LM3632A [TI]

具有偏置电源和 1.5A LED 闪光灯驱动器的单芯片背光;
LM3632A
型号: LM3632A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有偏置电源和 1.5A LED 闪光灯驱动器的单芯片背光

驱动 闪光灯 驱动器
文件: 总60页 (文件大小:2067K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM3632A  
ZHCSDN2 APRIL 2015  
LM3632A 集成单芯片背光、偏置电源和 1.5A 闪光灯 LED 驱动器  
1 特性  
3 说明  
1
可驱动多达两个灯串(通常为 8 个串联的 LED)  
LM3632A 器件集成了用于 LCD 面板背光照明和摄像  
机闪光灯的白光发光二极管 (WLED) 驱动器以及用于  
LCD 面板的偏置电源。 该器件具备 LED 驱动器所需  
的全套安全功能,并且效率高达 90%,正/负偏置电源  
轨精度高达 1.5%。 该器件最多能够驱动 16 个背光  
LED,是中小型显示屏的理想选择。 该器件可使用由  
同步升压转换器供电的 1.5A 恒流 LED 驱动器来驱动  
闪光灯。 高侧闪光灯电流源支持 LED 阴极接地操作。  
集成背光升压转换器,最高输出电压达 29V  
两个低侧恒流 LED 驱动器,最高输出电流达  
25mA  
背光效率高达 90%  
11 位指数或线性调光  
具有外部脉宽调制 (PWM) 输入,可实现内容自适  
应背光控制 (CABC) 背光操作  
LCD 偏置电源效率 > 85%  
LM3632A 兼具高集成度和可编程性,无需修改硬件即  
可适应各类应用。  
可编程的正 LCD 偏置电源(4V 6V),最大输  
出电流达 50mA  
器件信息(1)  
可编程的负 LCD 偏置电源(-6V -4V),最大输  
出电流达 50mA  
器件型号  
LM3632A  
封装  
封装尺寸(最大值)  
1.5A 闪光灯 LED 升压转换器  
闪光灯效率 > 85%  
DSBGA (30)  
2.47mm x 2.07mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
输入电压范围:2.7V 5V  
空白  
空白  
空白  
空白  
2 应用  
智能手机 LCD 背光照明和偏置电源  
小型平板电脑 LCD 背光照明和偏置电源  
简化电路原理图  
背光效率,2P7S  
D1  
LBL  
95  
90  
85  
80  
75  
70  
65  
LFL  
CBL_OUT  
CIN  
FL_SW FL_SW  
BL_SW  
BL_OUT  
BLED1  
BLED2  
VIN  
LLCM  
VBATT  
LCM_SW  
Up to 8 LEDs / String  
SCL  
FL_OUT  
FL_OUT  
SDA  
60  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
CFL_OUT  
STROBE  
TX  
55  
50  
FLED  
FLED  
LM3632  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
PWM  
D007  
C1  
C2  
EN  
CFLY  
LCM_EN1  
LCM_EN2  
LCM_OUT  
VPOS  
CLCM  
CVPOS  
AGND  
VNEG  
BL_GND CP_GND FL_GND LCM_GND  
CVNEG  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSA63  
 
 
 
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 26  
7.5 Programming........................................................... 26  
7.6 Register Maps......................................................... 31  
Application and Implementation ........................ 39  
8.1 Application Information............................................ 39  
8.2 Typical Application .................................................. 39  
Power Supply Recommendations...................... 53  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information ................................................. 4  
6.5 Electrical Characteristics .......................................... 5  
6.6 I2C Timing Requirements (SDA, SCL) ..................... 8  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 13  
7.3 Features Description............................................... 14  
8
9
10 Layout................................................................... 53  
10.1 Layout Guidelines ................................................ 53  
10.2 Layout Example ................................................... 54  
11 器件和文档支持 ..................................................... 55  
11.1 器件支持................................................................ 55  
11.2 文档支持................................................................ 55  
11.3 ....................................................................... 55  
11.4 静电放电警告......................................................... 55  
11.5 术语表 ................................................................... 55  
12 机械、封装和可订购信息....................................... 55  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 4 月  
*
最初发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
5 Pin Configuration and Functions  
YFF Package  
30-Pin DSBGA  
Top View  
A
B
C
D
E
F
1
2
3
4
5
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NUMBER  
A1  
A2  
A3  
A4  
A5  
B1  
B2  
B3  
B4  
B5  
C1  
C2  
C3  
C4  
C5  
D1  
D2  
D3  
D4  
D5  
E1  
E2  
E3  
E4  
E5  
F1  
NAME  
VPOS  
O
O
O
-
Positive LDO output for LCM bias power  
LCM bias boost output voltage  
LCM_OUT  
LCM_SW  
BL_GND  
BL_SW  
LCM_EN2  
LCM_EN1  
EN  
LCM bias boost switch connection  
Backlight boost ground connection  
Backlight boost switch connection  
Enable for inverting charge pump output  
Enable for positive LDO output  
O
I
I
I
Active high chip enable  
LCM_GND  
BL_OUT  
C1  
-
LCM bias boost ground connection  
Backlight boost output voltage  
O
O
I/O  
I
Inverting charge pump flying capacitor positive connection  
Serial data connection for I2C- compatible interface  
Flash interrupt input  
SDA  
TX  
AGND  
BLED1  
CP_GND  
SCL  
-
Analog ground connection  
O
-
Input pin to internal LED current sink 1  
Inverting charge pump ground connection  
Serial clock connection for I2C- compatible interface  
Flash enable input  
I
STROBE  
PWM  
I
I
PWM input for CABC current control  
Input pin to internal LED current sink 2  
Inverting charge pump flying capacitor negative connection  
High-side current source output for flash LED  
Flash boost output voltage  
BLED2  
C2  
O
O
O
O
O
I
FLED  
FL_OUT  
FL_SW  
VIN  
Flash boost switch connection  
Input voltage connection  
VNEG  
O
O
O
O
-
Inverting charge pump output voltage  
High-side current source output for flash LED  
Flash boost output voltage  
F2  
FLED  
F3  
FL_OUT  
FL_SW  
FL_GND  
F4  
Flash boost switch connection  
F5  
Flash boost ground connection  
Copyright © 2015, Texas Instruments Incorporated  
3
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
Voltage on VIN, FL_SW, FL_OUT, FLED, EN, LCM_EN1, LCM_EN2, PWM, STROBE, TX,  
SCL, SDA  
–0.3  
6
V
Voltage on LCM_SW, LCM_OUT, VPOS, C1  
Voltage on VNEG, C2  
–0.3  
–7  
7
V
V
V
0.3  
30  
Voltage on BL_SW, BL_VOUT, BLED1, BLED2  
Continuous power dissipation  
–0.3  
Internally limited  
Maximum junction temperature, TJ(MAX)  
Storage temperature, Tstg  
150  
150  
°C  
–45  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted).  
MIN  
MAX  
5
UNIT  
V
Input voltage, VIN  
2.7  
(1)  
Operating ambient temperature, TA  
–40  
85  
°C  
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125ºC), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).  
6.4 Thermal Information  
LM3632A  
THERMAL METRIC(1)  
YFF (DSBGA)  
UNIT  
30 PINS  
58.6  
0.2  
RθJA  
RθJC  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
8.3  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.4  
ΨJB  
8.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
6.5 Electrical Characteristics  
Unless otherwise specified, limits apply over the full operating ambient temperature range (40°C TA 85°C), VIN = 3.7 V,  
VVPOS = 5.5 V, VVNEG = –5.4 V, VLCM_OUT = 6 V.  
PARAMETER  
CURRENT CONSUMPTION  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
ISD  
Shutdown current  
EN = 0  
1
2
4
µA  
µA  
Quiescent current, device not  
switching  
IQ  
EN = VIN, LCD bias boost disabled  
LCD bias boost enabled, no-load  
10  
ILCD_EN  
0.5  
mA  
DEVICE PROTECTION  
TSD  
Thermal shutdown  
140  
°C  
BACKLIGHT LED CURRENT SINKS  
Maximum output current in  
BLED1/2  
2.7 V VIN 5 V, linear or exponential  
mode  
mA  
µA  
ILED_MAX  
ILED_MIN  
IACCU  
25  
50  
Minimum output current in  
BLED1/2  
2.7 V VIN 5 V, linear or exponential  
mode  
2.7 V VIN 5 V, 50 µA ILED 25  
mA, linear or exponential mode  
LED current accuracy(1)  
-3%  
-2%  
0.1%  
0.1%  
3%  
2%  
LED1 to LED2 current  
matching(1)  
2.7 V VIN 5 V, 300 µA ILED 25  
mA, linear or exponential mode  
IMATCH  
BACKLIGHT BOOST CONVERTER  
Backlight boost output  
VOVP_BL  
2.7 V VIN 5 V, 29 V option  
28  
28.75  
87%  
29.5  
V
overvoltage protection  
ILED = 5 mA/string, VIN = 3.7 V  
Efficiency  
Typical efficiency(2)  
(2 x 7 LEDs), (POUT/PIN  
)
ILED = 25 mA  
250  
100  
30  
mV  
mV  
mV  
Regulated current sink  
headroom voltage  
VHR  
ILED = 5 mA  
VHR_MIN  
Current sink minimum headroom ILED = 95% of nominal, ILED = 5 mA  
voltage  
RDSON  
NMOS switch on resistance  
NMOS switch current limit  
ISW = 100 mA  
0.25  
1000  
500  
Ω
ICL  
2.7 V VIN 5 V  
2.7 V VIN 5 V  
900  
450  
900  
1100  
550  
mA  
ƒSW_BLBOOST  
500-kHz mode  
1-MHz mode  
Switching frequency  
kHz  
1000  
94%  
1100  
DMAX  
Maximum duty cycle  
LCM BIAS BOOST CONVERTER  
LCM bias boost output  
overvoltage protection  
2.7 V VIN 5 V  
2.7 V VIN 5 V  
VOVP_LCM  
7
V
(3)  
ƒSW_LCMBST  
Switching frequency  
2500  
kHz  
V
Bias boost output voltage range  
Output voltage step size  
4.5  
6.4  
50  
50  
mV  
(3)  
Peak-to-peak ripple voltage  
ILOAD = 5 mA & 50 mA, CBST = 10 µF  
mVpp  
VIN + 500 mVp-p AC square wave, Tr =  
100 mV/µs, 200 Hz, 12.5 % duty, ILOAD  
= 5 mA, CIN = 10 µF  
VLCM_OUT  
LCM_OUT line transient  
response  
–50  
±25  
50  
mV  
(3)  
LCM_OUT load transient  
response  
Load current step 0 mA to 100 mA,  
TRISE/FALL = 100 mA/µs, CIN = 10 µF  
–150  
150  
mV  
mA  
(3)  
ICL_LCMBST  
Valley current limit  
1000  
(1) Output Current Accuracy is the difference between the actual value of the output current and programmed value of this current.  
Matching is the maximum difference from the average. For the constant current sinks on the device (BLED1 and BLED2), the following  
is determined: the maximum output current (MAX), the minimum output current (MIN), and the average output current of both outputs  
(AVG). Matching number is calculated: (ILED1 – ILED2)/(ILED1 + ILED2). The typical specification provided is the most likely norm of the  
matching figure of all parts. Note that some manufacturers have different definitions in use.  
(2) Typical value only for information.  
(3) Limits set by characterization and/or simulation only.  
Copyright © 2015, Texas Instruments Incorporated  
5
 
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
Unless otherwise specified, limits apply over the full operating ambient temperature range (40°C TA 85°C), VIN = 3.7 V,  
VVPOS = 5.5 V, VVNEG = –5.4 V, VLCM_OUT = 6 V.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
High-side MOSFET on  
resistance  
VIN = VGS = 5 V, TA = 25°C  
170  
RDSON_LCMBST  
mΩ  
Low-side MOSFET on  
Resistance  
VIN = VGS = 5 V, TA = 25°C  
290  
VLCM_OUT = 6 V, 5 mA < ILCMBST < 100  
mA  
(2)  
EFFLCMBST  
tST_LCMBST  
Efficiency  
92%  
Start-up time (LCM_OUT),  
VLCM_OUT = 10% to 90%  
CLCM_BST = 10 µF  
1000  
6
µs  
(3)  
DISPLAY BIAS POSITIVE OUTPUT (VPOS)  
Programmable output voltage  
range  
4
V
Output voltage step size  
Output voltage accuracy  
50  
mV  
Output voltage = 5.4 V  
–1.5%  
–50  
1.5%  
50  
VIN + 500 mVp-p AC square wave, Tr =  
100 mV/µs, 200 Hz, ILOAD = 25 mA, CIN  
= 10 µF  
VVPOS  
(3)  
VPOS line transient response  
mV  
mV  
0 to 50 mA load transient, CVPOS = 10  
µF  
(3)  
VPOS load transient response  
–50  
50  
20  
(3)  
DC load regulation  
0 mA IVPOS 50 mA  
mV  
mA  
mA  
IMAX_VPOS  
ICL_VPOS  
Maximum output current  
Output current limit  
50  
80  
VLCM_OUT = 6.3 V, VPOS = 5.8 V, CVPOS  
= 10 µF  
(3)  
IRUSH_PK_VPOS  
VDO_VPOS  
Peak start-up inrush current  
250  
100  
mA  
mV  
(4)  
VPOS dropout voltage  
IVPOS = 50 mA, VVPOS = 5.5 V  
CVPOS = 10 µF  
500-µs setting  
800-µs setting  
500  
800  
Start-up time VPOS, VVPOS  
10% to 90%  
=
tST_VPOS  
µs  
(3)  
Output pull-down resistor  
(VPOS)  
VPOS disabled  
RPD_VPOS  
30  
80  
110  
Ω
DISPLAY BIAS NEGATIVE OUTPUT (VNEG)  
LCM bias negative charge-pump Below VVNEG output voltage target  
output overvoltage protection  
VOVP_VNEG  
–250  
–750  
mV  
mV  
LCM bias negative charge-pump VNEG to CP_GND  
output short circuit protection  
VSHORT_VNEG  
Programmable output voltage  
range  
–6  
–4  
V
Output voltage step size  
50  
mV  
Output accuracy  
Output voltage = –5.4 V  
–1.5%  
1.5%  
ILOAD = 5 mA & 50 mA,  
CVNEG = 10 µF  
Peak-to-peak ripple voltage(3)  
60  
mVpp  
mV  
VVNEG  
VIN + 500 mVp-p AC square wave, 100  
mV/µs 200 Hz, 12.5% duty at 5 mA  
VNEG line transient response(3)  
VNEG load transient response(3)  
Efficiency(2)  
–50  
±25  
50  
0 to 50 mA load transient,  
TRISE/FALL = 1 µs, CVNEG = 10 µF  
100  
mV  
VIN = 3.7 V, VLCM_OUT = 5.8 V,  
VVNEG = –5.4 V, IVNEG > 5 mA  
92%  
VIN = 3.7 V, VLCM_OUT = 5.8 V,  
VVNEG = –5.4 V  
IMAX_VNEG  
ICL_VNEG  
Maximum output current(3)  
Output current limit(3)  
50  
75  
mA  
mA  
(4) VIN_VPOS – VVPOS when VVPOS has dropped 100 mV below target.  
6
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
Electrical Characteristics (continued)  
Unless otherwise specified, limits apply over the full operating ambient temperature range (40°C TA 85°C), VIN = 3.7 V,  
VVPOS = 5.5 V, VVNEG = –5.4 V, VLCM_OUT = 6 V.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
350  
400  
400  
MAX  
UNIT  
Q1  
RDSON_VNEG  
Charge FET pump on resistance Q2  
Q3  
mΩ  
Start-up time (VVNEG), VVNEG  
10% to 90%(3)  
=
VVNEG = –6 V, CVNEG = 10 µF  
tST_VNEG  
1
ms  
RPU_VNEG  
Output pullup resistor, VNEG(3)  
VNEG Disabled, VLCM_OUT > 4.8 V  
20  
40  
Ω
FLASH DRIVER BOOST  
ILED  
Current source accuracy  
1.5-A flash, VFL_OUT = 4 V  
ON threshold  
1.4  
4.85  
4.75  
1.5  
5
1.6  
5.1  
5
A
V
Output overvoltage protection  
trip point  
VOVP  
OFF threshold  
4.9  
Current source regulation  
voltage  
1.5-A flash, VFL_OUT = 4 V  
VHR  
ICL  
275  
mV  
A
2.45  
1.65  
2.8  
1.9  
80  
3.15  
2.15  
Switch current limit  
RNMOS  
RPMOS  
NMOS switch on resistance  
PMOS switch on resistance  
INMOS = 1 A  
IPMOS = 1 A  
mΩ  
100  
Input voltage monitor trip  
threshold  
VVINM  
2.76  
2.9  
3.04  
V
LOGIC INPUTS (PWM, EN, LCM_EN1, LCM_EN2, SCL, SDA, TX, STROBE)  
VIL  
VIH  
Input logic low  
Input logic high  
0
0.4  
VIN  
V
V
1.2  
LOGIC OUTPUTS (SDA)  
VOL  
Output logic low  
2.7 V VIN 5 V, IOL = 3 mA  
0
0.4  
V
PWM INPUT  
ƒPWM_INPUT  
PWM input frequency(2)  
100  
6
20000  
Hz  
µs  
PWM sampling frequency = 1 MHz  
PWM sampling frequency = 4 MHz  
PWM sampling frequency = 1 MHz  
PWM sampling frequency = 4 MHz  
Minimum PWM ON/OFF time(3)  
1.5  
25  
3
PWM timeout(3)  
ms  
Copyright © 2015, Texas Instruments Incorporated  
7
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
(1)  
6.6 I2C Timing Requirements (SDA, SCL)  
Over operating free-air temperature range (unless otherwise noted)(see Figure 1).  
MIN  
NOM  
MAX  
UNIT  
kHz  
µs  
ƒSCL  
1
Clock frequency  
400  
Hold time (repeated) START condition  
Clock low time  
0.6  
1.3  
2
µs  
3
Clock high time  
600  
ns  
4
Set-up time for a repeated START condition  
Data hold time  
600  
ns  
5
50  
ns  
6
Data set-up time  
100  
ns  
7
Rise time of SDA and SCL  
Fall time of SDA and SCL  
Set-Up time between a STOP and a START condition  
Capacitive load for each bus line  
20 + 0.1Cb  
15 + 0.1Cb  
1.3  
300  
300  
ns  
8
ns  
9
µs  
Cb  
10  
200  
pF  
(1) Limits set by characterization and/or simulation only.  
Figure 1. I2C Timing Parameters  
8
Copyright © 2015, Texas Instruments Incorporated  
 
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
6.7 Typical Characteristics  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted.  
25  
20  
15  
10  
25  
20  
15  
10  
5
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
5
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
0
0
256  
512  
768 1024 1280 1536 1792 2048  
0
256  
512  
768 1024 1280 1536 1792 2048  
Brightness Code  
Brightness Code  
D017  
D018  
Figure 2. Backlight LED Current, Linear Control  
Figure 3. Backlight LED Current, Exponential Control  
0.5  
0.5  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
TA = -40qC  
TA = 25qC  
TA = 85qC  
0.4  
0.3  
0.4  
0.3  
0.2  
0.2  
0.1  
0.1  
0.0  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
ILED (mA)  
ILED (mA)  
D019  
D020  
2p6s LEDs  
2p6s LEDs  
Figure 4. Backlight LED Current Matching  
Figure 5. Backlight LED Current Matching  
3.0  
2.0  
3.0  
2.0  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
TA = -40qC  
TA = 25qC  
TA = 85qC  
1.0  
1.0  
0.0  
0.0  
-1.0  
-2.0  
-3.0  
-1.0  
-2.0  
-3.0  
0
256  
512  
768 1024 1280 1536 1792 2048  
0
256  
512  
768 1024 1280 1536 1792 2048  
Brightness Code  
Brightness Code  
D085  
D086  
2p6s LEDs  
2p6s LEDs  
Figure 6. Backlight LED Current Accuracy  
Figure 7. Backlight LED Current Accuracy  
Copyright © 2015, Texas Instruments Incorporated  
9
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted.  
0.6  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TA = -40qC  
TA = 25qC  
TA = 85qC  
0.5  
0.4  
0.3  
0.2  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0.1  
0.0  
0
256  
512  
768 1024 1280 1536 1792 2048  
0
256  
512  
768 1024 1280 1536 1792 2048  
Brightness Code  
Brightness Code  
D021  
D022  
2p6s LEDs  
2p6s LEDs  
Figure 8. Backlight LED Current-Step Ratio  
Figure 9. Backlight LED Current-Step Ratio  
21  
20  
19  
18  
17  
16  
15  
14  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D023  
D024  
2p6s LEDs  
2p7s LEDs  
Figure 10. Backlight Boost Voltage  
Figure 11. Backlight Boost Voltage  
0.28  
0.25  
0.22  
0.20  
0.18  
0.15  
0.12  
0.10  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
TA = -40qC  
TA = 25qC  
TA = 85qC  
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0  
Load (mA)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Step (DEC)  
D025  
D026  
2p6s LEDs  
ƒ = 4 MHz  
Figure 12. Backlight Headroom Voltage  
Figure 13. Flash LED Current  
10  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
Typical Characteristics (continued)  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted.  
1.60  
1.56  
1.52  
1.48  
1.44  
1.40  
0.85  
TA = -40qC  
TA = 25qC  
TA = 85qC  
TA = -40qC  
TA = 25qC  
TA = 85qC  
0.84  
0.83  
0.82  
0.81  
0.80  
0.79  
0.78  
0.77  
0.76  
0.75  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
VIN (V)  
VIN (V)  
D027  
D028  
IFLED = 1.5 A  
ƒ = 4 MHz  
IFLED = 0.8 A  
f = 4 MHz  
Figure 14. Flash LED Current  
Figure 15. Flash LED Current  
0.40  
0.400  
TA = -40qC  
TA = 25qC  
TA = 85qC  
0.395  
0.390  
0.385  
0.380  
0.375  
0.370  
0.365  
0.360  
0.355  
0.350  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
TA = -40qC  
TA = 25qC  
TA = 85qC  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
2.7  
3.1  
3.5  
3.9  
VIN (V)  
4.3  
4.7  
5.1  
Step (DEC)  
D030  
D029  
ƒ = 4MHz  
IFLED = 375 mA  
ƒ = 4 MHz  
Figure 16. Torch LED Current  
Figure 17. Torch LED Current  
0.60  
TA = -40qC  
TA = 25qC  
TA = 85qC  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
VIN (V)  
D031  
IFLED = 1.5 A  
ƒ = 4 MHz  
VFLED = 4 V  
Figure 18. Flash Headroom Voltage  
Copyright © 2015, Texas Instruments Incorporated  
11  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LM3632A is a single-chip complete backlight, LCM power and flash solution. The device operates over the  
2.7-V to 5-V input voltage range.  
The LM3632A can drive up to two LED strings with up to 8 LEDs each (up to 28 V typical), with a maximum of 25  
mA per string. The power for the LED strings comes from a integrated asynchronous backlight boost converter  
with two selectable switching frequencies to optimize performance or solution area. LED current is regulated by  
two low-headroom current sinks. Automatic voltage scaling adjusts the output voltage of the backlight boost  
converter to minimize the LED driver headroom voltage. The 11-bit LED current is set via an I2C interface, via a  
logic level PWM input, or a combination of both.  
The LCM bias power portion of the LM3632A consists of a synchronous LCM bias boost converter, inverting  
charge pump, and an integrated LDO. The LCM positive bias voltage VPOS (up to 6 V) is post-regulated from the  
LCM bias boost converter output voltage. The LCM negative bias voltage VNEG (down to –6 V) is generated from  
the LCM bias boost converter output using a regulated inverting charge pump.  
The flash driver consists of a synchronous boost converter and a 1.5-A constant current LED driver. The high-  
side current source allows for grounded cathode LED operation providing flash current up to 1.5 A. An adaptive  
regulation method ensures the current source remains in regulation and maximizes efficiency.  
The LM3632A flexible control interface consists of an EN active low reset input, LCM_EN1 and LCM_EN2 inputs  
for VPOS and VNEG enable control, PWM input for content adaptive backlight control (CABC), a TX flash interrupt  
input, and an I2C-compatible interface.  
Additionally, there are two flag registers with flag and status bits. The user can read back these registers and  
determine if a fault or warning message has been generated.  
12  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
7.2 Functional Block Diagram  
BL_SW  
BL_OUT  
Programmable  
Overvoltage Protection  
(18 V, 22 V, 25 V, 29 V)  
VIN  
Reference and  
Thermal Shutdown  
Programmable  
500 kHz/1 MHz Oscillator  
BL_GND  
Backlight Boost Converter  
V
HR  
EN  
Global Active-low  
Reset  
Overcurrent  
Protection  
Feedback  
BLED1  
BLED2  
PWM Detector  
With  
Backlight LED Control  
PWM  
Low Pass Filter  
1. 11-bit brightness  
adjustment  
2. Exponential/Linear  
Dimming  
SDA  
SCL  
I2C Compatible  
Interface  
BL LED Drivers  
3. LED Current  
Ramping  
Programmable  
2 MHz/4 MHz Oscillator  
FL_GND  
FL_SW  
Programmable  
Current Limit  
(1.9 A/2.8 A)  
Flash Boost Converter  
STROBE  
TX  
V
HR  
Feedback  
FL_OUT  
FLED  
Overvoltage  
Protection  
Flash LED  
Control  
Programmable  
VINM  
(8 Levels)  
VIN  
LCM_EN1  
LCM_EN2  
LCM Bias  
Output Control  
VPOS  
(LCM Postive Bias)  
VPOS  
C1  
Internal Logic  
LCM Boost Converter  
C2  
VNEG  
(LCM Negative Bias)  
VNEG  
CP_GND  
AGND  
LCM_SW  
LCM_GND  
LCM_OUT  
Copyright © 2015, Texas Instruments Incorporated  
13  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
7.3 Features Description  
7.3.1 Backlight  
The backlight is enabled if the BL_EN bit (bit[0] in reg[0x0A]) is set to ‘1’, at least one of the backlight sink  
outputs is enabled (bit[3] and/or bit[4] in reg[0x0A]), and the brightness value is different than 0. When the  
brightness value is 0 or the BL_EN bit is ‘0’, the backlight is disabled.  
7.3.1.1 Brightness Control  
Brightness can be controlled either by the I2C brightness register or a combination of the external PWM control  
and the I2C brightness register. The backlight truth table is shown in Table 1.  
When controlling brightness through I2C, registers 0x04 and 0x05 are used. Registers 0x04 and 0x05 hold the  
11-bit brightness data. Register 0x04 contains the 3 LSBs, and register 0x05 contains the 8 MSBs. The LED  
current transitions to the new level after a write is done to register 0x05.  
When controlling brightness through I2C, setting the brightness value to '0' shuts down the backlight. When  
controlling the brightness with PWM input, if PWM input is low for a certain period of time (25 ms typ.), the  
backlight shuts down. When using the combination of a PWM input and the I2C register, either option shuts down  
the backlight.  
Table 1. Backlight Truth Table  
BL_EN  
0x0A[0]  
BLED1_EN  
0x0A[4]  
BLED2_EN  
0x0A[3]  
PWM_EN  
0x09[6]  
EN PIN  
ACTION  
0
1
1
1
1
1
1
X
0
1
1
1
1
1
X
X
0
1
0
1
1
X
X
0
0
1
1
0
X
X
X
0
0
0
1
Shutdown  
Standby  
Bias enable  
BLED1 ramp to target current  
BLED1 & BLED2 ramp-to-target current  
BLED1 & BLED2 ramp-to-target current  
BLED1 ramp to (target current × PWM duty cycle)  
BLED1 & BLED2 ramp to (target current × PWM  
duty cycle)  
1
1
1
1
0
1
1
1
1
1
BLED1 & BLED2 ramp to (target current × PWM  
duty cycle)  
7.3.1.1.1 LED Current with PWM Disabled  
When LED brightness is controlled from the I2C brightness registers, the 11-bit brightness data directly controls  
the LED current in BLED1 and BLED2. LED mapping can be selected as either linear or exponential. When this  
mode is selected, setting the PWM input to 0 does not disable the backlight.  
With exponential mapping the 11-bit code-to-current response is approximated by the equation:  
ILED = 50 µA × 1.003040572I2C BRGT CODE (for codes > 0)  
(1)  
Equation 1 is valid for I2C brightness codes between 1 and 2047. Code 0 disables the backlight. The Code-to-  
LED current response realizes a 0.304% change in LED current per LSB of brightness code.  
Figure 19 and Figure 20 detail the exponential response of the LED current vs. brightness code. Figure 19 shows  
the response on a linear Y axis while Figure 20 shows the response on a log Y axis to show the low current  
levels at the lower codes.  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
25  
100  
10  
20  
15  
10  
5
1
0.1  
0.01  
0
0
256  
512  
768  
1024  
1280  
1536  
1792  
2048  
0
256  
512  
768  
1024  
1280  
1536  
1792  
2048  
11-Bit Brightness Code  
11-Bit Brightness Code  
C001  
C002  
Figure 19. Exponential Response of LED Current vs  
Brightness Code  
Figure 20. Response of LED Current vs Brightness Code  
on a Log Y Axis  
With linear mapping the 11-bit code to current response is approximated by the equation:  
ILED = 37.8055 µA + 12.1945 µA × I2C BRGT CODE (for codes > 0)  
(2)  
Equation 2 is valid for codes between 1 and 2047. Code 0 disables the backlight.  
7.3.1.1.2 LED Current with PWM Enabled  
When LED brightness is controlled with the combination of I2C register and the PWM duty cycle, the  
multiplication result of I2C register value and PWM duty cycle controls the LED current in BLED1 and BLED2.  
LED mapping can be selected as either linear or exponential.  
With exponential mapping the multiplication result-to-current response is approximated by the equation:  
ILED = 50 µA × 1.003040572I2C BRGT CODE × PWM D/C  
(3)  
Equation 3 is valid for brightness values other than 0. Brightness value 0 (PWM D/C or I2C BRGT CODE)  
disables the backlight.  
With linear mapping the PWM duty cycle-to-current response is approximated by the equation:  
ILED = 37.8055 µA + (12.1945 µA × I2C BRGT CODE × PWM D/C)  
(4)  
Equation 4 is valid for brightness values other than 0. Brightness value 0 (PWM D/C or I2C BRGT CODE)  
disables the backlight.  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
 
 
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
Up to 8 LEDs/string  
with up to 28V  
V
BL_OUT  
Digital  
Domain  
Analog  
Domain  
High Efficiency  
Boost Regulator  
PWM Disabled  
min  
I
I
BLED2  
BLED1  
2
I C BRT Reg  
Sloper  
Mapper  
Dither  
DAC  
Driver_1  
Driver_2  
BL_TRANSIENT_TIME[3:0]  
MAPPER_SEL  
Figure 21. Brightness Control with PWM Bit Disabled  
Up to 8 LEDs/string  
with up to 28V  
V
BL_OUT  
Digital  
Domain  
Analog  
Domain  
High Efficiency  
Boost Regulator  
PWM Enabled  
MAPPER_SEL  
Mapper  
min  
I
I
BLED2  
BLED1  
2
Sloper  
I C BRT Reg  
Dither  
DAC  
Driver_1  
Driver_2  
BL_TRANSIENT_TIME[3:0]  
PWM input signal  
PWM  
detector  
HYSTERESIS  
[1:0]  
Figure 22. Brightness Control with PWM Bit Enabled  
16  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
7.3.1.2 Sloper  
The sloper smooths the transition from one brightness value to another. Slope time can be adjusted from 0 ms to  
8000 ms with BL_TRANS[3:0] bits (see Table 9 for details). Transient time is used for sloping up and down.  
Transient time always remains the same regardless of the amount of change in brightness.  
Sloper  
Input  
Brightness  
Time  
Brightness  
Output  
Steady state  
Normal  
slope  
Time  
Slope  
Time  
Figure 23. Sloper  
7.3.1.3 Mapper  
The mapper block maps the digital word set for the LED driver into current code. The user can select whether  
the mapping is exponential or linear with the BLED_MAP bit, register 0x02 bit[4].  
Exponential control is tailored to the response of the human eye such that the perceived change in brightness  
during ramp up or ramp down is linear.  
7.3.1.4 PWM Input  
The PWM detector block measures the duty cycle in the PWM pin. The PWM period is measured from the rising  
edge to the next rising edge. PWM polarity can be changed with bit PWM_CONFIG, register 0x02 bit[3]. The  
sample rate for the PWM input can be set to 1 MHz or 4 MHz with bit PWM_FREQ, register 0x03 bit[2]. The  
choice of sample rate depends on three factors:  
1. Required PWM resolution (input duty cycle to brightness code, with 11 bits max)  
2. PWM input frequency  
3. Efficiency  
The PWM input block timeout is 25 ms for 1-MHz sampling frequency and 3 ms for 4-MHz sampling frequency,  
measured from the last rising edge. This should be taken into account for 0% and 100% brightness settings (for  
setting 100% brightness, the high level of PWM input signal should be greater than the PWM input timeout) and  
for selecting the minimum PWM input signal frequency.  
7.3.1.5 PWM Minimum On/Off Time  
The minimum PWM input signal allowed for low and high pulse width is 6 µs for 1-MHz sampling frequency and  
1.5 µs for 4-MHz sampling frequency. This should be taken into account when selecting the PWM input signal  
frequency and maximum or minimum duty cycle. For example, if the PWM input signal frequency is 2 kHz (500  
µs) and the 4-MHz sampling frequency is used, the maximum allowed on-time is: (500 – 1.5) µs = 498.5 µs. The  
maximum duty cycle allowed is 100 × (498.5/500) = 99.7%. By comparison, following similar calculations, with a  
PWM input signal frequency of 20 kHz the maximum allowed duty cycle is 97%.  
Copyright © 2015, Texas Instruments Incorporated  
17  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
NOTE  
If the Minimum Off Time requirement is violated, there may be a range of duty cycle  
values in which flickering of the LEDs may occur or the LEDs may turn off completely. As  
the duty cycle increases farther and approaches 100%, the LEDs will turn on at full  
brightness level. This is due to the algorithm used by the device to detect 100% duty cycle  
in conjunction with the minimum low pulse width requirement discussed in this section. To  
avoid LED flickering and/or the LEDs turning off at high PWM duty cycles, the PWM  
Minimum On/Off Time requirement should be met.  
7.3.1.6 PWM Resolution and Input Frequency Range  
The PWM input resolution depends on the input signal frequency. To achieve the full 11-bit maximum resolution  
of PWM duty cycle to the LED brightness code, the input PWM duty cycle must be 11 bits, and the PWM  
sample period (1/fSAMPLE) must be smaller than the minimum PWM input pulse width. Figure 24 shows the  
possible brightness code resolutions based on the input PWM frequency. The minimum recommended PWM  
frequency is 100 Hz, and maximum recommended PWM frequency is 20 kHz.  
12  
Sample Freq = 1 MHz  
Sample Freq = 4 MHz  
10  
8
6
4
100  
1000  
10000  
100000  
PWM Frequency (Hz)  
D001  
Figure 24. PWM Resolution and PWM Input Frequency  
7.3.1.7 PWM Hysteresis  
To prevent jitter in the input PWM signal from feeding through the PWM path and causing oscillations in the LED  
current, the LM3632A offers 4 programmable PWM hysteresis settings. Hysteresis works by forcing a specific  
number of 11-bit LSB code transitions to occur in the input duty cycle before the LED current changes. Table 9  
describes the hysteresis. Hysteresis only applies during the change in direction of brightness currents. Once the  
change in direction has taken place, the PWM input must overcome the required LSB(s) of the hysteresis setting  
before the brightness change takes effect. Once the initial hysteresis has been overcome and the direction in  
brightness change remains the same, the PWM-to-current response changes with no hysteresis. Hysteresis is  
selected with the PWM_HYST bits, register 0x03 bits[1:0]. Changing the hysteresis value is recommended when  
PWM input frequency increases.  
7.3.1.8 PWM Timeout  
The LM3632A PWM timeout feature turns off the backlight boost output when the PWM input is enabled and  
there is no PWM pulse detected. The timeout duration depends on the PWM sample rate setting and defines the  
minimum supported PWM input frequency. Table 2 summarizes the sample rate, timeout, and minimum  
supported PWM frequency.  
Table 2. PWM Timeout and Minimum Supported PWM Frequency vs PWM Sample Rate  
MINIMUM SUPPORTED PWM  
SAMPLE RATE  
TIMEOUT  
FREQUENCY  
1 MHz  
4 MHz  
25 msec  
3 msec  
48 Hz  
400 Hz  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
 
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
7.3.1.9 Backlight Boost Converter  
The high voltage required by the LED strings is generated with an asynchronous backlight boost converter. An  
adaptive voltage control loop automatically adjusts the output voltage based on the voltage over the LED drivers  
BLED1 and BLED2.  
The LM3632A has two switching frequency modes, 500 kHz and 1 MHz. These are set via the BL_FREQ Select  
bit, register 0x03 bit[7]. Operation in low-frequency mode results in better efficiency at lighter load currents due to  
the decreased switching losses. Operation in high-frequency mode gives better efficiency at higher load currents  
due to the reduced inductor current ripple and the resulting lower conduction losses in the MOSFETs and  
inductor.  
BL_OUT  
BL_SW  
BLED1  
BLED2  
BLED_OVP [1:0]  
LIGHT  
LOAD  
OVP  
VHR  
(Feedback)  
R
R
S
R
-
GM  
+
R
GATE  
DRIVER  
VREF  
OCP  
CURRENT  
SENSE  
LED Driver  
BL_SW_FREQ  
OFF/BLANK TIME  
PULSE GENERATOR  
CURRENT RAMP  
GENERATOR  
GM  
BOOST OSCILLATOR  
PEAK_CURR_LIM  
Figure 25. Backlight Boost Block Diagram  
7.3.1.9.1 Headroom Voltage  
In order to optimize efficiency, the LED driver-regulated headroom voltage (VHR) changes with the programmed  
LED current. This allows for increased solution efficiency as the dropout voltage of the LED driver changes.  
Furthermore, in order to ensure that both current sinks remain in regulation when there is a mismatch in string  
voltages, the minimum headroom voltage between VBLED1 and VBLED2 becomes the regulation point for the boost  
converter. For example, if the LEDs connected to BLED1 require 25 V at the programmed current, and the LEDs  
connected to BLED2 require 25.5 V at the programmed current, the voltage at BLED1 is VHR + 0.5 V, and the  
voltage at BLED2 is VHR. In other words, the cathode of the highest voltage LED string becomes the boost output  
regulation point.  
Copyright © 2015, Texas Instruments Incorporated  
19  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
0.28  
0.26  
0.24  
0.22  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
0.08  
0.05  
0.5  
5
50  
C006  
LED Currrent (mA)  
Figure 26. Regulated Headroom vs LED Current  
7.3.1.9.2 Backlight Protection and Faults  
7.3.1.9.2.1 Overvoltage Protection (OVP) and Open-Load Fault Protection  
The LM3632A provides an OVP that monitors the LED boost output voltage (VBL_OUT) and protects BL_OUT and  
BL_SW from exceeding safe operating voltages. The OVP threshold can be set to 18 V, 22 V, 25 V or 29 V with  
register 0x02 bits[7:5]. Once an OVP event has been detected, the BL_OVP flag is set in the Flags1 register, and  
the subsequent behavior depends on the state of bit BL_OVP_SET in the Enable Register: If BL_OVP_SET is  
set to '0', as soon as VBL_OUT falls below the backlight OVP threshold, the LM3632A begins switching again. If  
BL_OVP_SET is set to '1' and the device detects three occurrences of VBL_OUT > VOVP_BL while any of the  
enabled current sink headroom voltages drops below 40 mV, the BL_OVP flag is set, the Backlight Enable bit is  
cleared, and the LM3632A enters standby mode. When the device is shut down due to a BL_OVP fault the  
Flags1 register must be read back before the device can be reenabled.  
7.3.1.9.2.2 Overcurrent Protection (OCP) and Overcurrent Protection Flag  
The LM3632A has an OCP threshold of 1 A. The OCP threshold is a cycle-by-cycle current limit detected in the  
low-side NFET. Once the threshold is reached, the NFET turns off for the remainder of the switching period. If  
enough overcurrent events occur, the BL_OCP flag (register 0x10 bit[0]) is set. The flag can be cleared upon a  
readback of register 0x10. To avoid transient conditions from inadvertently setting the BL_OCP flag, a pulse  
density counter monitors BL_OCP events over a 128-µs time window. If 8 consecutive 128-µs windows of at  
least 2 OCP events are detected, the BL_OCP flag is set.  
7.3.2 LCM Bias  
7.3.2.1 Display Bias Boost Converter (VVPOS, VVNEG  
)
A single high-efficiency boost converter provides a positive voltage rail, VLCM_OUT, which serves as the power rail  
for the LCM VPOS and VNEG outputs.  
The VVPOS output LDO has a programmable range from 4 V up to 6 V with 50-mV steps and can supply up to  
50 mA.  
The VVNEG output is generated from a regulated, inverting charge pump and has an adjustable range of –6 V  
up to –4 V with 50-mV steps and a maximum load of 50 mA.  
Boost voltage also has a programmable range from 4.5 V up to 6.4 V with 50-mV steps. Please refer to Table 19,  
Table 20 and Table 21 for VLCM_OUT, VVPOS and VVNEG voltage settings. When selecting a suitable boost-output  
voltage, the following estimation can be used: VLCM_OUT = max(VVPOS, |VVNEG|) + VHR, where VHR = 300 mV for  
lower currents and 400 mV for higher currents. When the device input voltage (VIN) is greater than the  
programmed LCM boost output voltage, the boost voltage goes to VIN + 100 mV. VVPOS, and VVNEG voltage  
settings cannot be changed while they are enabled. While the VLCM_OUT target changes immediately upon a  
register write, VVPOS and VVNEG register setting targets take effect only after the outputs are disabled and re-  
enabled.  
20  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
VIN  
VLCM_OUT  
LCM_OUT  
LCM Bias Boost  
Converter  
LCM_SW  
10 µF  
+
VIN  
CIN  
10 µF  
±
LCM Positive  
Bias Output  
VPOS  
VVPOS  
VPOS  
C1  
10 µF  
10 µF  
C2  
LCM Negative  
Bias Output  
VNEG  
VVNEG  
VNEG  
10 µF  
Figure 27. LCM Boost Block Diagram  
The LCM Bias outputs can be controlled either by pins LCM_EN1 and LCM_EN2 or register bits VPOS_EN and  
VNEG_EN, register 0x0C bits[2:1]. Setting bit EXT_EN, register 0x0C bit[0], to '0' allows pins LCM_EN1 and  
LCM_EN2 to control VPOS and VNEG, respectively, while setting this bit to '1' yields control to bits VPOS_EN  
and VNEG_EN. Refer to Table 3 for LCM bias control information.  
Table 3. LCM Bias Truth Table  
LCM_EN2  
PIN  
LCM_EN1  
PIN  
EXT_EN  
0x0C[0]  
VNEG_EN  
0x0C[1]  
VPOS_EN AUTO_SEQ WAKE-UP  
EN PIN  
ACTION  
Shutdown  
0x0C[2]  
0x0C[5]  
0x0C[7]  
0
1
1
1
X
0
0
1
X
0
1
0
X
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
Standby  
External VPOS  
External VNEG  
External VPOS and VNEG  
Independent  
1
1
1
1
1
1
1
1
X
X
X
X
0
1
0
0
External VPOS and VNEG  
Auto Sequence  
1
1
1
X
X
X
X
X
X
0
0
0
0
0
1
0
1
0
X
X
X
0
0
0
Standby  
I2C VPOS  
I2C VNEG  
I2C VPOS and VNEG  
Independent  
I2C VPOS and VNEG  
Auto Sequence  
1
1
X
X
X
X
0
0
1
1
1
1
0
1
0
0
1
1
1
1
0
1
1
1
X
X
X
X
X
X
X
X
X
0
0
1
X
0
1
0
X
X
X
X
1
1
1
1
Standby  
Standby  
Wake-up VPOS  
Wake-up VNEG  
Wake-up VPOS and  
VNEG  
1
1
X
X
1
1
X
1
Copyright © 2015, Texas Instruments Incorporated  
21  
 
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
7.3.2.2 Auto Sequence Mode  
If this mode is selected the LM3632A controls the turn-on and turn-off of VPOS and VNEG as shown in  
Figure 28.  
VPOS  
VNEG  
VPOS  
VNEG  
TR =  
500 µs  
or  
•ꢀ1 ms  
•ꢀ1 ms  
800 µs  
Figure 28. Auto Sequence Timing  
7.3.2.3 Wake-up Mode  
If Wake-up mode is selected the LM3632A allows on/off control of both VPOS and VNEG with only one external  
pin (LCM_EN2). Any combination of VPOS, VNEG, or both can be turned on based on the state of bits  
VPOS_EN and VNEG_EN in register 0x0C. In this mode the internal shutdown timing of the VPOS and VNEG  
blocks is modified to allow for lower quiescent current in standby mode, therefore reducing the average current  
consumption during a sequence of on/off events.  
7.3.2.4 Active Discharge  
An optional active discharge is available for the VPOS and VNEG output rails. An internal switch resistance for  
this discharge function is implemented on each output rail. The VPOS active discharge function is enabled with  
register 0x0C bit[4] and the VNEG active discharge with register 0x0C bit[3].  
NOTE  
To avoid an unsafe operating condition when the active discharge function is enabled, a  
minimum delay of 1 millisecond needs to be maintained between disabling and re-  
enabling of the VNEG output.  
7.3.2.5 LCM Bias Protection and Faults  
The LCM Bias block of the LM3632A provides four protection mechanisms in order to prevent damage to the  
device. Note that none of these have any effect on backlight or flash operation.  
7.3.2.5.1 LCM Overvoltage Protection  
The LM3632A provides OVP that monitors the LCM Bias boost output voltage (VLCM_OUT) and protects  
LCM_OUT and LCM_SW from exceeding safe operating voltages. The OVP threshold is set to 7 V (typical). If an  
LCM Bias overvoltage condition is detected, the LCM_OVP flag, register 0x10 bit[5], is set. The flag can be  
cleared with an I2C read back of the register. An LCM OVP condition will not cause the LCM Bias to shut down; it  
is a report-only flag.  
7.3.2.5.2 VNEG Overvoltage Protection  
If the charge-pump voltage goes 250 mV (typical) below its target set-point, the LM3632A provides a mechanism  
for preventing the voltage from increasing even further and damaging the device and sets the VNEG_OVP flag,  
register 0x10 bit[4]. The flag can be cleared with an I2C readback of the register. A VNEG OVP condition will not  
cause the charge pump to shut down; it is a report-only flag.  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
NOTE  
The VNEG_OVP flag may get set during VNEG start-up under light load and low VNEG  
voltage settings due to VNEG voltage undershoot. After the flag is cleared via register  
read back, the LM3632A detects VNEG OVP conditions properly.  
7.3.2.5.3 VPOS Short Circuit Protection  
If the current at VPOS exceeds 80 mA (typical), the LM3632A sets the VPOS_SHORT flag, register 0x10 bit[3].  
A readback of register 0x10 is required to clear the flag. A VPOS_SHORT condition will not cause the LCM Bias  
to shut down; it is a report-only flag.  
7.3.2.5.4 VNEG Short Circuit Protection  
If the voltage at VNEG goes within 750 mV (typical) from ground, the LM3632A sets the VNEG_SHORT flag,  
register 0x10 bit[2]. A readback of register 0x10 is required to clear the flag. A VNEG_SHORT condition will not  
cause the LCM Bias to shut down; it is a report-only flag.  
7.3.3 Flash  
7.3.3.1 Flash Boost Converter  
The LM3632A incorporates a high-efficiency synchronous current-mode PWM boost converter that switches and  
boosts the output to maintain at least VHR across the flash current source (FLED) over the 2.7-V to 5.5-V input  
voltage range. The flash boost has two switching frequency modes, 2-MHz and 4-MHz. These are set via the  
FL_FREQ Select bits, register 0x07 bits[7:6].  
FL_SW  
Overvoltage  
Comparator  
4 MHz or  
2 MHz  
Oscillator  
VIN  
-
+
V
REF  
V
OVP  
100 m:  
FL_OUT  
Input Voltage  
Flash Monitor  
I
LED  
PWM  
Control  
80 m:  
FLED  
+
-
OUT-VHR  
Error  
Amplifier  
Current Sense/  
Current Limit  
Slope  
Compensation  
Soft-Start  
SDA  
SCL  
2
Control  
Logic/  
Registers  
I
C
Interface  
GND  
ENABLE  
STROBE  
TX  
Figure 29. Flash Boost Block Diagram  
Copyright © 2015, Texas Instruments Incorporated  
23  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
7.3.3.2 Start-Up (Enabling The Device)  
The flash LED output (FLED) can be enabled in flash or torch mode with the Enable Register and the STROBE  
pin. The state of bit STROBE_EN, register 0x09 bit[4], determines if the FLED output is enabled by bit[1] of  
register 0x0A or the STROBE pin. Table 4 contains the details for flash operation control. While a positive edge  
is required at the STROBE pin in order to initiate a Torch or Flash event, the STROBE pin is level sensitive. That  
means that the event is terminated as soon as the STROBE pin transitions low.  
Table 4. Flash Truth Table  
STROBE_EN  
0x09[4]  
STROBE  
PIN  
FLASH_EN  
0x0A[1]  
FLASH_MODE  
0x0A[2]  
EN PIN  
ACTION  
0
1
1
1
1
1
1
1
1
X
0
0
0
1
1
1
1
1
X
X
0
1
1
0
1
0
1
1
X
X
0
Shutdown  
Standby  
Int Torch  
Int Flash  
Standby  
Standby  
Standby  
Ext Torch  
Ext Flash  
X
X
X
1
0
X
X
X
0
0
pos edge  
pos edge  
pos edge  
1
On start-up, when VOUT is less than VIN the internal synchronous PFET turns on as a current source and delivers  
200 mA (typical) to the output capacitor. During this time the current source (LED) is off. When the voltage  
across the output capacitor reaches 2.2 V (typical) the current source turns on. At turn-on the current source  
steps through each flash or torch level until the target LED current is reached. This gives the device a controlled  
turn-on and limits inrush current from the VIN supply.  
7.3.3.3 Pass Mode  
The LM3632A flash boost starts up in pass mode and stays there until boost mode is needed to maintain  
regulation. If the voltage difference between VFL_OUT and VFLED falls below VHR, the device switches to boost  
mode. In pass mode the boost converter does not switch, and the synchronous PFET turns fully on bringing  
VFL_OUT up to VIN IFLED × RPMOS. In pass mode the inductor current is not limited by the peak current limit.  
7.3.3.4 Flash Mode  
In flash mode, the LED current source (FLED) provides 15 target current levels from 100 mA to 1500 mA in 100  
mA increments. The flash currents are adjusted via register 0x06 (see Table 12 for details). Once the flash  
sequence is activated the current source (FLED) ramps up to the programmed flash current by stepping through  
all current steps until the programmed current is reached. The headroom in the current source is regulated to  
provide 100 mA to 1.5 A to the output. Whether the device is enabled in flash mode through the Enable Register  
or through the STROBE pin, the Flash Enable bit in the Enable Register is cleared at the completion of the flash  
event and needs to be re-written in order to perform the next internal or external flash event.  
7.3.3.5 Torch Mode  
In torch mode, the LED current source (FLED) provides 15 target current levels from 25 mA to 375 mA in 25-mA  
increments. The torch currents are adjusted via register 0x06 (see Table 12 for details). Once the torch sequence  
is activated the current source (FLED) ramps up to the programmed Torch current by stepping through all current  
steps until the programmed current is reached. Torch mode is not affected by Flash Timeout or by a TX Interrupt  
event.  
7.3.3.6 Power Amplifier Synchronization (TX)  
The TX pin is a Power Amplifier Synchronization input. This is designed to reduce the flash FLED current and  
thus limit the battery current during high battery-current conditions such as PA transmit events. When the  
LM3632A is engaged in a flash event, and the TX pin is pulled high, the FLED current is forced into torch mode  
at the programmed torch current setting. If the TX pin is then pulled low before the flash pulse terminates, the  
FLED current returns to the previous flash current level. At the end of the flash time-out, whether the TX pin is  
high or low, the FLED current is turned off.  
24  
Copyright © 2015, Texas Instruments Incorporated  
 
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
7.3.3.7 VIN Monitor  
The LM3632A has the ability to adjust the flash current based upon the voltage level present at the VIN pin. The  
adjustable VINM threshold ranges from 2.6 V to 3.3 V in 100-mV steps. The Flags1 Register (0x0B) has the fault  
flag set when the input voltage crosses the VINM value. Additionally, the VINM threshold sets the input voltage  
boundary that forces the device to either transition into torch mode at the programmed torch current setting or  
turn off the FLED current for the remaining flash duration. This decision is made based on the status of bit  
VINM_MODE, register 0x09 bit[1]. In order to re-enable the LM3632A in torch or flash mode the VINM flag has to  
be cleared. If the VINM flag is tripped during flash current ramp-up, and VINM mode is set to torch, the FLED  
current is reduced not to the torch current setting but to the same percentage of the last flash current that was  
reached during fash current ramp-up. For example, if the flash current setting is 1 A, the torch current setting is  
100 mA and the maximum flash current that was reached before the VINM threshold was crossed is 700 mA, the  
device will transition the flash current to 70 mA (70% of 100 mA).  
7.3.3.8 Flash Fault Protections  
7.3.3.8.1 Fault Operation  
If the LM3632A enters a fault condition during flash, the device sets the appropriate flag in the Flags1 and Flags2  
Registers (0x0B and 0x10) and places the flash block into standby by clearing the FLASH_EN bit in the Enable  
Register. The flash block remains in shutdown until an I2C read of the Flag Registers is completed. Upon  
clearing the flags/faults, flash can be restarted. If the fault is still present, the LM3632A re-enters the fault state  
and enters standby again. Flash faults have no effect on Backlight or LCM control.  
7.3.3.8.2 Flash Time-Out  
The Flash Time-Out period sets the amount of time that the Flash Current is being sourced from the current  
source (FLED). The LM3632A has 32 timeout levels ranging from 32 ms to 1024 ms (see Table 13 for more  
detail). Once a flash event is completed, the FTO flag in Flags1 register (register 0x0B bit[1]) is set. If a flash  
event is activated via the STROBE pin and STROBE transitions low after the end of the programmed flash  
timeout, the flash event is terminated at the programmed flash timeout, and the FTO flag is set. If the STROBE  
pin transitions low before the end of the programmed flash timeout, the flash event is terminated, and the FTO  
flag is not set.  
7.3.3.8.3 Overvoltage Protection (OVP)  
The flash output voltage is limited to typically 4.9 V (see VOVP Spec in Electrical Characteristics ). In situations  
such as an open FLED, the LM3632A tries to raise the output voltage in order to keep the FLED current at its  
target value. When VFL_OUT reaches 4.9 V (typical), the overvoltage comparator trips and turns off the internal  
NFET. When VFL_OUT falls below the VOVP Off threshold, the LM3632A begins switching again. The Flash Enable  
bit is cleared, and the FLASH_OVP flag is set, when an OVP condition is present for three rising OVP edges.  
This prevents momentary OVP events from forcing the device to shut down.  
7.3.3.8.4 Current Limit  
The LM3632A features two selectable flash inductor current limits that are programmable through the I2C-  
compatible interface. When the inductor current limit is reached, the device terminates the charging phase of the  
switching cycle. Switching resumes at the start of the next switching period. If the overcurrent condition persists,  
the device operates continuously in current limit. Since the current limit is sensed in the NMOS switch, there is  
no mechanism to limit the current when the device operates in pass mode (current does not flow through the  
NMOS in pass mode). In boost mode or pass mode if VFL_OUT falls below 2.3 V, the device stops switching, and  
the PFET operates as a current source limiting the current to 200 mA. This prevents damage to the LM3632A  
and excessive current draw from the battery during output short-circuit conditions. The Flash Enable bit is not  
cleared upon a current limit event, but the FLASH_OCP flag (register 0x10 bit[1]) is set.  
Copyright © 2015, Texas Instruments Incorporated  
25  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
7.3.3.8.5 FLED and/or FL_OUT Short Fault  
The FLED short flag (FLED_SHORT) reads back a '1' if the device is active in flash or torch mode and the FLED  
output experiences a short condition. The flash output short flag (FOUT_SHORT) reads back a '1' if the device is  
active in flash or torch mode and the flash boost output experiences a short condition. A FLED short condition is  
determined if the voltage at FLED goes below 500 mV (typical) while the device is in torch or flash mode. There  
is a deglitch time of 256 μs before the LED Short flag is valid and a deglitch time of 2.048 ms before the FL_OUT  
Short flag is valid. The FLED Short Fault can only be reset to '0' by removing power to the LM3632A, setting EN  
to '0', setting the SW RESET bit to a '1', or by reading back the Flags1 Register (0x0B on device). The Flash  
Enable bit is cleared upon a FLED and/or FL_OUT short fault.  
7.3.4 Software RESET  
Bit[7] (SWR_RESET) of the Enable Register (0x0A) is a software reset bit. Writing an '1' to this bit resets all I2C  
register values to their default values. Once the LM3632A has finished resetting all registers, it auto-clears the  
SWR_RESET bit.  
7.3.5 EN Input  
The EN pin is a global hardware enable for the LM3632A. This pin must be pulled to logic HIGH to enable the  
device and the I2C-compatible interface. There is a 300-kΩ internal resistor between EN and GND. When this pin  
is at logic LOW, the LM3632A is placed in shutdown, the I2C-compatible interface is disabled, and the internal  
registers are reset to their default state. It is recommended that VIN has risen above 2.7 V before setting EN  
HIGH.  
7.3.6 Thermal Shutdown (TSD)  
The LM3632A has TSD protection which shuts down the backlight boost, both backlight current sinks, LCM Bias  
Boost and outputs, inverting charge pump, flash boost, and flash current source when the die temperature  
reaches or exceeds 140°C (typical). The I2C interface remains active during a TSD event. If a TSD fault occurs  
the TSD fault is set, register 0x0B bit[0]. The fault is cleared by an I2C read of register 0x0B or by toggling the  
EN pin.  
7.4 Device Functional Modes  
7.4.1 Modes of Operation  
Shutdown: The LM3632A is in shutdown when the EN pin is low.  
Standby:  
After the EN pin is set high the LM3632A goes into standby mode. In standby mode, I2C writes are  
allowed but references, bias currents, the oscillator, LCM powers, backlight and flash are all  
disabled, to keep the quiescent supply current low (2 µA typ.).  
Normal mode: All three main blocks of the LM3632A are independently controlled. For enabling each of the  
blocks in all available modes, see Table 1, Table 3, and Table 4 .  
7.5 Programming  
7.5.1 I2C-Compatible Serial Bus Interface  
7.5.1.1 Interface Bus Overview  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers on  
the device. This protocol uses a two-wire interface for bidirectional communications between the IC's connected  
to the bus. The two interface lines are the Serial Data Line (SDA) and the Serial Clock Line (SCL). These lines  
should be connected to a positive supply via a pull-up resistor and remain HIGH even when the bus is idle.  
Every device on the bus is assigned a unique address and acts as either a Master or a Slave, depending  
whether it generates or receives the serial clock (SCL).  
26  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
Programming (continued)  
7.5.1.2 Data Transactions  
One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock  
(SCL). Consequently, throughout the clock’s high period, the data should remain stable. Any changes on the  
SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New  
data should be sent during the low SCL state. This protocol permits a single data line to transfer both  
command/control information and data using the synchronous serial clock.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
Figure 30. Data Validity  
Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software), and a  
Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is  
transferred with the most significant bit first. After each byte, an Acknowledge signal must follow. The following  
sections provide further details of this process.  
Transmitter Stays off the  
Bus During the Acknowledge Clock  
Acknowledge Signal from Receiver  
3...6  
7
9
1
8
2
S
Start  
Condition  
Figure 31. Acknowledge Signal  
The Master device on the bus always generates the Start and Stop Conditions (control codes). After a Start  
Condition is generated, the bus is considered busy, and it retains this status until a certain time after a Stop  
Condition is generated. A high-to-low transition of the data line (SDA) while the clock (SCL) is high indicates a  
Start Condition. A low-to-high transition of the SDA line while the SCL is high indicates a Stop Condition.  
Copyright © 2015, Texas Instruments Incorporated  
27  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
Programming (continued)  
SDA  
SCL  
S
P
START condition  
STOP condition  
Figure 32. Start and Stop Conditions  
In addition to the first Start Condition, a repeated Start Condition can be generated in the middle of a transaction.  
This allows another device to be accessed, or a register read cycle.  
7.5.1.3 Acknowledge Cycle  
The Acknowledge Cycle consists of two signals: the acknowledge clock pulse the master sends with each byte  
transferred, and the acknowledge signal sent by the receiving device.  
The master generates the acknowledge clock pulse on the ninth clock pulse of the byte transfer. The transmitter  
releases the SDA line (permits it to go high) to allow the receiver to send the acknowledge signal. The receiver  
must pull down the SDA line during the acknowledge clock pulse and ensure that SDA remains low during the  
high period of the clock pulse, thus signaling the correct reception of the last data byte and its readiness to  
receive the next byte.  
7.5.1.4 Acknowledge After Every Byte Rule  
The master generates an acknowledge clock pulse after each byte transfer. The receiver sends an acknowledge  
signal after every byte received.  
There is one exception to the “acknowledge after every byte” rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not-acknowledging (“negative acknowledge”) the last byte clocked  
out of the slave. This “negative acknowledge” still includes the acknowledge clock pulse (generated by the  
master), but the SDA line is not pulled down.  
7.5.1.5 Addressing Transfer Formats  
Each device on the bus has a unique slave address. The LM3632A operates as a slave device with the 7-bit  
address. If an 8-bit address is used for programming, the 8th bit is '1' for read and '0' for write. The 7-bit address  
for the device is 0x11.  
Before any data is transmitted, the master transmits the address of the slave being addressed. The slave device  
should send an acknowledge signal on the SDA line, once it recognizes its address. The slave address is the  
first seven bits after a Start Condition. The direction of the data transfer (R/W) depends on the bit sent after the  
slave address — the eighth bit.  
When the slave address is sent, each device in the system compares this slave address with its own. If there is a  
match, the device considers itself addressed and sends an acknowledge signal. Depending upon the state of the  
R/W bit (1:read, 0:write), the device acts as a transmitter or a receiver.  
MSB  
LSB  
ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0  
R/W  
bit0  
Bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
I2C SLAVE address (chip address)  
Figure 33. I2C Device Address  
Control Register Write Cycle  
Master device generates start condition.  
Master device sends slave address (7 bits) and the data direction bit (r/w = 0).  
28  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
Programming (continued)  
Slave device sends acknowledge signal if the slave address is correct.  
Master sends control register address (8 bits).  
Slave sends acknowledge signal.  
Master sends data byte to be written to the addressed register.  
Slave sends acknowledge signal.  
If master sends further data bytes the control register address is incremented by one after acknowledge  
signal.  
Write cycle ends when the master creates stop condition.  
Control Register Read Cycle  
Master device generates a start condition.  
Master device sends slave address (7 bits) and the data direction bit (r/w = 0).  
Slave device sends acknowledge signal if the slave address is correct.  
Master sends control register address (8 bits).  
Slave sends acknowledge signal  
Master device generates repeated start condition.  
Master sends the slave address (7 bits) and the data direction bit (r/w = 1).  
Slave sends acknowledge signal if the slave address is correct.  
Slave sends data byte from addressed register.  
If the master device sends acknowledge signal, the control register address is incremented by one. Slave  
device sends data byte from addressed register.  
Read cycle ends when the master does not generate acknowledge signal after data byte and generates stop  
condition.  
Table 5. I2C Data Read/Write(1)  
ADDRESS MODE  
<Start Condition>  
<Slave Address><r/w =0>[Ack]  
<Register Addr>[Ack]  
<Repeated Start Condition>  
<Slave Address><r/w = 1>[Ack]  
Data Read  
[Register Data]<Ack or NAck>  
...additional reads from subsequent register address possible  
<Stop Condition>  
<Start Condition>  
<Slave Address><r/w = 0>[Ack]  
<Register Addr>[Ack]  
<Register Data>[Ack]  
Data Write  
...additional writes to subsequent register address possible  
<Stop Condition>  
(1) < > = Data from master, [ ] = Data from slave  
ack from slave  
ack from slave  
ack from slave  
start msb Chip Address lsb  
w
ack  
msb Register Addr lsb  
ack  
msb  
Data  
lsb  
ack stop  
SCL  
SDA  
start  
id = 001 0001b  
w
ack  
address = 02h  
ack  
address 02h data  
ack stop  
Figure 34. Register Write Format  
Copyright © 2015, Texas Instruments Incorporated  
29  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
When a READ function is to be accomplished, a WRITE function must precede the READ function, as show in  
the Read Cycle waveform.  
ack from slave  
ack from slave repeated start  
ack from slavedata from slave nack from master  
start msb Chip Address lsb  
w
msb Register Add lsb  
rs  
msb Chip Address lsb  
r
msb Data lsb  
stop  
SCL  
SDA  
start  
id = 001 0001b  
w
ack  
address = 00h  
ack rs  
id = 001 0001b  
r ack address 00h data nack stop  
Figure 35. Register Read Format  
NOTE  
w = write (SDA = 0), r = read (SDA = 1), ack = acknowledge (SDA pulled down by either  
master or slave), rs = repeated start id = 7-bit chip address  
30  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
7.6 Register Maps  
Table 6. Register Default Values  
I2C Address  
0x01  
Register Name  
Read/Write  
R
Power On/Reset Value  
Revision Register  
Backlight Configuration1 Register  
Backlight Configuration2 Register  
LED Brightness LSB Register  
LED Brightness MSB Register  
Flash/Torch Current Register  
Flash Configuration Register  
VIN Monitor Register  
0x09  
0x30  
0x0D  
0x07  
0xFF  
0x3E  
0x2F  
0x03  
0x00  
0x00  
0x00  
0x18  
0x1E  
0x1E  
0x1C  
0x00  
0x02  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
I/O Control Register  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
Enable Register  
Flags1 Register  
Display Bias Configuration Register  
LCM Boost Bias Register  
VPOS Bias Register  
R/W  
R/W  
R/W  
R/W  
R
VNEG Bias Register  
Flags2 Register  
7.6.1 Revision (Address = 0x01) [reset = 0x05]  
Figure 36. Revision Register  
7
6
5
4
3
2
1
0
DEV_REV[5]  
R-0  
DEV_REV[4]  
R-0  
DEV_REV[3]  
R-0  
DEV_REV[2]  
R-0  
DEV_REV[1]  
R-1  
DEV_REV[0]  
R-0  
VENDOR[1]  
R-0  
VENDOR[0]  
R-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. Revision Register Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R
Reset  
000010  
01  
Description  
DEV_REV[6:0]  
VENDOR[1:0]  
R
7.6.2 Backlight Configuration1 (Address = 0x02) [reset = 0x30]  
Figure 37. Backlight Configuration1 Register  
7
6
5
4
3
2
1
0
BLED_OVP[2] BLED_OVP[1] BLED_OVP[0]  
R/W-0 R/W-0 R/W-1  
BLED_MAP  
R/W-1  
PWM_CONFIG  
R/W-0  
Reserved  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. Backlight Configuration1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BLED_OVP  
R/W  
001  
Backlight OVP level select  
000: 18 V  
001: 22 V (Default)  
010: 25 V  
011: 29 V  
Note: Codes 100 to 111 also map to 29 V  
4
BLED_MAP  
R/W  
1
Sets the backlight LED mapping mode  
0: Exponential  
1: Linear (Default)  
Copyright © 2015, Texas Instruments Incorporated  
31  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
Table 8. Backlight Configuration1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
PWM_CONFIG  
R/W  
0
Sets the polarity of the PWM input signal  
0: Active High PWM Input (default)  
1: Active Low PWM Input  
2-0  
Reserved  
7.6.3 Backlight Configuration2 (Address = 0x03) [reset = 0x0D]  
Figure 38. Backlight Configuration2 Register  
7
6
5
4
3
2
1
0
BL_FREQ  
R/W-0  
BL_TRANS[3] BL_TRANS[2] BL_TRANS[1] BL_TRANS[0]  
R/W-0 R/W-0 R/W-0 R/W-1  
PWM_FREQ  
R/W-1  
PWM_HYST[1]  
R/W-0  
PWM_HYST[0]  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. Backlight Configuration2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BL_FREQ  
R/W  
0
Sets the backlight boost switch frequency  
0: 500 kHz (Default)  
1: 1 MHz  
6-3  
BL_TRANS[3:0]  
R/W  
001  
Controls backlight LED ramping time. The transient time is a  
constant time that the backlight takes to transition from an  
existing programmed code to a new programmed code.  
0000: 0  
0001: 500 µs (Default)  
0010: 750 µs  
0011: 1 ms  
0100: 2 ms  
0101: 5 ms  
0110: 10 ms  
0111: 20 ms  
1000: 50 ms  
1001: 100 ms  
1010: 250 ms  
1011: 800 ms  
1100: 1 s  
1101: 2 s  
1110: 4 s  
1111: 8 s  
2
PWM_FREQ  
R/W  
R/W  
1
Sets PWM sampling frequency  
0: 1 MHz  
1: 4 MHz (Default)  
1-0  
PWM_HYST[1:0]  
01  
Sets the minimum change in PWM input duty cycle that results  
in a change of backlight LED brightness level  
00: 1 bit  
01: 2 bits (Default)  
10: 4 bits  
11: 6 bits  
7.6.4 Backlight Brightness LSB (Address = 0x04) [reset = 0x07]  
Figure 39. Backlight Brightness LSB Register  
7
6
5
4
3
2
1
0
Reserved  
BL_BRT_  
LSB[2]  
BL_BRT_  
LSB[1]  
BL_BRT_  
LSB[0]  
R/W-1  
R/W-1  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
32  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
Table 10. Backlight Brightness LSB Register Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
Reset  
Description  
Reserved  
BL_BRT_LSB[2:0]  
R/W  
111  
Lower 3 bits (LSB's) of brightness code. Concatenated with  
brightness bits in Register 0x05 (MSB).  
7.6.5 Backlight Brightness MSB (Address = 0x05) [reset = 0xFF]  
Figure 40. Backlight Brightness MSB Register  
7
6
5
4
3
2
1
0
BL_BRT_  
MSB[7]  
BL_BRT_  
MSB[6]  
BL_BRT_  
MSB[5]  
BL_BRT_  
MSB[4]  
BL_BRT_  
MSB[3]  
BL_BRT_  
MSB[2]  
BL_BRT_  
MSB[1]  
BL_BRT_  
MSB[0]  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. Backlight Brightness MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BL_BRT_MSB[7:0]  
R/W  
11111111 Upper 8 bits (MSB's) of backlight brightness code. Concatenated  
with brightness bits in Register 0x04 (LSB).  
With linear mapping the 11-bit code to current response is  
approximated by the equation:  
ILED=37.8055μA+12.1945μA×I2C_BRGT_CODE (for codes > 0).  
With exponential mapping the 11-bit code-to-current response is  
approximated by the equation:  
ILED=50μA×1.003040572I2C_BRGT_CODE (for codes > 0).  
These equations are valid for I2C brightness codes between 1  
and 2047. Code 0 disables the backlight.  
7.6.6 Flash/Torch Current (Address = 0x06) [reset = 0x3E]  
Figure 41. Flash/Torch Current Register  
7
6
5
4
3
2
1
0
TORCH_  
BRT[3]  
TORCH_  
BRT[2]  
TORCH_  
BRT[1]  
TORCH_  
BRT[0]  
FLASH_  
BRT[3]  
FLASH_  
BRT[2]  
FLASH_  
BRT[1]  
FLASH_  
BRT[0]  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. Flash/Torch Current Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
TORCH_BRT[3:0]  
R/W  
0011  
Sets torch mode current level (25 mA per step)  
0000: 25 mA  
0001: 50 mA  
0010: 75 mA  
0011: 100 mA (Default)  
....................  
1101: 350 mA  
1110: 375 mA  
Note: Code 1111 also maps to 375 mA  
3-0  
FLASH_BRT[3:0]  
R/W  
1110  
Sets flash mode current level (100 mA per step)  
0000: 100 mA  
0001: 200 mA  
0010: 300 mA  
0011: 400 mA  
....................  
1101: 1.4 A  
1110: 1.5 A (Default)  
Note: Code 1111 also maps to 1.5 A  
Copyright © 2015, Texas Instruments Incorporated  
33  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
7.6.7 Flash Configuration (Address = 0x07) [reset = 0x2F]  
Figure 42. Flash Configuration Register  
7
6
5
4
3
2
1
0
FL_FREQ[1]  
R/W-0  
FL_FREQ[0]  
R/W-0  
FL_ILIMIT  
R/W-1  
FTO[4]  
R/W-0  
FTO[3]  
R/W-1  
FTO[2]  
R/W-1  
FTO[1]  
R/W-1  
FTO[0]  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. Flash Configuration Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
FL_FREQ[1:0]  
R/W  
00  
Sets the flash boost switch frequency  
00: 4 MHz (Default)  
01: 2 MHz  
Note: Codes 10 and 11 also map to 2 MHz  
5
FL_ILIMIT  
FTO[4:0]  
R/W  
R/W  
1
Selects the switch current limit level for flash boost  
0: 1.9 A  
1: 2.8 A (Default)  
4-0  
01111  
Selects the flash timeout duration (32 ms per step)  
00000: 32 ms  
00001: 64 ms  
00010: 96 ms  
00011: 128 ms  
.....................  
01110: 480 ms  
01111: 512 ms (Default)  
10000: 544 ms  
.....................  
11110: 992 ms  
11111: 1024 ms  
7.6.8 VIN Monitor (Address = 0x08) [reset = 0x03]  
Figure 43. VIN Monitor Register  
7
6
5
4
3
2
1
0
Reserved  
VINM[2]  
R/W-0  
VINM[1]  
R/W-1  
VINM[0]  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. VIN Monitor Register Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
Reset  
Description  
Reserved  
VINM[2:0]  
R/W  
011  
This field sets the VIN Monitor threshold level  
000: 2.6 V  
001: 2.7 V  
010: 2.8 V  
011: 2.9 V (Default)  
100: 3 V  
101: 3.1 V  
110: 3.2 V  
111: 3.3 V  
7.6.9 I/O Control (Address = 0x09) [reset = 0x00]  
Figure 44. I/O Control Register  
7
6
5
4
3
2
1
0
Reserved  
PWM_EN  
R/W-0  
Reserved  
STROBE_EN  
R/W-0  
Reserved  
TX_EN  
R/W-0  
VINM_MODE  
R/W-0  
VINM_EN  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
34  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
Table 15. I/O Control Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
PWM_EN  
6
R/W  
0
This bit enables and disables the PWM input pin. If enabled, the  
backlight LED current ramps up to  
Target_Current*PWM_Duty_Cycle. If disabled, the PWM input is  
ignored.  
0: PWM disabled (Default)  
1: PWM enabled  
5
4
Reserved  
STROBE_EN  
R/W  
0
Hardware flash enable  
0: STROBE disabled (Default)  
1: STROBE enabled  
3
2
Reserved  
TX_EN  
R/W  
R/W  
R/W  
0
0
0
Flash Interrupt mode enable  
0: TX disabled (Default)  
1: TX enabled  
1
0
VINM_MODE  
VINM_EN  
Selects the VIN Monitor current reduction level  
0: Flash driver returns to standby mode (Default)  
1: Flash current reduced to programmed Torch current level  
Set this bit to enable VIN Monitor function  
0: Disabled (Default)  
1: Enabled  
7.6.10 Enable (Address = 0x0A) [reset = 0x00]  
Figure 45. Enable Register  
7
6
5
4
3
2
1
0
SWR_RESET  
R/W-0  
Reserved  
BL_OVP_SET  
R/W-0  
BLED1_EN  
R/W-0  
BLED1/2_EN  
R/W-0  
FLASH_MODE  
R/W-0  
FLASH_EN  
R/W-0  
BL_EN  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. Enable Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SWR_RESET  
R/W  
0
Setting this bit resets all registers to their default values. Bit  
auto-clears (returns to "0" upon device reset).  
6
5
Reserved  
R/W  
R/W  
0
0
BL_OVP_SET  
0: Reports flag if OVP condition detected, but no action taken  
(Default)  
1: OVP causes shutdown  
4
3
BLED1_EN  
R/W  
R/W  
0
0
Backlight sink 1 enable only  
0: Disabled (Default)  
1: Enabled  
BLED1/2_EN  
Backlight sink 1 and sink 2 enable. Has priority over bit[4]  
(BLED1_EN).  
0: Backlight sink 2 disabled, backlight sink 1 status depends on  
BLED1_EN bit status (Default)  
1: Backlight sink 1 and sink 2 enabled regardless of BLED1_EN  
bit status  
2
1
0
FLASH_MODE  
FLASH_EN  
BL_EN  
R/W  
R/W  
R/W  
0
0
0
Selects Torch or Flash mode for flash LED output  
0: Torch (Default)  
1: Flash  
Flash LED output enable  
0: Disabled (Default)  
1: Enabled  
Backlight output enable  
0: Disabled (Default)  
1: Enabled  
Copyright © 2015, Texas Instruments Incorporated  
35  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
7.6.11 Flags1 (Address = 0x0B) [reset = 0x00]  
Figure 46. Flags1 Register  
7
6
5
FOUT_SHORT  
R-0  
4
3
2
FLED_SHORT  
R-0  
1
0
BL_OVP  
R-0  
FLASH_OVP  
R-0  
VINM  
R-0  
TX  
R-0  
FTO  
R-0  
TSD  
R-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. Flags1 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
Description  
BL_OVP  
FLASH_OVP  
FOUT_SHORT  
VINM  
0
0
0
0
0
0
0
0
Backlight overvoltage protection fault or flag  
Flash overvoltage protection fault or flag  
Flash output short fault  
6
R
5
R
4
R
VINM fault or flag  
3
TX  
R
TX Interrupt flag  
2
FLED_SHORT  
FTO  
R
Flash LED short fault  
1
R
Flash timeout flag  
0
TSD  
R
Thermal shutdown fault  
7.6.12 Display Bias Configuration (Address = 0x0C) [reset = 0x18]  
Figure 47. Display Bias Configuration Register  
7
6
5
4
3
2
1
0
WAKE-UP  
VPOS_TRANS  
AUTOSEQ  
VPOS_DISCH VNEG_DISCH  
R/W-1 R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
VPOS_EN  
R/W-0  
VNEG_EN  
R/W-0  
EXT_EN  
R/W-0  
Table 18. Display Bias Configuration Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WAKE-UP  
R/W  
0
Enables wake-up mode  
0: Wake-up mode disabled (Default)  
1: Wake-up mode enabled  
6
5
4
3
VPOS_TRANS  
AUTOSEQ  
R/W  
R/W  
R/W  
R/W  
0
0
1
1
Controls positive display bias voltage (LDO) ramping time  
0: 800 µs (Default)  
1: 500 µs  
Enables Auto-sequence  
0: Auto-sequence disabled (Default)  
1: Auto-sequence enabled  
VPOS_DISCH  
VNEG_DISCH  
Positive display bias voltage (LDO) active discharge selection  
0: Not discharged  
1: Active discharge (Default)  
Negative display bias voltage (inverting charge pump) active  
discharge selection  
0: Not discharged  
1: Active discharge (Default)  
2
1
0
VPOS_EN  
VNEG_EN  
EXT_EN  
R/W  
R/W  
R/W  
0
0
0
Positive display bias (LDO) enable  
0: Disabled (Default)  
1: Enabled  
Negative display bias (inverting charge pump) enable  
0: Disabled (Default)  
1: Enabled  
Setting this bit activates pins LCM_EN1 and LCM_EN2 to  
enable VPOS and VNEG, respectively  
0: VPOS and VNEG can only be enabled via bit VPOS_EN and  
VNEG_EN, respectively (Default)  
1: VPOS and VNEG can only be enabled via pin LCM_EN1 and  
LCM_EN2, respectively  
36  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
7.6.13 LCM Boost Bias (Address = 0x0D) [reset = 0x1E]  
Figure 48. LCM Boost Bias Register  
7
6
5
4
3
2
1
0
Reserved  
LCM_VBST[5] LCM_VBST[4] LCM_VBST[3] LCM_VBST[2] LCM_VBST[1] LCM_VBST[0]  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. LCM Boost Bias Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
Reserved  
LCM_VBST[5:0]  
R/W  
011110  
Sets the LCM Boost Voltage (50 mV per step)  
000000: 4.5 V  
000001: 4.55 V  
000010: 4.6 V  
....................  
011101: 5.95 V  
011110: 6 V (Default)  
011111: 6.05 V  
....................  
100101: 6.35 V  
100110: 6.4 V  
Note: Codes 100111 to 111111 map to 6.4V  
7.6.14 VPOS Bias (Address = 0x0E) [reset = 0x1E]  
Figure 49. VPOS Bias Register  
7
6
5
4
3
2
1
0
Reserved  
VPOS[5]  
R/W-0  
VPOS[4]  
R/W-1  
VPOS[3]  
R/W-1  
VPOS[2]  
R/W-1  
VPOS[1]  
R/W-1  
VPOS[0]  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 20. VPOS Bias Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
Reserved  
VPOS[5:0]  
R/W  
011110  
Sets the Positive Display Bias (LDO) Voltage (50 mV per step)  
000000: 4 V  
000001: 4.05 V  
000010: 4.1 V  
....................  
011101: 5.45 V  
011110: 5.5 V (Default)  
011111: 5.55 V  
....................  
100111: 5.95 V  
101000: 6 V  
Note: Codes 101001 to 111111 map to 6 V  
Copyright © 2015, Texas Instruments Incorporated  
37  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
7.6.15 VNEG Bias (Address = 0x0F) [reset = 0x1C]  
Figure 50. VNEG Bias Register  
7
6
5
4
3
2
1
0
Reserved  
VNEG[5]  
R/W-0  
VNEG[4]  
R/W-1  
VNEG[3]  
R/W-1  
VNEG[2]  
R/W-1  
VNEG[1]  
R/W-0  
VNEG[0]  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 21. VNEG Bias Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
Reserved  
VNEG[5:0]  
R/W  
011100  
Sets the Negative Display Bias (inverting charge pump) Voltage  
(–50 mV per step)  
000000: –4 V  
000001: –4.05 V  
000010: -4.1 V  
....................  
011011: –5.35 V  
011100: –5.4 V (Default)  
011101: –5.45 V  
....................  
100111: –5.95 V  
101000: –6 V  
Note: Codes 101001 to 111111 map to –6 V  
7.6.16 Flags2 (Address = 0x10) [reset = 0x00]  
Figure 51. Flags2 Register  
7
6
5
4
3
2
1
0
Reserved  
LCM_OVP  
R-0  
VNEG_OVP  
R-0  
VPOS_SHORT VNEG_SHORT FLASH_OCP  
R-0 R-0 R-0  
BL_OCP  
R-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 22. Flags2 Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
Reserved  
LCM_OVP  
VNEG_OVP  
VPOS_SHORT  
VNEG_SHORT  
FLASH_OCP  
BL_OCP  
R
R
R
R
R
R
0
0
0
0
0
0
LCM boost overvoltage protection flag  
VNEG overvoltage protection flag  
4
3
VPOS short circuit protection flag  
2
VNEG short circuit protection flag  
1
Flash boost output overcurrent protection flag  
Backlight boost overcurrent protection flag  
0
38  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM3632A integrates an LCD backlight driver, LCM positive and negative bias voltage supplies, and a flash  
driver into a single device. The backlight boost converter generates the high voltage required for the LEDs. The  
device can drive one or two LED strings with 4 to 8 white LEDs per string. Positive and negative bias voltages  
are post-regulated from the LCM bias boost output voltage. The flash driver can supply constant current of up to  
a 1.5 A to the LED output. All three functions are independent of each other and can be enabled using their own  
dedicated controls.  
8.2 Typical Application  
D1  
L1  
10 µH  
C2  
1 µF  
L2  
1 µH  
C1  
10 µF  
FL_SW FL_SW  
BL_SW  
2.7 V ± 5 V  
BL_OUT  
BLED1  
BLED2  
VIN  
VBATT  
L3  
2.2 µH  
LCM_SW  
SCL  
Up to 8 LEDs / String  
FL_OUT  
FL_OUT  
SDA  
C3  
10 µF  
STROBE  
TX  
FLED  
FLED  
LM3632  
D2  
µC/µP  
PWM  
C1  
C2  
CFLY  
10 µF  
EN  
LCM_EN1  
LCM_EN2  
(6 V)  
LCM_OUT  
VPOS  
C4  
10 µF  
(5.5 V)  
(¤5.4V)  
C5  
10 µF  
AGND  
VNEG  
BL_GND CP_GND FL_GND LCM_GND  
C6  
10 µF  
Figure 52. Typical Application Schematic  
Copyright © 2015, Texas Instruments Incorporated  
39  
 
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
Example requirements are shown below:  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
2.7 V to 4.5 V (single Li-Ion cell battery)  
Brightness control  
I2C Register  
Backlight LED configuration  
Backlight LED current  
Backlight boost maximum voltage  
Backlight boost SW frequency  
Backlight boost inductor  
LCM boost output voltage  
VVNEG output voltage  
2 parallel, 6 series  
max 25 mA / string  
29 V  
1 MHz  
10 µH, 1-A saturation current  
6 V  
–5.4 V  
5.5 V  
VVPOS output voltage  
Flash LED current  
1.5 A  
Torch LED current  
100 mA  
8.2.2 Detailed Design Procedure  
8.2.2.1 External Components  
Table 23 shows examples of external components for the LM3632A. Boost converter output capacitors can be  
replaced with dual output capacitors of lower capacitance as long as the minimum effective capacitance  
requirement is met. DC bias effect of the ceramic capacitors must be taken into consideration when choosing the  
output capacitors. This is especially true for the high output-voltage backlight-boost converter.  
Table 23. Recommended External Components  
DESIGNATOR  
(Figure 52)  
DESCRIPTION  
VALUE  
EXAMPLE  
C1, C3, C4, C5, C6  
Ceramic capacitor  
Ceramic capacitor  
Inductor  
10 µF, 10 V  
1 µF, 35 V  
C1608X5R0J106M  
C2012X7R1H105K125AB  
VLF403212MT- 100M  
DFE201610P-1R0M  
VLS201612ET-2R2M  
NSR0530P2T5G  
C2  
L1  
L2  
L3  
D1  
10 µH, 1 A  
1 µH, 2.8 A  
2.2 µH, 1 A  
30 V, 500 mA  
Inductor  
Inductor  
Schottky diode  
8.2.2.2 Inductor Selection  
Both of the LM3632A boost converters are internally compensated. The compensation parameters are designed  
for the inductance values listed on Table 23. Effective inductance of the inductors should be ±20%.  
There are two main considerations when choosing an inductor: the inductor should not saturate, and the inductor  
current ripple should be small enough to achieve the desired output voltage ripple. Different saturation current  
rating specifications are followed by different manufacturers so attention must be given to details. Saturation  
current ratings are typically specified at 25°C. However, ratings at the maximum ambient temperature of the  
application should be requested from the manufacturer. The saturation current should be greater than the sum of  
the maximum load current and the worst-case average-to-peak inductor current. When the boost device is  
boosting (VOUT > VIN) the inductor is one of the largest area of efficiency loss in the circuit. Therefore, choosing  
an inductor with the lowest possible series resistance is important, especially for the flash and LCM Bias  
converters. For proper inductor operation and circuit performance, ensure that the inductor saturation and the  
peak current limit setting of the LM3632A are greater than IPEAK in Equation 5:  
( )  
IN x VOUT - V  
IN  
ILOAD VOUT  
V
IPEAK  
=
x
+'IL  
where  
'IL =  
K
V
2 x fSW x L x VOUT  
IN  
(5)  
40  
Copyright © 2015, Texas Instruments Incorporated  
 
 
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
See detailed information in “Understanding Boost Power Stages in Switch Mode Power Supplies”  
http://focus.ti.com/lit/an/slva061/slva061.pdf. “Power Stage Designer™ Tools” can be used for the boost  
calculation: http://www.ti.com/tool/powerstage-designer.  
8.2.2.3 Boost Output Capacitor Selection  
At least an 1-μF capacitor is recommended for the backlight boost converter output capacitor. A high-quality  
ceramic type X5R or X7R is recommended. Voltage rating must be greater than the maximum output voltage that  
is used. The effective output capacitance should always remain higher than 0.4 µF for stable operation.  
For the LCM bias boost output a high-quality 10-μF ceramic type X5R or X7R capacitor is recommended.  
Voltage rating must be greater than the maximum output voltage that is used.  
The flash driver is designed to operate with a 10-μF ceramic output capacitor. When the boost converter is  
running, the output capacitor supplies the load current during the boost converter's on-time. When the NMOS  
switch turns off, the inductor energy is discharged through the internal PMOS switch, supplying power to the load  
and restoring charge to the output capacitor. This causes a sag in the output voltage during the on-time and a  
rise in the output voltage during the off-time. The output capacitor is therefore chosen to limit the output ripple to  
an acceptable level depending on load current and input/output voltage differentials and also to ensure the  
converter remains stable.  
The DC-bias effect of the capacitors must be taken into consideration when selecting the output capacitors. The  
effective capacitance of a ceramic capacitor can drop down to less than 10% with maximum rated DC bias  
voltage. Note that with a same voltage applied, the capacitors with higher voltage rating suffer less from the DC-  
bias effect than capacitors with lower voltage rating.  
8.2.2.4 Input Capacitor Selection  
Choosing the correct size and type of input capacitor helps minimize the voltage ripple caused by the switching  
of the LM3632A boost converters and reduce noise on the boost converter's input pin that can feed through and  
disrupt internal analog signals. In Figure 52 a 10-μF ceramic input capacitor works well. It is important to place  
the input capacitor as close as possible to the LM3632A input (VIN) pin. This reduces the series resistance and  
inductance that can inject noise into the device due to the input switching currents.  
Copyright © 2015, Texas Instruments Incorporated  
41  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
8.2.3 Application Curves  
8.2.3.1 Backlight Curves  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. Backlight System Efficiency is defined as PLED / PIN,  
where PLED is actual power consumed in backlight LEDs.  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40qC  
TA = 25qC  
TA = 85qC  
TA = -40qC  
TA = 25qC  
TA = 85qC  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D001  
D002  
2p7s LEDs  
ƒ = 500 kHz  
2p7s LEDs  
ƒ = 500 kHz  
Figure 53. Backlight Boost Efficiency  
Figure 54. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40qC  
TA = 25qC  
TA = 85qC  
TA = -40qC  
TA = 25qC  
TA = 85qC  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D003  
D004  
2p7s LEDs  
ƒ = 1 MHz  
2p7s LEDs  
ƒ = 1 MHz  
Figure 55. Backlight Boost Efficiency  
Figure 56. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D005  
D006  
2p7s LEDs  
ƒ = 500 kHz  
2p7s LEDs  
ƒ = 500 kHz  
Figure 57. Backlight Boost Efficiency  
Figure 58. Backlight System Efficiency  
42  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. Backlight System Efficiency is defined as PLED / PIN,  
where PLED is actual power consumed in backlight LEDs.  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D007  
D008  
2p7s LEDs  
ƒ = 1 MHz  
2p7s LEDs  
ƒ = 1 MHz  
Figure 59. Backlight Boost Efficiency  
Figure 60. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40qC  
TA = 25qC  
TA = 85qC  
TA = -40qC  
TA = 25qC  
TA = 85qC  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D009  
D010  
2p6s LEDs  
ƒ = 500 kHz  
2p6s LEDs  
ƒ = 500 kHz  
Figure 61. Backlight Boost Efficiency  
Figure 62. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40qC  
TA = 25qC  
TA = 85qC  
TA = -40qC  
TA = 25qC  
TA = 85qC  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D012  
D011  
2p6s LEDs  
ƒ = 1 MHz  
2p6s LEDs  
ƒ = 1 MHz  
Figure 64. Backlight System Efficiency  
Figure 63. Backlight Boost Efficiency  
Copyright © 2015, Texas Instruments Incorporated  
43  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. Backlight System Efficiency is defined as PLED / PIN,  
where PLED is actual power consumed in backlight LEDs.  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D013  
D014  
2p6s LEDs  
ƒ = 500 kHz  
2p6s LEDs  
ƒ = 500 kHz  
Figure 65. Backlight Boost Efficiency  
Figure 66. Backlight System Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D015  
D016  
2p6s LEDs  
ƒ = 1 MHz  
2p6s LEDs  
ƒ = 1 MHz  
Figure 67. Backlight Boost Efficiency  
Figure 68. Backlight System Efficiency  
8.2.3.2 LCM Bias Curves  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. VPOS, VNEG and VPOS/VNEG Efficiency is defined  
as POUT / PIN, where POUT is actual power consumed in VPOS, VNEG and (VPOS + VNEG) outputs, respectively.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Load (mA)  
Load (mA)  
D051  
D052  
VLCM_OUT = 4.5 V  
Figure 69. LCM Boost Efficiency  
VLCM_OUT = 5 V  
Figure 70. LCM Boost Efficiency  
44  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. VPOS, VNEG and VPOS/VNEG Efficiency is defined  
as POUT / PIN, where POUT is actual power consumed in VPOS, VNEG and (VPOS + VNEG) outputs, respectively.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Load (mA)  
Load (mA)  
D053  
D054  
VLCM_OUT = 5.5 V  
Figure 71. LCM Boost Efficiency  
VLCM_OUT = 6 V  
Figure 72. LCM Boost Efficiency  
96  
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
96  
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
60  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 4.3 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Load (mA)  
D055  
Load (mA)  
D056  
VLCM_OUT = 4.8 V  
Figure 73. LCM Boost Efficiency  
VLCM_OUT = 5.3 V  
Figure 74. LCM Boost Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
90  
85  
80  
75  
70  
65  
60  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
TA = -40°C  
TA = 25°C  
TA = 85°C  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
D0557  
Load (mA)  
D058  
VLCM_OUT = 5.9 V  
Figure 75. LCM Boost Efficiency  
VVPOS = 4.5 V  
VLCM_OUT = 4.9 V  
Figure 76. VPOS Efficiency  
Copyright © 2015, Texas Instruments Incorporated  
45  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. VPOS, VNEG and VPOS/VNEG Efficiency is defined  
as POUT / PIN, where POUT is actual power consumed in VPOS, VNEG and (VPOS + VNEG) outputs, respectively.  
90  
85  
80  
75  
70  
65  
60  
90  
85  
80  
75  
70  
65  
60  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
D060  
Load (mA)  
D0059  
VVPOS = 5.5 V  
VLCM_OUT = 5.9 V  
VVPOS = 5 V  
VLCM_OUT = 5.4 V  
Figure 77. VPOS Efficiency  
Figure 78. VPOS Efficiency  
95  
95  
90  
85  
80  
75  
70  
65  
90  
85  
80  
75  
70  
65  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 4.3 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
D061  
Load (mA)  
D062  
VVPOS = 4.5 V  
VLCM_OUT = 4.9 V  
VVPOS = 5 V  
VLCM_OUT = 5.4 V  
Figure 80. VPOS Efficiency  
Figure 79. VPOS Efficiency  
90  
95  
90  
85  
80  
75  
70  
65  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40°C  
TA = 25°C  
TA = 85°C  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D064  
D063  
VVNEG = –4.5 V  
VLCM_OUT = 4.9 V  
VVPOS = 5.5 V  
VLCM_OUT = 5.9 V  
Figure 82. VNEG Efficiency  
Figure 81. VPOS Efficiency  
46  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. VPOS, VNEG and VPOS/VNEG Efficiency is defined  
as POUT / PIN, where POUT is actual power consumed in VPOS, VNEG and (VPOS + VNEG) outputs, respectively.  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
D066  
Load (mA)  
D065  
VVNEG = –5.5 V  
VLCM_OUT = 5.9 V  
VVNEG = –5 V  
VLCM_OUT = 5.4 V  
Figure 83. VNEG Efficiency  
Figure 84. VNEG Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 4.3 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D067  
D068  
VVNEG = –4.5 V  
VLCM_OUT = 4.9 V  
VVNEG = –5 V  
VLCM_OUT = 5.4 V  
Figure 85. VNEG Efficiency  
Figure 86. VNEG Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
TA = -40°C  
TA = 25°C  
TA = 85°C  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D069  
D070  
VVNEG = –5.5 V  
VLCM_OUT = 5.9 V  
VVPOS = 4.5 V  
VVNEG = –4.5 V  
VLCM_OUT = 4.9 V  
Figure 87. VNEG Efficiency  
Figure 88. VPOS/VNEG Efficiency  
Copyright © 2015, Texas Instruments Incorporated  
47  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. VPOS, VNEG and VPOS/VNEG Efficiency is defined  
as POUT / PIN, where POUT is actual power consumed in VPOS, VNEG and (VPOS + VNEG) outputs, respectively.  
90  
85  
80  
75  
70  
65  
60  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D071  
D072  
VVPOS = 5 V  
VVNEG = –5 V  
VLCM_OUT = 5.4 V  
VVPOS= 5.5 V  
VVNEG = –5.5 V  
VLCM_OUT = 5.9 V  
Figure 89. VPOS/VNEG Efficiency  
Figure 90. VPOS/VNEG Efficiency  
90  
85  
80  
75  
70  
65  
60  
95  
90  
85  
80  
75  
70  
65  
60  
55  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 4.3 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D073  
D074  
VVPOS = 4.5 V  
VVNEG = –4.5 V  
VLCM_OUT = 4.9 V  
VVPOS = 5 V  
VVNEG = –5 V  
VLCM_OUT = 5.4 V  
Figure 91. VPOS/VNEG Efficiency  
Figure 92. VPOS/VNEG Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
TA = -40°C  
TA = 25°C  
TA = 85°C  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D076  
D075  
VLCM_OUT = 5 V  
Figure 94. VLCM_OUT Load Regulation  
VVPOS = 5.5 V  
VVNEG = –5.5 V  
VLCM_OUT = 5.9 V  
Figure 93. VPOS/VNEG Efficiency  
48  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. VPOS, VNEG and VPOS/VNEG Efficiency is defined  
as POUT / PIN, where POUT is actual power consumed in VPOS, VNEG and (VPOS + VNEG) outputs, respectively.  
5.58  
5.56  
5.54  
5.52  
5.5  
6.09  
6.07  
6.05  
6.03  
6.01  
5.99  
5.97  
5.95  
5.93  
5.91  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
TA = -40°C  
TA = 25°C  
TA = 85°C  
5.48  
5.46  
5.44  
5.42  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Load (mA)  
Load (mA)  
D078  
D077  
VLCM_OUT = 5.5 V  
Figure 95. VLCM_OUT Load Regulation  
VLCM_OUT = 6 V  
Figure 96. VLCM_OUT Load Regulation  
4.56  
4.54  
4.52  
4.50  
4.48  
4.46  
4.44  
5.06  
5.04  
5.02  
5
TA = -40°C  
TA = 25°C  
TA = 85°C  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
4.98  
4.96  
4.94  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D079  
D081  
VVPOS = 4.5 V  
VLCM_OUT = 4.9 V  
VVPOS = 5 V  
VLCM_OUT = 5.4 V  
Figure 97. VVPOS Load Regulation  
Figure 98. VVPOS Load Regulation  
5.56  
5.54  
5.52  
5.50  
5.48  
5.46  
5.44  
-4.56  
-4.54  
-4.52  
-4.50  
-4.48  
-4.46  
-4.44  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D082  
D080  
VVNEG = –4.5 V  
VLCM_OUT = 4.9 V  
VVPOS = 5.5 V  
VLCM_OUT = 5.9 V  
Figure 100. VVNEG Load Regulation  
Figure 99. VVPOS Load Regulation  
Copyright © 2015, Texas Instruments Incorporated  
49  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. VPOS, VNEG and VPOS/VNEG Efficiency is defined  
as POUT / PIN, where POUT is actual power consumed in VPOS, VNEG and (VPOS + VNEG) outputs, respectively.  
-5.06  
-5.04  
-5.02  
-5.00  
-4.98  
-4.96  
-4.94  
-5.58  
-5.56  
-5.54  
-5.52  
-5.50  
-5.48  
-5.46  
-5.44  
-5.42  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 5 V  
TA = -40°C  
TA = 25°C  
TA = 85°C  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Load (mA)  
Load (mA)  
D084  
D083  
VVNEG = –5 V  
VLCM_OUT = 5.4 V  
VVNEG = –5.5 V  
VLCM_OUT = 5.9 V  
Figure 101. VVNEG Load Regulation  
Figure 102. VVNEG Load Regulation  
8.2.3.3 Flash Curves  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. Flash System Efficiency defined as PLED / PIN, where  
PLED is actual power consumed in flash LED.  
100  
95  
90  
85  
80  
75  
70  
90  
85  
80  
75  
70  
65  
TA = -40qC  
TA = 25qC  
TA = 85qC  
TA = -40qC  
TA = 25qC  
TA = 85qC  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
VIN (V)  
VIN (V)  
D032  
D033  
IFLED = 1.5 A  
ƒ = 4 MHz  
VFLED = 3.5 V  
IFLED = 1.5 A  
ƒ = 4 MHz  
VFLED = 3.5 V  
Figure 103. Flash Boost Efficiency  
Figure 104. Flash System Efficiency  
100  
95  
90  
85  
80  
75  
90  
85  
80  
75  
70  
65  
TA = -40qC  
TA = 25qC  
TA = 85qC  
TA = -40qC  
TA = 25qC  
TA = 85qC  
2.7  
3.2  
3.7  
4.2  
4.7  
5.1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
VIN (V)  
VIN (V)  
D034  
D035  
IFLED = 1.5 A  
ƒ = 2 MHz  
VFLED = 3.5 V  
IFLED = 1.5 A  
ƒ = 2 MHz  
VFLED = 3.5 V  
Figure 105. Flash Boost Efficiency  
Figure 106. Flash System Efficiency  
50  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. Flash System Efficiency defined as PLED / PIN, where  
PLED is actual power consumed in flash LED.  
100  
98  
96  
94  
92  
90  
88  
86  
90  
85  
80  
75  
70  
65  
60  
TA = -40qC  
TA = 25qC  
TA = 85qC  
TA = -40qC  
TA = 25qC  
TA = 85qC  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
VIN (V)  
VIN (V)  
D036  
D037  
IFLED = 0.8 A  
ƒ = 4 MHz  
VFLED = 3.2 V  
IFLED = 0.8 A  
ƒ = 4 MHz  
VFLED = 3.2 V  
Figure 107. Flash Boost Efficiency  
Figure 108. Flash System Efficiency  
100  
98  
96  
94  
92  
90  
88  
86  
90  
85  
80  
75  
70  
65  
60  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40qC  
TA = 25qC  
TA = 85qC  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
VIN (V)  
VIN (V)  
D038  
D039  
IFLED = 0.8 A  
ƒ = 2 MHz  
VFLED = 3.2 V  
IFLED = 0.8 A  
ƒ = 2 MHz  
VFLED = 3.2 V  
Figure 109. Flash Boost Efficiency  
Figure 110. Flash System Efficiency  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
VIN (V)  
VIN (V)  
D040  
D041  
IFLED = 375 mA  
ƒ = 4 MHz  
VFLED = 3 V  
IFLED = 375 mA  
ƒ = 4 MHz  
VFLED = 3 V  
Figure 111. Torch Boost Efficiency  
Figure 112. Torch System Efficiency  
Copyright © 2015, Texas Instruments Incorporated  
51  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted. Flash System Efficiency defined as PLED / PIN, where  
PLED is actual power consumed in flash LED.  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
95  
90  
85  
80  
75  
70  
65  
60  
55  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
VIN (V)  
VIN (V)  
D042  
D043  
IFLED = 375 mA  
ƒ = 4 MHz  
VFLED = 3 V  
IFLED = 375 mA  
ƒ = 2 MHz  
VFLED = 3 V  
Figure 113. Torch Boost Efficiency  
Figure 114. Torch System Efficiency  
100  
98  
96  
94  
92  
90  
88  
86  
84  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
0.1  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
0.1  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
ILED (A)  
ILED (A)  
D044  
D045  
ƒ = 4 MHz  
Figure 115. Flash Boost Efficiency  
ƒ = 4 MHz  
Figure 116. Flash System Efficiency  
100  
98  
96  
94  
92  
90  
88  
86  
84  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
0.1  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
0.1  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
ILED (A)  
ILED (A)  
D046  
D047  
ƒ = 2 MHz  
Figure 117. Flash Boost Efficiency  
ƒ = 2 MHz  
Figure 118. Flash System Efficiency  
52  
Copyright © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
9 Power Supply Recommendations  
The LM3632A is designed to operate from an input voltage supply range between 2.7 V and 5 V. This input  
supply must be well regulated and capable to supply the required input current. If the input supply is located far  
from the LM3632A additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
10 Layout  
10.1 Layout Guidelines  
Place the boost converters output capacitors as close to the output voltage and GND pins as possible.  
Minimize the boost converter switching loops by placing the input capacitors and inductors close to GND and  
switch pins.  
If possible, route the switching loops on top layer only. For best efficiency, try to minimize copper on the  
switch node to minimize switch pin parasitic capacitance while preserving adequate routing width.  
VIN input voltage pin needs to be bypassed to ground with a low-ESR bypass capacitor. Place the capacitor  
as close to VIN pin as possible.  
Place the output capacitor of the LDO as close to the output pins as possible. Also place the charge pump  
flying capacitor and output capacitor close to their respective pins.  
Terminate the Flash LED cathode directly to the Flash GND pin of the LM3632A. If possible, route the LED  
return with a dedicated path so as to keep the high amplitude LED current out of the GND plane.  
Route the internal pins on the second layer. Use offset micro vias to go from top layer to mid-layer1. Avoid  
routing the signal traces directly under the switching loops of the boost converters.  
版权 © 2015, Texas Instruments Incorporated  
53  
LM3632A  
ZHCSDN2 APRIL 2015  
www.ti.com.cn  
10.2 Layout Example  
LLCM  
VIAs to  
GND Plane  
VINL  
LCM_OUT LCM_SW  
CLCM  
VIAs to  
GND Plane  
LBL  
CBL_OUT  
D1  
VPOS  
LCM_OUT  
BL_GND  
LCM_GND  
AGND  
BL_SW  
VPOS  
LCM_EN2  
C1  
LCM_SW  
CVPOS  
BL_OUT  
LCM_EN1  
EN  
BL_OUT  
BLED1  
C1  
SDA  
TX  
BLED1  
BLED2  
SCL  
STROBE  
PWM  
CP_GND  
BLED2  
CFLY  
FLED  
FLED  
FL_SW  
FL_SW  
C2  
FL_OUT  
FL_OUT  
VIN  
VIN  
CIN  
C2  
CVNEG  
VNEG  
FL_GND  
VNEG  
VIAs to  
GND Plane  
VIAs to  
GND Plane  
CFL_OUT  
FLED FL_OUT FL_SW  
LFL  
VINL  
54  
版权 © 2015, Texas Instruments Incorporated  
LM3632A  
www.ti.com.cn  
ZHCSDN2 APRIL 2015  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 文档支持  
11.2.1 相关文档  
相关文档如下:  
德州仪器 (TI) 应用手册 AN1112DSBGA 晶圆级芯片规模封装》(文献编号:SNVA009)。  
《了解开关模式电源中的升压功率级》,  
http://focus.ti.com/lit/an/slva061/slva061.pdf。  
Power Stage Designer™ 工具》http://www.ti.com.cn/tool/cn/powerstage-designer。  
11.3 商标  
All trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 ,  
可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
55  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM3632AYFFR  
ACTIVE  
DSBGA  
YFF  
30  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
3632A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
YFF0030  
DSBGA - 0.625 mm max height  
S
C
A
L
E
4
.
5
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BUMP A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
1.6 TYP  
SYMM  
F
E
D: Max = 2.47 mm, Min = 2.41 mm  
E: Max = 2.07 mm, Min = 2.01 mm  
D
C
SYMM  
2
TYP  
B
A
0.4 TYP  
1
2
4
5
3
0.3  
30X  
0.4 TYP  
0.2  
0.015  
C A B  
4219433/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0030  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
30X ( 0.23)  
(0.4) TYP  
2
4
5
1
A
B
C
SYMM  
D
E
F
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
(
0.23)  
(
0.23)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219433/A 03/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0030  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
30X ( 0.25)  
(R0.05) TYP  
1
3
2
4
5
A
B
(0.4)  
TYP  
METAL  
TYP  
C
D
E
F
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219433/A 03/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY