1 =  
LDO_VPOS  
pull-down  
resistor  
0 = CP_VNEG  
pull-up resistor  
disabled  
1 = CP_VNEG  
pull-up resistor  
enabled  
0 =  
0 =  
LDO_VPOS  
disabled  
1 =  
LDO_VPOS  
enabled  
0 = CP_VNEG  
disabled  
1 = CP_VNEG  
enabled  
LDO_OREF  
disabled  
1 =  
LDO_OREF  
enabled  
Not Used  
enabled  
enabled  
enabled  
Table 22. LCD Configuration Register 2 (LDO_CONT) (0x0B)  
[Bit 0]  
LDO_CONT_E  
N
[Bits 6:4]  
LDO_CONT_SU_DELAY  
[Bits 3:1]  
LDO_CONT_SD_DELAY  
[Bit 7]  
LDO_CONT start-up delay  
000 = 0 ms  
LDO_CONT shutdown delay  
000 = 0 ms  
0 =  
001 = 2 ms  
010 = 5 ms  
011 = 10 ms  
100 = 20 ms  
101 = 50 ms  
110 = 100 ms  
111 = 200 ms  
001 = 2 ms  
010 = 5 ms  
011 = 10 ms  
100 = 20 ms  
101 = 50 ms  
110 = 100 ms  
111 = 200 ms  
LDO_CONT  
disabled  
1 =  
LDO_CONT  
enabled  
Not Used  
Table 23. LCD Configuration Register 3 (0x0C)  
[Bits 7:6]  
[Bits 5:0]  
LDO_CONT_VOUT  
LCD_BST_OUT  
LCD Boost output voltage  
000 000 = 4.50 V  
000 001 = 4.55 V  
000 010 = 4.60 V  
000 011 = 4.65 V  
000 100 = 4.70 V  
...  
LDO_CONT output voltage  
00 = 1.8 V  
010 111 = 5.65 V  
011 000 = 5.70 V  
011 001 = 5.75 V  
...  
01 = 2.3 V  
10 = 2.8 V  
11 = 3.3 V  
100 001 = 6.15 V  
100 010 = 6.20 V  
100 011 = 6.25 V  
100 100 = 6.30 V  
100 101 = 6.35 V  
42  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
Table 24. LCD Configuration Register 4 (LDO_VPOS) (0x0D)  
[Bits 5:0]  
LDO_VPOS_TARGET  
[Bit 7]  
[Bit 6]  
000 000 = 4.00 V  
000 001 = 4.05 V  
000 010 = 4.10 V  
000 011 = 4.15 V  
000 100 = 4.20 V  
...  
011 011 = 5.35 V  
011 100 = 5.40 V  
011 101 = 5.45 V  
...  
Not Used  
Not Used  
100 100 = 5.80 V  
100 101 = 5.85 V  
100 110 = 5.90 V  
100 111 = 5.95 V  
101 000 = 6.00 V  
(6.00V is the maximum level regardless of the adjustment level above value '101 000')  
Table 25. LCD Configuration Register 5 (CP_VNEG) (0x0E)  
[Bits 5:0]  
CP_VNEG_TARGET  
[Bit 7]  
[Bit 6]  
000 000 = –4.00 V  
000 001 = –4.05 V  
000 010 = –4.10 V  
000 011 = –4.15 V  
000 100 = –4.20 V  
...  
011 011 = –5.35 V  
011 100 = –5.40 V  
011 101 = –5.45 V  
Not Used  
Not Used  
...  
100 100 = –5.80 V  
100 101 = –5.85 V  
100 110 = –5.90 V  
100 111 = –5.95 V  
101 000 = –6.00 V  
(–6.00V is the maximum level regardless of the adjustment level above value '101 000')  
Table 26. LCD Configuration Register 6 (LDO_OREF) (0x0F)  
[Bits 5:0]  
LDO_OREF_TARGET  
[Bit 7]  
[Bit 6]  
000 000 = 4.00 V  
000 001 = 4.05 V  
000 010 = 4.10 V  
000 011 = 4.15 V  
000 100 = 4.20 V  
...  
011 011 = 5.35 V  
011 100 = 5.40 V  
011 101 = 5.45 V  
Not Used  
Not Used  
...  
100 100 = 5.80 V  
100 101 = 5.85 V  
100 110 = 5.90 V  
100 111 = 5.95 V  
101 000 = 6.00 V  
(6.00V is the maximum level regardless of the adjustment level above value '101 000')  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
Table 27. LCD Configuration Register 7 (LDO_VPOS Sequence Control) (0x10)  
[Bits 7:4]  
[Bits 3:0]  
LDO_VPOS START-UP DELAY  
LDO_VPOS SHUTDOWN DELAY  
0000 = 0.0 ms  
0001 = 1.0 ms  
0010 = 2.0 ms  
0011 = 3.0 ms  
0100 = 4.0 ms  
0101 = 5.0 ms  
0110 = 6.0 ms  
0111 = 7.0 ms  
1000 = 8.0 ms  
1001 = 9.0 ms  
1010 = 10.0 ms  
1011 = 11.0 ms  
1100 = 12.0 ms  
1101 = 13.0 ms  
1110 =14.0 ms  
1111 = 15.0 ms  
0000 = 0.0 ms  
0001 = 1.0 ms  
0010 = 2.0 ms  
0011 = 3.0 ms  
0100 = 4.0 ms  
0101 = 5.0 ms  
0110 = 6.0 ms  
0111 = 7.0 ms  
1000 = 8.0 ms  
1001 = 9.0 ms  
1010 = 10.0 ms  
1011 = 11.0 ms  
1100 = 12.0 ms  
1101 = 13.0 ms  
1110 =14.0 ms  
1111 = 15.0 ms  
Table 28. LCD Configuration Register 8 (CP_VNEG Sequence Control) (0x11)  
[Bits 7:4]  
[Bits 3:0]  
CP_VNEG START-UP DELAY (ms)  
CP_VNEG SHUTDOWN DELAY (ms)  
0000 = 0.0 ms  
0001 = 1.0 ms  
0010 = 2.0 ms  
0011 = 3.0 ms  
0100 = 4.0 ms  
0101 = 5.0 ms  
0110 = 6.0 ms  
0111 = 7.0 ms  
1000 = 8.0 ms  
1001 = 9.0 ms  
1010 = 10.0 ms  
1011 = 11.0 ms  
1100 = 12.0 ms  
1101 = 13.0 ms  
1110 =14.0 ms  
1111 = 15.0 ms  
0000 = 0.0 ms  
0001 = 1.0 ms  
0010 = 2.0 ms  
0011 = 3.0 ms  
0100 = 4.0 ms  
0101 = 5.0 ms  
0110 = 6.0 ms  
0111 = 7.0 ms  
1000 = 8.0 ms  
1001 = 9.0 ms  
1010 = 10.0 ms  
1011 = 11.0 ms  
1100 = 12.0 ms  
1101 = 13.0 ms  
1110 =14.0 ms  
1111 = 15.0 ms  
Table 29. LCD Configuration Register 9 (LDO_OREF Sequence Control) (0x12)  
[Bits 7:4]  
[Bits 3:0]  
LDO_OREF START-UP DELAY  
LDO_OREF SHUTDOWN DELAY  
0000 = 0.0 ms  
0001 = 1.0 ms  
0010 = 2.0 ms  
0011 = 3.0 ms  
0100 = 4.0 ms  
0101 = 5.0 ms  
0110 = 6.0 ms  
0111 = 7.0 ms  
1000 = 8.0 ms  
1001 = 9.0 ms  
1010 = 10.0 ms  
1011 = 11.0 ms  
1100 = 12.0 ms  
1101 = 13.0 ms  
1110 =14.0 ms  
1111 = 15.0 ms  
0000 = 0.0 ms  
0001 = 1.0 ms  
0010 = 2.0 ms  
0011 = 3.0 ms  
0100 = 4.0 ms  
0101 = 5.0 ms  
0110 = 6.0 ms  
0111 = 7.0 ms  
1000 = 8.0 ms  
1001 = 9.0 ms  
1010 = 10.0 ms  
1011 = 11.0 ms  
1100 = 12.0 ms  
1101 = 13.0 ms  
1110 =14.0 ms  
1111 = 15.0 ms  
44  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
Table 30. FLAG Configuration Register (0x13)  
[Bit 4]  
[Bits 3:2]  
[Bits 1:0]  
PG_FLAG_CONFIG  
[Bit 7]  
[Bit 6]  
[Bit 5]  
FLAG_PIN_POLAR  
PG_FLAG_CTRL  
ITY  
00 = Power-Good set after last  
supply reaches target  
01 = Power-Good set after  
LDO_VPOS  
10 = Power-Good set after  
CP_VNEG  
11 = Power-Good set after  
LDO_OREF  
00 = FLAG disabled, no flag  
indication  
01 = Power-Good state, selectable  
with PG_FLAG_CTRL bits  
10 = Backlight ON state  
11 = Fault state  
0 =FLAG pin active  
polarity LOW  
1 = FLAG pin active  
polarity HIGH  
Not Used  
Not Used  
Not Used  
Table 31. BOOT/RESET Register (0x14)  
[Bit 7:0]  
BOOT  
Write FFh to set all I2C registers to RESET value  
Table 32. Revision Register (0x16)  
[Bit 5:3]  
OTP  
REVISION  
[Bit 7:6]  
DIE TRACEABILITY  
[Bit 2:0]  
DEVICE REVISION  
Device OTP  
Die Traceability Information  
Revision  
Device Revision Information  
Information  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LM3631  
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
9 Application and Implementation  
9.1 Application Information  
The LM3631 integrates an LCD backlight driver and LCD positive and negative bias voltage supplies into a single  
device. The backlight boost converter generates the high voltage required for the LEDs. The LM3631 can drive  
one or two LED strings with 4 to 8 white LEDs per string. Positive and negative bias voltages are post-regulated  
from the LCD bias boost output voltage. In addition, for the LCD bias voltages, the device has two programmable  
LDO regulator outputs which can be used to the power display controller, the LCD gamma reference, or any  
additional peripherals within output-current capability.  
LDC bias voltages can be used without the backlight. Pulling LCD_EN high starts the LCD bias boost regulator.  
Once the LCD bias boost regulator has started up all voltage outputs can be enabled individually. The LM3631  
can also be programmed to enable any voltage outputs automatically per a preset start-up sequence. The  
backlight cannot be enabled until enabled bias voltages have settled.  
9.2 Typical Application  
L1  
10/22µH  
D1  
C2  
C6  
C1  
C7  
10µF  
0.1µF  
2.2µF  
100pF  
SW  
VOUT  
LED1  
LED2  
VIN  
C3  
0.1µF  
L2  
1.5µH  
Up to 8 LEDs / string  
BST_SW  
C4  
10µF  
C5  
0.1µF  
+
-
V
BST_OUT  
IN  
2.7V ± 5.0V  
C8  
C9  
10µF  
100pF  
LM3631  
SDA  
SCL  
SDA  
C2  
C1  
C10  
10µF  
SCL  
nRST  
nRST  
LCD_EN  
PWM  
V
V
V
V
(-5.4V)  
NEG  
CP_VNEG  
LDO_OREF  
LDO_VPOS  
LDO_CONT  
LCD_EN  
PWM  
(+4.0V to +6.0V)  
OREF  
(+5.4V)  
POS  
FLAG  
FLAG  
(+1.8V)  
CONT  
OTP_SEL  
C11  
10µF  
C12  
C13  
10µF  
C14  
10µF  
10µF  
GND_BST_SW  
AGND  
GND_SW  
PGND  
Figure 58. Typical Application Schematic  
46  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
 
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
Typical Application (continued)  
9.2.1 Design Requirements  
Example requirements based on default register values (OTP_SEL = 1):  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input Voltage Range  
Brightness Control  
2.7 V to 4.5 V (Single Li-Ion cell battery)  
I2C Register  
LED Configuration  
2 parallel, 6 series  
LED Current  
max 25 mA / string  
Backlight Boost maximum voltage  
Backlight boost SW frequency  
Backlight Boost inductor  
LCD boost output voltage  
VNEG output voltage  
28 V  
1MHz  
10-µH, 900-mA saturation current  
5.9 V  
–5.4 V  
VPOS output voltage  
5.4 V  
VOREF output voltage  
VCONT output voltage  
LCD Boost inductor  
5.6 V  
1.8 V  
1.5-µH, 1-A saturation current  
9.2.2 Detailed Design Procedure  
9.2.2.1 External Components  
Table 33 shows examples of external components for the LM3631. Small 100-pF ceramic capacitors parallel with  
boost-converter-output capacitors are optional and are used to reduce high-frequency noise generated by the  
boost converters. Boost-converter dual-output capacitors can be replaced with a single capacitor of higher output  
capacitance as long as the minimum effective capacitance requirement is met. DC bias effect of the ceramic  
capacitors must be taken into consideration when choosing the output capacitors. This is especially true for the  
high output-voltage backlight-boost converter.  
Table 33. Recommended External Components  
DESIGNATOR  
(Figure 58)  
DESCRIPTION  
VALUE  
EXAMPLE  
NOTE  
C1, C4, C8,  
C10, C11, C12,  
C13, C14  
10 µF, 10V or  
16V  
Ceramic capacitor  
EMK107BBJ106MA-T  
C2, C3, C5  
Ceramic capacitor  
Ceramic capacitor  
0.1 µF, 10V  
GRM188R71H104KA93D  
C2012X5R1H225K  
2.2 µF, 35V or  
50V  
C6  
Optional, only for HF interference  
reduction.  
C7, C9  
L1  
Ceramic capacitor  
Inductor  
100 pF, 50V  
06035A101JAT2A  
22 or 10 µH,  
900mA  
VLF403210MT-100M or 1235AS-  
H-220M  
L2  
Inductor  
1.5 µH  
DFE252010R-H-1R5M  
NSR0240P2T5G  
D1  
Schottky diode  
40V, 200mA  
9.2.2.2 Inductor Selection  
Both of the LM3631 boost converters are internally compensated. The compensation parameters of the LCD bias  
boost converter are fixed and set for a 1.5-µH inductor. The backlight boost converter has a selection bit to  
choose between 10-µH or 22-µH inductors. The inductor typical inductance is selected with the INDUCTOR bit  
(Register 0x06, bit 2). Effective inductance of the inductors should be ±20%.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: LM3631  
 
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
There are two main considerations when choosing an inductor: the inductor should not saturate, and the inductor  
current ripple should be small enough to achieve the desired output voltage ripple. Different saturation current  
rating specifications are followed by different manufacturers so attention must be given to details. Saturation  
current ratings are typically specified at 25°C. However, ratings at the maximum ambient temperature of  
application should be requested from the manufacturer. The saturation current should be greater than the sum of  
the maximum load current and the worst-case average-to-peak inductor current. The equation below shows the  
worst case conditions.  
IOUTMAX  
ISAT  
>
+ IRIPPLE  
'¶  
VIN  
(VOUT ± VIN)  
x
Where IRIPPLE  
=
VOUT  
(2 x L x f)  
(VOUT ± VIN)  
VOUT  
DQGꢀ'¶ꢀ= (1 - D)  
Where D =  
where  
IRIPPLE = peak inductor current  
IOUTMAX = maximum load current  
VIN = minimum input voltage in application  
L = minimum inductor value including worst case tolerances  
f = minimum switching frequency  
VOUT = output voltage  
(7)  
As a result the inductor should be selected according to the ISAT. A more conservative and recommended  
approach is to choose an inductor that has a saturation current rating greater than the maximum current limit.  
The inductor’s resistance should be kept small for good efficiency.  
See detailed information in “Understanding Boost Power Stages in Switch Mode Power Supplies”  
http://focus.ti.com/lit/an/slva061/slva061.pdf. “Power Stage Designer™ Tools” can be used for the boost  
calculation: http://www.ti.com/tool/powerstage-designer.  
9.2.2.3 Boost Output Capacitor Selection  
Two 2.2-μF capacitors are recommended for the backlight boost converter output capacitors. A single 2.2-μF  
capacitor can be used for reducing solution size as long as the effective output capacitance is higher than 1 µF.  
A high-quality ceramic type X5R or X7R is recommended. Voltage rating must be greater than the maximum  
output voltage that is used.  
For the LCD-bias-boost output two 10-μF capacitors are recommended. A high-quality ceramic type X5R or X7R  
is recommended. Voltage rating must be greater than the maximum output voltage that is used.  
The DC-bias effect of the capacitors must be taken into consideration when selecting the output capacitors. The  
effective capacitance of a ceramic capacitor can drop down to less than 10% with maximum rated DC bias  
voltage depending on capacitor type. Note that with a same voltage applied, the capacitors with higher voltage  
rating suffer less from the DC-bias effect than capacitors with lower voltage rating.  
9.2.2.4 Backlight Boost Diode Selection  
A Schottky diode should be used for the output diode. Peak repetitive current should be greater than inductor  
peak current to ensure reliable operation. Average current rating should be greater than the maximum output  
current. Reverse breakdown voltage of the Schottky diode should be significantly larger than the maximum  
output voltage.  
9.2.2.5 Charge Pump Capacitor Selection  
Voltage ratings for the flying capacitor and output capacitor must be higher than the maximum output voltage.  
Ceramic X5R/X7R capacitors are recommended. 10-V voltage rating and 10 µF capacitors are recommended for  
both.  
48  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
9.2.2.6 LDO Output Capacitor Selection  
Voltage ratings for the LDO output capacitors must be higher than the maximum output voltage. Ceramic  
X5R/X7R capacitors are recommended. 10-V voltage rating and 10-µF capacitors are recommended for all.  
9.2.3 Application Curves  
Figure 59 and Figure 60 show typical backlight start-up and shutdown curves using the LCD_EN pin control.  
LCD_EN  
2V/DIV  
LCD_EN  
2V/DIV  
VOUT  
10V/DIV  
VOUT  
10V/DIV  
IOUT  
10V/DIV  
IOUT  
10V/DIV  
1ms/DIV  
1ms/DIV  
Figure 60. Backlight Shutdown with LCD_EN Pin Control  
Figure 59. Backlight Start-up with LCD_EN Pin Control  
Figure 61 and Figure 62 show the default start-up and shutdown waveforms with OTP_SEL = GND. LDO_CONT  
pulldown is disabled by default causing VCONT to float after shutdown.  
VBST  
5V/DIV  
VBST  
5V/DIV  
VCONT  
5V/DIV  
VCONT  
5V/DIV  
VPOS  
5V/DIV  
VPOS  
5V/DIV  
VNEG  
5V/DIV  
VNEG  
5V/DIV  
2ms/DIV  
2ms/DIV  
Figure 61. Default LCD Bias Startup, OTP_SEL = GND.  
Figure 62. Default LCD Bias Shutdown, OTP_SEL = GND.  
10 Power Supply Recommendations  
The LM3631 is designed to operate from an input voltage supply range between 2.7 V and 5 V. This input supply  
must be well regulated and capable to supply the required input current. If the input supply is located far from the  
LM3631 additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
11 Layout  
11.1 Layout Guidelines  
Place the boost converters output capacitors as close to the output voltage and GND pins as possible.  
Minimize the boost converter switching loops by placing the input capacitors and inductors close to GND and  
switch pins.  
If possible, route the switching loops on top layer only. For best efficiency, try to minimize copper on the  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: LM3631  
 
 
LM3631  
SNVS834 AUGUST 2014  
www.ti.com  
Layout Guidelines (continued)  
switch node to minimize switch pin parasitic capacitance while preserving adequate routing width.  
VIN input voltage pin needs to be bypassed to ground with a low-ESR bypass capacitor. Place the capacitor  
as close to VIN pin as possible  
Place the output capacitors of the LDOs as close to output pins as possible. Also place the charge pump  
flying capacitor and output capacitor close to respective pins.  
Route the internal pins on the second layer. Use offset micro vias to go from top layer to mid layer1. Avoid  
routing the signal traces directly under the switching loops of the boost converters.  
11.2 Layout Example  
L1  
VIAs to VIN plane  
D1  
C1  
C2  
Route the  
switching loops on  
top layer if possible  
C7  
C6  
GND  
VOUT  
GND on Top layer.  
Connect to internal  
ground plane with  
multible VIAs  
GND_  
SW  
SW  
nRST  
FLAG  
SCL  
VOUT  
LED1  
LED2  
AGND  
LED1  
C3  
LCD_  
EN  
VIN  
LED2  
GND  
GND  
GND_  
BST_  
SW  
OTP_  
SEL  
BST_  
SW  
LDO_  
CONT  
LDO_  
VPOS  
C12  
C13  
C11  
L2  
C4  
C5  
C9  
C8  
BST_  
OUT  
LDO_  
OREF  
SDA  
PWM  
C2  
VIAs to VIN plane  
CP_  
VNEG  
C1  
PGND  
Route LDO_CONT  
on internal layer  
C10  
GND  
C14  
50  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
Product Folder Links: LM3631  
LM3631  
www.ti.com  
SNVS834 AUGUST 2014  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Trademarks  
All trademarks are the property of their respective owners.  
12.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: LM3631  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM3631YFFR  
ACTIVE  
DSBGA  
YFF  
24  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
LM3631  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2015  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM3631YFFR  
DSBGA  
YFF  
24  
3000  
180.0  
8.4  
2.1  
2.76  
0.81  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2015  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YFF 24  
SPQ  
Length (mm) Width (mm) Height (mm)  
182.0 182.0 20.0  
LM3631YFFR  
3000  
Pack Materials-Page 2  
D: Max = 2.585 mm, Min =2.524 mm  
E: Max = 1.885 mm, Min =1.825 mm  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY